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A simple yet effective whole-body locomotion framework for
quadruped robots

∗Gennaro Raiola, +Enrico Mingo Hoffman, ∗Michele Focchi, +Nikos G. Tsagarakis and ∗Claudio Semini

Abstract—In the context of legged robotics, many criteria
based on the control of the Center of Mass (CoM) have been
developed to ensure stable and safe robot locomotion. Defining
a whole-body framework with the control of the CoM requires
a planning strategy, often based on a specific type of gait and
reliable state-estimation. In a whole-body control approach, if
the CoM task is not specified, the consequent redundancy can
still be resolved by specifying a postural task that sets references
for all the joints. Therefore, the postural task can be exploited
to keep a well behaved, stable kinematic configuration. In this
work, we propose a generic locomotion framework which is
able to generate different kind of gaits, ranging from very
dynamic gaits such as the trot, to more static gaits like the crawl,
without the need to plan the CoM trajectory. Consequently,
the whole-body controller becomes planner-free and it does not
require the estimation of the floating base state, which is often
prone to drift. The framework is composed of a priority-based
whole-body controller that works in synergy with a walking
pattern generator. We show the effectiveness of the framework by
presenting simulations on different types of simulated terrains,
including rough terrain, using different quadruped platforms.

Index Terms—whole-body control, legged robots, planning,
optimization

I. INTRODUCTION

Over the last few years in the context of legged robots,
a lot of effort has been devoted to designing controllers
and planners for locomotion. However, most of the time
these two elements are considered separately [1], [2], [3].
Typically the controller requires that the trajectory of the CoM
is specified to ensure the stability during locomotion1. In a
different manner from the task that controls the orientation
of the base, for which an Inertial Measurement Unit (IMU)
can provide reliable measurements, the planning and tracking
of the CoM requires a state-estimation algorithm to obtain
its linear position and velocity [5], [6]. Even though these
algorithms achieve good results by fusing different sources
(e.g. leg odometry, vision and inertial measurements) their
estimation has the potential to drift due to bias in the
sensors, feet slippage, visual occlusions and compliance of
the mechanical structure. Moreover, designing trajectories for
the CoM is not a trivial task, because, despite satisfying
stability constraints, consideration must be taken of the specific
kinematic properties of the robot beforehand. For instance,
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1Here the term ”stability” is intended in the sense defined by Pang and
Trinkle [4].

a certain CoM position could correspond to an undesirable
kinematic configuration: close to the kinematic limits of the
robot, and/or with low leg mobility [7]. To avoid inconvenient
kinematic configurations while walking, it is crucial to provide
enough mobility and prevent progressive degeneration of the
support polygon and thus also keep the joint efforts limited. As
a matter of fact, if the support polygon shrinks, the robustness
decreases because the legs can lose mobility for future steps.
Differently from the trunk orientation task, where the reference
orientation usually does not change so frequently (and in
general for common gaits like walk and trot is bounded in
a way that the joints are always inside their limits), planning
a feasible trajectory for the CoM requires a more complex
procedure, often involving numerical optimization techniques.

A. Related work

Priorities are a strategy to deal with conflicting tasks where
some of them are more critical. This strategy ensures the
achievement of high priority tasks at the expense of other tasks
with lower priority. In robotics, hierarchical approaches based
on priorities were originally introduced for inverse kinematics
problems with the works of Whitney [8] and Liegeois [9], and
successively by Nakamura [10] and Siciliano [11]. Kathib et
al. [12] also implemented them for inverse dynamics control
of redundant manipulators involving two task levels: a first
level to control the position of the end-effector and another
to control the redundant joints. Later on, Sentis et al. [13]
extended this approach to humanoid robots in contact with
the environment with an arbitrary number of tasks. However,
all these works are projection-based2 and do not allow the
enforcement of explicitly inequality constraints. On the other
hand, the tasks’ completion is often bounded by the robot’s
workspace and its own technological limits that are typically
expressed as inequality constraints (e.g. joint limits, actuation
limits and friction limits). To take inequality constraints into
account, optimization techniques have been introduced to cast
the control problem as an optimization problem [14], [15],
[16], [17]. In these approaches, the robot dynamics can be
imposed as an equality constraint to ensure a physically
consistent evolution of the robot state variables. Given the
quadratic nature of the cost functions involved3 and the
linearity of the constraints, to render the inverse dynamics
controller, the resulting optimization problem is typically

2Priorities are achieved by projecting low priority task Jacobians by means
of linear operators (i.e. the null-space projector of higher priority task
Jacobians).

3The cost functions often quantify the error between a desired and a
measured value and present it in the form of a squared euclidean norm.



expressed as a Quadratic Program (QP). Alternatively Wensing
et al. [18] avoided the linear approximation of the friction
cones and encoded them as Second Order Cones leading to
the SOQP formulation. More recently, hard-priorities have
been introduced for these inverse dynamics formulations and
different efficient implementations have been proposed by
Del Prete [19] and Herzog [20]. Herzog was the first to
demonstrate with experiments on humanoid robots the validity
of this approach and later the approach was extended on
quadruped robots by Bellicoso [21]. Koolen et al. [22] im-
plemented soft-priorities and extensively tested this approach
on humanoid robots at the Darpa Robotics Challenge (DRC).
Salini et al. [23] also implemented soft-priorities providing
an effective way to avoid torque discontinuities when the
relative importance of tasks was modified or when constraints
appeared or disappeared. This made their controller able to
adapt to dynamically changing environments. The advantage
of hard-priorities is that they ensure a perfect achievement of
the highest priority task at the price of a high computational
time (e.g. one QP is solved for each priority level), but it
can happen that there is no redundancy left to achieve lower
priority tasks. Indeed strict priorities can be sometimes so
conservative that they may completely block lower-priority
tasks. On the other hand, with soft-priorities the program is
solved only once, and the computation time mainly depends
on the dimension of the set of constraints. However, it is
not always easy to define the relative weights for the tasks
because a good trade-off must be found between the different
terms in the cost function. In addition a scaling of the weights
must be considered to account for the different size of the SI
units in the cost variables. Finally, the authors have recently
proposed the formalisation of prioritized whole-body Cartesian
impedance control as a cascade of QPs [24] together with the
post-optimization of contact forces [25] in the case of floating-
base systems. All these approaches require the specification of
the CoM task in (at least) the X and Y directions (see Fig. 1
for frame definition).

B. Proposed Approach and Contribution

Our approach builds on top of previous works [25], [24]
on hierarchical Cartesian impedance control with QP opti-
mization. We extended these works by proposing a novel
locomotion framework that: 1) avoids the specification of a
task for the CoM both in terms of planning and control,
making the framework planner-free, 2) consequently, does not
require inputs from a state-estimation algorithm; 3) keeps the
robot in a kinematically ”appealing” configuration (e.g. far
from joint limits, with a good leg mobility); 4) is robust on
rough terrain. The approach achieves a synergy between the
planner and the controller by exploiting the hierarchical nature
of our whole-body optimization. Referring to Table I for the
priority order of the tasks, we placed the postural task at the
lowest priority. The postural task will exploit the Degrees of
Freedom remaining from the higher priority tasks to keep the
robot close to a preferable nominal kinematic configuration
(see Fig. 2). This generates a connection between the motion

of the trunk and the location of the contacts. Therefore, the
postural task acts as a set of ”elastic linkages”, and determines
the linear motion of the base, aligning that with the feet
while trying to maintain a ”nominal” configuration of the
robot. Consequently, it eliminates the complexity of designing
a CoM trajectory that takes into account the changing shape of
the support polygon during locomotion, making the proposed
approach planner-free. The locomotion is driven by a terrain-
consistent (haptic) stepping strategy that selects the footholds
to realize a desired velocity command for the robot base.
Instead, the orientation of the base is controlled in a separate
task at a higher priority and will be accommodated by the
postural task being this at lower priority level. The price to
pay for the absence of the CoM task is that the locomotion
stability is no longer guaranteed (e.g. the Zero Moment Point
(ZMP) could end-up on the boundary of the support polygon).
However, this is not a big issue for quadrupeds, if the swing
phases are fast enough [26].

To summarize, the contributions of the present work are:
• A planner-free locomotion framework for rough terrain

that can be implemented in real-time. The framework is
composed of a hierarchical whole-body inverse dynamics
optimization and a walking pattern generator for omni-
directional motions. It can handle different gaits such as
crawl and trot, and requires only desired base velocities as
high-level inputs from the operator. It does not require the
specification of any CoM task and it allows to decouple
the base orientation from the generation of the swing
trajectories.

• an experimental contribution where we demonstrate the
effectiveness of our locomotion framework in simulation
on different quadruped platforms such as Hydraulically
actuated Quadruped (HyQ) and ANYmal (ANYmal).
Preliminary results were carried out on the real HyQ
platform.

C. Outline

The rest of this paper is structured as follows: in Section II
we describe the Hierarchical Whole-Body Operational Space
formulation that we use to enforce priorities in our locomotion
framework. In Section III we present the walking pattern
generator while Section IV discusses some details useful for
the implementation of the whole-body framework on the real
robot. In Section V we present both simulation and preliminary
experimental results, and we conclude with Section VI.

TABLE I: Order of Priorities

Task Name Symbol Priority
Contact Task WT→ci 1

Trunk Orientation Task WT ∠
bl 2

Postural Task Tq̈ 3

II. WHOLE-BODY OPERATIONAL SPACE CONTROLLER

In this section we introduce the formulation of the Whole-
Body Operational Space Controller approach we developed.



A. Model, Tasks and Constraints
We describe the configuration of our robotic system using

f + n joint variables:

q =

[
qu

qa

]
, (1)

where the values of the first f virtual joints qu represent the
pose of the (under-actuated) floating-base, using a particular
parameterization for the orientation in SO(3)4 and the last
n = 12 are the angular positions of the actuated joints (qa ∈
Rn). We describe with q̇ = [q̇T

u q̇T
a ]T ∈ R6+n the vector

of generalized velocities; the linear and angular velocities of
the base, vfb ∈ R6, are provided by a proper floating-base
Jacobian:

Jfbq̇u = vfb. (2)

The dynamic model of the floating-base system in contact with
the environment is given by the following:

M (q) q̈ + h (q, q̇) = ST τ + Jc (q)
T

Fc. (3)

According to our parameterization, M ∈ R(6+n)×(6+n) is the
joint space inertia matrix, q̈ ∈ Rn+6 are the joint accelerations,
h ∈ Rn+6 are torques which account for non-linear terms in
the dynamics, S = [0n×6 In×n] is a selection matrix that
accounts for the fact that the floating-base is not actuated,
τ ∈ Rn are the actuated torques, finally Jc ∈ R3c×(n+6) are
the Jacobians of the contacts5 and Fc ∈ R3c is the vector
of contact forces expressed in the world W frame, where c
is the number of contacts. We will enforce in our Whole-
Body Control (WBC) formulation, the first 6 rows of (3) as a
constraint Cfb to have accelerations q̈ and contact forces Fc

consistent with the dynamics of the system:

Cfb : Mfbq̈ + hfb = JT
c,fbFc. (4)

where Mfb ∈ R6×n+6, hfb ∈ R6 and Jc,fb ∈ R3c×6 are the
first six rows extracted from (3).

In this work, we aim to simplify the gait generation and
to make the whole-body controller independent, as much as
possible, from the floating-base state estimation. In order to
do so, the world frame W origin will always be attached
to the base origin and we express the orientation tasks w.r.t.
this frame. Additionally for the generation of Cartesian feet
trajectories (see Section III-B) we define the H frame. This is
the same as the base frame B (e.g. moves with the robot) but
with the Z axis parallel to gravity, i.e. aligned to the inertial
frame W (see Fig. 1). This frame is also known as horizontal
frame [27], [7]. The base frame and horizontal frames can be
extrapolated from IMU measurements.

In our whole-body formulation we intend to consider gen-
eralized accelerations and contact forces as optimization vari-
ables. Therefore a generic Cartesian (6D) acceleration should
be expressed in terms of these variables as:

ẍ = J (q) q̈ + J̇ (q, q̇) q̇, (5)

4 In particular we use Euler angles to represent the orientation of the base,
so f = 6. Note that Euler angles can have singularity at 90◦ pitch, which is
an orientation we never consider in our tasks.

5We assume our robot establishes point contacts with the environment.

Fig. 1: The figure shows the horizontal frame H, placed at the
base link bl but aligned with gravity. The X-axes of the world
and of the horizontal frame are co-planar but with different
yaw orientations. The swing frame Si for the right front leg
of the robot, is located at the foot and is aligned with the
horizontal frame (on flat terrain). θ is the pitch of the base
link.

where ẍ ∈ R6 is a Cartesian acceleration, J is the task
Jacobian and the term J̇q̇ ∈ R6 accounts for the accelerations
due to joint velocities. We can define a Cartesian tracking task
for (5) as a quadratic cost function T :

T : ‖Jq̈− ẍr‖2W ,

ẍr = ẍd − J̇q̇ + KP (xd − x) + KD (ẋd − ẋ) ,
(6)

where ẍr ∈ R6 is a reference Cartesian acceleration vector
composed by the feed-forward terms ẍd − J̇q̇ ∈ R6 and
the feedback terms KP (xd − x) + KD (ẋd − ẋ) ∈ R6 that
aim to drive the position and velocity tracking error to zero,
KP ,KD ∈ R6×6 are positive definite feedback gains matrices.
The proper computation of the orientation error between the
two poses will be explicitly discussed later on in this section.
The matrix W ∈ R6×6 is the weight matrix associated to the
cost function6.

Considering the generic Cartesian acceleration task in (6),
we can define the contact task WT →ci for each foot i in contact:

WT →ci : ‖Jc,iq̈− ẍr‖2W ,

ẍr = −J̇c,iq̇.
(7)

In the contact task we set the reference acceleration to be zero
(i.e. the feet in contact do not move). The task is defined w.r.t
the world frame W while the superscript → means that only
the position part of the task is considered (because we have
point feet assumption). We do not set any feedback gain at this
level because we do not want to have dependency on the state

6Note that, in general, the size of the weight matrix W depends on the
size (number of rows) of the task.



estimation, that is often prone to drift 7, while the inter-feet
distance will be ensured by the postural task. Contact tasks
at the feet are needed to ensure the emergence of the contact
forces in (4) needed to compensate for the gravity load acting
on the floating base of the robot.

We consider another Cartesian task WT ∠
bl to control the

orientation of the base of the robot:

WT ∠
bl : ‖Jblq̈− ẍr‖2W ,

ẍr = ω̇d − J̇blq̇−KP,oeo + KD,o (ωd − ω) .
(8)

Where eo is the orientation error computed through quater-
nions8. The task is defined w.r.t the world frame W while the
superscript ∠ means that only the orientation part of the task is
considered. In (8), ωd,ω ∈ R3 are the desired and measured
angular velocity, respectively and ω̇d is the desired angular
acceleration.

To track posture references, we define a postural task Tq̈:

Tq̈ : ‖q̈a − q̈r‖2W ,
q̈r = KP,p (qa,d − qa) + KD,p (q̇a,d − q̇a) ,

(9)

defined just for the actuated part of (1). The posture references
aim to keep the robot in a well behaved kinematic configu-
ration as in Figure 2. These references can be changed if the
user wants to set a different height for the robot 9. To ensure

Fig. 2: Nominal configuration used as reference for the pos-
tural task (values shown in radians).

contact stability, it is common to constrain the contact forces
to lie in a linearized friction cone Cfci for each contact:

Cfci :


Fci,n ≥ 0,

|Fci,t|≤
√
2
2 µiFci,n,

(10)

7Even in the case the CoM position is estimated via relative measurements
(based solely on relative encoders readings that are quite accurate), the
occurrence of slippage in the foot chosen as reference, can make the estimation
suffer from drift.

8The orientation error can be computed from the quaternion error
αe =

[
ηe, εe

]
as eo = 2arccos(ηe) εe

‖εe‖
. The quaternion error is

computed from a desired orientation quaternion αd = [ηd, εd] and
the actual orientation quaternion αa = [ηa, εa] as in [28], αe =[
ηaηd + εaT εd, ηaεd − ηdεa − εa × εd

]
.

9Note that this configuration works well for flat or moderate terrain
inclinations and might pose stability issues for bigger inclinations; to improve
robustness, it would be possible to make the robot lean forward when climbing
up a ramp, as presented in [7]. Improving the postural task in this regard is
part of future work.

where Fci,n is the normal component, Fci,t ∈ R2 are the
tangential components of the contact force at foot i and µi

is the friction coefficient. We also set some bounds on the
contact forces:

CFc := Fc ≤ Fc ≤ Fc, (11)

and on the joint accelerations:

Cq̈ := q̈ ≤ q̈ ≤ q̈. (12)

Notice that the limits in (11) are chosen to be feasible upper
and lower bounds w.r.t. the limits in (10).

B. Inequality Hierarchical Quadratic Programming (iHQP)

With all the ingredients presented before we set-up a
cascade of constrained QP problems in the variables x =[
q̈T , FT

C

]T
:

x∗k = argmin
xk

‖Akxk − bk‖2w + λ‖xk‖2

subject to
ck ≤ Cxk ≤ ck

uk ≤ xk ≤ uk

Ajx
∗
j = Ajxk

(13)

given a generic task Akx = bk subject to the constraint Ck and
bounds, for the k-th level of priority. The equality constraint
enforces the priorities from all the previous j levels, with
j = 0, . . . , k − 1. Notice that x∗j is the solution given by the
previously solved QPs. The second term in the cost function is
a regularization term for the k-th level through the λ gain. A
regularization term on the ground reaction forces is mandatory
to prevent ill-conditioning of the Hessian, avoiding instability
in the solution.

In addition, the regularization of the contact forces can
be used to prevent the solver from generating a solution
with unnecessarily high forces or to increase robustness. For
instance, in [29] regularisation is used to find a solution where
the forces try to be far away from the friction cone boundaries
while in [10] are inserted as a last priority task to minimize
internal forces.

C. Stack of Tasks

The iHQP problem in (13) is used to solve two different
Stack of Tasks, composed of the tasks and the constrains we
introduced in the previous section. Despite the fact that the
introduced whole-body control framework is generic w.r.t. the
type of tasks and the number of priorities, we focus on only
two kinds of stacks.

We first introduce the stack S3 constituted by 3 levels of
priorities:

S3 :=


∑

i∈Ist

WT →ci /
WT ∠

bl /
Tq̈

� Cfb � Cfc � Cq̈ � CFc , (14)

where the ”/” symbol implies a null-space relation between
the cost functions (hard hierarchy) and the ” � ” symbol



considers the insertion of constraints, in this case, to all the
priority levels. Notice that we enforce contacts (Ist is the set
of the indexes of the stance feet) as the first priority level,
while in the secondary level we control the orientation of the
base. Finally a postural task attracts the posture of the whole
robot to a nominal reference. All these tasks are subject to
be consistent with dynamics, friction cones, joint acceleration
limits and force limits.

The second stack S1 consists of a single level of priority
constituted by a constrained weighted sum of tasks (soft
hierarchy):

S1 :=

( ∑
i∈Ist

WT →ci +WT ∠
bl + Tq̈

)
� Cfb � Cfc � Cq̈ � CFc ,

(15)

where the + operator is used to sum cost functions.
As a matter of fact, strict hierarchies in S3 eliminate

inconsistencies which may be generated by employing a single
priority level, for example breaking contacts due to motion of
the trunk. However, they can sometimes be too conservative
so that they may completely block lower-priority tasks. On
the other hand, classic implementation of strict priorities, as
in S3, rely on resolving a cascade of QPs which augment the
computational cost w.r.t a single priority level. Furthermore,
up to a certain extent, it is possible to tune relative weights in
S1 so that the behaviour will be similar, but not exactly the
same, as in S3 (if the ratio of the weights of different priority
levels is sufficiently high, i.e. at least 103 10). Therefore, S1 is
preferable for a real-time compatible implementations but, due
to the presence of the weights, it becomes harder to fine-tune
the different task contributions.

It is important to note that the presented approach does not
rely on explicit control of the CoM of the robot. For stability
purposes we instead rely on the postural task which acts in the
final layer of S3, or at low priority in S1. The postural task
will move the robot to a nominal configuration by exploiting
the remaining Degrees of Freedom from the higher priority
tasks, thus resulting in a motion that aligns the base with the
stance feet. Avoiding direct control of the position of the CoM
of the robot also has the advantage of achieving automatic
adjustment of the base in the presence of uneven terrain, as
will be shown later.

The outputs of the QP, used to solve the problem described
in (14) and (15), are optimal joint accelerations q̈∗ and contact
forces F∗c that, plugged in (3), return the reference torques τ ∗.
These will be the inputs of a low-level torque controller active
at the joints of the robot. Figure 3 shows a block diagram of
the components of the framework.

It is worth pointing out that the role of the inertia matrix M,
which multiplies the joint accelerations q̈∗ (the controllers are
written at the acceleration level), works as a time-varying, non-
linear and non-diagonal gain matrix acting on the feedback
gains of the tasks, which are, most of the time, diagonal.

10This is a rule of ”thumb” that works well in practice considering the
tasks’ normalized costs in SI units.

This has the final effect of creating coupling between joints.
A Cartesian task further increases the coupling because a
Cartesian error is spread on several joints. This is an issue
in the case where the tracking of a joint is worse than the
others11. However, through a particular choice of the weight
matrix and the feedback gains of the tasks it is possible to
get back the diagonal gains achieving an equivalent Cartesian
impedance controller, see Appendix A.

D. State Estimation and Contact Estimation

1) Independence of Constraints from State Estimation: As
stated in the previous section, to be robust w.r.t state estimation
drift, our intention is to drop the dependency from the position
of the floating base w.r.t the inertial frame. However, the
orientation of the floating base and its angular velocity are
still estimated using an IMU sensor. Neglecting the linear
position (and velocity) of the base is analogous to continuously
resetting the world frame origin to the base origin.

However, equation (7) for the contact, is a constraint Jcq̈ =
−J̇cq̇ that should be written in an inertial frame (not in the
base frame), because the velocity of a foot depends not only
on joint velocities but also on the motion of the floating base.
Therefore, we are considering the floating base part in the Jc

Jacobian. Apparently, it might seem that the linear part ẋb of
the base twist in q̇ = [ẋT

b ωT q̇T
j ]T is required (while we

consider it to be zero).
If we carefully inspect the structure of J̇c, we notice that

this matrix has columns of zeros multiplying the ẋb variables,
because Jc depends only on base orientation and on qj

but not on base linear position. This makes the term J̇cq̇
dependent on ω but not on ẋb. Therefore considering ẋb = 0
is not affecting the validity of equation (7). The ẋb seems to
appear also in the dynamic equation (3) (inside q̇) that we
enforce as equality constraint. However the term h(q, q̇) is
also independent from the base linear velocity making also this
constraint unaffected. For the above reasons, the theoretical
foundation of our approach is still perfectly valid even if we
consider both xb, ẋb = 0, making our locomotion independent
from the need of a state-estimation algorithm.

2) Floating base height estimation: To be able to control
the height of the robot it is necessary to obtain an estimation of
it. Differently from the X and Y coordinates, the base height
can be considered as the average relative position of the feet
in the H frame, which can reliably be estimated through the
forward kinematics of the feet Bxci .

Hxci = HRB
Bxci , (16)

Hxbl,z = − 1

N

∑
i∈Ist

Hxci,z (17)

where the rotation matrix HRB encodes the orientation of
the base w.r.t the H frame which can be easily measured with

11In the case of the knee joint of HyQ, due to the low inertia of the link,
the torque sensor barely measures any torque during the swing (when there is
no contact), resulting in a open feedback loop. For further details see Section
IV.



Fig. 3: Block diagram of the locomotion framework. The user gives high-level velocity inputs to the foothold planner, that, on
its behalf, is triggered by the gait scheduler. The swing trajectory generator computes the trajectories for the swinging feet,
given the step length ∆L̄xy provided by the foothold planner for each swing leg.

the IMU, and Ist is the set of the indexes of the stance feet
and N their number.

3) Contact estimation: In order to understand which are
the active contacts, we rely on contact force estimation based
on torque readings extracting the leg equation from (3)12:

Fci = −J−Tci (τ ci − hi), (18)

where Fci ∈ R3 is the estimated contact force of one leg,
Jci ∈ R3×3 is the leg Jacobian and τ ci are the measured
torques in one leg and hi ∈ R3 is the Coriolis/Centrifugal and
gravity bias. When the projection of Fci along the normal to
the terrain overcomes a certain threshold [7], we consider the
leg to be in contact with the environment.

III. WALKING PATTERN GENERATOR

The walking pattern generator receives desired twist com-
mands for the base of the robot from an external source
such as an operator device or a high level planner13, and
transforms these into swing trajectories for the legs given a
specific type of gait. In order to do so, the walking pattern
generator is composed by A) a gait scheduler that sequences
the footsteps based on the gait, B) a foothold planner which
transforms the desired base twist commands into footholds by
using the horizontal frame H as reference frame, C) a swing
trajectory generator which takes the foothold coordinate and
the desired step height as inputs, and calculates the swing
trajectory, D) an inverse kinematics transformation to map the
leg’s trajectories from Cartesian to joint space. Note that we
decided to implement the swing trajectory in the joint space
rather than in the Cartesian space because of the coupling
issues described in the previous section.

12 For the sake of simplicity, we discard the acceleration terms because
their influence on the force computation is very low. However, in case
the acceleration terms can not be neglected, they can be incorporated in
the equation after filtering. The filtering is necessary due the presence
of quantization noise, which would otherwise be amplified by the double
differentiation of the encoder measurements.

13In our experiments we used a joy-pad connected to the operator’s pc.

A. Gait scheduler

Each different gait can be simply defined as a timed
sequence of footsteps. Therefore, given a type of gait, the role
of the scheduler is to trigger the sequence of leg swings, see
Fig. 4.

A state machine is associated to each leg to keep track of its
state. The possible states and transitions are depicted in Fig.
5.

B. Foothold planner

The foothold planner calculates the desired foothold coor-
dinates (X and Y ) in the H frame (see Fig. 6). Choosing
such reference frame for the foothold selection makes the
swing trajectory generation independent from the roll and
pitch orientation of the base. Henceforth, unless specified,
we assume all the vectors are expressed in that frame. The
foothold coordinates are computed starting from the desired
linear

[
vdx vdy

]
and yaw angular velocity ψ̇d of the base.

These two velocities are transformed into foot displacements
∆Lxy0 ∈ R2, (see Fig. 7 and equations (19), (20)). These
deltas are not added to the previous foot position but to a vir-
tual foothold offset that is computed with respect to the actual
position of the base. This ”robo-centric” foothold selection is
an important feature to increase the robustness when dealing
with rough terrain because it avoids accumulation of errors
that would appear if the steps are taken w.r.t the previous foot
positions and allows to keep the robot close to a preferred
kinematic configuration (the absence of this mechanism would
make the robot legs stretch or compress).

The linear part of mapping of the desired velocity command
is:

∆Lxy0 =
1

fsw

vdxvdy
0

 , (19)

which represents the displacement of the foot produced by
a linear velocity command, fsw is the step frequency. For the



Fig. 4: The left side of the image shows the schedule of a trot gait, while the right side shows a crawl gait. Given the feet
sequence, the scheduler triggers the lift-off events for the legs. The touch-down events instead, are triggered if a real contact
is detected (haptic touchdown) by the contact estimator. The time taken to complete a step cycle is defined as T . The ratio
between the stance duration and the cycle duration is defined as the duty factor parameter δf = Tst/T . Consequently, the
swing duration is computed as Tsw = T (1 − δf ) and the swing frequency as fsw = 1/Tsw. In this example, the trot has a
δf = 0.55 while the crawl has δf = 0.8, therefore, the crawl keeps the feet for a longer time on the ground. Indeed, a high
value for δf can be useful for slower gaits such as the crawl to give time to the whole-body controller to recover the posture.
Note that during the stance the contacts of the legs are enforced by the whole-body controller. The scheduler can trigger the
swing only if the corresponding leg has completed a step cycle.

Fig. 5: Each leg starts in the Stance state, waiting for the
scheduler to trigger the swing. When triggered, the state
machine switches from Stance to Swing. The state machine
switches from Swing to Stance, if a contact is detected by
the contact estimator. The step cycle duration T determines
the time the leg has to be in the Stance state, before it can be
triggered by the scheduler for a new swing.

angular part instead, we have the following:

∆Lh0 =
1

fsw

 0
0

ψ̇d

× xhip, (20)

where xhip represents the position of the hip of the swinging
leg, in the horizontal frame. By summing these two quantities
we obtain ∆Lxy:

∆Lxy = ∆Lh0 + ∆Lxy0 (21)

To keep the robot close to a preferred stance configuration,
and avoid accumulation of errors, we compute the difference
between a preferred virtual foothold location defined as x0

f and
the current one xf. Therefore, we obtain the following offset:

Fig. 6: Frames used by the foothold planner. Desired base
twist and foothold positions are expressed in the horizontal
frame. Each step is taken with respect to a ”virtual foothold”
that moves with the base and represents the nominal size of
the stance of the gait cycle (e.g. when the desired twist is set
to zero)

vfxy = x0
f − xf , (22)

which is then summed to (21) to obtain the total foot
displacement:

∆Lxy = ∆Lxy + vfxy. (23)

Note that in absence of base command velocities, the effect
of the offset (22) is to align the feet to the virtual foothold
configuration.

Finally we extract from ∆Lxy the step length and Ls the
angle ψs of the swing trajectory plane as follows:



Fig. 7: Top view of the robot with the geometrical explanation
of the foot displacements computation: 1) starting from the
desired linear vd

xy and angular ψ̇d velocities, we compute
the corresponding deltas ∆Lxy0 and ∆Lh0. 2) The resulting
vector ∆Lxy is then summed to the virtual foothold vector
vfxy to produce the total foot displacement ∆Lxy .

Ls =

√
∆Lx

2
+ ∆Ly

2
(24)

ψs = atan2(∆Ly,∆Lx) (25)

C. Swing trajectory generator

The swing is generated in the swing frame S (see Fig. 6
for frame definitions) and is defined as an ellipse built up by
mean of sine functions. This has the advantage to easily create
a reaching motion and re-plan the trajectory if the user decides
to change the swing duration (e.g. by changing the duty cycle
or the cycle duration). The swing frame is the same as the
horizontal frame (e.g. shares the same yaw orientation) but it
is aligned with the terrain and has the origin in the swinging
foot. We assume that a terrain estimator is providing the local
inclination of the terrain [7] in roll φt and pitch θt. Thanks
to the continuous re-computation of the step length Ls and
the step heading ψs, it is also possible to constantly re-plan
the trajectory based on the desired base twist and current base
configuration14 as explained in the previous section III-B.

The trajectory for the swing (expressed in the swing frame
S) is computed as follows:

Sxf,x =
Ls

2
(1− cos(πfswt)),

Sxf,y = 0,
Sxf,z = Hssin(πfswt), (26)

where Ls and Hs are respectively the step length and the step
height, and t ∈ [0, Tsw]. While the step length Ls is defined by
the foothold planner, the step height can be arbitrarily chosen
based on the presence of obstacles or the type of terrain. After
mapping (26) to the inertial frame, we obtain:

14Assuming smooth input changes.

Wxf = WRS
Sxf , (27)

where WRS maps vectors from the swing to the inertial frame,
and it is defined as a rotation of ψs+ψ 15 along the Z axis and
a rotation about the X an Y axes of φt and θt (if an estimation
of the terrain inclination is available). Since the trajectory for
the velocity is defined in a moving frame, its derivative must
be computed taking the chain rule derivatives of (27) and (26):

W ẋf = WṘS
Sxf +WRS

S ẋf , (28)

with S ẋf defined as:

S ẋf,x = πfsw
Ls

2
sin(πfswt),

S ẋf,y = 0,
S ẋf,z = πfswHscos(πfswt). (29)

While the timing of the lift-off is dictated by the scheduler,
the touch-down is triggered haptically [7] to be sure that the
stance is only triggered when a stable foothold is established.
During the swing down phase, the occurrence of the contact
with the terrain is continuously checked. The swing can
continue beyond the planned foothold (reaching motion) until
the contact is detected when t ≥ Tsw. The foot is considered
in contact with the ground when the ground reaction force
overcomes a certain threshold in the direction normal to the
terrain. The haptic touch-down is a crucial feature to address
rough terrain because it prevents to inject destabilizing forces
to the base created by the tracking of trajectories that are not
terrain consistent.

D. Inverse kinematics

To transform the swing trajectories from Cartesian to joint
space we use the Closed Loop Inverse Kinematics (CLIK)
algorithm [30]. Therefore, for each swinging leg i we can
express the joint velocity as:

q̇ai,d = J−1ci

[W ẋfi,d + P(Wxfi,d −Wxfi)
]
, (30)

where P ≥ 0 is the CLIK proportional gain, Wxfi

represents the current foot position w.r.t the inertial frame,
Wxfi,d and W ẋfi,d are the desired velocity and position
reference provided by the swing trajectory generator through
the equations (27) and (28) respectively. qai,d is found by
integration. In order to control the base height, it is possible to
reconfigure the legs in stance. For example, in order to increase
the height of the base, the robot’s legs must be stretched, while
to decrease it, the legs must be retracted. Therefore, we can
map the desired base height to the joint positions for the legs
i in stance as:

q̇ai,d = J−1ci P W∆Hbl, (31)

15we remember that we computed ψs w.r.t. the H frame so we need to
consider also the orientation ψ of this frame w.r.t. the W frame



where W∆Hbl =
[
0, 0,−W∆Hbl,z

]
is a vector that defines

the desired change of height for the base of the robot. The
value W∆Hbl,z is defined as:

W∆Hbl,z = Wxbl,z,d −Wxbl,z, (32)

where Wxbl,z,d represents the desired base height and
Wxbl,z is the actual base height estimated with (17) as
described in Section II-D216. Finally, to track the joint space
references both for the feet in stance and in swing, we use the
postural task Tq̈ introduced in (9).

IV. IMPLEMENTATION DETAILS

In this section we present some implementation details and
remarks on the final control scheme that we are employing on
the real platform.

Swing task: the swing task can be implemented as a Carte-
sian task or a joint task. From a theoretical point of view, a
Cartesian space formulation is more sound because it allows us
to set the gains in the same space the trajectories are defined.
Conversely, a joint space formulation provides an anisotropic
and tilted impedance ellipsoid at the feet, making the legs
more compliant in a direction than in another depending on
the leg configuration, even with a constant joint stiffness.
However, in the implementation on the real HyQ platform,
we found issues with the Cartesian implementation of the
swing task. The reason is that the Jacobian matrix couples
the tracking errors of all the joints. This is not a problem if
they are all able to perform a good tracking. However, with
our platform HyQ, the distal limbs of the legs (lower-legs
links) are very light and their load-cells measure barely zero-
torque during the swing17 and consequently, the feed-back
loop opens. Therefore, the only way to make the joint move,
is to create a position error that is big enough to increase
the desired torque even if the actual torque remains zero.
When implementing Cartesian impedance control algorithms
for the swing legs, this peculiarity of the lower leg joint affects
performance as well the other joints in the leg. Conversely,
with the joint space implementation we are able to avoid
this coupling between the joints. For this reason, we have
chosen a joint space implementation and the swing references
are sent directly to the postural task. However, with this
implementation, the coupling due to the inertia matrix is still
present, and the matrices KP , and KD assume the meaning
of acceleration gains rather than joint impedance gains. To
avoid this problem, it is possible to pre-multiply these gains
with the inverse of the inertia matrix, giving them the physical
meaning of joint stiffness and damping (see Appendix A). This
formulation turns out to be beneficial to improve the tracking
of the swing legs.

Force and acceleration bounds: To handle contact transi-
tions, during stance and swing phases, we impose contact

16Both values can be expressed either in the world or horizontal frame
since the two differ only for a rotation around the Z axis.

17Load-cells and torque sensors in legged robots are sized in order to be able
to measure big torques during the stance, for this reason they lack accuracy
during the swing.

TABLE II: Parameters used in the controller

Hessian Regularization Factor η 1e− 6
Force Max X f̄x 1000 [N]
Force Max Y f̄y 1000 [N]
Force Max Z f̄z 1000 [N]
Force Min X f̄x 1000 [N]
Force Min Y f̄y 1000 [N]
Force Min Z f̄z 20 [N]
Accel Max q̈max 500 [rad/s2]
CLIK gain P 10 [1/s]

Swing Frequency Tsw 2 [Hz]
Step Height Hs 0.1 [m]

force constraints to switch between a maximum allowed value
and zero. This allows to keep the size of the QP problem
constant during the whole locomotion phase, which can be
useful in a hard real-time implementation. To prevent torque
discontinuities it is possible to implement a smooth unloading /
loading by setting a time-varying upper bound on the contact
force as in [29]. During preliminary experiments performed
on the real robot, we found that there is a strong influence
between the acceleration bounds and the tracking accuracy. In
particular, setting the limits too low results in an overshoot
with the tracking of the desired trajectory at the touchdown
(when there is the biggest deceleration). This problem appears
only on the real robot and is not present in simulation, because
in this second case, the tracking errors are smaller.

The acceleration and the force limits (active only during the
stance phase), are summarized in Table II together with the
other parameters set in the controller.

Haptic Touch-Down event: To keep spurious contact estima-
tions from triggering a premature touch-down in the leg’s state
machine, it is possible to disable the haptic contact detection
during the swing up phase (half of the swing time). To detect
the touchdown the threshold on the ground reaction forces is
set to 50N (see Section II-D).

Loop frequency: The output of the whole-body controller is
given as a desired torque to the low-level torque controller, in
a cascade loop architecture. Both the whole-body controller
and the low-level torque controller run at 1 kHz. In the
implementation on the real robot, the trunk controller damping
is limited to a max of 400 Nmd/rad to avoid instabilities,
because the loop frequency is known to limit the maximum
value for the damping [31].

Solver and Computation time: To solve the stack S3, we
used the solver qpOASES [32], leveraging on the whole-body
control framework OpenSoT [33]. With an Intel Quad-Core
i5-4440 CPU @ 3.10GHz (onboard) machine, it requires on
average 1180±20 µs to solve the 3 layers. Conversely, with
the single stack S1 the computation time drops to 830±20 µs,
making this implementation preferable to be run at 1 kHz. It
is worth noting that most of the optimization time is spent in
calculating the Hessian.

Terrain estimator: If a terrain estimation algorithm [7] is
available, a reference can be given to the orientation task
to align the base with the slope of the ground and prevent



reaching the kinematic limits of the leg. However, in the
absence of a terrain estimator, the base orientation task can
be removed from the stack and the postural task can be used
to achieve some sort of terrain adaption, because it will attempt
to align the base with the feet.

V. EXPERIMENTS

In this section we present some experiments to demonstrate
the effectiveness of our whole-body framework for quadruped
robots (see the accompanying video18 and Fig. 8 for a sum-
mary of all the experiments). The simulations have been
carried out with the Robot Operating System (ROS) in a
Gazebo environment19 that uses the ODE physics engine [34].
A friction coefficient of µ = 0.8 was set (unless specified) in
all the experiments.

We tested our approach on two different quadruped
platforms (HyQ and ANYmal) of different sizes and weights.
The porting to a different platform required only a slight
tuning of the gains of the postural and of the trunk orientation
tasks. In a first simulation performed with HyQ we show
in the video that the robot is able to seamlessly switch
between a crawl and trot. The robot is traversing a rough
terrain area made of ruins and cobble-stones, moving
omni-directionally. Notice that the robot is blind and not
aware of the status of the terrain. To demonstrate the motion
decoupling capability of our framework, the robot performs a
walk on flat terrain while changing the base orientation and
the height. Fig. 9 shows the tracking of the base orientation
and of the height in the upper plots, while in the lower
plots is reported the tracking in Cartesian space for the LF
and RH feet. The gains used for the Cartesian and postural
tasks are reported below. For the base orientation (8)
we set KP =diag([1000.0, 1000.0, 1000.0]) and
KD=diag([100.0, 100.0, 100.0]). For the postural task (9)
the gains are scheduled depending on the walking phase: for
the swing phase we set KPsw=diag([300.0, 300.0, 300.0]),
KDsw=diag([8.0, 12.0, 5.0]), while for the
stance phase KPst

=diag([500.0, 500.0, 500.0]),
KDst

=diag([20.0, 20.0, 20.0]). To improve tracking
for the swing phase it is possible to pre-multiply the gains for
the inverse of the inertia matrix (of the leg) (see Appendix
A).

The ground truth coming from Gazebo is used to obtain the
measurements in the world frame. In both cases, good tracking
without steady errors is achieved; indeed the swing tasks and
the base orientation task are not conflicting with each other
because the latter is written in the horizontal frame which is
independent from the base orientation. For completeness we
present the mean and the standard deviation of the tracking
errors during the whole experiment, in Table III.

We carried out preliminary experiments on the real platform
HyQ showing a 2Hz trot on flat terrain, in a second moment

18The video with experiments is also available at https://youtu.be/
--jpFMhez9g

19The controller can be tested at this repository: https://github.com/graiola/
wbc-setup

TABLE III: Mean and standard deviation of the errors

Measurements mean std
Roll 0.0050 [rad] 0.0145 [rad]
Pitch 0.0072 [rad] 0.0187 [rad]
Yaw 0.0017 [rad] 0.0043 [rad]

Height 0.0071 [m] 0.0145 [m]
RH - X 0.0303 [m] 0.0186 [m]
RH - Y 0.0203 [m] 0.0128 [m]
RH - Z 0.0016 [m] 0.0027 [m]
LF - X 0.0235 [m] 0.0152 [m]
LF - Y 0.0202 [m] 0.0201 [m]
LF - Z 0.0006 [m] 0.0022 [m]

we control the base orientation to follow some operator desired
reference commands given by mean of a joy-pad interface
while an external disturbance acts on the robot (see the video).
The tracking error has an average of 0.0101 rad with a
standard deviation of 0.0102 rad, see Fig. 10.

Remarks: To achieve a successful implementation on the
real robot we had to modify the original formulation of the
optimization problem, see Section IV.

VI. CONCLUSIONS

In this work we present a novel locomotion framework for
quadrupedal robots that merges a walking pattern generator,
acting only at the foot level, with a prioritized whole-body
inverse dynamics controller. One of the advantages of the
proposed framework is to avoid estimating the linear position
and velocity of the floating base, while maintaining the ability
to effectively tackle moderately rough terrain. This has been
achieved by leveraging the postural task acting in the whole-
body controller as a sort of elastic element. Consequently, the
robot’s base follows the feet, resulting in a motion of the
trunk that adapts naturally to the foot stance configuration
while trying to keep a well-behaved kinematic configuration.
To increase the robustness of the proposed approach, the
foothold selection is done w.r.t. a virtual foothold defined
in the horizontal frame of the robot making the footstep
strategy independent from the base orientation. In this way,
no CoM planning is required to implement various types of
gaits. However, despite the fact that presented framework is
capable to handle uneven terrain, it relies on a particular
posture which in turn may need to be properly tuned according
to the particular type of terrain being traversed. As part of
future work, we plan to further extend the proposed approach
by taking into account the presence of a manipulator mounted
on the robot’s trunk. This would allow operation with complex
loco-manipulation tasks. Since our approach is based on mixed
hard- and soft-priorities, we will consider using machine
learning techniques in order to properly find optimal weights
between the different tasks.
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Fig. 8: First row: snapshots of the locomotion simulations: ANYmal tracking a (a) roll reference, a (b) pitch reference, (c),(d)
changing the robot height. HyQ during a (e) crawl swinging only one leg at a time and a trot (f) swinging two legs at the time.
Second row: snapshots of the trunk orientation experiments with HyQ. The robot is tracking an orientation reference while
being disturbed by an external interaction.

Fig. 9: Simulation - HyQ walking on flat terrain: The upper
plots show the tracking of the base orientation (roll, pitch and
yaw) and of the base height. Note that the height does not
attain its reference, because it is implemented via the postural
task that is in the null-space of the orientation task. In the
lower plots instead, the tracking of the left front and right
hind foot in the X , Y and Z coordinates is shown. After
approximately 15 s, the gait is switched from a crawl to a
trot.

leading to these results has received funding from the INAIL
- Teleoperation Project.

Fig. 10: Real hardware - HyQ changing the base orientation
in roll, pitch and yaw.

APPENDIX A
RELATING INVERSE DYNAMICS TO IMPEDANCE CONTROL

This appendix will show how it is possible to relate inverse
dynamics to Cartesian impedance control by opportunely
selecting tasks gains.

Let us first consider a naive example with a single postural
task:

q̈∗ = argmin
q̈

‖q̈− q̈r‖, (33)

with solution:

q̈∗ = q̈r = K (qd − q) . (34)

To neglect the inertia matrix, we just need to choose a
particular gain for the q̈r:

q̈r = M−1K′ (qd − q) = M−1τ r. (35)

If we plug (35) in (3), neglecting non-linear terms, we obtain:

τ = Mq̈r = τ r, (36)

obtaining the classic joint impedance control where the inertia
matrix does not appear.



We now consider the optimization in (13) for the uncon-
strained case of a single, full rank, Cartesian task:

q̈∗ = argmin
q̈

‖Jq̈− ẍr‖, (37)

with J ∈ R6×6. If we compute the Lagrangian from (37) we
obtain:

L =
1

2
q̈TJTJq̈− (Jq̈)

T
ẍr + ẍT

r ẍr. (38)

To solve (37) we derive the Lagrangian:

∂L
∂q̈

= JTJq̈− JT ẍr = 0. (39)

With the hypothesis of J full rank, the matrix JTJ, is invertible
and the solution of (37) is given by:

q̈ =
(
JTJ

)−1
JT ẍr = J−1ẍr = J−1

(
K (xd − x)− J̇q̇

)
.

(40)
In this case, we can neglect the inertia imposing:

ẍr = K (xd − x)− J̇q̇ = JM−1JTK′ (xd − x)− J̇q̇

= Λ−1Fr − J̇q̇, (41)

where Λ =
(
JM−1JT

)−1
is the Cartesian inertia matrix of

the task. (41) plugged in (3) returns:

τ = JTFr −MJ−1J̇q̇. (42)

Notice that (42) is equivalent to a Cartesian impedance con-
troller [35].

Finally, let us consider the final level of a hyerarchical
controller. Again we consider the optimization in (13):

q̈∗ = argmin
q̈

‖q̈− q̈r‖W

subject to
Jq̈ = ẍ∗,

(43)

with J ∈ Rm×n containing all the Jacobians from the previous
levels and ẍ∗ ∈ Rm all the optimal accelerations obtained at
the previous levels. The Lagrangian is given by:

L =
1

2
q̈TWq̈− q̈TWq̈r + q̈T

r Wq̈r + λT (Jq̈− ẍ∗) , (44)

which leads to the following optimal conditions:
∂L
∂q̈ = Wq̈−Wq̈r + JTλ = 0,

∂L
∂λ = Jq̈− ẍ∗ = 0.

(45)

The final optimal accelerations are given by:

q̈∗ = W−1JT
(
JW−1JT

)−1
ẍ∗r

+
(
I−W−1JT

(
JW−1JT

)
J
)−1

q̈r, (46)

it is well known that is possible to achieve the dynamically
consistent inverted Jacobian [12] posing W = M:

q̈∗ = J̄†ẍ∗r +
(
I− J̄†J

)
q̈r

J̄† = M−1JT
(
JM−1JT

)−1
.

(47)

We now plug (35) and (41) into (47):

q̈∗ = M−1JTFr−M−1JTΛJ̇q̇+
(
I− J̄†J

)
M−1τ r (48)

which plugged into (3) returns:

τ = JTFr−JTΛJ̇q̇+
(
I− JT

(
JM−1JT

)−1
JM−1

)
τ r

(49)

which again corresponds to a Cartesian impedance controller
with dynamically consistent null-space projection [35].
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