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Abstract

We analyze a model of endogenous two-sided network formation where players are affected by uncer-
tainty about their opponents’ decisions. We model this uncertainty using the notion of equilibrium
under ambiguity. Unlike the set of Nash equilibria, the set of equilibria under ambiguity does not al-
ways include underconnected and thus inefficient networks such as the empty network. On the other
hand, it may include networks with unreciprocated, one-way links, which comes with an efficiency
loss as linking efforts are costly. We characterize equilibria under ambiguity and provide conditions
under which increased player optimism comes with an increase in connectivity and realized benefits
in equilibrium. Next, we analyze network realignment under a myopic updating process with opti-
mistic shocks and derive a global stability condition of efficient networks. Under this condition, a
subset of the Pareto optimal equilibrium networks is reached, specifically, networks that maximize
the players’ total benefits of connections.

Keywords: Ambiguity, network formation, optimism.

JEL classification: C72, D81, D85.

1 Introduction

The question of how social networks form and which structures are both stable and efficient is of primary

interest in economic literature. In this paper, we study the effect of perceived strategic uncertainty

(ambiguity) and optimism on the outcomes of a network formation game. This question is of interest

for two reasons. First, as explained below, empirical literature from social psychology as well as

experimental studies on entrepreneurs, suggest that optimism is a relevant factor in network formation,

which can improve both individual outcomes and social welfare. Using the concept of equilibrium under

ambiguity by Eichberger and Kelsey (2014), our model provides a theoretical underpinning for these

findings. Second, models of network formation exhibit large indeterminacy, allowing for both Pareto-

dominated and Pareto-dominant equilibrium networks and thus raising the question of equilibrium

selection. We address this by introducing a best-response dynamic similar to Kandori et al. (1993),

(henceforth KMR) and Young (1993) but with shocks affecting players’ optimism. We derive conditions
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for this dynamic to reach a subset of the equilibrium networks which are not Pareto-dominated by other

equilibria.

We model endogenous network formation, whereby a link between two players is treated as a value-

generating opportunity (recording a duet, publishing a research paper, a productivity-increasing R&D

partnership between two companies). As in Bloch and Dutta (2009) and Ding (2019), the value of

each link depends on the identity of the partners. These values are assumed exogenous and are not

subject to network externalities (the quality of a recording or of a published paper does not depend on

the set of other recordings or papers; the increase in productivity does not affect the productivity of

firms outside of the partnership). Linking is costly and requires efforts from both parties. The value

of the link is realized if and only if both parties incur the cost. Notably, an investing player bears

the cost even if her intended partner does not reciprocate (Bala and Goyal, 2000), thus generating

strategic complementarities and a coordination problem on the level of link formation. Negative network

externalities arise, because players’ costs are assumed convex in the number of maintained links. A

player is thus negatively affected by any two of the other players linking to each other, as this increases

her potential partners’ costs of linking to her and decreases her prospects of obtaining beneficial links.

The convex cost assumption is clearly more general and realistic than the linear cost case studied in

most of the literature1. It imposes natural limits on the size of both the equilibrium and the efficient

networks (contrary, e.g. to Goyal and Joshi (2003)’s “small costs” case and König et al. (2014)). At the

same time, the separation of the positive externalities on the level of bilateral links from the negative

network externalities arising from cost, makes the analysis tractable, despite the fact that the resulting

game is not supermodular.

Our first result is a characterization of the set of equilibrium networks for this game. As is common,

(see, e.g., Brueckner (2006), Goyal and Joshi (2003)’s “large costs” case, Westbrock (2010), as well as

Griffith (2020); Baumann (2019)) this game has multiple Nash equilibria, some of which are Pareto

dominated such as the empty network. Pairwise stability (Jackson and Wolinsky, 1996) can be used

as a refinement on this set, but does not solve the problem of multiplicity. More restrictive concepts

such as the strong equilibrium (Jackson and van den Nouweland, 2005), or the bilateral equilibrium

(Goyal and Vega-Redondo, 2007), can achieve efficiency, but implicitly rely on the ability of pairs or

groups of players to coordinate with respect to their linking decisions, while remaining silent on how

such coordination would take place2.

Instead, here we directly model the strategic uncertainty of the players arising from a lack of a

natural coordination device. We follow Eichberger and Kelsey (2014) and introduce ambiguity about

the strategy chosen by others combined with an attitude towards such ambiguity (optimism/pessimism).

Notably, research in social psychology points out the relevance of optimism in the process of social

network formation. Optimistic individuals are more likely to form and sustain beneficial links (Brissette

et al., 2002; Andersson, 2012). The “tendency to expect favorable outcomes” (Srivastava and Angelo,

2009) means that optimists attach more weight to their partners reciprocating their efforts towards

establishing a relationship. Such expectations may become self-fulfilling as partners reciprocate even

when without being optimistic. In general, optimism is identified as a pervasive individual feature

(Peterson, 2000), which is positive both for individuals and the society as a whole (Freud, 1928; Tiger,

1979).

In economics, experimental studies have shown that ambiguity in the other players’ strategies is

indeed present, leading to deviations from Nash equilibrium behavior (Pulford and Colman, 2007; Di

Mauro and Castro, 2008; Eichberger et al., 2008; Kelsey and Le Roux, 2015, 2017). Attitudes towards

1Bloch (1995) and Goyal and Joshi (2003) work with decreasing marginal cost, which seems realistic when the cost of
links can be distributed across all members of an association / partners, but not when links are bilateral and costs are
player-specific

2Dutta and Mutuswami (1997) show how an allocation rule can be designed so as to implement a strongly stable
efficient equilibrium. In general, such rules require transfers.
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such ambiguity show non-negligible rates of both optimism and pessimism (Camerer and Karjalainen,

1994; Ivanov, 2011; Eichberger et al., 2008; Li et al., 2019). Optimism emerges as a characteristic feature

of successful entrepreneurs, which positively correlates with measures of performance, see Bengtsson

et al. (2012), Bogliacino and Gallo (2015) and Persson and Seiler (2022). Holm et al. (2013) identifies

willingness to accept ambiguity in social interactions and to bet on the “trustworthiness” of a partner,

to be a key characteristic of entrepreneurs. Dollinger (1995) confirms that tolerance towards ambiguity

is positively related to an entrepreneur’s willingness to engage in alliances. This suggests that ambiguity

attitudes, and in particular, optimism, are also empirically relevant for the process of network formation.

Finally, optimism is known to act as an equilibrium selection device resulting in Pareto dominant

equilibria in coordination games (Eichberger and Kelsey, 2002; Eichberger et al., 2008) and leads to an

increase in payoffs in the maximal equilibrium in supermodular games (Schipper, 2021).

We first examine the impact of ambiguity and optimism on equilibrium networks. As the game we

study is not supermodular, equilibrium existence cannot be established by Topkis (1979)’s theorem. We

prove existence (Proposition 3.3) by showing that, starting from any network, a sequence of unilateral

best-responses (under ambiguity) leads to an equilibrium in a finite number of steps. This result

provides an algorithm for identifying equilibria under ambiguity in a network formation game, and

shows that such equilibria are stable under simple learning dynamics. We provide a characterization

of the equilibrium networks under ambiguity.

We next discuss the effect of increased optimism in equilibrium networks under ambiguity. Optimism

increases the weight players place on others reciprocating a link and thus increases the maximal number

of links a player initiates as a best-response (Proposition 3.5). However, the effect of optimism on

actually realized links is ambiguous: a player who becomes more optimistic might sever existing links

in favor of more valuable, but unreciprocated ones, resulting in a less connected network. This is

precluded by a condition called monotonicity. A network is monotonic (in linking decisions) if for each

player, any initiated link is at least as valuable to her in expectation as any of the uninitiated links. If

an equilibrium network is monotonic then any increase of the players’ optimism parameters results in

a weakly more connected equilibrium (Proposition 3.7).

Except for cases of extreme ambiguity, the introduction of ambiguity per se does not resolve the

problem of equilibrium multiplicity. Our second set of results thus concerns the impact of ambiguity

on network realignment. While equilibrium analysis offers interesting insights, social networks are, by

their nature, changeable: relationships and partnerships continuously form and break apart with much

of this variation unaccounted for by changes in economic fundamentals. In our model such variations

can be attributed to changes in the players’ subjective ambiguity perception and optimism. Indeed,

high-arousal emotional states (joy, fear, anger) are known to increase ambiguity perception, while

low-arousal states (sadness, contentment) decrease it (Baillon et al., 2013).

On the other hand, experiences of positive emotions is a key determinant of an individual’s optimism

(positive psychology) (Fredrickson, 2001). We thus consider the network’s evolution under best-response

dynamics with random changes in the individuals’ ambiguity and optimism parameters. Similarly to

KMR, we assume that players have realistic, utility-maximizing preferences (without ambiguity) and

play the game accordingly, except in periods when they receive a random shock. Differently from KMR,

the deviation in behavior related to the shock is not random, but optimal by their current ambiguity

perception and attitude. Shocks are temporary and may be followed by the player becoming again

realistic in the next period. Shocks that induce high levels of optimism lead to players more actively

pursuing high-value links, possibly by discarding already existing ones. Highly pessimistic players

discard existing links without forming new ones. Thus, to capture more interesting cases of network

realignment, we focus on shocks that amount to surges of optimism.

Best-response dynamics as in KMR have been studied both in network formation games (Watts,

2001) as well as in network games with simultaneous choice of links and actions (Ely, 2002; Jackson
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and Watts, 2002a,b; Goyal and Vega-Redondo, 2005; Hojman and Szeidl, 2006; Galeotti and Goyal,

2010; Dawid and Hellman, 2014), see Hellman and Staudigl (2014) for a review. In general, neither

uniqueness of the stochastically stable state, nor its efficiency within the set of Nash equilibria are

guaranteed3. Recent research has also identified the role of farsightedness for convergence to optimal

networks, Luo et al. (2021).

In contrast, the dynamic with optimistic shocks leads to a set of equilibrium networks which are

Pareto-undominated in the set of Nash equilibria independently of the starting network or of the

probability of optimistic surges, provided that a property we call the ‘alignment of preferences’ is met

(Propositions 4.4 and 4.5). In particular, our dynamic selects the networks that maximize the players’

total benefits of connections. Aligned preferences means that all networks that maximize the players’

benefits from network connections in the set of Nash equilibrium networks (a social consideration)

are monotonic (an individual consideration). Thus, social considerations ‘align’ with individual ones.

This condition is always satisfied if the values of all links are identical. Therefore, surges of individual

optimism lead to the formation of an optimal equilibrium network if efficiency is measured by the size of

the network, a property that even previously considered pairwise notions fail to satisfy in this relatively

simple case. If the condition is not met, a minimal counterexample of three players shows that these

dynamics fail to produce the efficient network as the efficient network itself is unstable to surges of

optimism.

The rest of the paper is organized as follows: Section 2 introduces the network formation game and

defines the equilibrium under ambiguity concept. Section 3 analyzes the static network formation game

under ambiguity; we show existence of equilibria, we provide a characterization, and study the compar-

ative statics with respect to the players’ attitude towards ambiguity. In Section 4, we turn towards a

dynamic analysis of network realignment. We analyze a best-response dynamic with optimistic shocks

and analyze its long-term behavior. For aligned preferences, the dynamic almost surely reaches the set

of efficient networks in finite time. Section 5 concludes.

2 The network formation game

2.1 Notation and definitions

Let n > 1 and let I = {1, . . . , n} be the finite set of players. A network on this set of players is

represented by a binary n × n matrix x. For a disjoint pair i, j ∈ I if xij = 1, then we say that i

has a directed link towards j, or i links to j. If xij = xji = 1, we say that i and j are reciprocally

linked to each other. As a shorthand we write {i, j} ∈ x to mean xij = xji = 1 and {i, j} /∈ x to mean

xij = xji = 0. By convention, for every i ∈ I we set the values xii to 0. Let the set of networks of n

players be denoted by X.

The network x ∈ X is undirected if for every disjoint i, j ∈ I it holds that xij = xji.

Definition 2.1 (Neighborhoods and degrees in directed networks). For i ∈ I we let N+
i (x) = {j ∈

I : xij = 1}, N−
i (x) = {j ∈ I : xji = 1} denote the set of players who player i links to and the set of

players who link to player i in network x, respectively. The set Ni(x) = N+
i (x) ∩N−

i (x) is called the

neighborhood of player i.

For i ∈ I let deg+i (x) = |N+
i (x)|, deg−i x = |N−

i (x)|, and degi(x) = |Ni(x)| denote player i’s

out-degree, in-degree, and degree, respectively.

It is clear that for undirected networks, the three neighbor sets and degrees coincide.

3Two exceptions are the models of König et al. (2014), in which the unique equilibrium is the complete graph and of
Staudigl (2011), which is a potential game with identical link values and no cost of link formation.
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Definition 2.2 (Maximal undirected network contained in a network). Let the map y : X → X be

defined as follows: for every disjoint i, j ∈ I, y(x)ij = y(x)ji = xijxji. The network y(x) is the maximal

undirected network contained in x.

For X ′ ⊆ X we let y(X ′) denote the image of X ′ under y. We introduce y(X) = Y to denote the set

of undirected networks. For Y ′ ⊆ Y we let y−1(Y ′) denote the pre-image of Y ′, i.e. the set of directed

networks, whose maximal undirected network is a member of Y ′.

For an undirected network y ∈ Y let |y| =
∑

i∈I degi(y)/2 denote the number of links in y.

Definition 2.3. For two undirected networks x, x′ we write x ≤ x′ if for every i, j ∈ I we have xij ≤ x′ij .

As typical, we write x < x′ to denote the asymmetric part of the relation x ≤ x′.

For undirected networks x, x′ ∈ Y , the union and set subtraction operators ∪ and \ are interpreted

the same way as for sets. Specifically, the network (x \ x′)∪ (x′ \ x), containing all links that appear in

exactly one of x and x′ is called the symmetric difference between x and x′.

Definition 2.4 (Distance between undirected networks). For two undirected networks x, x′ ∈ Y the

value ϕ(x, x′) = |(x \ x′) ∪ (x′ \ x)| is called the distance between x and x′.

2.2 Game definition

We now define a game of network formation with additive benefits gained from direct interactions. Let

W be an n × n non-negative, symmetric, real matrix with the convention wii = 0 for i ∈ I, called

the matrix of benefits. Let ci : N → R+ be a strictly increasing, weakly convex function, such that

ci(0) = 0, called player i’s cost function. We write c = (ci)i∈I for the vector of cost functions. A

network formation game is parameterized by the pair (W, c), which we take as given.

A strategy of player i is a binary n-vector xi = (xij)j∈I with xij = 1 representing the choice by i to

link to j, and xij = 0 representing the choice not to link. By convention we take xii = 0 for all i ∈ I.

The aggregate of the players’ decisions (xi)i∈I forms the directed network x. Let Xi denote player i’s

set of strategies.

The payoff of player i ∈ I is given as follows.

ui(x) =
∑
j ̸=i

wijxijxji − ci(deg
+
i (x)). (1)

The interpretation is the following: The players may form costly links with other players to receive

the benefit associated with that link as given by the weight matrix. Benefits of links are only realized

by the participants if both decide to link to one another. If only one decides to link to the other,

a one-sided link is formed without any benefits to either player, if both decide not to link, no link

is formed and no benefits are realized. Crucially, players incur costs of all outgoing links even ones

that are not reciprocated. Our game therefore bears a resemblance to Myerson (1991)’s independent

link-formation process.

We show an application of this game in a model of monopolistic competition between firms with

partnerships.

Example 2.5 (Monopolistic competition with partnerships, adapted from Acemoglu et al. (2006) and

König and Rogers (2018)). Consider a set of n firms, each producing an intermediate good used to

produce a final good (a numeraire) according to a production function

y (q1, . . . , qn) =
1

γ

n∑
i=1

A1−γ
i qγi ,
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where γ ∈ (0, 1), qi is the amount of the intermediate good i, whereas Ai is the productivity of firm i.

The production function of firm i transforms a unit of the numeraire good into a unit of the intermediate

good. The inverse demand of the final producer for intermediate good i is easily computed to be:

ρi (qi) =

(
Ai

qi

)1−γ

implying that the optimal supply of firm i is given by

q∗i = γ
1

1−γAi

and its maximal profit is:

π∗
i = (1− γ) γ

γ
1−γAi.

Denoting by ϕ = (1− γ) γ
γ

1−γ , π∗
i = ϕAi.

Suppose that intermediate good producers can engage in partnerships which can generate increases

in productivity. These are specific to the firms engaging in the partnership so that the success of a

given partnership has no effect on the added value obtained from other partnerships. The increase

in productivity is given by
wij

ϕ =
wji

ϕ ≥ 0 for each of the partner-firms and is realized if and only if

both firms simultaneously put in a costly effort such as sharing know-how, engaging in further research

and development, or coordinating managerial activities.4 If only one of the firms contributes to the

partnership, it bears the cost of the effort, even though no increase in productivity is generated. Let

xij ∈ {0, 1} denote the unilateral decision of firm i to partner with j and thus to incur the cost of such

a partnership. The cost of effort is firm-specific and depends on the number of partnerships the firm is

actively engaged in, ci

(∑
j ̸=i xij

)
with marginal cost increasing in the number of existing partnerships.

Thus, the final profit of a given firm can be written as:

πi (xi, x−i) = ϕ

Ai +
∑
j ̸=i

wij

ϕ
xijxji

− ci

∑
j ̸=i

xij

 = π∗
i +

∑
j ̸=i

wijxijxji − ci

∑
j ̸=i

xij


implying that each firm will select its partnerships to maximize (1).

We continue with a useful notation for marginal benefits and marginal costs.

Definition 2.6 (Marginal benefits, marginal costs). Let a network x ∈ X be given. Then, player i’s

benefit from her marginal link is w′
i(x) = minj∈N+

i (x){wij}. For r ∈ N, player i’s marginal cost function

is given by c′i(r) = ci(r)− ci(r − 1) if r is positive and c′i(0) = 0.

By convention we have min ∅ = ∞. Note that, while player i’s benefit from her marginal link equals the

lowest value of her reciprocated link (i.e. her marginal benefit) if x is undirected, in directed networks

we look at outgoing links. In the special case of linear cost functions, we denote constant marginal cost

of player i by ci.

We assume for simplicity that marginal costs are never equal to marginal benefits, that is, for every

natural integer r and disjoint pair of players i, j ∈ I we have wij ̸= c′i(r). We make this assumption to

simplify characterizations by avoiding indifference, but it may also be interpreted as the players always

preferring not to link in case they are indifferent. Within the set of all possible matrices W and cost

functions c, this property is generic.

4Such a linear relation between productivity and the number of partnerships is first introduced in Klette and Kortum
(2004).
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We now introduce the equilibrium concepts of the game without ambiguity to serve as benchmarks.

For a player i ∈ I, let X−i =
∏

j ̸=iXi. The set of best response strategies of player i to the strategy

combination chosen by the other players is given by Bi (x−i) defined by:

Bi (x−i) = arg max
xi∈{0,1}n

∑
j ̸=i

wijxijxji − ci(deg
+
i (x))


As usual in the literature, we write Bi (x).

Definition 2.7. A network x is a Nash equilibrium of the game of network formation iff xi ∈ Bi (x)

for all i ∈ I.

The following characterization follows in a straightforward way.

Lemma 2.8 (Nash equilibrium characterization). A network x∗ is a Nash equilibrium if and only if it

is undirected and w′
i(x

∗) > c′i(degi(x
∗)) for all i ∈ I.

Since linking to a player without reciprocation is costly without giving any immediate benefits, every

Nash equilibrium is undirected, furthermore, each player’s least profitable neighbor must bring more

benefit than the marginal cost of the player’s links. We denote the set of Nash equilibrium networks

by X∗.

The standard equilibrium concept for network formation games with two-sided link formation is

pairwise stability (Jackson and Wolinsky, 1996).

Definition 2.9 (Pairwise stable equilibria). A network x is pairwise stable if

� for any pair {i, j} ∈ x we have ui(x) ≥ ui(x \ {i, j}) and uj(x) ≥ uj(x \ {i, j}),

� for any pair {i, j} /∈ x we have either ui(x) > ui(x ∪ {i, j}) or uj(x) > ui(x ∪ {i, j}).

Pairwise stable networks have two properties: no player should be better off deleting any of her

existing links, and no two unlinked players should be better off by forming a reciprocated link. Their

characterization in our game follows in a straightforward way.

Lemma 2.10 (Pairwise stable equilibrium characterization). The network x∗ is a pairwise stable equi-

librium if and only if if x∗ is a Nash equilibrium and for every i, j ∈ I for which x∗ij = x∗ji = 0 we have

wij < max{c′i(degi(x∗) + 1), c′j(degj(x
∗) + 1)}.

Equivalently, x∗ is a pairwise stable equilibrium if and only if it is a maximal Nash equilibrium.

Since, in a pairwise stable equilibrium, every mutually profitable link is already formed, any link

that did not end up forming must be unprofitable for at least one participant.

In this paper we are interested in the conditions that allow the players’ optimism to increase effi-

ciency in network formation games. We raise two notions of efficiency, Pareto optimality and benefit-

maximization in the set of Nash equilibria.

Definition 2.11 (Pareto optimal equilibrium network). A Nash equilibrium network x ∈ X∗ is a

Pareto optimal equilibrium network if there does not exist another Nash equilibrium network x′ ∈ X∗

such that ui (x
′) ≥ ui (x) for all i ∈ I with at least one strict inequality.

Clearly, a Pareto optimal Nash equilibirium network has to be pairwise stable, but not every pairwise

stable equilibrium is Pareto optimal. Note that even Pareto optimal equilibrium networks may be

Pareto dominated by other networks that are not an equilibrium; our restriction to the set of Nash

equilibria guarantees that individual participation constraints are satisfied, a crucial consideration in

non-cooperative models of network formation.

Our second efficiency notion measures the players’ total benefits. For a network x, let v(x) =∑
i∈I
∑

i ̸=j wijxijxji denote the total sum of realized benefits. It is clear that v(x) = v(y(x)).
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Definition 2.12 (Maximum-benefit equilibrium networks). The network x∗ ∈ X∗ is called a maximum-

benefit equilibrium (MBE) network if x ∈ argmax x∈X∗ v(x).

Let the set of MBE networks be denoted by V ∗. Such networks maximize total benefits from connections

in the society, while ensuring that for each player i, the value she derives from her marginal link exceeds

her cost, and i chooses her connections optimally given the behavior of the other players. Thus, they

satisfy a participation constraint and an incentive constraint for each individual and can be, in principle,

decentralized.

The basis of MBE networks is utilitarian efficiency but without explicitly considering the players’

costs – although they do play some role as they are selected from the set of Nash equilibrium networks.

Two conceptual reasons may exist to consider MBE in favor of or in addition to utilitarian efficient

networks: (1) costs are player-specific constraints of maintaining social links, as such, in certain situa-

tions, benefits can be more easily transferable and measurable, while costs are hidden, (2) planners may

be interested in the formation of the largest network (e.g. most duets recorded, most papers produced,

most production cost-reducing partnerships formed) satisfying the players’ participation constraints,

rather than the utilitarian efficient one.

If all players’ cost functions are linear, i.e. ci(deg
+
i ) = ci · deg+i for constant values ci, the notions

of pairwise stability, Pareto optimality, and MBE networks coincide in a unique network defined by

{i, j} ∈ x ⇔ wij > max{ci, cj}.

2.3 Ambiguity attitudes and equilibrium under ambiguity

The concept of Nash equilibrium presupposes that players have correct beliefs about their opponents’

behavior and best-respond to these beliefs. In games with multiple Nash equilibria, such an assumption

seems rather strong. While players might indeed entertain beliefs about the behavior of the other players

in the game, they might have limited confidence in such beliefs. The theory of ambiguity allows us

to model such uncertainty about the other players’ strategies by the use of non-additive probabilities

called capacities, see Schmeidler (1989).5

The notion of a capacity is very general. In this paper, we use a special class of capacities, called

NEO-additive capacities introduced by Chateauneuf et al. (2007). A NEO-additive capacity is deter-

mined by three components: the player i’s additive belief about the other players’ strategy x−i given

by a probability distribution πi on X−i, the strength of the players’ perception of ambiguity δi ∈ [0, 1]

and her attitude to it, her degree of optimism, αi ∈ [0, 1].

The NEO-additive capacities thus provide a parsimonious way to capture both ambiguity and

the players’ potentially heterogeneous response towards it, while remaining analytically tractable and

empirically measurable, (Baillon et al., 2018). In contrast to max-min expected utility (Gilboa and

Schmeidler, 1989), they allow for both ambiguity-loving and ambiguity-averse behavior and have there-

fore the advantages of the general Choquet expected utility by Schmeidler (1989) and the α-max-min

expected utility by Ghirardato et al. (2004).6 Furthermore, the NEO-additive capacities allow for a

differentiation between the “objectively verifiable” information captured by the probability distribution

πi, which reflects the actually chosen strategy of the other players, and the subjective perception and

attitude towards strategic uncertainty, as captured by the parameters δi and αi. In equilibrium, play-

ers’ objective beliefs πi are self-confirming in that they coincide with the actually played equilibrium

strategies, while for δi > 0, there is still room for strategic uncertainty which impacts the equilibrium

5The formal definitions of a capacity and a NEO-additive capacity are relegated to the Appendix.
6As is well-known in the literature, a Choquet integral over a NEO-additive capacity can be written as an α-max-min

expected utility over a set of probability distributions determined by the parameters πi and δi, see equation (3) in the
Appendix.
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in a non-trivial way (Eichberger and Kelsey, 2014).7

In this paper, we will restrict attention to pure strategies and thus, to NEO-additive capacities for

which πi is a Dirac measure on some strategy combination of the other players, x−i ∈ X−i, πi(x−i) = 1.

Slightly abusing notation, we will write νi(·|αi, δi, x−i) to denote such a capacity, see the Appendix for

details.

Given i’s subjective beliefs expressed by NEO-additive capacity νi(·|αi, δi, x−i), her Choquet ex-

pected payoff from choosing a strategy xi in the network formation game above is given by the Choquet

integral of the payoff function ui with respect to νi, see (3) in the Appendix and can be written as:

Ui(xi, νi(·|αi, δi, x−i)) (2)

= δi

[
αi max

x̃−i∈X−i

ui (xi, x̃−i) + (1− αi) min
x̃−i∈X−i

ui (xi, x̃−i)

]
+ (1− δi)ui (xi, x−i)

=
∑
j ̸=i

xijwij(δiαi + (1− δi)xji)− ci(deg
+
i (x)),

In words, player i’s Choquet expected payoff of strategy xi given her subjective belief νi is the sum

of the expected payoff she would obtain under her objective belief πi with weight 1 − δi, the highest

possible payoff attainable by xi with weight δiαi, and the lowest payoff attainable by xi, with weight

δi(1 − αi). The expression in the third line obtains by noting that in our network formation game

maxx−i∈X−i ui(xi, x−i) is always obtained at xji = 1 for every j ̸= i, whereas minx−i∈X−i ui(xi, x−i)

obtains at xji = 0 for every j ̸= i.

There are three extreme cases: for a realistic player i (δi = 0), the Choquet expected payoff of xi
given νi coincides with the payoff of xi given x−i, for an optimistic/pessimistic player i (δi = αi = 1

and δi = 1, αi = 0 respectively), the Choquet expected payoff of xi ignores the objective belief πi and

equals the largest/smallest payoff available through xi.

In the following, we will treat αi and δi as parameters and we will write α = (αi)i∈I and δ = (δi)i∈I
for the vectors of ambiguity attitudes and ambiguity perceptions.

The best response correspondence of player i given that her beliefs are represented by a NEO-

additive capacity vi with parameters αi and δi is defined as usual by

Bi(νi(·|αi, δi, x−i)) = arg max
xi∈Xi

Ui(xi, νi(·|αi, δi, x−i)).

As most definitions of equilibrium, the equilibrium under ambiguity imposes consistency between equi-

librium beliefs and equilibrium behavior. Differently from the standard Nash equilibrium concept, in

our framework, players perceive ambiguity about the behavior of their opponents. Hence, their beliefs

will in general assign positive weight to strategies, which are not used in equilibrium. The consistency

notion is thus imposed on a subset of strategies assigned positive weights, on those that are in the

support of the objective beliefs, πi. In the case, in which πi is a Dirac measure on some x−i, the

support of πi is given by x−i, the strategy combination played by the other players.

We now adapt the equilibrium under ambiguity concept of Eichberger and Kelsey (2014) to our

framework as follows:

Definition 2.13 (Eichberger and Kelsey (2014)). For given vectors of parameters of optimism and

ambiguity perception (α, δ), a network x∗ is an equilibrium under ambiguity (EUA) if for every i ∈ I,

x∗i ∈ Bi(ν
∗
i (·|αi, δi, x

∗
−i)).

7Other models of ambiguity in games include Hanany et al. (2020) who concentrate on games with incomplete infor-
mation, where the ambiguity is about the types of other players, as well as the approach of Riedel and Sass (2014) in
which players using ambiguous randomization devices to decide on their strategies. These motivations are quite different
from the strategic uncertainty we seek to model here. Dominiak and Eichberger (2021) generalize the equilibrium under
ambiguity with NEO-additive capacities to belief functions, which however necessitates a significantly larger number of
parameters.
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EUA imposes constraints both on players’ strategies and on players’ beliefs. In particular, whenever

player i’s best estimate is that strategy combination x∗−i will be played by the other players, her

equilibrium strategy, x∗i is a best response according to her respective equilibrium beliefs given by

ν∗i (·|αi, δi, x
∗
−i). It is easily seen that this condition is equivalent to the definition of EUA in Eichberger

and Kelsey (2014). It also illustrates the similarity of the concept to the Nash equilibrium as a mutual

best-response. We denote by X∗ (α, δ) the set of equilibria under ambiguity given (α, δ) and continue

using X∗ for the set of equilibria of the game without ambiguity, i.e., δi = 0 for all i ∈ I.

3 Equilibria under ambiguity of the network formation game

We begin by a characterization of a player’s best response under parameters αi and δi. To simplify the

analysis and avoid the cases of indifference we will discuss ambiguity parameters δi, αi, i ∈ I such that

for every i, j ∈ I and every r ∈ N we have wijδiαi ̸= c′i(r) and wij(δiαi + 1 − δi) ̸= c′i(r), which is a

generic setting of parameters.

The behavior of players maximizing (2) is showcased by the following characterization.

Lemma 3.1 (Best response under ambiguity). Fix αi and δi. For x ∈ X and i ∈ I, and x′i ∈ Xi let

x′ = (x′i, x−i). Then, x′i ∈ Bi(νi(·|αi, δi, x−i)) if and only if for every j ̸= i we have x′ij = 1 if and only

if the following two properties hold:

1. wij(δiαi + (1− δi)xji) > c′i(degi(x
′)) (the perceived benefit of linking to j exceeds marginal cost),

2. for every k such that x′ik = 0 we have wij(δiαi + (1 − δi)xji) ≥ wik(δiαi + (1 − δi)xki) (none of

the non-neighbors is a better pick than j).

To illustrate the effect of ambiguity, compare the above conditions to the case without it (δi = 0 for

all i). A player i with a belief of her opponents’ behavior, x−i, ranks her opponents by the value wijxji:

their value times their willingness to link to i. Player i’s best response will be to link to a selection of

her opponents with the highest such value, stopping to form more links once her marginal cost exceeds

the best unlinked opponent’s perceived value.

Players affected by ambiguity behave very similarly but they do not place full confidence on their

beliefs x−i. Instead, they rank their opponents based on a distorted value wij(αi + (1 − δi))xji. The

higher their perception of ambiguity, the less weight they place on their belief, and the more optimistic

they are, the stronger they distort towards the belief that any opponent will link to them. Highly

optimistic players focus only on the available benefit of a link, wij , while highly pessimistic ones make

their decisions in response to a distorted belief that no opponent will link to them.

The characterization of EUA networks follows immediately.

Corollary 3.2 (EUA characterization). For given parameters (α, δ), the network x∗ is an EUA if and

only if for every trio i, j, k ∈ I such that x∗ij = 1, x∗ik = 0 we have

wij(δiαi + x∗ji(1− αi)) ≥ wik(δiαi + x∗ki(1− αi))

and every pair i, j ∈ I , x∗ij and x∗ji follow the rules presented by Table 1.

As Table 1 shows, each player has three types of opponents in equilibrium which results in a total

of nine qualitative types of equilibrium pairwise relations. A player may identify links that she will

initiate even if the opponent does not reciprocate. This can only happen if the player is sufficiently

optimistic. If such a high-value opponent likewise considers the initiating player valuable enough, a
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wij = wji >
c′j(x

∗)

δjαj
∈
(

c′j(x
∗)

δjαj+1−δj
,
c′j(x

∗)

δjαj

)
<

c′j(x
∗)

δjαj+1−δj

>
c′i(x

∗)
δiαi

x∗ij = x∗ji = 1 x∗ij = x∗ji = 1 x∗ij = 1, x∗ji = 0

∈
(

c′i(x
∗)

δiαi+1−δi
,
c′i(x

∗)
δiαi

)
x∗ij = x∗ji = 1 x∗ij = x∗ji = 0 or 1 x∗ij = x∗ji = 0

<
c′i(x

∗)
δiαi+1−δi

x∗ij = 0, x∗ji = 1 x∗ij = x∗ji = 0 x∗ij = x∗ji = 0

Table 1: EUA characterization. Links which are perceived as high-value by a given player are always extended,
links with perceived low value are never extended. In-between-value links are extended only if reciprocated, either
because the partner to the link perceives them as high-value, or as in-between-value. If, for both partners, the
link is perceived as an ‘in-between’-value, there may exist some equilibria where a reciprocated link is formed and
some where neither direction of the link forms. Note: we use the convention 1/0 = ∞.

reciprocated link forms between them. If the initiating player is low-value for the opponent, a one-way

link forms.

A player may also identify low-value opponents to whom she will not link even if that opponent

initiates a link towards her. This may either be due to the fact that the player is highly pessimistic, or

has other higher value opponents she intends to prioritize. In this case the player may have incoming

one-way links from low-value opponents who consider her high-value.

Every other opponent is ‘in-between’-value; the player will only form such a link if she believes

it will be reciprocated. If an ‘in-between’-value opponent considers her as high-value, the opponent

will initiate and the player will reciprocate. If she is considered low-value, no links will form. Two

players who consider each other ‘in-between’-value may link to each other but no directed link can exist

between them.

There are two important differences between Nash equilibrium networks and EUA: First, the empty

network may not be an EUA as high-value directions will always form in equilibrium. As a result,

existence becomes a non-trivial issue (note that whenever the cost function is strictly convex, the game

is not supermodular in the players’ own strategies and thus, the standard existence result of Topkis

(1979) cannot be used). Second, an EUA network may contain directed links. To obtain a comparison

with the set of Nash equilibrium networks, one can take δi = 0 for all i, in which case the threshold for

high-value opponents becomes infinity, effectively eliminating the top row and left column of Table 1,

and leading to the characterization in Lemma 2.8.

We now state a general existence result of EUA.

Proposition 3.3 (Existence of EUA). For any network formation game (W, c) and any set of ambiguity

parameters (α, δ) such that the assumption of no indifference is satisfied, an equilibrium under ambiguity

exists.

Proposition 3.3 shows the existence of pure equilibria. We obtain this result by considering strict

best-response dynamics: starting in an arbitrary network, we show that no strict best-response im-

provement path can revisit a network it had visited before, thus any such path must reach a network

where no player can improve. That network is an EUA. Furthermore, the set of EUA is thus given by

the absorbing sets of best-response dynamics under ambiguity.

We now examine the effects of increasing players’ optimism, starting with its effects on the number

of out-neighbors. While we will not obtain a direct result, we are able to derive monotonicity conditions

on player optimism and the minimal and maximum number of out-neighbors. We begin with a formal

definition of these two concepts.

Definition 3.4 (Minimal and maximal out-degree). For player i ∈ I her minimal and maximal out-
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degree, denoted by di(αi, δi) and di(αi, δi) are defined as

di(αi, δi) = deg+i (x) where xi ∈ Bi

(
νi

(
·|αi, δi, (xji = 0)j ̸=i

))
,

di(αi, δi) = deg+i (x) where xi ∈ Bi

(
νi

(
·|αi, δi, (xji = 1)j ̸=i

))
,

respectively.

For fixed ambiguity parameters we write di and di for the number of links player i offers in a

best response to the belief that no players link to i and all players link to i, respectively. Since

indifferences of linking and not linking are ruled out, these values are well defined, with di being the

largest degree r such that r ≥ |{j ∈ I : αiδiwij > c′i(r)}| holds and di being the largest degree r such

that r ≥ |{j ∈ I : (αiδi+(1− δi))wij > c′i(r)}| holds. Thus, di and di are also lower and upper bounds,

respectively, of the number of out-links that player i can have in any EUA network.

For the case of no ambiguity, δ = 0, the values di(αi, 0) and di(αi, 0) are independent of αi. In this

case, di(αi, 0) = 0 (absent ambiguity, a player does not link if no player links to her) and we denote

di = di(αi, 0) as the number of links initiated by a player unaffected by ambiguity when she believes

that all other players offer a link to her. It is the maximum number of neighbors a player can have in

a best response.

Note that di = di(1, 1) = di(1, 1), as a player with δi = αi = 1 always best responds to the belief

that every opponent links to her. Thus, optimists will always have di out-links in a best response. In

contrast, di(0, 0) = di(0, 0) = 0, i.e. pessimistic players do not link to anyone.

We now show how changes in player’s optimism and confidence impact the lower- and upper bounds.

Proposition 3.5 (Minimal and maximal out-degree comparative statics). Let αi, δi be given. For every

i ∈ I, every δ′i > δi, and every α′
i > αi, we have

1. di(α
′
i, δi) ≥ di(αi, δi),

2. di(α
′
i, δi) ≥ di(αi, δi),

3. di(αi, δ
′
i) ≥ di(αi, δi),

4. di(αi, δ
′
i) ≤ di(αi, δi).

Since the perceived value of all potential links increases with the degree of optimism, both di and di
are increasing in αi (points 1 and 2). An increase in the perception of ambiguity reduces the confidence

the player assigns to the events that no one links to her and everyone links to her, respectively leading

to an increase of di (point 3) and an decrease of di. A higher δi thus decreases the difference di − di
which becomes 0 at δi = 1, as in this case the player’s best response is independent of her objective

beliefs about x−i. If δi = 1 for all i, the players’ best responses are unique up to indifferences between

linking to equal-valued neighbors. Without indifferences, e.g. in case wij ̸= wik for any triple i, j, k, the

best responses, and the resulting EUA are unique.

Although points 1 and 2 show that the bounds of the players’ out-links increase with respect to

their optimism, the realized equilibrium may not be more connected than the old one if the players’

optimism increases. This is because a more optimistic player may sever existing links in an attempt

to link to higher-value players and these newly initiated links need not be reciprocated. For this

reason the comparative statics between player optimism and the size of the equilibrium network is not

straightforward. We identify a sufficient condition, called the monotonicity of networks, that guarantees

that optimism increases the connectivity of equilibrium networks.
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Definition 3.6 (Monotonic network). Network x is monotonic in linking decisions (monotonic, for

short) for player i if for every j, k ∈ I such that wij ≥ wik we have xij ≥ xik. Network x is monotonic

if for every i ∈ I it is monotonic for i.

If x is monotonic, then all players i link to some selection of their top deg+i (x) choices of opponents.

If an undirected network is monotonic, a player can only increase the value of her links by forming

more links, not by replacing her existing links with better ones. We show that if an equilibrium is

monotonic, then upon an increase in the players’ optimism there will always exist an EUA under the

new parameters whose undirected restriction is a supergraph of that of the old one.

Proposition 3.7 (Monotonic equilibrium comparative statics). Let x ∈ X∗(α, δ) be monotonic and

consider an α′ ≥ α. Then, there exists an EUA network, x′ ∈ X∗(α′, δ) such that y(x) ≤ y(x′).

By Proposition 3.7, we thus obtain that if an equilibrium is monotonic, an increase in the players’

optimism will lead to more reciprocated links, increasing the value of realized benefits in the network

as well.

Example 3.8 (Monotonic equilibrium with increased optimism). To demonstrate this result we con-

sider a network of four players, A, B, C, and D. The links {A,B} and {C,D} give a high value H, while

{A,D} and {B,C} offer a low value L with H > L > 0. Links {A,C} and {B,D} give a value of 0.

Suppose that for all players we have c′i(2) < L. Then, the unique Pareto optimal equilibrium network is

x∗ = {{A,B}, {B,C}, {C,D}, {A,D}}, while any subset of x∗ constitutes a Nash equilibrium network.

Consider the monotonic equilibrium network x = {{A,B}, {C,D}} and parameters δi and αi such that

((αiδi) + (1 − δi))H > c′i(1), δiL > c′i(2), and αiδiL < c′i(2). Then, x is the only EUA. Suppose that

for all i αi increases to α′
i in a way that α′

iδiL > c′i(2). Under the listed assumptions such values of α′
i

are guaranteed to exist. Then, x∗ becomes the only EUA of the modified game. Figure 1 shows this

example graphically.

A B

CD

H

H

LL

0 0

A B

CD

H

H

LL

0 0

Figure 1: The weight network of Example 3.8. Reciprocated links are shown as continuous edges, no linking is
indicated by dashed ones. If H > L > 0, and if c′i(2) < L then network x∗ (right panel) is the unique Pareto
optimal equilibrium network. There exist parameters αi, δi, under which the underconnected but monotonic
network x (left panel) is an EUA. Increasing the optimism parameters to α′

i > αi can lead to x∗ being the only
EUA.

In the special case when all cost functions are linear, the game is supermodular and increased

optimism raises equilibrium connectivity regardless of whether the initial equilibrium is monotonic

(Schipper, 2021).

4 Network realignment through optimism

In this section we study the realignment of networks. By network realignment we refer to sequences of

link formations and severances that lead from one equilibrium to another. This type of realignment may
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happen for several reasons. Equilibria that are stable against individual or pairwise changes may break

apart due to a coordinated improvement by larger coalitions. Farsighted players may experiment in

order to trigger a sequence of changes that increase their individual payoffs. Deviations may also occur

randomly. Instead, here we consider exogenous shocks to players’ perception of and attitude towards

strategic uncertainty as a driver of network realignment. As demonstrated earlier, such shocks modify

players’ subjective evaluations of their current linking decisions and thus induce changes in individual

linking choices.

A motivation to study realignment is to select for equilibria that survive these changes, the condi-

tions under which such equilibria even exist, and the efficiency properties of surviving equilibria. Since

the seminal works of KMR and Young (1993), models of myopic adaptation with random mutations

have been used as a selection device in games with multiple equilibria. In general, such models postulate

a best-response type of adaptive dynamics. In each period, a player is chosen at random and revises

her strategy by playing a best response to the current strategy profile of her opponents. With strictly

positive probability, mutations (such as mistakes, experimentation) occur; instead of playing her best

response, the player chooses a strategy at random.

In this section, mutations, instead of leading to a random choice of a strategy, will affect the players’

ambiguity parameters, their perception of ambiguity and optimism. Players then behave rationally

given these parameters. We choose to focus on mutations that amount to optimistic surges. As shown

above, players affected by optimistic surges seek out more and/or better neighbors. We thus explore

whether optimistic surges select for efficient equilibria in the long-run. In contrast, pessimistic surges

cause links to break down without new ones forming. We comment on the possibility of introducing

pessimistic shocks in Section 5.

Our dynamic process takes place in discrete time, t ∈ N. The network at time t will be denoted by

xt. Take an initial network structure xt−1. In period t, a player it is chosen at random with uniform

probability 1/n and receives an opportunity to revise her strategy to xit . All other players continue

playing the strategies corresponding to xt−1
−it .

For player i ∈ I set δ̄i ∈ (0, 1) and ᾱi ∈ [0, 1] such that for every j ∈ I \ {i} and r ∈ {0, n − 1}
we have c′i(r) < ᾱiδ̄iwij if and only if c′i(r) < wij , and for j, k ∈ I \ {i} with wij > wik we have

δ̄iᾱiwij > wik. Such values are guaranteed to exist with both δ̄i and ᾱi being close to 1, as the player

set is finite. These parameters represent highly optimistic behavior but not complete ignorance (which

occurs for δi = 1). Thus, players’ behavior will satisfy three properties: (1) if pressed to make a choice,

a player will strictly prefer an unreciprocated link of a higher value to a reciprocated link of a lower

value, (2) due to δ̄i < 1 the player will strictly prefer a reciprocated link to an unreciprocated one of

equal value, (3) the player always finds it optimal to have exactly di out-links to her top di choices, i.e.

di(ᾱi, δ̄i) = di(ᾱi, δ̄i) = di.

The main parameter governing the dynamic process defined above is the frequency of optimistic

shocks, denoted by β ∈ (0, 1). If close to zero, our process resembles a best-response dynamic with

regular, but infrequent optimistic shocks, and if close to 1, the players almost always react optimistically.

We imagine small values of β to be the most plausible but our analysis is not sensitive to the exact

value as long as all players perform both optimistic and realistic actions with positive probability.

The ambiguity parameters of player it at the time of revision are thus given by the following time-

independent probability distribution:

δtit = 0 and αt
it arbitrary with probability 1− β,

δtit = δ̄it and αt
it = ᾱit , with probability β,

Given her current ambiguity parameters, the revising player behaves myopically and chooses a best

response to xt−1
−it :
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xtit ∈ Bit(νit(·|αt
it , δ

t
it , x

t−1
−it ))

If the best response Bit (·) is not a singleton, player it chooses a best response in Bit (·) uniformly at

random. The resulting network at time t, xt, is then given by

xt(xt−1, it, αt
it , δ

t
it) = (xtit , x

t−1
−it ).

In words, any updating player is an optimist with uniform probability β and a best-responder with

probability 1− β.

In what follows, we will shorten the notation of an optimistic player’s best response to x to Bo
i (x) =

Bi(νi(·|ᾱi, δ̄i, x−i)).

A best-response dynamics with optimistic surges can be interpreted as a myopic response of a player

to the current network. As in the standard case, the player holds “static perceptions on the evolution

of any variable of the process outside of her control”, see Vega-Redondo (2003). In this case, she

is informed of the strategy profile xt−1
−it that prevailed during the preceding period. However, rather

than assuming that the same strategy profile will be repeated at period t, she considers xt−1
−it as the

best available estimate of the behavior of other players, assigning to it a (possibly limited) confidence

of 1 − δtit . In particular, when an optimistic surge occurs, a strictly positive weight is assigned to

the strategy profile of the others which would maximize her payoff. This process thus generalizes the

standard best-response dynamics to the case in which players assume that others will continue playing

their preceding strategies, but perceive ambiguity with regards to such predictions.

The dynamic process thus defined describes a Markov chain on the set X. For x, x′ ∈ X and

β ∈ [0, 1] let pβ(x, x
′) denote the one-step transition probability from x to x′, given that the probability

of an optimistic shock is β. It is clear that for every x, x′ ∈ X with pβ(x, x
′) > 0 there exists i ∈ I such

that either x′i ∈ Bi(x) or x′i ∈ Bo
i (x) and for every j ̸= i we have x′−i = x−i. For m ∈ N let pmβ (x, x′)

denote the transition probability from x to x′ in exactly m steps. For a set of networks X ′ ⊆ X let

pmβ (x,X ′) =
∑

x′∈X′ pmβ (x, x′) denote the probability of reaching this set from x in exactly m steps.

Definition 4.1 (Successor). For x, x′ ∈ X and m ∈ N we say that x′ is an m-successor of x if

pmβ (x, x′) > 0.

Denote the set of m-successors of network x by Sm(x) and let
⋃

m∈N Sm(x) = S(x) denote the set

of all successors of x. By convention we include x ∈ S(x).

We introduce the key condition of our convergence results.

Definition 4.2 (Aligned preferences). The players exhibit aligned preferences if every MBE network

is monotonic.

Under aligned preferences, MBE networks are not only optimal for a benefit-maximizing society,

but also safisfy an individual optimality condition for the players: each player is linked to a selection

of her best opponents. This is an appealing property for a game to have, as without it we observe a

conflict between efficiency in benefits and the players’ incentives.

The notion of aligned preferences also partially resolves the conflict between the two notions of

efficiency, MBE and Pareto ptimal equilibria, discussed in Section 2.2. While in general, MBE networks

can be Pareto dominated by other equilibrium networks, see Example A.4 in the appendix, our next

Lemma shows that in the case of aligned preferences, MBE are Pareto-optimal in the set of Nash

equilibria:

Lemma 4.3. Under aligned preferences, MBE networks are Pareto optimal in the set of Nash equilibria.
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Due to Lemma 4.3, when preferences are aligned, MBE is a stronger efficiency notion than Pareto

optimality.

Proposition 4.4 (Stability of efficient networks under aligned preferences). Suppose that the players

exhibit aligned preferences. For every x∗ ∈ V ∗ and every x′ ∈ S(x∗) we have x′ ∈ y−1(V ∗).

By Proposition 4.4, under aligned preferences, the set of MBE networks is stable under our dynamic

of optimistic and best-responding players. More precisely, starting the dynamical process in an efficient

network, all successor networks will contain an MBE network as well as some additional one-way links.

Formally, the set y−1(V ∗) is absorbing under our dynamic process.

We now present our second main result. If preferences are aligned, then the dynamic described above

always pushes the game towards networks that contain an MBE network, and, possibly, some additional

one-way links. If there is a unique MBE network, then it by itself, is a stable equilibrium in terms

of our dynamic, allowing for the creation and deletion of additional one-way links. If there is more

than one MBE network, then they may communicate with each other under our dynamic but the total

realized benefit of players never changes.

Proposition 4.5 (Efficient networks form almost surely under aligned preferences). Suppose that the

players exhibit aligned preferences. Then, for every x ∈ X and every β ∈ (0, 1) we have

lim
m→∞

pmβ (x, y−1(V ∗)) = 1.

Proposition 4.5 shows that, under aligned preferences, by the individual updates of players, an MBE

network will form almost surely. Combined with 4.4, this means that, in terms of reciprocated links,

the set of MBE networks is globally stable under these dynamics.

The key intuition behind the proof is that, from a sufficiently connected but inefficient equilibrium

(from which, as we show, we can initiate the process) we can choose a link {i, j} which is part of the

efficient network but not part of the current network, and a player i who would initiate this link under

an optimistic shock. If this is followed by j being given a best-responding revision opportunity she may

reciprocate this link, possibly severing some others. There will then exist a series of best-responses

through which we obtain a network which is strictly closer to the desired MBE network (notably by the

inclusion of the link {i, j} and the exclusion of some unnecessary links). Since the set of all networks

is finite, repeating this process allows the dynamic to reach V ∗ in finite time. Once a network in V ∗ is

reached, the value of the network cannot decrease (Proposition 4.4).

We note the difference between our approach and that of KMR. Similarly to their approach, our best-

response dynamic with optimistic shocks defines a Markov process on the set of strategy combinations

and thus, on the set of directed networks. In KMR, the random mutations imply that any strategy

can be chosen with strictly positive probability and thus, the Markov process visits any of the Nash

equilibria infinitely often. In contrast, in our model, the asymmetric nature of the optimistic shocks

implies that the Markov process reaches the set of MBE networks, with probability 1, regardless of

initial conditions. Furthermore, the set y−1 (V ∗) is absorbing.

We note that letting the probability of optimistic surges β go to 0 does not lead to a further

refinement of the set of equilibria. In particular, as the following proposition shows, all MBE are

stochastically stable.

Proposition 4.6. There exists a set of probability distributions (µ̂β)β∈(0,1) such that for each β ∈ (0, 1),

µ̂β is an invariant probability distribution of the Markov chain
(
(X, pβ)β∈(0,1)

)
and

supp

(
lim
β→0

µ̂β

)
= V ∗.
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The following example demonstrates network realignment through optimistic shocks under aligned

preferences.

Example 4.7 (Network realignment). Consider the benefit weights given by Example 3.8, but with

c′i(1) < L and c′i(2) > H for all i, that is, each player can have at most one neighbor in equilibrium.

Then, the unique MBE network is x∗ = {{A,B}, {C,D}}, but any undirected network where each

player has at most one neighbor is also an equilibrium. Notably, x = {{A,D}, {B,C}} is also pairwise

stable, but not stable against optimistic surges.

A B

CD

H

H

LL

0 0

A optimistic
A B

CD

H

H

LL

0 0

B best responds

A B

CD

H

H

LL

0 0

C best responds
A B

CD

H

H

LL

0 0

D optimistic

A B

CD

H

H

LL

0 0

C best responds
A B

CD

H

H

LL

0 0

Figure 2: Network realignment from a Pareto dominated pairwise stable equilibrium to an MBE network. An
optimistic shock compels A to seek out a new, better partner, severing her link to D and extending one to B. A
best-responding B reciprocates A’s link and severs the one to C. A best-responding C deletes her unreciprocated
link to B. Finally, when D receives an optimistic shock herself, she will extend a link to C which a best-responding
C accepts.

The realignment process that leads from x to x∗ is shown in Figure 2 and proceeds as follows. (1)
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under an optimistic shock, A severs her link to D and extends one to B. (2) a best-responding B

severs her link to C and reciprocates A’s link. (3) C best responds, cutting her unreciprocated link

to B. The network now has the link {A,B} established, which is a Nash equilibrium network, and in

network distance terms, closer to x∗. (4) under another optimistic shock, D extends a link to C. (5) a

best-responding C reciprocates, forming the network x∗.

If preferences are not aligned, then MBE networks are not always Pareto optimal, and they are also

not stable against optimistic shocks; a player who is not linked to her best choice of neighbors, upon

experiencing an optimistic shock, will invariably delete her links to her existing neighbors and make

offers to her best choices. This can be demonstrated by a minimal counterexample of three players.

Example 4.8. Consider a network of three players with w12 = H, w13 = M , and w23 = L with

H > M > L > 0. Suppose that c′1(1) < H and c′1(2) > M , as well as c′3(1) < L and c′3(2) > M

meaning that players 1 and 3 can entertain only one neighbor, while c′2(2) < L, player 2 can entertain

two neighbors. Then, the unique MBE is x∗ = {{1, 2}, {2, 3}}, which is not monotonic, thus preferences

are not aligned. Starting from x∗ if player 3 receives an optimistic shock she will sever her link running

to 2 and offers one to 1 which will be unreciprocated. These networks are shown in Figure 3.

1 2

3

H

LM

1 2

3

H

LM

Figure 3: The network of Example 4.8. Player 2 can accommodate two neighbors, players 1 and 3 only one. The
unique MBE (left) is pairwise stable, but unstable for an optimistic surge by player 3 who will sever her link with
2 and make an unreciprocated offer to 1 instead (right).

We conclude this section by showing convergence in the linear case, which is not covered by the

case of aligned preferences.

Proposition 4.9. Let the cost functions be linear. Then, for every x ∈ X and every β ∈ (0, 1) and the

unique x∗ ∈ V ∗ we have limm→∞ pmβ (x, y−1(x∗)) = 1.

Proposition 4.9 extends the convergence result laid out in Proposition 4.5 to all games with linear

costs, without the precondition of aligned preferences. This is due to the fact that, under linear costs the

unique MBE, which coincides with the unique pairwise stable equilibrium, is stable for both optimistic

and best-responding deviations.

5 Concluding remarks

In this paper we investigate a model of network formation with players facing ambiguity with respect

to their opponents’ linking decisions. We model this uncertainty using NEO-additive beliefs: players

respond to mixtures of their rational beliefs as expressed by a probability measure of their opponents’

actions, their optimistic beliefs, and their pessimistic ones.

To our knowledge, ours is the first project to consider ambiguity in strategies in a network formation

game. This combination of frameworks is natural and fits well with behavioral considerations of network
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formation: optimistic players believe their linking offers are likely to be reciprocated, pessimistic players

believe that opponents are unlikely to reciprocate. These considerations provide behavioral explanation

to the existence of asymmetric interactions in social networks, namely, persistent one-way links. Similar

explanations are absent in models focusing on joint improvements or individual rational behavior.

Directed interactions may arise due to optimism as a player believes the opponent will reciprocate and

thus make an offer to link without coordinating with the opponent. Even if the opponent does not

reciprocate, if the optimism of the offering player persists, so does the one-way link. Under repeated

surges of optimism followed by best-responding behavior, the linking offer is attempted and withdrawn

repeatedly.

By explicitly modeling player optimism we also allow the link-formation process to be governed

proactively by the players. Under Nash equilibrium, link formation was governed by the players pas-

sively best-responding to each other’s actions or their beliefs about their opponents. In what has proven

to be the modern benchmark tool, pairwise stability, link-formation is governed by the logic of random

pairwise interactions where, upon meeting a mutually beneficial opponent, the pair decides to form a

link. Here, players remain passive in creating these interactions and only act if the opportunity arises

through events outside their control. Under our framework, optimistic players proactively seek out

their best possible links, creating linking opportunities through a costly investment.

Our investigation of equilibrium under ambiguity reveals that optimism can, as expected, lead

to better equilibrium outcomes by selecting against underconnected equilibria. Too much optimism,

on the other hand, makes players blind to their available prospects in favor of the best they could

possibly achieve and thus there is no general monotonic relationship between equilibrium connectivity

and optimism. Monotonic equilibria, however, do improve in terms of connectivity if the players become

more optimistic, as they feature no tradeoff between the players’ available links and their best possible

links. In these cases, optimism is helpful for the players to seek out additional profitable partners

without severing their links to existing ones.

In addition to equilibrium, we study network realignment under ambiguity. Under aligned prefer-

ences, best-response dynamics with optimistic shocks lead to all links of a Pareto optimal equilibrium

network forming; specifically, one that maximizes benefits from links. This insight sheds some light

to the role of optimism in a society: individual optimism begets an optimal social network without

relying on formal or informal multilateral coordination devices. It is noteworthy that both optimism

and realism are found to be necessary attitudes to produce this result, with optimism being the driving

force to seek out newer and better links, while realism compels players to accept the status quo. If

the frequency of optimistic shocks is high, efficient networks are reached faster but the system will

spend more time in networks with directed links – even after all links of the Pareto optimal equilibrium

network have been formed. If this frequency is lower, Pareto optimal equilibria are reached later but

players spend more time at their objective best response – i.e. in the actual equilibrium network. This

suggests that there is an optimal amount, or rate, of optimism for a society which strikes a balance

between the speed of convergence to the set of Pareto optimal equilibrium networks, and mitigating

the efficiency loss arising from the wasted effort of extending unreciprocated links. Finding this is an

interesting direction for future research.

If preferences are not aligned, optimistic shocks are not enough to produce efficient networks – even

the concept of an efficient network becomes more elusive as the efficiency notion that planners may be

interested in, the maximum-benefit equilibria, and the one pertaining to the players’ well-being, Pareto

optimality, are not in agreement. We thus cannot resolve the prevailing conflict between stability and

efficiency in the general case. A possible way to relax the aligned preferences condition is by considering

a higher degree of player sophistication. For instance, in Example 4.8, a player 2 who is informed of

player 1’s payoff function may anticipate that player 1 will not sever her first-best link and is thus,

unavailable. Alternatively, after several unsuccessful tries, she can also learn that player 1 will never

19



reciprocate. Both would allow player 2 to be satisfied with her second-best outcome, which stabilizes

the Pareto optimal equilibrium network. This type of sophisticated selection of neighbors is beyond

the scope of this paper.

Our model is without explicit network externalities. This choice simplifies our analysis as players

evaluate their linking choices “link-wise”. Furthermore, this avoids the additional complexity of mod-

eling the players’ beliefs of their neighbors’ (neighbors’, etc.) links, as well as their responses to these

beliefs. As the players’ reliable information of links in the network that are distant from them can be

scarce, a more general model of ambiguity in networks under explicit network externalities necessitates

an epistemic foundation of players’ beliefs of distant links. Nevertheless, the model has implicit network

externalities due to the convexity of the cost function. For a player, any link that is formed between

two non-neighbors makes it more unlikely that those two non-neighbors reciprocate her linking offers.

Finally, we mention pessimism, which, in our model, does not seem to have any positive role in

building the network or realigning efficiently. Pessimistic shocks in our model amount to (possibly

temporary) severances of links without forming new ones. More generally, pessimism may play a role

in preventing the network from becoming too cluttered. This may be to the benefit of society if network

interactions bring negative externalities, such as during a pandemic where being part of a connected

social component exposes the individual to risk of infection. This is another interesting direction for

future research.

A Appendix

A.1 Capacities and NEO-additive Capacities

Let X−i denote the set of all subsets of X−i.

Definition A.1 (Schmeidler (1989)). A capacity on (X−i,X−i) is a function νi : X−i → [0, 1] with

νi(∅) = 0, νi(X−i) = 1 and νi(A) ≤ ν(A′), whenever A ⊆ A′.

In words, a capacity is a non-additive measure, which is normalized between 0 and 1 and satisfies

monotonicity with respect to set inclusion. In particular, a capacity will in general violate additivity:

the measures assigned to an event A ⊆ X−i, νi (A), and its complement X−i \A, νi(X−i \A) need not

sum up to 1.

The notion of a capacity is very general. In this paper, we will use a special class of capacities, called

NEO-additive capacities which allow for a distinction between the strength of a players’ perception of

ambiguity and their response to it, optimism or pessimism. These characteristics of the players are

captured by two parameters, αi ∈ [0, 1], and δi ∈ [0, 1].

Definition A.2 (Chateauneuf et al. (2007)). For a player i, given her ambiguity parameters αi, δi,

and a probability measure πi on (X−i,X−i), the NEO-additive capacity νi(·|αi, δi, πi) on (X−i,X−i) is

defined as follows:

νi(A|αi, δi, πi) =

{
0 if A = ∅,
1 if A = X−i,
δiαi + (1− δi)πi(A) otherwise.

A NEO-additive capacity can be interpreted as follows: the probability distribution πi player i’s

belief about the behavior of her opponents. The degree of confidence of i in this belief is given by

(1 − δi). In particular, if δi = 0, the degree of confidence is 1, i is not affected by ambiguity, and her

subjective beliefs are represented by πi itself. When the degree of confidence (1 − δi) < 1, the player

perceives ambiguity δi with respect to her best estimate πi. Intuitively, δi identifies a set of probability

distributions given by the convex combination of πi with the set of all possible probability measures on

X−i, ∆ (X−i),

Πi = (1− δi) {πi}+ δi∆(X−i)
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that the player takes into account when deciding on her strategy.

The effect of such ambiguity on i’s beliefs about an event A depends on the player’s degree of

optimism, αi. When αi = 0, the player is a complete pessimist and her beliefs scale down the prob-

ability of any event A (except for the whole event X−i) by her degree of confidence, (1 − δi). For a

fully optimistic player with αi = 1, the probabilities of all events (except the impossible one, ∅) are

overweighted. More generally, for intermediate degrees of optimism, i will overweigh events with low

probability and underweight those with high probabilities.

Definition A.3 (Chateauneuf et al. (2007)). The Choquet expected payoff with respect to a NEO-

additive capacity νi with parameters αi, δi and πi such that πi (x−i) = 1 for some x−i ∈ X−i is given

by:

Ui(xi, νi(·|αi, δi, x−i)) =

∫
ui(xi, x̃−i)dνi (3)

= δi

[
αi max

x̃−i∈X−i

ui (xi, x̃−i) + (1− αi) min
x̃−i∈X−i

ui (xi, x̃−i)

]
+ (1− δi)ui (xi, x−i)

= αi max
π∈(1−δi){πi}+δi∆(X−i)

Eπ [ui (xi, x̃−i)] + (1− αi) min
π∈(1−δi){πi}+δi∆(X−i)

Eπ [ui (xi, x̃−i)]

A.2 Aligned preferences conditions

In this section we discuss implications and conditions of the preferences being aligned. Aligned prefer-

ences represent a restriction on the players’ preferences in a way that individual considerations to link

to one’s favorite opponents, i.e. play monotonic strategies, are in agreement with social considerations

that seek to maximize the players’ sum of realized benefits.

If preferences are not aligned, MBE networks are not guaranteed to be Pareto optimal. This is

illustrated by a counterexample.

Example A.4. Consider a network of six players shown in Figure 4.

1

2 3

4

5 6

4

5

4

5

4

5

4

Figure 4: The weight network of example A.4. Links not shown in the figure are assumed to offer no benefits.

Suppose that the cost structure is such that d1 = d4 = 2, while d2 = d3 = d5 = d6 = 1. Then, the

only MBE network is x∗ = {{1, 2}, {1, 3}, {4, 5}, {4, 6}} for a total weight of 16, but it is not monotonic

for any player, hence preferences are not aligned.

Suppose that c1(1) = c4(1) = 3.8 and c1(2) = c4(2) = 7.7, which respects d1 = d4 = 2. Then, the

network given by x = {{1, 4}, {2, 3}, {5, 6}}, with its weight of 15 Pareto dominates x∗.

Example A.4 also shows that the reverse of Lemma 4.3 is not true, that is, the existence of an

equilibrium network which is monotonic and Pareto optimal does not imply that preferences are aligned.

In the example the Pareto optimal equilibrium network is monotonic but preferences are not aligned

as it is not an MBE network.
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We highlight the special case where the benefits of all links are equal, i.e. players are only interested

in the number of their neighbors. In this case preferences are always aligned and MBE networks are the

largest equilibrium networks in the number of links. Then, we can derive an even stronger statement,

every Nash equilibrium network that is not an MBE network is Pareto dominated by the MBE network

closest to it.

Lemma A.5. If for every i, j we have wij = w for some w ∈ R+, then for every x′ ∈ X∗ \ V ∗ and

every x ∈ V ∗ that is closest to x′ in V ∗, x Pareto dominates x′.

Proof: Let x′ ∈ X∗ \ V ∗, let x be an element of V ∗ that is closest to x′, and assume that x does

not Pareto dominate x′. Then, there exists i ∈ I such that degi(x
′) > degi(x). Hence, there exists a

player j ∈ Ni(x
′) \ Ni(x). If degj(x) < degj(x

′), then either degj(x) < dj and hence, {i, j} could be

added to x, contradicting x ∈ V ∗, or we have degj(x
′) > dj = degj(x), contradicting the fact that x′ is

an equilibrium network.

If degj(x) > degj(x
′), then there must exist k ∈ Nj(x) \ Nj(x

′). Consider the network x′′ which

we get from x by removing the link {j, k} and adding the link {i, j}. It is clear that x′′ ∈ X∗, since

degi(x
′′) ≤ degi(x

′) ≤ di, degj(x
′′) = degj(x

′) = dj , and degk(x
′′) = degk(x) − 1 < dk. Furthermore,

x′′ ∈ V ∗, since x has the same number of links as x′′. However, we have ϕ(x′, x′′) = ϕ(x′, x) − 2, thus

we contradict the choice of x as a closest element of V ∗ to x′. Thus, x must Pareto dominate x′.

■

There is no equivalent statement for games with aligned preferences in general as a player i’s first-

best network need not be an MBE network and thus it is possible for this player to be worse off in

every MBE network.

The condition of aligned preferences is a condition on the game’s equilibrium structure and not the

primitives. We conclude this section by deriving a set of sufficient conditions on the games primitives

(W, c) that implies that preferences are aligned. In fact, the sufficient condition is stronger, as it

produces a unique MBE network which is monotonic.

Lemma A.6. Suppose that

1. for every i ∈ I there exists a value w̄i such that |{k : wik ≥ wi}| = di, and

2. for every i, j ∈ I we have wij ≥ w̄i ⇔ wij ≥ w̄j.

Let x∗ be given as follows: x∗ij = 1 if wij ≥ wi, x
∗
ij = 0 otherwise. Then, x∗ is the unique MBE network

and it is monotonic.

Proof: It is clear that x∗ is monotonic and, by property (2), it is undirected. Furthermore, by

property (1) it holds that for every i ∈ I we have degi(x
∗) = di. Thus, every player has the maximum

number of neighbors and is linked to her best choice of di opponents. Thus, x
∗ is the only MBE network.

■

Lemma A.6 lays out two sufficient conditions for preferences to be aligned: (1) each player must have

a well-defined set of ‘favorite’ opponents to link to that will satiate her, and (2) reciprocity in ‘favorite’

opponents. The first condition precludes, among other settings, the uniform benefits case; even though

uniform benefits represent aligned preferences they do not generally imply uniqueness of the MBE

network. If indifferences are not allowed, as is often the case in matching where individuals have a

strict ranking of opponents, this condition is automatically satisfied. The second condition ensures

reciprocity of links if all players link to their set of favorite opponents and is the main restrictive

condition in the lemma. These conditions are strong but, given the matrix of weights, easy to check.
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A.3 Proofs for Section 3

Lemma 3.1

The ⇐ direction is clear; if the link towards a player j appears profitable and there is no better

alternative to connect to, then player i’s best response is to link to j. The ⇒ direction consists of two

simple parts: (1) linking to j cannot be a best response if it does not appear profitable, (2) linking to

j but not linking to an apparently more profitable k cannot be a best response.

■

Proposition 3.3

We show this statement by the use of strict best-response paths. A strict best-response path is a

sequence of networks (xt)t∈{0,...,T} such that for every t ∈ {1, . . . , T} there exists a player it such that

xt−it = xt−1
−it , x

t−1
it /∈ Bi(νi(·|αi, δi, x

t)), and xtit ∈ Bi(νi(·|αi, δi, x
t)). In a strict best-response path every

period has exactly one player move from a strategy that isn’t a best response to the current strategies

of her opponents to a best response. We will show that no matter the starting network x0, the order

of updates, or the length of the sequence, there are no cycles in this process, i.e. there does not exist

a non-trivial strict best-response path for which x0 = xT . Given this fact and due to the finiteness

of the set of possible networks with n players, starting from any network, any sequence of such strict

improvements by players who are not at their best response will lead to an EUA.

So, for contradiction suppose that such a cycle (xt)t∈{0,...,T} exists with x0 = xT . We say that the

link {i, j} is changing in this sequence if there exist two time periods t and t′ such that xtij ̸= xt
′
ij . It is

clear that such links must exist in any strict best-response path.

Claim A.7. In a strict best-response cycle there must exist a changing link {i, j} and a time period t

such that xtij = xtji = 1.

To show this, suppose for contradiction that such a changing link does not exist. Take a player i

and two distinct time periods t < t′ such that it = it
′
= i and for every t′′ ∈ {t+ 1, . . . , t′ − 1} we have

it
′′ ̸= i. For any cycle such periods may be found by an appropriate time shift. It is clear that t and t′

cannot be consecutive time periods in a strict best-response path and that there must exist a link {i, j}
such that xt+1

ij ̸= xt
′+1
ij otherwise xt

′
i = xt

′+1
i , contradicting that xt

′
i /∈ Bi(νi(·|αi, δi, x

t′)). Since there

are no changing reciprocal links we must have Ni(x
t) = Ni(x

t+1) = Ni(x
t′) = Ni(x

t′+1). Furthermore,

for every k ∈ I with xtik = 0 and xtki = 1 we have xt+1
ik = 0, otherwise a changing reciprocal link would

appear. Similarly, for every k ∈ I with xt
′
ik = 0 and xt

′
ki = 1 we have xt

′+1
ik = 0.

It follows that xt+1
i ∈ Bi(νi(·|αi, δi, x

t)) implies xt+1
i ∈ Bi(νi(·|αi, δi, x

t′)) as no player can form

a link to i, nor delete a link to i that she would reciprocate forming or deleting in t′ as there can

be no changing reciprocated links. Since xt+1
i = xt

′
i due to the fact that i hasn’t changed her action

between t and t′ we have xt
′
i ∈ Bi(νi(·|αi, δi, x

t′)), a contradiction by the fact that we assumed a strict

best-response cycle.

■

Secondly, we show that a strict best-response cycle also cannot contain a reciprocated changing

link. The two statements together imply that there are no strict best-response cycles.

Claim A.8. In a strict best-response cycle there cannot be a changing link {i, j} and a time period t

such that xtij = xtji = 1.
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Once again, suppose for contradiction that such a link exists in a strict best-response cycle. Let i, j

be a pair and t a time period such that {i, j} is a reciprocated changing link with the largest value wij ,

it = i, xtij = xtji = 1, xt+1
ij = 0, and |{k ∈ Ni(x

t) : wik = wij}| ≥ |{k ∈ Ni(x
t+1) : wik = wij}|. In words,

i, j is a best-value reciprocated changing link that was deleted by i in period t and she does not have

more links of value wij in period t + 1 than in period t. Such i, j and t are guaranteed to exist in a

strict best-response cycle.

Let time period t′ < t be such that it
′
= i, xt

′
ij = 0, xt

′+1
ij = 1. As before, for any cycle, such periods

may be found by an appropriate time shift.

Let Ki = {k : wikαiδi > wijαiδi +1− δi} denote the set of players whom i strictly prefers to j even

if j reciprocates but they do not. If this set is empty, player i will never delete a link with j. It is clear

that we must have xt
′+1
ik = 1 for every k ∈ Ki, otherwise we cannot have xt

′+1
ij = 1 as a best response

to xt
′
by Lemma 3.1. This in turn implies that xtik = 1 for every k ∈ Ki, otherwise we would have a

time period t′′ ∈ {t′ + 1, . . . , t− 1} where i deletes her link to a k ∈ Ki but keeps the link to j, which

cannot happen in a best response.

So, at time t, when i deletes her link to j, every link that offers a better payoff was already formed,

and since she cannot have more neighbors of equal value in t + 1 by the choice of j, it is impossible

that xt+1
i is a best response to xt provided that xti was not a best response to xt. This concludes the

proof of Claim A.8 and thus of Proposition 3.3.

■

Corollary 3.5

To prove points 1 and 3, the statements on the lower bounds, we set xji = 0 for all j ∈ I \{i}. We then

have wijα
′
iδi ≥ wijαiδi and wijαiδ

′
i ≥ wijαiδi, meaning that for any r we have {j : wijα

′
iδi > c′i(r)} ⊇

{j : wijαiδi > c′i(r)}, implying point 1, as well as {j : wijαiδ
′
i > c′i(r)} ⊇ {j : wijαiδi > c′i(r)}, implying

point 3.

For points 2 and 4, the statements on the upper bounds, we set xji = 1 for all j ∈ I \ {i}. Then,

wij(α
′
iδi + (1− δi)) ≥ wij(αiδi + (1− δi)) and wij(αiδ

′
i + (1− δ′i)) ≤ wij(αiδi + (1− δi)), meaning that

for any r we have {j : wij(α
′
iδi + (1 − δi)) > c′i(r)} ⊇ {j : wij(αiδi + (1 − δi)) > c′i(r)}, implying point

2, and {j : wij(αiδ
′
i + (1− δ′i)) > c′i(r)} ⊆ {j : wij(αiδi + (1− δi)) > c′i(r)}, implying point 4.

■

Proposition 3.7

We decompose the network formation game with parameters (α′, δ) into two parts: the mutual links

that are formed in the equilibrium x of the game (α, δ), y(x) and the remaining links. In particular,

we will look at the network formation game with parameters (α′, δ) such that

w̃ij = 0 for all {i, j} ∈ y(x) (4)

w̃ij = wij for all {i, j} /∈ y(x)

c̃i (r) = ci (r + degi(x)) for r ∈ N, i ∈ I

Clearly, for every i ∈ I the maximal number of links in this game is given by d̃i = d̄i − degi(x).

Furthermore, by Proposition 3.3, this game has an equilibrium – denote such an equilibrium by x̃.

Note that since c̃i (r) > 0 for all r, x̃ij = 0 holds for all {i, j} ∈ y(x).

For the original game with parameters (α′, δ), define the strategy combination x′ by x′ij = 1 for all

{i, j} ∈ y(x) and x′ij = x̃ij for all {i, j} /∈ y(x). Note that for each i,

deg+i
(
x′
)
= deg+i (x̃) + degi(x) (5)
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We now show that x′ ∈ X∗ (α′, δ) by showing that x′i satisfies the two conditions in Lemma 3.1, i.e.

it is a best response to x′−i, starting with condition 1. Take an {i, j} such that x′ij = 1.

Case 1: If {i, j} ∈ y(x), and there exists some k such that x′ik = 1 and {i, k} /∈ y(x), then we have

wij

[
α′
iδi + (1− δi)x

′
ji

]
≥ wik

[
α′
iδi + (1− δi)x

′
ki

]
> c̃′i

(
deg+i (x̃)

)
= c′i

(
deg+i

(
x′
))

,

where the first inequality follows from the fact that x is monotonic and thus wij ≥ wik, the second

inequality follows from the fact that x′ki = x̃ki and x̃ is an equilibrium of (4) and the equality is a

consequence of the definition of c̃ and (5).

Case 2: If {i, j} ∈ y(x) and N+
i (x′) = Ni(x) then we have

wij

[
α′
iδi + (1− δi)

]
≥ wij [αiδi + (1− δi)] > c′i (degi(x)) = c′i

(
deg+i

(
x′
))

,

where the first inequality is due to α′
i ≥ αi, the second is due to the fact that {i, j} ∈ y(x) and x was

an EUA of the game with α, and the equality is by the definition of c̃ and (5).

Case 3: If {i, j} /∈ y(x), then x′ij = x̃ij

wij

[
α′
iδi + (1− δi)x

′
ji

]
> c̃′i(degi(x̃)) = c′i(degi(x)),

where the inequality holds due to the fact that x̃ is an equilibrium of (4) and the equality is a consequence

of the definition of c̃ and (5).

Thus, condition 1 of Lemma 3.1 is satisfied whenever x′ij = 1.

Take next an {i, j} such that x′ij = 0. Clearly, {i, j} /∈ y(x) and thus x′ij = x̃ij . Since x̃ij is an

equilibrium of the game defined by (4), we have

wij

[
α′
iδi + (1− δi)x

′
ji

]
< c̃′i

(
deg+i (x̃)

)
= c′i

(
deg+i

(
x′
))

.

Thus, condition 1 of Lemma 3.1) is satisfied whenever x′ij = 0 as well.

Finally, we check condition 2. Suppose that there exist distinct players i, j and k such that wij(α
′
iδi+

(1−δi)x
′
ji) > wik(α

′
iδi+(1−δi)x

′
ki), but x

′
ik = 1 and x′ij = 0. Clearly, {i, j} /∈ y(x). If {i, k} ∈ y(x) then

x′ki = 1, and since wik ≥ wij by the fact that x is monotonic, this contradicts wij(α
′
iδi + (1− δi)x

′
ji) >

wik(α
′
iδi + (1 − δi)x

′
ki). Hence, {i, k} /∈ y(x). Since x̃ is an EUA of the game (4), by condition 2 of

Lemma 3.1 we have

wij

[
α′
iδi + (1− δi)x̃ji

]
= wij

[
α′
iδi + (1− δi)x

′
ji

]
≤

wik(α
′
iδi + (1− δi)x

′
ki) = wik(α

′
iδi + (1− δi)x̃ki),

a contradiction.

Therefore, all conditions of Lemma 3.1 hold.

■

A.4 Proofs for Section 4

Lemma 4.3

Proof: Take an x∗ ∈ V ∗. For contradiction, assume an x ∈ X∗ exists that Pareto dominates x∗.

Suppose that for every i ∈ I we have degi(x) ≥ degi(x
∗). Then, for every i ∈ I we have ci(x) ≥ ci(x

∗),

thus, for ui(x) ≥ ui(x
∗) to hold we must have

∑
j∈Ni(x)

wij ≥
∑

j∈Ni(x∗)wij , for each i ∈ I and strict

inequality for at least one player, contradicting the weight-maximality of x∗. Thus, there exists a player

i with degi(x) < degi(x
∗). However, since x∗ is monotonic, ui(x) ≥ ui(x

∗) requires degi(x) ≥ degi(x
∗),

a contradiction.

■
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Proposition 4.4

We first prove a supporting statement.

Lemma A.9. Suppose that the players exhibit aligned preferences. For a T ∈ N let (xt)t∈{0,...,T} be a

finite sequence of networks obeying the defined updating rule such that x0 ∈ V ∗ and xt ∈ y−1(V ∗) for

t ∈ {0, . . . , T}. Then, for every t ∈ {0, . . . , T} and every i ∈ I we have w′
i(x

t) > c′i(di).

Proof: Suppose that we have w′
i(x

t) < c′(di). Let t denote the first such period, i.e. xti ∈ Bi(x
t)

or xti ∈ Bo
i (x

t). It is clear that the latter is impossible as optimistic players never initiate or accept

such links, thus we must have xti ∈ Bi(x
t). Since y(xt) ∈ V ∗ and since preferences are aligned xti is

monotonic for i. This means that for every k such that w′
i(x

t) < wik we have {i, k} ∈ xt. However,

by the definition of di, this has to imply deg+i (x) > di, which is also impossible as a best-responding

player would not initiate more than di links.

■

Proof of Proposition 4.4: We first show that y(x′) ∈ X∗. Take a sequence (xt)t∈{0,...,T} obeying the

defined updating rule with x0 ∈ V ∗. Since x0 is a Nash equilibrium, then by the updating rule, for every

xt we have w′
it(x

t) > c′it(degit(x
t)). Thus, for every t′ ∈ {0, . . . , T} and every i, j ∈ I with xt

′
ij = xt

′
ji = 1

we have wij > c′i(deg
+
i (x

t′)) ≥ c′i(degi(x
t′)), satisfying the conditions of a Nash equilibrium.

Thus, for contradiction, suppose that x′ ∈ S(x∗) and y(x′) /∈ V ∗. Then we must have v(x′) < v(x∗),

as v(x′) = v(y(x′)) > v(x∗) would contradict the choice of x∗ as a maximum-benefit equilibrium, while

v(x′) = v(x∗) would imply y(x′) ∈ V ∗. Thus, the value of the network must decrease along the sequence

between x∗ and x′. Suppose that x′ is the earliest element of the sequence with v(x′) < v(x∗), let x

denote the element immediately preceding it and let i denote the player who updated between x and

x′, i.e. x−i = x′−i. Since v(x) > v(x′) there must exist {i, j} ∈ x \ x′ and by Lemma A.9 it must satisfy

wij > c′i(di).

Suppose that x′i ∈ Bi(x). Then, since i drops her link with j as a best response even though j

reciprocates, we must have wij < c′i(deg
+
i (x

′) + 1) = c′i(degi(x
′) + 1). Thus, degi(x

′) + 1 > di, meaning

that degi(x
′) = di. Since i made a best response, ui(x) ≤ ui(x

′), and since the number of neighbors in

x′ is at maximum, and thus the weak increase in utility did not come through a decrease in costs, the

total value of i’s links must have weakly increased from x to x′. Hence, we have

v(x) = 2
∑
j ̸=i

wijxijxji +
∑
k ̸=i

∑
j ̸=k ̸=i

wjkxjkxkj ≥ 2
∑
j ̸=i

wijx
′
ijxji +

∑
k ̸=i

∑
j ̸=k ̸=i

wjkxjkxkj = v(x′),

a contradiction to v(x′) < v(x).

Suppose that x′i ∈ Bo
i (x). Then, since x

′
i is monotonic for i and i drops her link with j, deg+i (x

′) = di.

Since wij > c′i(di), and yet i chose not to reciprocate j’s link, there must exist k ∈ I with wij = wik

such that {i, k} ∈ x′. Since y(x)i is monotonic, and {i, j} ∈ x for every ℓ ∈ I with wiℓ > wij we have

{i, ℓ} ∈ x. Since x′i is monotonic for i, {i, ℓ} ∈ x′ as well. Furthermore, for every ℓ ∈ I with wij = wiℓ

and x′iℓ = 1 we must have x′ℓi = xℓi = 1 as well, otherwise deleting a link to an unreciprocated opponent

of equal value is better for i than deleting her link to j. Thus, deg+i (x
′) = degi(x

′) = di. Finally, x′i
being monotonic means that i has a reciprocal link to exactly di of her most favored opponents. So as

before we have

v(x) = 2
∑
j ̸=i

wijxijxji +
∑
k ̸=i

∑
j ̸=k ̸=i

wjkxjkxkj ≥ 2
∑
j ̸=i

wijx
′
ijxji +

∑
k ̸=i

∑
j ̸=k ̸=i

wjkxjkxkj = v(x′),

a contradiction to v(x′) < v(x).

■
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Proposition 4.5

Lemma A.10. For every x ∈ X there exists x∗ ∈ X∗ ∩ S(x) such that for all i ∈ I we have w′
i(x

∗) >

c′i(di).

Proof: First we show that there exists x′ ∈ X∗ ∩ S (x). Take an arbitrary x ∈ X. Then, suppose that

in the next n periods, all players {1, . . . , n} are given an ambiguity-neutral best-responding revision

opportunity in increasing order. Call the resulting network x′. The probability of this happening is

((1−β)/n)n > 0, so we must have x′ ∈ S(x). Then, for every i ∈ I we have w′
i(x

′) > c′i
(
deg+i (x′)

)
and

for every pair with i > j we can have x′ij = 1 only if xji = 1. Thus, repeating the same process in the

reverse order will lead to an undirected network x′′ with w′
i(x

′′) > c′i (degi (x
′′)) for all i ∈ I, satisfying

the equilibrium conditions.

This shows that we can take x ∈ X∗ at the start. Take a player i such that w′
i(x) < c′i(di). If none

can be found, we are done. If such a player exists, suppose that she receives an optimistic revision

opportunity. Then since for every xoi ∈ Bo
i (x) we have w′

i(x
o
i , x−i) > c′i(di), she will sever all links with

players giving her less benefits than c′i(di) and possibly initiate some links to others. Then, allow all

her neighbors with whom she severed her links to best-respond in an ambiguity-neutral way, their only

best response being is to sever their unreciprocated links towards i and make no other changes. Finally,

let player i best-respond to sever all unreciprocated links she had initiated as an optimist. Call the

resulting network x′. Since pmβ (x, x′) > 0 for some m ≤ Ni(x) + 1 we must have x′ ∈ S(x).

At x′, we clearly have w′
i(x

′) > c′(di) since all players j ̸= i with wij < c′i(di) now have no outgoing

links towards i while Ni(x) ⊇ Ni(x
′). Thus, we have x′i ∈ Bi(x

′), meaning that x′ ∈ X∗. Furthermore,

w′
i(x

′) > c′i(di), as well as |x′| < |x|, since player i lost links and no player gained any. If there exists

j ̸= i with w′
j(x

′) < c′j(dj), we can repeat this process. If the process does not terminate sooner with a

desired network, it will terminate by reaching the empty network which trivially satisfies the conditions

of the statement of the lemma.

■

The next lemma shows that the learning process enters the set of maximum-benefit equilibria that are

monotonic, V ∗, for any starting state with a positive probability.

Lemma A.11. Suppose that the players exhibit aligned preferences. For every x ∈ X there exists an

x∗ ∈ V ∗ ∩ S(x).

Proof: By Lemma A.10 we may take x ∈ X∗ such that w′
i(x) > c′i(di) for all i ∈ I. Let x∗ ∈ V ∗ be the

closest element of V ∗ to x. If x ≥ x∗, then we must have x = x∗ otherwise we contradict the choice of

x∗ as an element of V ∗, in which case we are done. If x ̸≥ x∗, we have x∗ \ x ̸= ∅.
We will show that there exists an x′′ ∈ X∗ ∩ S(x) which also satisfies w′

i(x
′′) > c′i(di) for every

i ∈ I and for which ϕ(x′′, x∗) < ϕ(x, x∗). Through a repeated application of this argument the distance

eventually decreases to 0, meaning that we reach x∗. We distinguish two cases.

Case 1. There exists a player i and a link {i, j} ∈ x∗ \ x such that degi(x) < di. Let j ∈
argmax j′∈Ni(x∗)\Ni(x)wij′ be the most valuable such link for player i. Then let x′i be a strategy which

is monotonic for i, deg+i (x
′
i, x−i) = di, and N+

i (x′i, x−i) ⊇ (Ni(x) ∩Ni(x
∗)) ∪ {j}. By Lemma 3.1, and

due to x satisfying w′
i(x) > c′i(di), we must have x′i ∈ Bo

i (x). Let player i receive an optimistic revision

opportunity and suppose that she revises to x′i.

Case 1a. If degj(x) < dj , then we must have wij ≥ w′
j(x

∗) > c′j(dj) ≥ c′j(degj(x) + 1). Therefore,

Bj(x
′
i, x−i) is a singleton with its only element, which we denote by x′j , satisfying x′jk = 1 if and only if

k ∈ Nj(x)∪{i}. Suppose that player j receives a best-responding revision opportunity, and thus, selects

the strategy x′j . For each k ∈ Ni(x) \N+
i (x′i, x−i) let k receive a best-responding revision opportunity,
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their only best response being is to keep all of their existing links except those with i who had severed

her link to each k.

Finally, let player i also receive best-responding revision opportunity. Her only best response, which

we denote by x′′i , is to delete all unreciprocated links she initiated when she moved to x′i, that is, x
′′
ik = 1

if and only if k ∈ (Ni(x) ∩Ni(x
∗)) ∪ {j}. Let the resulting network be denoted by x′′. It is clear that

x′′ is an equilibrium network, w′(x′′) ≥ c′(d), and ϕ(x′′, x∗) < ϕ(x, x∗). Since the above process leads

to x′′ from x, we have x′′ ∈ S(x) as well.

Case 1b. If degj(x) = dj ≥ degj(x
∗), then there must exist a link {j, k} ∈ x \ x∗. Since x∗ is

monotonic we must also have wij ≥ wjk. Thus, there must exist an x′j ∈ Bj(x
′
i, x−i) such that x′jℓ = 1

if and only if ℓ ∈ (Nj(x)\{k})∪{i}. As before let j receive a best-responding revision opportunity and

suppose that she selects x′j . Let this be followed by player k best-responding; her only best response

being to cut her now unreciprocated link towards j and keeping all her other neighbors.

Then, as before, for each k′ ∈ Ni(x) \N+
i (x′i, x−i) let k

′ receive a best-responding revision opportu-

nity, their only best response being to keep all of their existing links except those with i, who had severed

her link to each k′. Finally, let i best-respond, her only best response being to delete all unreciprocated

links she initiated when she moved to x′i, that is, x′′ik = 1 if and only if k ∈ (Ni(x) ∩ Ni(x
∗)) ∪ {j}.

Let the resulting network be denoted by x′′. As before, x′′ ∈ X∗, satisfies w′(x′′) ≥ c′(d) and

ϕ(x′′, x∗) < ϕ(x, x∗), as well as x′ ∈ S(x), completing Case 1.

Case 2. For every link {i, j} ∈ x∗ \ x we have degi(x) = di and degj(x) = dj . We will show that

there must exist such a link {i, j} for which there exists {i, k} ∈ x \ x∗ such that wij > wik.

Suppose this is not true, i.e. for every i, j, k with {i, j} ∈ x∗ \ x and {i, k} ∈ x \ x∗ we have

wij ≤ wik. Since degi(x) = di for all i with Ni(x) ̸= Ni(x
∗) we must have degi(x) ≥ degi(x

∗) for all i.

These two facts imply that v(x) ≥ v(x∗) which can only hold with equality as x∗ is a maximum-benefit

equilibrium network. If degi(x) > degi(x
∗) for some i ∈ I and degj(x) ≥ degj(x

∗) for all other j ̸= i,

then v(x) = v(x∗) can hold only if we have such a trio i, j, k with {i, j} ∈ x∗ \ x, {i, k} ∈ x \ x∗, and we

have wij > wik, a contradiction. So suppose that degi(x) = degi(x
∗) for all i.

Now we will show that under these conditions x is monotonic, a contradiction since that would

mean x ∈ V ∗. Take a player i and suppose that there exist j, k ̸= i such that {i, j} ∈ x, {i, k} /∈ x and

wij < wik. If no such player can be found, x is monotonic. We must have {i, k} /∈ x∗ by assumption

thus {i, k} ∈ x \ x∗. However, due to degi(x) = degi(x
∗) there must exist an ℓ ∈ Ni(x

∗) \ {j} and by

assumption we must have wik > wij ≥ wiℓ. Thus, since {i, k} /∈ x∗, this is a contradiction as x∗ is

monotonic.

Therefore if for every link {i, j} ∈ x∗\x we have degi(x) = di and degj(x) = dj , then there must exist

{i, j} ∈ x∗ \x and a {i, k} ∈ x \x∗ such that wij > wik. In particular, let j ∈ argmax j′∈Ni(x∗)\Ni(x)wij′

and let k ∈ argmin j′∈Ni(x)\Ni(x∗)wij′ .

Construct a strategy x′i such that it is monotonic and for every ℓ ∈ (Ni(x) ∩Ni(x
∗)) ∪ {j} we have

x′iℓ = 1. By the fact that wij > wik, we must have such a strategy with deg+i (x
′
i, x−i) = di as player i

can include j to her set of neighbors and exclude k and still maintain an out-degree of di. By Lemma

3.1, we have x′i ∈ Bo
i (x). As in Case 1, let i receive an optimistic revision opportunity and suppose

she picks the optimistic best response x′i. From here by the same process as in Case 1b we can reach

x′′ ∈ X∗ ∩ S(x) with w′(x′′) > c′(d) and ϕ(x′′, x∗) < ϕ(x, x∗).

■

Finally, given that we reach V ∗, the proof of the Proposition itself follows simply from Proposition

4.4.

Proof of Proposition 4.5. By Lemma A.11 for every x ∈ X we have a x∗ ∈ V ∗ with x∗ ∈ S(x). Since

there are finitely many networks, with probability one, the process enters V ∗ and thus y−1(V ∗). By

Proposition 4.4, the game never leaves y−1(V ∗).
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Proposition 4.6

As shown in Propositions 4.4 and 4.5, for every β > 0, the set y−1(V ∗), is an absorbing set of the

Markov chain (X, pβ), while all states outside of y−1(V ∗) are transient. We thus restrict attention to

the set y−1(V ∗). Since the Markov process
(
y−1(V ∗), pβ

)
need not be irreducible, we partition the set

y−1(V ∗) into K ≥ 1 communicating classes: each class consists of a non-empty set of MBE, Vk ⊆ V ∗

and the corresponding set y−1(Vk) and (Vk)
K
k=1 is a partition of V ∗. This partition is independent of β

as long as β ∈ (0, 1).

Fix k ∈ {1, . . . ,K} and consider the set of Markov chains
(
y−1(Vk), pβ

)
β∈(0,1). Note that each

such chain is aperiodic, irreducible and defined on a finite state space and thus has a unique invariant

distribution µ̂k,β. The set of stochastically stable states of such a chain is defined as

supp(µ̂k) = supp

(
lim
β→0

µ̂k,β

)
(6)

provided that the limit exists.

To show existence and characterize the limit, we follow Vega-Redondo (2003, p. 480-481). For

x, x′ ∈ X, denote by p∞0 (x, x′) the transition probability from x to x′ after an infinite number of

applications of the best-response dynamics without optimistic surges, p∞0 = limm→∞ pm0 . For a given

β ∈ (0, 1) and k ∈ {1, . . . ,K}, we define a Markov chain on (Vk, Qk,β) as follows: for x, x′ ∈ Vk, the

transition probability Qk,β(x, x
′) is the concatenation of the one-step-ahead best-response dynamics

with optimistic surges, pβ, with p∞0 :

Qk,β(x, x
′) =

∑
x′′∈y−1(Vk)

pβ(x, x
′′)p∞0 (x′′, x′)

As we know from the proof of Proposition 3.3 and Proposition 4.5, the best-response dynamics without

optimistic surges with a starting point in y−1(Vk) reaches Vk in finite time. Thus, the process is

well-defined and satisfies for every β ∈ (0, 1):

1. For every x ∈ Vk, Qk,β(x, x) > 0, and thus, (Vk, Qk,β) is aperiodic, because the largest common

denominator of the periods in which an element x is reached is 1.

2. For any x, x′ ∈ Vk, x ̸= x′, either Qk,β(x, x
′) = 0 or Qk,β(x, x

′) = βξ(x, x′), where ξ(x, x′) ∈ (0, 1)

is the probability that the best-response dynamics (without optimistic surges) reaches x′ from x,

conditional on an optimistic shock occurring, and is thus independent of β.

3. Qk,β(x, x
′) = 0 if and only if Qk,β′(x, x′) = 0 for all β′ ∈ (0, 1).

By the definition of Vk, (Vk, Qk,β) is irreducible for all β ∈ (0, 1) and since it is defined on a finite

state space and aperiodic, it has a unique probability distribution µk,β. If µk,β converges to µk as

β → 0, then the limit on the right hand side of (6) exists and the support of µk is exactly the set of

stochastically stable states of
(
y−1(Vk), pβ

)
, see Young (1993), KMR and Vega-Redondo (2003, p. 481):

supp(µk) = supp

(
lim
β→0

µk,β

)
= supp(µ̂k). (7)

Lemma A.12. For all k ∈ {1...K}, supp (limβ→0 µk,β) = Vk.
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Proof : Fix a k ∈ {1, . . . ,K}. Clearly, if |Vk| = 1, then µk,β(x) = 1 for the unique x ∈ Vk and for all

β ∈ (0, 1) and the statement of the lemma is trivially satisfied.

Suppose thus that |Vk| ≥ 2. The resistance function defined in Young (1993, p. 68),8 which we here

denote by ek(x, x
′), satisfies:

0 <
Qk,β(x, x

′)

βek(x,x′)
< ∞.

By property 2, for x ̸= x′ such that Qk,β(x, x
′) > 0, we have

0 <
βξ(x, x′)

βek(x,x′)
< ∞, or

ek(x, x
′) = 1 iff Qk,β(x, x

′) > 0,

and, by convention,

ek(x, x
′) = ∞ iff Qk,β(x, x

′) = 0.

Following Young (1993, p. 69), consider the set of directed graphs Y on Vk such that every x′ ∈ Vk is

the initial point of exactly one edge (x′, x′′) and for every x′ there is a path leading to x. Denote the

set of all such graphs by Yk,x. The resistance of such a graph Y ∈ Yk,x is given by

Ek,x(Y ) =
∑

(x′,x′′)∈Y

ek(x
′, x′′).

Denote by Ek,x(Yk,x) the minimal resistance over graphs in Yk,x:

Ek,x(Yk,x) = min
Y ∈Yk,x

∑
(x′,x′′)∈Y

ek(x
′, x′′).

We will call a graph Y ∈ Yk,x feasible if ek(x
′, x′′) < ∞, for all (x′, x′′) ∈ Y . Since (Vk, Qk,β) is

irreducible, there exists a feasible graph for each x. If |Vk| = 2, this graph is unique, it is given by

(x′, x) and has a resistance of

Ek,x(Yk,x) = ek(x
′, x) = 1 = |Vk| − 1.

If |Vk| > 2, the feasible graph need not be unique. Notably, the graph

Y =
(
(x′, x1), (x1, x2), . . . , (xl, x)

)
,

where l = |Vk| − 2, {x′, x1, . . . , xl} = Vk \ {x} and Qk,β(x
′, x1) > 0, Qk,β(x

λ, xλ+1) > 0 for λ ∈
{1, . . . , l − 1} and Qk,β(x

l, x) > 0 is feasible. The resistance of such a graph is given by the number of

its edges:

Ek,x(Y ) = |Vk| − 1.

Since each feasible graph in Yk,x has the same number of edges, it follows that for all x ∈ Vk,

min
Y ∈Yk,x

Ek,x(Y ) = Ek,x(Yk,x) = |Vk| − 1 = min
x∈Vk

min
Y ∈Yk,x

∑
(x′,x′′)∈Y

e(x′, x′′) = Ek,x(Yx).

Theorem 2 of Young (1993) implies that µk = limβ→0 µk,β exists and satisfies supp(µk) = Vk, concluding

the proof of the lemma.

8Intuitively, the resistance function in Young (1993) corresponds to the number of shocks necessary to induce a transition
from x to x′.
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■

Let κ = (κ1, . . . , κK) be such that
∑K

k=1 κk = 1 and κk > 0 for all k ∈ {1, . . . ,K} and consider the

probability distribution

µ̂β(κ) =

K∑
k=1

κkµ̂k,β.

For each β ∈ (0, 1), µ̂β(κ) is an invariant (though not unique) probability distribution of the Markov

chain (y−1(V ), pβ), and since all states outside of y−1(V ) are transient, also of (X, pβ). Furthermore,

for a given κ with κk > 0 for all k ∈ {1, . . . ,K}, (7), together with Lemma A.12, implies:

supp

(
lim
β→0

µ̂β(κ)

)
= supp

(
lim
β→0

K∑
k=1

κkµ̂k,β

)
= supp

(
K∑
k=1

κkµk

)
= ∪K

k=1Vk = V ∗,

concluding the proof of the proposition.

■

Proposition 4.9

As before, we first show that the dynamic system will take the game into V ∗, which is a unique network

x∗ in the linear case.

Lemma A.13. Let the cost functions be linear. For every x ∈ X and the unique x∗ ∈ V ∗ we have

x∗ ∈ S(x).

Proof: By Lemma A.10 we can take x ∈ X∗. We show that if x = x∗ there exists x′ ∈ S(x) ∩X∗ such

that ϕ(x′, x∗) < ϕ(x, x∗). Take a link {i, j} ∈ x∗ \ x. Then, we must have wij > max{ci, cj}. Take

the following series of updates: i receives a revision opportunity as an optimist, j receives a revision

opportunity as a best-responder, then i receives a revision opportunity as a best-responder. It is clear

that an optimistic player i will link to j, as well as keep all of her links to her neighbors in x. A

best-responder j will make no changes except reciprocate player i’s link. Finally, player i deletes all

the unreciprocated links she made as an optimist. For the resulting network, x′ = x ∪ {i, j}, we have

x′ ∈ X∗ as well as ϕ(x′, x∗) = ϕ(x, x∗)− 1.

■

Secondly, we show that once x∗ is reached, the game never leaves the set y−1(x∗).

Lemma A.14. Let the cost functions be linear. For the unique x∗ ∈ V ∗ we have S(x∗) ⊆ y−1(x∗).

Proof: Suppose for contradiction that there exist a pair x, x′ ∈ S(x∗) such that x ∈ y−1(x∗), x′ ∈ S1(x),

and x′ /∈ y−1(x∗). Then, there must exist {i, j} ∈ x′ \ x, with wij > max{ci, cj}. Clearly, one of i and

j must have updated to get from x to x′ so suppose it was i, i.e. x−i = x′−i. If x′i ∈ Bi(x), then, since

x′ji = xji = 1, deleting the link to j cannot be a best response. If x′i ∈ Bo
i (x), then, since wij > ci,

deleting the link to j cannot be an optimistic best response, so we have arrived at a contradiction.

This completes the proof of the proposition.

■
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