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Abstract

We analyze a model of endogenous two-sided network formation where play-

ers are affected by uncertainty in their opponents’ decisions. We model this

uncertainty using the notion of equilibrium under ambiguity (Eichberger

and Kelsey, 2014). Unlike the set of Nash equilibria, the set of equilibria

under ambiguity does not always include underconnected and thus ineffi-

cient networks such as the empty network. On the other hand, it may

include networks with unreciprocated, one-way links, which comes with an

efficiency loss as linking efforts are costly. We characterize equilibria under

ambiguity and provide conditions under which increased player optimism

comes with an increase in connectivity and realized benefits in equilibrium.

Next, we analyze network realignment under a myopic updating process

with optimistic shocks, and derive a global stability condition of efficient
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networks. Under this condition, called ‘aligned preferences’, a subset of the

Pareto optimal equilibrium networks is reached, specifically, networks that

maximize the players’ total benefits of connections.

1 Introduction

The question of how social networks form and which structures are both sta-

ble and efficient is of primary interest in economic literature. The use of classic

equilibrium concepts such as the Nash equilibrium, however, invites a problem

of multiplicity: the set of Nash equilibria encompasses both Pareto optimal, as

well as Pareto dominated networks such as the empty network. Different equilib-

rium notions such as pairwise stability (Jackson and Wolinsky, 1996) and strong

stability (Jackson and van den Nouweland, 2005) have been considered in the liter-

ature.1 For models, in which links are strictly beneficial to all players and costs of

link formation are sufficiently small (Goyal and Joshi (2003)’s “small costs” case,

König et al. (2014)), the equilibrium network is unique and Pareto optimal. In

general, however, (Brueckner (2006), Goyal and Joshi (2003)’s “large costs” case,

the corresponding welfare analysis in Westbrock (2010), as well as Griffith (2019);

Baumann (2019)) the problem of equilibrium selection and conflict between effi-

ciency and stability in case of pairwise stability, and existence in case of strong

stability persists. Concepts which do achieve efficiency such as the bilateral equi-

librium (Goyal and Vega-Redondo, 2007), implicitly rely on the ability of pairs of

players to coordinate with respect to their linking decisions, but are silent on how

such coordination would take place.

We highlight these issues in models of endogenous network formation. A link

between two players is treated as a value-generating opportunity (recording a duet,

1Dutta and Mutuswami (1997) show how an allocation rule can be designed so as to implement

a strongly stable efficient equilibrium. In general, such rules require transfers.
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publishing a research paper, a productivity-increasing R&D partnership between

two companies). Notably, as in Bloch and Dutta (2009) and Ding (2019), the

value of each of the possible links depends on the identity of the partners to the

link. However, it is exogenous in that it is not subject to network externalities

(the quality of a recording or of a published paper does not depend on the set

of other recordings or papers; the increase in productivity does not affect the

productivity of firms outside of the partnership). We assume that linking is costly

and requires costly efforts from both parties. The value of the link is realized if

and only if both parties incur the cost. Notably, an investing player bears the cost

even if her intended partner does not reciprocate (Bala and Goyal, 2000), thus

generating strategic complementarities on the level of link formation. In the more

interesting case where costs are convex in the number of maintained links, indirect

negative network externalities arise; a player is negatively affected by any two of

their opponents linking to each other as the link increases the opponents’ costs

of linking to the player, decreasing the player’s prospects of obtaining beneficial

links.

Resolving the multiplicity of equilibria and selecting for efficient outcomes has

been a long-standing issue in the economic literature on networks. As first sug-

gested by Harsanyi and Selten (1988), what is at hand is the players’ reaction

to uncertainty in their opponents’ strategies – their inability to uniquely predict

the behavior of their potential partners.2 Ambiguity, as shown in Eichberger and

Kelsey (2014), provides a powerful tool for modeling such uncertainty with the

attitude towards ambiguity, the players’ level of optimism, acting as an equilib-

rium selection device. Notably, optimism can select Pareto dominant equilibria

2The work by McBride (2006) on imperfect monitoring in networks captures the idea of

uncertainty about the strategies played by others. However, similarly to the concept of rational-

izability by Rubinstein and Wolinsky (1994) such unobservability leads to an expansion of the

set of equilibrium networks, rather than acting as a selection device.
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in coordination games (Eichberger and Kelsey, 2002; Eichberger et al., 2008) and

leads to an increase in payoffs in the maximal equilibrium in supermodular games

(Schipper, 2019).

While in the work on ambiguity in games, optimism is merely introduced

as a formal tool capturing attitude towards such ambiguity, research in social

psychology points out to the relevance of optimism in the process of social network

formation. Data show that optimistic people are more likely to form and sustain

links which are beneficial to them (Brissette et al., 2002; Andersson, 2012). The

“tendency to expect favorable outcomes” (Srivastava and Angelo, 2009) results

in optimists attaching more weight to their partners reciprocating their efforts

towards establishing a relationship. Such expectations may become self-fulfilling

as opponents reciprocate these linking offers even when they themselves are not

optimistic. In general, optimism is identified as a pervasive individual feature

(Peterson, 2000), which is positive both for individuals and the society as a whole

(Freud, 1928; Tiger, 1979).

In economics, experimental studies have shown that ambiguity in opponents’

strategies is indeed present and leads to deviations of observed behavior from Nash

equilibrium (Pulford and Colman, 2007; Di Mauro and Castro, 2008; Eichberger

et al., 2008; Kelsey and Le Roux, 2015, 2017). Furthermore, attitudes towards

such ambiguity are heterogeneous and show non-negligible rates of both optimism

and pessimism (Camerer and Karjalainen, 1994; Ivanov, 2011; Eichberger et al.,

2008; Li et al., 2019). Studies comparing entrepreneurs to non-entrepreneurs find

that the former exhibit higher levels of optimism, Bengtsson et al. (2012), whereas

Bogliacino and Gallo (2015) find that approximately 25% of entrepreneurs in their

sample are ambiguity-loving and that ambiguity-loving positively correlates with

turnover as a measure of performance. Persson and Seiler (2018) document that

optimism is a distinguishing feature between incumbents and high-impact en-
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trepreneurial firms. Notably, Holm et al. (2013) identify willingness to accept

ambiguity in social interactions and in particular, to bet on the “trustworthi-

ness” of a partner, to be a key characteristic of entrepreneurs. In an experiment,

Dollinger (1995) confirm that tolerance towards ambiguity is positively related to

an entrepreneur’s willingness to engage in alliances. This suggests that ambiguity

attitudes, and in particular, optimism, are also empirically relevant for the process

of network formation among firms.

In this paper, we combine these ideas by introducing optimistic and pessimistic

attitudes into a network formation game. Despite the complementarity of linking

efforts, the convexity of linking cost implies that the game is not supermodular

and thus, equilibrium existence cannot be established by Topkis (1979)’s theorem.

Nevertheless, we establish equilibrium existence (Proposition 3.3)by showing that,

starting from any network, a sequence of unilateral best-responses (under ambi-

guity) leads to an equilibrium in a finite number of steps. This result proves that

such equilibria always exist, provides an algorithm for identifying equilibria under

ambiguity in a network formation game, and shows that the equilibria are stable

under simple learning dynamics.

We next discuss the effect of increased optimism in equilibrium networks under

ambiguity. Optimism increases the weight players place on others reciprocating a

link and thus increases the maximal number of links a player initiates as a best-

response (Proposition 3.5). However, whether the number and quality of realized

links increase with optimism is not so clear; e.g. it may happen that a player who

becomes more optimistic severs an existing link in hopes of attaining a better

one but is unsuccessful, leaving the new network less connected. We provide a

sufficient condition under which optimism increases connectivity in equilibrium.

We call a network monotonic if for each player, any link she formed is at least as

valuable to her as any of the links that she has not formed, i.e. each player’s linking
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decision is a monotonic function of her opponents’ values. If an equilibrium under

ambiguity is monotonic in this sense, then any increase of the players’ optimism

parameters results in a weakly more connected equilibrium (Proposition 3.7).

Finally, ambiguity allows us to study network realignment. While equilibrium

analysis offers interesting insights, social networks are, by their nature, change-

able. Relationships, partnerships, alliances continuously form, break apart, and

re-form. Much of this variation is unaccounted for by the changes in the values

of links or the individuals’ cost structures, but occur due to variations in the in-

dividuals’ subjective evaluation of the status quo equilibrium and their alternate

prospects. In our model of ambiguity attitudes, this amounts to variations in the

players’ ambiguity perception and optimism. High-arousal emotional states (joy,

fear, anger) are known to increase ambiguity perception, while low-arousal states

(sadness, contentment) decrease it (Baillon et al., 2013). On the other hand, ex-

periences of positive emotions is a key determinant of an individual’s optimism

(positive psychology) (Fredrickson, 2001).

Consequently, we consider the network’s evolution under best-response dynam-

ics with random changes to the individuals ambiguity and optimism parameters.

Similarly to Kandori et al. (1993) (henceforth KMR), we assume that players have

“realistic”, utility-maximizing preferences (without ambiguity) and play the game

accordingly, except in periods when they receive a random shock. Differently from

KMR, the deviation in behavior related to the shock is not random, but optimal

by their current ambiguity perception and attitude. They are temporary and may

be followed by the player becoming again realistic in the next period. Shocks that

induce high levels of optimism lead to players more actively pursuing high-value

links, possibly by discarding already existing ones. In our model, highly pes-

simistic players discard existing links without forming new ones, thus, to capture

more interesting cases of network realignment, we focus on shocks that amount to
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surges of optimism.

We are particularly interested whether such network realignment can result in

efficiency gains. As known from experimental studies, (Cooper et al., 1990; Van

Huyk et al., 1990), coordination on a socially optimal equilibrium generally does

not obtain in a one-shot game. Our dynamic model thus follows the approach of

KMR and Young (1993). Such best-response dynamics have been studied both

in network formation games (Watts, 2001) as well as in games with simultaneous

choice of links and actions (Ely, 2002; Jackson and Watts, 2002a,b; Goyal and

Vega-Redondo, 2005; Hojman and Szeidl, 2006; Galeotti and Goyal, 2010; Dawid

and Hellman, 2014), see Hellman and Staudigl (2012) for a review. In general, nei-

ther uniqueness of the stochastically stable state, nor its efficiency are guaranteed,

except in rather special cases, such as König et al. (2014) (in which, as mentioned

above, the unique equilibrium is the complete graph) or Staudigl (2011) (who an-

alyzes a potential game, in which all links have ex-ante identical value and there

is no cost of link formation). Recent research has also identified the role of far-

sightedness for convergence to optimal networks, Luo et al. (2018). Furthermore,

the techniques developed by KMR present computational challenges when the set

of equilibria is large as in most network formation games.

In this paper, we show that, no matter the starting network or the proba-

bility of optimistic surges, the proposed best-response dynamic produces a series

of network realignments that lead to the formation of a Pareto optimal Nash

equilibrium if a property we call the ‘alignment of preferences’ is met (Proposi-

tions 4.4 and 4.5). In particular, our dynamic selects the networks that maximize

the players’ total benefits of connections. Aligned preferences means that all net-

works that maximize the players’ benefits of network connections in the set of

Nash equilibrium networks (a social consideration) are monotonic (an individual

consideration). Thus, social considerations ‘align’ with individual ones. This con-
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dition is always satisfied if the values of all links are identical, therefore, surges

of individual optimism leads to the formation of an optimal equilibrium network

if efficiency is measured by the size of the network, a property that even previ-

ously considered pairwise notions fail to satisfy in this relatively simple case. If

the condition is not met, a minimal counterexample of three players shows that

these dynamics fail to produce the efficient network as the efficient network itself

is unstable to surges of optimism.

The rest of the paper is organized as follows: Section 2 introduces the network

formation game and defines the equilibrium under ambiguity concept. Section 3

analyzes the static network formation game under ambiguity; we show existence

of equilibria, we provide a characterization, and study the comparative statics

with respect to the players’ attitude towards ambiguity. In Section 4, we turn

towards a dynamic analysis of network realignment. We analyze a best-response

dynamic with optimistic shocks and analyze its long-term behavior. For aligned

preferences, the dynamic almost surely reaches the set of efficient networks in finite

time. Section 5 concludes.

2 The network formation game

2.1 Notation and definitions

Let n > 1 and let I = {1, . . . , n} be the finite set of players. A network on these

players is represented by a binary n × n matrix x. For a disjoint pair i, j ∈ I

if xij = 1, then we say that i has a directed link towards j, or i links to j. If

xij = xji = 1, we say that i and j are reciprocally linked to each other. As a

shorthand we write {i, j} ∈ x to mean xij = xji = 1 and {i, j} /∈ x to mean

xij = xji = 0. By convention, for every i ∈ I we set the values xii to 0. Let the

set of networks of n players be denoted by X.

The network x ∈ X is undirected if for every disjoint i, j ∈ I it holds that
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xij = xji.

Definition 2.1 (Neighborhoods and degrees in directed networks). For i ∈ I we

let N+
i (x) = {j ∈ I : xij = 1}, N−i (x) = {j ∈ I : xji = 1} denote the set of players

who player i links to and the set of players who link to player i in network x,

respectively. The set Ni(x) = N+
i (x)∩N−i (x) is called the neighborhood of player

i.

For i ∈ I let deg+
i (x) = |N+

i (x)|, deg−i x = |N−i (x)|, and degi(x) = |Ni(x)|

denote player i’s out-degree, in-degree, and degree, respectively.

It is clear that for undirected networks, the three neighbor sets and degrees

coincide.

Definition 2.2 (Maximal undirected network contained in a network). Let the

map y : X → X be defined as follows: for every disjoint i, j ∈ I, y(x)ij = y(x)ji =

xijxji. The network y(x) is the maximal undirected network contained in x.

For X ′ ⊆ X we let y(X ′) denote the image of X ′. We introduce y(X) = Y to

denote the set of undirected networks. For Y ′ ⊆ Y we let y−1(Y ′) denote the pre-

image of Y ′, i.e. the set of directed networks, whose maximal undirected network

is a member of Y ′.

For an undirected network y ∈ Y let |y| =
∑

i∈I degi(y)/2 denote the number

of links in y.

Definition 2.3. For two networks x, x′ we say that x′ is more connected than x,

denoted by x ≤ x′ if for every i, j ∈ I we have xij ≤ x′ij.

As typical, we write x < x′ to denote the asymmetric part of the relation x ≤ x′.

For undirected networks x, x′ ∈ Y , the union and set subtraction operators ∪

and \ are interpreted the same way as for sets. Specifically, the network (x \ x′)∪

(x′ \ x), containing all links that appear in exactly one of x and x′ is called the

symmetric difference between x and x′.
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Definition 2.4 (Distance between undirected networks). For two undirected net-

works x, x′ ∈ Y the value φ(x, x′) = |(x\x′)∪(x′\x)| is called the distance between

x and x′.

2.2 Game definition

We now define a game of network formation with additive benefits gained from

direct interactions. Let W be an n×n non-negative, symmetric, real matrix with

the convention wii = 0 for i ∈ I, called the matrix of benefits. Let ci : N → R+

be a strictly monotonically increasing, weakly convex function, such that ci(0) =

0, called player i’s cost function. A strategy of player i is a binary n-vector

xi = (xij)j∈I with xij = 1 representing the choice by i to link to j, and xij = 0

representing the choice not to link. By convention we take xii = 0 for all i ∈ I.

The aggregate of the players’ decisions (xi)i∈I forms the directed network x. Let

Xi denote player i’s set of strategies.

The payoff of player i ∈ I is given as follows.

ui(x) =
∑
j 6=i

wijxijxji − ci(deg+
i (x)). (1)

The interpretation is the following: The players may form costly links with

other players to receive the benefit associated with that link as given by the weight

matrix. Benefits of links are only realized by the participants if both decide to

link to one another. If only one decides to link to the other, a one-sided link is

formed without any benefits to either player, if both decide not to link, no link is

formed and no benefits are realized. Crucially, players incur costs of all outgoing

links even ones that are not reciprocated.

Our game therefore bears close resemblance to Myerson (1991)’s independent

link-formation process in which players independently make a list of their oppo-

nents with whom they wish to link and a mutual link ends up forming if and
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only if both participants name each other. In our game players realize benefits

from direct neighbors in the resultant network but pay costs for the number of

opponents added to their list.

We show an application of this game in a model of monopolistic competition

between firms with partnerships.

Example 2.5 (Monopolistic competition with partnerships, adapted from Ace-

moglu et al. (2006) and König and Rogers (2018)). Consider a set of n firms,

each producing an intermediate good used to produce a final good (a numeraire)

according to a production function

y (q1, . . . , qn) =
1

γ

n∑
i=1

A1−γ
i qγi ,

where γ ∈ (0, 1), qi is the amount of the intermediate good i, whereas Ai is the

productivity of firm i. The production function of firm i transforms a unit of the

numeraire good into a unit of the intermediate good. The inverse demand of the

final producer for intermediate good i is easily computed to be:

ρi (qi) =

(
Ai
qi

)1−γ

implying that the optimal supply of firm i is given by

q∗i = γ
1

1−γAi

and its maximal profit is:

π∗i = (1− γ) γ
γ

1−γAi.

Denoting by φ = (1− γ) γ
γ

1−γ , π∗i = φAi.

Suppose that intermediate good producers can engage in partnerships which

can generate increases in productivity. These are specific to the firms engaging in

the partnership so that the success of a given partnership has no effect on the added

value obtained from other partnerships. The increase in productivity is given by
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wij
φ

=
wji
φ
≥ 0 for each of the partner-firms and is realized if and only if both

firms simultaneously put in a costly effort such as sharing know-how, engaging in

further research and development, or coordinating managerial activities.3 If only

one of the firms contributes to the partnership, it bears the cost of the effort, even

though no increase in productivity is generated. xij ∈ {0, 1} denotes the unilateral

decision of firm i to partner with j and thus to incur the cost of such a partnership.

The cost of effort is firm-specific and depends on the number of partnerships the

firm is actively engaged in, ci

(∑
j 6=i xij

)
with marginal cost increasing in the

number of existing partnerships. Thus, the final profit of a given firm can be

written as:

πi (xi, x−i) = φ

(
Ai +

∑
j 6=i

wij
φ
xijxji

)
−ci

(∑
j 6=i

xij

)
= π∗i +

∑
j 6=i

wijxijxji−ci

(∑
j 6=i

xij

)

implying that each firm will select its partnerships to maximize (1).

We continue with a useful notation for marginal benefits and marginal costs.

Definition 2.6 (Marginal benefits, marginal costs). Let a network x ∈ X be

given. Then, player i’s benefit on her marginal link is w′i(x) = minj∈N+
i (x){wij}.

For r ∈ N, player i’s marginal cost function is given by c′i(r) = ci(r)− ci(r − 1) if

r is positive and c′(0) = 0.

By convention we have min ∅ = ∞. Note that, while player i’s benefit on her

marginal link equals the lowest value of her reciprocated link (i.e. her marginal

benefit) if x is undirected, in directed networks we look at outgoing links. In the

special case of linear cost functions, we denote constant marginal cost of player i

by ci.

We assume for simplicity that marginal costs are never equal to marginal bene-

fits, that is, for every natural integer r and disjoint pair of players i, j ∈ I we have

3Such a linear relation between productivity and the number of partnerships is first introduced

in Klette and Kortum (2004).
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wij 6= c′i(r). We make this assumption to simplify characterizations by avoiding

indifference, but it may also be interpreted as the players always preferring not to

link in case they are indifferent. Within the set of all possible matrices w and cost

functions c, this property is generic.

We now introduce the equilibrium concepts of the game without ambiguity

to serve as benchmarks. For a player i ∈ I, let X−i =
∏

j 6=iXi. The set of best

response strategies of player i to the strategy combination chosen by her opponents

is given by Bi (x−i) defined by:

Bi (x−i) = arg max
xi∈{0,1}n

(∑
j 6=i

wijxijxji − ci(deg+
i (x))

)
As usual in the literature, we write Bi (x).

Definition 2.7. A network x is a Nash equilibrium of the game of network for-

mation iff xi ∈ Bi (x) for all i ∈ I.

The following characterization follows in a straightforward way.

Lemma 2.8 (Nash equilibrium characterization). A network x∗ is a Nash equi-

librium if and only if it is undirected and w′i(x
∗) > c′i(degi(x

∗)) for all i ∈ I.

Since linking to a player without reciprocation is costly without giving any im-

mediate benefits, every Nash equilibrium is undirected, furthermore, each player’s

least profitable neighbor must bring more benefit than the marginal cost of the

player’s links. We denote the set of Nash equilibrium networks by X∗.

In general, network formation games have a multiplicity of Nash equilibria.

Jackson and Wolinsky (1996) thus proposes a notion called pairwise stability,

which, in this model, translates to a stronger property. We therefore define pair-

wise stable equilibria as a refinement of Nash equilibria.4

4Note that, in more general network formation games with externalities, pairwise stability

is not a refinement of the set of Nash equilibria, as, pairwise stable networks are only stable
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Definition 2.9 (Pairwise stable equilibria). A Nash equilibrium network x is

pairwise stable if for any two distinct players i, j ∈ I xij = 0 implies ui(x∪{i, j}) <

ui(x) or uj(x ∪ {i, j}) < uj(x).

Pairwise stable networks have two properties: no player should be better off by

the deletion of an existing link, and no two unlinked players should be better off

by forming a reciprocated link between them. The first requirement is embedded

in the definition of the Nash equilibrium, as severing a link is a unilateral decision.

Their characterization follows in a straightforward way.

Lemma 2.10 (Pairwise stable equilibrium characterization). The network x∗ is

a pairwise stable equilibrium if and only if x∗ is a Nash equilibrium and for every

i, j ∈ I for which x∗ij = x∗ji = 0 we have wij < max{c′i(degi(x
∗) + 1), c′j(degj(x

∗) +

1)}.

Since, in a pairwise stable equilibrium, every mutually profitable link is already

formed, any link that did not end up forming must be unprofitable for at least

one participant.

In this paper we are interested in the conditions that allow the players’ opti-

mism to increase efficiency in network formation games. We raise two notions of

efficiency, Pareto optimality and benefit-maximization in the set of Nash equilib-

ria.

Definition 2.11 (Pareto optimal equilibrium network). A Nash equilibrium net-

work x ∈ X∗ is Pareto optimal if there does not exist another Nash equilibrium

network x′ ∈ X∗ such that ui (x
′) ≥ ui (x) for all i ∈ I with at least one strict

inequality.

against individuals severing a single link, while Nash equilibria are stable against the severance

of any number of links. Bloch and Jackson (2006) propose a concept called pairwise Nash stable

networks which are stable against the severance of any number of links and the formation of a

single link by any pair.

14



Clearly, a Pareto optimal Nash equilibirium network has to be pairwise stable,

but not every pairwise stable equilibrium is Pareto optimal.

Our second efficiency notion measures the players’ total benefits. For a network

x, let v(x) =
∑

i 6=j wijxijxji denote the total sum of realized benefits. It is clear

that v(x) = v(y(x)).

Definition 2.12 (Maximum-benefit equilibrium networks). The network x∗ ∈ X∗

is called a maximum-benefit equilibrium (MBE) network if x ∈ argmax x∈X∗ v(x).

Let the set of MBE networks be denoted by V ∗. Such networks maximize total

benefits from connections in the society, while ensuring that for each player i,

the value she derives from her marginal link exceeds her cost, and i chooses her

connections optimally given the behavior of the other players. Thus, they satisfy

a participation constraint and an incentive constraint for each individual and can

be, in principle, decentralized.

The basis of MBE networks is utilitarian efficiency but without explicitly con-

sidering the players’ costs – although they do play some role as they are selected

from the set of Nash equilibrium networks. Two conceptual reasons may exist

to consider MBE in favor of or in addition to utilitarian efficient networks: (1)

costs are player-specific constraints of maintaining social links, as such, in certain

situations, benefits can be more easily transferable and measurable, while costs

are hidden, (2) planners may be interested in the formation of the largest network

(e.g. most duets recorded, most papers produced, most production cost-reducing

partnerships formed) satisfying the players’ participation constraints, rather than

the utilitarian efficient one.

If all players’ cost functions are linear, i.e. ci(deg+
i ) = ci deg+

i for constant

values ci, the notions of pairwise stability, Pareto optimality, and MBE networks

coincide in a unique network defined by {i, j} ∈ x⇔ wij > max{ci, cj}.
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2.3 Ambiguity attitudes and equilibrium under ambiguity

The concept of Nash equilibrium presupposes that players have correct beliefs

about their opponents’ behavior and best-respond to these beliefs. In games with

multiple Nash equilibria, such an assumption seems rather strong. While play-

ers might indeed entertain beliefs about the behavior of the other players in the

game, they might have limited confidence in such beliefs. The theory of ambiguity

allows us to model such uncertainty about opponents’ strategies by the use of

non-additive probabilities called capacities.

Let X−i denote the set of all subsets of X−i.

Definition 2.13 (Schmeidler (1989)). A capacity on (X−i,X−i) is a function

νi : X−i → [0, 1] with νi(∅) = 0, νi(X−i) = 1 and νi(A) ≤ ν(A′), whenever A ⊆ A′.

In words, a capacity is a non-additive measure, which is normalized between

0 and 1 and satisfies monotonicity with respect to set inclusion. In particular,

a capacity will in general violate additivity: the measures assigned to an event

A ⊆ X−i, νi (A), and its complement X−i \ A, νi(X−i \ A) need not sum up to 1.

The notion of a capacity is very general. In this paper, we will use a special

class of capacities, called NEO-additive capacities which allow for a distinction

between the strength of a players’ perception of ambiguity and their response to

it, optimism or pessimism. These characteristics of the players are captured by

two parameters, αi ∈ [0, 1], and δi ∈ [0, 1].

Definition 2.14 (Chateauneuf et al. (2007)). For a player i, given her ambiguity

parameters αi, δi, and a probability measure πi on (X−i,X−i), the NEO-additive

capacity νi(·|αi, δi, πi) on (X−i,X−i) is defined as follows:

νi(A|αi, δi, πi) =


0 if A = ∅,
1 if A = X−i,

δiαi + (1− δi)πi(A) otherwise.
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A NEO-additive capacity can be interpreted as follows: the probability dis-

tribution πi player i’s belief about the behavior of her opponents. The degree of

confidence of i in this belief is given by (1− δi). In particular, if δi = 0, the degree

of confidence is 1, i is not affected by ambiguity, and her subjective beliefs are

represented by πi itself. When the degree of confidence (1 − δi) < 1, the player

perceives ambiguity δi with respect to her best estimate πi. Intuitively, δi identifies

a set of probability distributions given by the convex combination of πi with the

set of all possible probability measures on X−i, ∆ (X−i),

Πi = (1− δi) {πi}+ δi∆(X−i)

that the player takes into account when deciding on her strategy.

The effect of such ambiguity on i’s beliefs about an event A depends on the

player’s degree of optimism, αi. When αi = 0, the player is a complete pessimist

and her beliefs scale down the probability of any event A (except for the whole

event X−i) by her degree of confidence, (1− δi). For a fully optimistic player with

αi = 1, the probabilities of all events (except the impossible one, ∅) are over-

weighted. More generally, for intermediate degrees of optimism, i will overweigh

events with low probability and underweight those with high probabilities.

In this paper, we will restrict attention to pure strategies and thus, to capacities

for which πi is a Dirac measure on some strategy combination of the opponents,

x−i ∈ X−i, πi(x−i) = 1. Slightly abusing notation, we will write νi(·|αi, δi, x−i) to

denote such a capacity.

Given i’s subjective beliefs expressed by NEO-additive capacity νi(·|αi, δi, x−i),

her Choquet expected payoff from choosing a strategy xi is given by the Choquet

integral of the payoff function ui with respect to νi.

Definition 2.15 (Chateauneuf et al. (2007)). The Choquet expected payoff with

respect to a NEO-additive capacity νi with parameters αi, δi and πi such that
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πi (x−i) = 1 for some x−i ∈ X−i is given by:

Ui(xi, νi(·|αi, δi, x−i)) =

∫
ui(xi, x̃−i)dνi

= δi

[
αi max

x̃−i∈X−i
ui (xi, x̃−i) + (1− αi) min

x̃−i∈X−i
ui (xi, x̃−i)

]
+ (1− δi)ui (xi, x−i)

= αi max
π∈(1−δi){πi}+δi∆(X−i)

Eπ [ui (xi, x̃−i)] + (1− αi) min
π∈(1−δi){πi}+δi∆(X−i)

Eπ [ui (xi, x̃−i)]

In words, player i’s Choquet expected payoff of strategy xi given her subjective

belief νi is the sum of the expected payoff she would obtain under her objective

belief πi with weight 1−δi, the highest possible payoff attainable by xi with weight

δiαi, and the lowest payoff attainable by xi, with weight δi(1−αi). There are three

extreme cases: for a realistic player i (δi = 0), the Choquet expected payoff of

xi given νi coincides with the payoff of xi given x−i, for an optimistic/pessimistic

player i (δi = αi = 1 and δi = 1, αi = 0 respectively), the Choquet expected

payoff of xi ignores the objective belief πi and equals the largest/smallest payoff

available through xi.

Alternatively, the Choquet expected payoff can be interpreted as an αi-max-

min expected utility over the set of probability distributions centered around πi

with a “radius” of δi.

Notice that in our network formation game maxx−i∈X−i ui(xi, x−i) is always

obtained at xji = 1 for every j 6= i, whereas minx−i∈X−i ui(xi, x−i) obtains at

xji = 0 for every j 6= i and thus,

Ui(xi, νi(·|αi, δi, x−i)) =
∑
j 6=i

xijwij(δiαi + (1− δi)xji)− ci(deg+
i (x)), (2)

The best response correspondence of player i given that her beliefs are represented

by a NEO-additive capacity vi is defined as usual by

Bi(νi(·|αi, δi, x−i)) = arg max
xi∈Xi

Ui(xi, νi(·|αi, δi, x−i)).
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As most definitions of equilibrium, the equilibrium under ambiguity imposes

consistency between equilibrium beliefs and equilibrium behavior. Differently from

the standard Nash equilibrium concept, in our framework, players perceive ambi-

guity about the behavior of their opponents. Hence, their beliefs will in general

assign positive weight to strategies, which are not used in equilibrium. The con-

sistency notion is thus imposed on a subset of strategies assigned positive weights,

on those that are in the support of the the objective beliefs, πi. In the case, in

which πi is a Dirac measure on some x−i, the support of πi is given by x−i, the

strategy combination played by the other players.

We now adapt the equilibrium under ambiguity concept of Eichberger and

Kelsey (2014) to our framework as follows:

Definition 2.16 (Eichberger and Kelsey (2014)). A vector of NEO-additive ca-

pacities (ν∗i )i∈I form an equilibrium under ambiguity (EUA) if for every i ∈ I,

x∗−i ∈ B−i(ν∗−i).

EUA imposes constraints both on players’ strategies and on players’ beliefs. In

particular, whenever player i’s best estimate is that strategy combination x−i will

be played by her opponents, this strategy combination is a vector of each of her

opponent’s best responses according to their respective equilibrium beliefs given

by ν∗−i. It is easily seen that this condition can be equivalently rewritten as:

x∗i ∈ Bi

(
νi
(
· | αi, δi, x∗−i

))
for all i ∈ I, which illustrates the similarity of the concept to the Nash equilibrium.

3 The effects of increased optimism

We begin by a characterization of a player’s best response under parameters αi

and δi. To simplify the analysis and avoid the cases of indifference we will discuss

19



ambiguity parameters δi, αi, i ∈ I such that for every i, j ∈ I and every r ∈ N we

have wijδiαi 6= c′i(r) and wij(δiαi + 1 − δi) 6= c′i(r), which is a generic setting of

parameters.

The behavior of players maximizing (2) is showcased by the following charac-

terization.

Lemma 3.1 (Best response under ambiguity). For x ∈ X and i ∈ I, and x′i ∈ Xi

let x′ = (x′i, x−i). Then, x′i ∈ Bi(νi(·|αi, δi, x−i)) if and only if for every j 6= i we

have xij = 1 if and only if the following two properties hold:

1. wij(δiαi + (1 − δi)xji) > c′i(degi(x
′)) (the benefit of linking to j exceeds

marginal cost),

2. for every k such that x′ik = 0 we have wij(δiαi + (1 − δi)xji) ≥ wik(δiαi +

(1− δi)xki) (none of the non-neighbors is a better pick than j).

To illustrate the effect of ambiguity, compare the above conditions to the case

without it (δi = 0 for all i). A player i with a belief of her opponents’ behavior,

x−i, ranks her opponents by the value wijxji: their value times their willingness

to link to i. Player i’s best response will be to link to a selection of her opponents

with the highest such value, stopping to form more links once her marginal cost

exceeds the best unlinked opponent’s perceived value.

Players affected by ambiguity behave very similarly but they will not place full

confidence on their beliefs x−i. Instead, they will rank their opponents based on a

distorted value wij(αi + (1− δi))xji. The higher their perception of ambiguity, the

less weight they will place on their belief, and the more optimistic they are, the

stronger they will distort towards the belief that any opponent will link to them.

Highly optimistic players will focus only the available benefit of a link, wij, while

highly pessimistic ones will make their decisions in response to a distorted belief

that no opponent will link to them.
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wij >
c′j(x

∗)

δjαj
∈
(

c′j(x
∗)

δjαj+1−δj ,
c′j(x

∗)

δjαj

)
<

c′j(x
∗)

δjαj+1−δj

>
c′i(x

∗)

δiαi
x∗ij = x∗ji = 1 x∗ij = x∗ji = 1 x∗ij = 1, x∗ji = 0

∈
(

c′i(x
∗)

δiαi+1−δi ,
c′i(x

∗)

δiαi

)
x∗ij = x∗ji = 1 x∗ij = x∗ji = 0 or 1 x∗ij = x∗ji = 0

<
c′i(x

∗)

δiαi+1−δi x∗ij = 0, x∗ji = 1 x∗ij = x∗ji = 0 x∗ij = x∗ji = 0

Table 1: EUA characterization. High-value directions always form, low-value directions

never form in equilibrium. In-between-value directions form only if reciprocated, either

because the opposite direction is high-value, or because the opposite direction is also

an in-between-value. If, for two players, both directions are ‘in-between’-value, there

may exist some equilibria where a reciprocated link is formed and some where neither

direction forms. Note: we use the convention 1/0 =∞.

The characterization of EUA networks follows immediately.

Corollary 3.2 (EUA characterization). The network x∗ is an EUA of a game

given by W and c if and only if for every trio i, j, k ∈ I such that x∗ij = 1, x∗ik = 0

we have

wij(δiαi + x∗ji(1− αi)) ≥ wik(δiαi + x∗ki(1− αi))

and every pair i, j ∈ I x∗ follows rules presented by Table 1.

As Table 1 shows, equilibrium relations each player has three types of opponents

in equilibrium which results in a total of nine qualitative types of equilibrium

pairwise relations. A player may identify links that she will initiate even if the

opponent does not reciprocate. This can only happen if the player is sufficiently

optimistic. If such a high-value opponent likewise considers the initiating player

valuable enough, a reciprocated link forms between them. If the initiating player

is low-value for the opponent, a one-way link forms.

A player may also identify low-value opponents to whom she will not link

even if that opponent initiates a link towards her. This may either be due to the

fact that the player is highly pessimistic, or has other higher value opponents she

intends to prioritize. In this case the player may have incoming one-way links

from low-value opponents who consider her high-value.
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Every other opponent is ‘in-between’-value; the player will only form such a link

if she believes it will be reciprocated. If an ‘in-between’-value opponent considers

her as high-value, the opponent will initiate and the player will reciprocate. If she

is considered low-value, no links will form. Two players who consider each other

‘in-between’-value may link to each other but no directed link can exist between

them.

There are two important differences between Nash equilibrium networks and

EUA: First, the empty network may not be an EUA as high-value directions will

always form in equilibrium. As a result, existence becomes a non-trivial issue (note

that whenever the cost function is strictly concex, the game is not supermodular

in the players’ own strategies and thus, the standard existence result of Topkis

(1979) cannot be used). Second, an EUA network may contain directed links. To

obtain a direct comparison with the set of Nash equilibrium networks, one can

take δi = 0 for all i, in which case the threshold for high-value opponents becomes

infinity, effectively eliminating the top row and left column of Table 1, and leading

to the characterization in Lemma 2.8.

We now state a general existence result of EUA.

Proposition 3.3 (Existence of EUA). An equilibrium under ambiguity exists for

any network formation game and any set of ambiguity parameters that satisfy the

assumptions of no indifference.

Proposition 3.3 shows the existence of pure equilibria. We obtain this result

by considering strict best-response dynamics: starting in an arbitrary network, we

show that no strict best-response improvement path can revisit a network it had

visited before, thus any such path must arrive in a network where no player has a

way to improve. That network is an EUA. Furthermore, the set of EUA are thus

the absorbing sets of best-response dynamics under ambiguity.

We now examine the effects of increasing player optimism, starting with its
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effects on the number of out-neighbors. While we will not obtain a direct result,

we are able to derive monotonicity conditions on player optimism and the minimal

and maximum number of out-neighbors. We begin with a formal definition of these

two concepts.

Definition 3.4 (Minimal and maximal out-degree). For player i ∈ I her minimal

and maximal out-degree, denoted by di(αi, δi) and di(αi, δi) are defined as

di(αi, δi) = deg+
i (x) where xi ∈ Bi

(
νi

(
·|αi, δi, (xji = 0)j 6=i

))
,

di(αi, δi) = deg+
i (x) where xi ∈ Bi

(
νi

(
·|αi, δi, (xji = 1)j 6=i

))
,

respectively.

For fixed ambiguity parameters we simply write di and di. These are the number

of links player i offers in a best response to the belief that no players link to i and

all players link to i, respectively. Since indifferences of linking and not linking are

ruled out, these values are well-defined, with di being the largest degree r such

that r ≥ |{j ∈ I : αiδiwij > c′i(r)}| holds and di being the largest degree r such

that r ≥ |{j ∈ I : (αiδi + (1− δi))wij > c′i(r)}| holds.

It is clear that di and di are also lower and upper estimates, respectively, of

the number of out-links that player i can have in any EUA network.

Note that for any αi ∈ [0, 1] we have di(αi, 0) = 0, i.e. without ambiguity,

players do not link if no player links to them, also, for any δi ∈ [0, 1] we have

di(0, δi) = di(0, δi) = 0, i.e. pessimistic players do not link to anyone.

For every αi ∈ [0, 1] the value di(αi, 0) is unique, which we denote by di; the

maximum degree that player i can have in a best response when not affected by

ambiguity.

We now show that an increase of a player’s optimism without changing her

perception of ambiguity raises both the lower- and upper bounds.
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Proposition 3.5 (Minimal and maximal out-degree comparative statics). For

every i ∈ I, every α′i > αi, and every δi we have di(α
′
i, δi) ≥ di(αi, δi), and

di(α
′
i, δi) ≥ di(αi, δi).

By Proposition 3.5, a player’s bounds on the number of out-links increase

in any best response and in any equilibrium with the player’s optimism as the

perceived value of all potential links also increases.

However, the number of links in an equilibrium network, or even the equilib-

rium degree of the player becoming more optimistic, may decrease. This is because

the player’s new initiated links, if any, are not necessarily reciprocated, while she

may cut her existing ones in her attempt to link to higher-value opponents. For

this reason the comparative statics between player optimism and the size of the

equilibrium network is not straightforward. We identify a sufficient condition,

called the monotonicity of networks, that guarantees that optimism increases the

connectivity of equilibrium networks.

Definition 3.6 (Monotonic network). Network x is monotonic in linking decisions

(monotonic, for short) for player i if for every j, k ∈ I such that wij ≥ wik we have

xij ≥ xik. Network x is monotonic if for every i ∈ I it is monotonic for i.

If x is monotonic, then all players i link to some selection of their top deg+
i (x)

choices of opponents. If an undirected network is monotonic, a player can only

increase the value of her links by forming more links, not by replacing her existing

links with better ones. We show that if an equilibrium is monotonic, then upon

an increase in the players’ optimism there will always exist an equilibrium under

the new parameters which is weakly more connected.

Proposition 3.7 (Monotonic equilibrium comparative statics). Let x ∈ X∗(δ, α)

be monotonic and consider an α′ ≥ α. Then, there exists an EUA network,

x′ ∈ X∗(α′, δ) such that y(x) ≤ y(x′).
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By Proposition 3.7, we thus obtain that if an equilibrium is monotonic, an

increase in the players’ optimism will lead to more reciprocated links, increasing

the value of realized benefits in the network as well.

Example 3.8 (Monotonic equilibrium with increased optimism). To demonstrate

this result we consider a network of four players, A, B, C, and D. The links

{A,B} and {C,D} give a high value H, while {A,D} and {B,C} offer a low

value L with H > L > 0. Links {A,C} and {B,D} give a value of 0. Suppose

that for all players we have c′i(2) < L. Then, the unique Pareto optimal network

is x∗ = {{A,B}, {B,C}, {C,D}, {A,D}}, while any subset of x∗ constitutes a

Nash equilibrium network. Consider the monotonic equilibrium network x =

{{A,B}, {C,D}} and parameters δi and αi such that ((αiδi) + (1− δi))H > c′i(1),

δiL > c′i(2), and αiδiL < c′i(2). Then, x is the only EUA. Suppose that for all

i αi increases to α′i in a way that α′iδiL > c′i(2). Under the listed assumptions

such values of α′i are guaranteed to exist. Then, x∗ becomes the only EUA of the

modified game. Figure 1 shows this example graphically.

A B

CD

H

H

LL

0 0

A B

CD

H

H

LL

0 0

Figure 1: The weight network of Example 3.8. Reciprocated links are shown in contin-

uous edges, no linking is indicated dashed ones. If H > L > 0, and if c′i(2) < L then

network x∗ (right panel) is the unique Pareto optimal network. There exist parameters

αi, δi, under which the underconnected but monotonic network x (left panel) is an EUA.

Increasing the optimism parameters to α′i > αi can lead to x∗ being the only EUA.

In the special case when all cost functions are linear, the game is supermodular

and increased optimism raises equilibrium connectivity regardless of whether the
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initial equilibrium is monotonic (Schipper, 2019).

4 Network realignment through optimism

In this section we study the realignment of networks. By network realignment we

refer to sequences of link formations and severances that lead from one equilibrium

to another. This type of realignment may happen for several reasons. Equilibria

that are stable for individual or pairwise changes may break apart due to a co-

ordinated improvement by larger coalitions. Farsighted players may experiment

in order to trigger a sequence of changes that increase their individual payoffs.

Deviations may also occur randomly. However, there are reasons to believe that

individuals change their linking behavior without either coalitional or farsighted

considerations or their behavior being random. Partnerships, relationships, friend-

ships may be broken, formed, or re-formed as a result of the participants’ subjec-

tive evaluations of their current situation. As these evaluations change, so do the

individuals’ linking choices.

A motivation to study realignment is to select for equilibria that survive these

changes, the conditions under which such equilibria even exist, and the efficiency

properties of surviving equilibria. Since the seminal works of KMR and Young

(1993), models of myopic adaptation with random mutations have been used as

a selection device in games with multiple equilibria. In general, such models

postulate a best-response type of adaptive dynamics. In each period, a player

is chosen at random and revises her strategy by playing a best response to the

current strategy combination of her opponents. With strictly positive probability,

mutations (such as mistakes, experimentation) occur; instead of playing her best

response, the player chooses a strategy at random.

In this paper, mutations, instead of leading to a random choice of a strategy,

will affect the players’ ambiguity parameters, their perception of ambiguity and
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optimism. Specifically, we are interested in mutations that amount to optimistic

surges. Players affected by optimistic surges seek out more and/or better neigh-

bors, hence they produce interesting and plausible forms of network realignment.

In our model, pessimistic surges would cause links to break down without new

ones forming, which, while still plausible, is much less interesting as a driving

force of realignment.

Our dynamic process takes place in discrete time, t ∈ N. The network at

time t will be denoted by xt. Take an initial network structure xt−1. In period

t, a player it is chosen at random with uniform probability 1/n and receives an

opportunity to revise her strategy to xit . All other players continue playing the

strategies corresponding to xt−1
−it .

For player i ∈ I set δ̄i ∈ (0, 1) and ᾱi ∈ [0, 1] such that for every j ∈ I \ {i}

and r ∈ {0, n − 1} we have c′i(r) < ᾱiδ̄iwij if and only if c′i(r) < wij, and for

j, k ∈ I \ {i} with wij > wik we have δ̄iᾱiwij > wik. Such values are guaranteed

to exist with both δ̄i and ᾱi being close to 1, as the player set is finite. These

parameters represent highly optimistic behavior but not the complete ignorance

of actual behavior (which would happen under δi = 1). Thus, players’ behavior

will satisfy three properties: (1) if pressed to make a choice, a player will strictly

prefer an unreciprocated link of a higher value to a reciprocated link of a lower

value, (2) due to δ̄i < 1 the player will strictly prefer a reciprocated link to an

unreciprocated one of equal value, (3) the player always finds it optimal to have

exactly di out-links to her top di choices, i.e. di(ᾱi, δ̄i) = di(ᾱi, δ̄i) = di.

The main parameter governing the dynamic process defined above is the fre-

quency of optimistic shocks, denoted by β ∈ (0, 1). If close to zero, our process

resembles a best-response dynamic with regular, but infrequent optimistic shocks,

and if close to 1, the players almost always react optimistically. We imagine small

values of β to be the most plausible but our analysis is not sensitive to the ex-
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act value as long as all players perform both optimistic and realistic actions with

positive probability. The ambiguity parameters of player it at the time of revision

are thus given by the following time-independent probability distribution:

δtit = 0 and αtit arbitrary with probability 1− β,

δtit = δ̄it and αtit = ᾱit , with probability β,

Given her current ambiguity parameters, the revising player behaves myopically

and chooses a best response to xt−1
−it :

xtit ∈ Bit(νit(·|αtit , δtit , xt−1
−it ))

If the best response Bit (·) is not a singleton, player it chooses a best response in

Bit (·) uniformly at random. The resulting network at time t, xt, is then given by

xt(xt−1, it, αtit , δ
t
it) = (xtit , x

t−1
−it ).

In words, any updating player is an optimist with uniform probability β and a

best-responder with probability 1− β.

In what follows, we will shorten the notation of an optimistic player’s best

response to x to Bo
i (x) = Bi(νi(·|ᾱi, δ̄i, x−i)).

This dynamic process describes a Markov chain on the set X. For x, x′ ∈ X let

p(x, x′) denote the one-step transition probability from x to x′. It is clear that for

every x, x′ ∈ X with p(x, x′) > 0 there exists i ∈ I such that either x′i ∈ Bi(x) or

x′i ∈ Bo
i (x) and for every j 6= i we have x′−i = x−i. For m ∈ N let pm(x, x′) denote

the transition probability from x to x′ in exactly m steps. For a set of networks

X ′ ⊆ X let pm(x,X ′) =
∑

x′∈X′ p
m(x, x′) denote the probability of reaching this

set from x in exactly m steps.

Definition 4.1 (Successor). For x, x′ ∈ X and m ∈ N we say that x′ is an

m-successor of x if pm(x, x′) > 0.
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Denote the set of m-successors of network x by Sm(x) and let
⋃
m∈N S

m(x) =

S(x) denote the set of all successors of x. By convention we include x ∈ S(x).

We introduce the key condition of our convergence results.

Definition 4.2 (Aligned preferences). The players exhibit aligned preferences if

every MBE network is monotonic.

Under aligned preferences, MBE networks are not only optimal for a benefit-

maximizing society, but also safisfy an individual optimality condition for the

players; each player is linked to a selection of her best opponents. This is an

appealing property for a game to have, as without it we observe a conflict between

efficiency in benefits and the players’ incentives, but it is not a general one. It

may be for instance, that none of the pairwise stable equilibria are monotonic. If

preferences are not aligned, then conflicts may exist between different efficiency

notions; maximum-benefit equilibrium networks can be Pareto dominated by other

equilibrium networks, this is demonstrated by Example A.1 in the appendix. As

we show in the next lemma, however, under aligned preferences, MBE networks

are Pareto optimal.

Lemma 4.3. Under aligned preferences, MBE networks are Pareto optimal in the

set of Nash equilibria.

Due to Lemma 4.3, when preferences are aligned, MBE is a stronger efficiency

notion than Pareto optimality.

Proposition 4.4 (Stability of efficient networks under aligned preferences). Sup-

pose that the players exhibit aligned preferences. For every x∗ ∈ V ∗ and every

x′ ∈ S(x∗) we have x′ ∈ y−1(V ∗).

By Proposition 4.4, under aligned preferences, the set of MBE networks is stable

under our dynamic of optimistic and best-responding players. More precisely,
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starting the dynamical process in an efficient network, all successor networks will

contain an MBE network as well as some additional one-way links. Formally, the

set y−1(V ∗) is absorbing under our dynamic process.

We now present our second main result. If preferences are aligned, then the

dynamic described above always pushes the game towards networks that contain

an MBE network, and, possibly, some additional one-way links. If there is a unique

MBE network, then it by itself, is a stable equilibrium in terms of our dynamic,

allowing for the creation and deletion of additional one-way links. If there is more

than one MBE network, then they may communicate with each other under our

dynamic but the total realized benefit of players never changes.

Proposition 4.5 (Efficient networks form almost surely under aligned prefer-

ences). Suppose that the players exhibit aligned preferences. Then, for every x ∈ X

we have limm→∞ p
m(x, y−1(V ∗)) = 1

Proposition 4.5 shows that, under aligned preferences, by the individual updates

of players, an MBE network will form almost surely. Combined with 4.4, this

means that, in terms of reciprocated links, the set of MBE networks is globally

stable under these dynamics.

The key intuition behind the proof is that, from a sufficiently connected but

inefficient equilibrium (from which, as we show, we can initiate the process) we can

choose a link {i, j} which is part of the efficient network but not part of the current

network, and a player i who would initiate this link under an optimistic shock. If

this is followed by j being given a best-responding revision opportunity she may

reciprocate this link, possibly severing some others. There will then exist a series

of best-responses through which we obtain a network which is strictly closer to the

desired MBE network (notably by the inclusion of the link {i, j} and the exclusion

of some unnecessary links). Since the set of all networks is finite, repeating this

process allows the dynamic to reach V ∗ in finite time. Once a network in V ∗ is
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reached, the value of the network cannot decrease (Proposition 4.4).

We note the difference between our approach and that of KMR. Similarly

to their approach, our best-response dynamic with optimistic shocks defines a

Markov process on the set of strategy combinations and thus, on the set of directed

networks. In KMR, the random mutations imply that any strategy can be chosen

with strictly positive probability and thus, the Markov process visits any of the

Nash equilibria infinitely often. In contrast, in our model, the asymmetric nature

of the optimistic shocks implies that the Markov process reaches the set of MBE

networks, with probability 1, regardless of initial conditions. Furthermore, the set

y−1 (V ∗) is absorbing. Thus, rather than selecting for a single equilibrium, our

dynamic selects for a set of equilibrium networks which are Pareto optimal.

The following example demonstrates network realignment through optimistic

shocks under aligned preferences.

Example 4.6 (Network realignment). Consider the benefit weights given by Ex-

ample 3.8, but with c′i(1) < L and c′i(2) > H for all i, that is, each player can

have at most one neighbor in equilibrium. Then, the unique MBE network is

x∗ = {{A,B}, {C,D}}, but any undirected network where each player has at

most one neighbor is also an equilibrium. Notably, x = {{A,D}, {B,C}} is also

pairwise stable, but not stable against optimistic surges.

The realignment process that leads from x to x∗ is shown in Figure 2 and

proceeds as follows. (1) under an optimistic shock, A severs her link to D and

extends one to B. (2) a best-responding B severs her link to C and reciprocates

A’s link. (3) C best responds, cutting her unreciprocated link to B. The network

now has the link {A,B} established, which is a Nash equilibrium network, and

in network distance terms, closer to x∗. (4) under another optimistic shock, D

extends a link to C. (5) a best-responding C reciprocates, forming the network

x∗.
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A optimistic
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B best responds
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C best responds
A B
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H

H

LL
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D optimistic

A B

CD

H

H

LL

0 0

C best responds
A B

CD

H

H

LL

0 0

Figure 2: Network realignment from a Pareto dominated pairwise stable equilibrium to

an MBE network. An optimistic shock compels A to seek out a new, better partner,

severing her link to D and extending one to B. A best-responding B reciprocates A’s

link and severs the one to C. A best-responding C deletes her unreciprocated link to B.

Finally, when D receives an optimistic shock herself, she will extend a link to C which

a best-responding C accepts.

If preferences are not aligned, then MBE networks are not always Pareto optimal,

and they are also not stable for optimistic shocks; a player who is not linked to her

best choice of neighbors, upon experiencing an optimistic shock, will invariably
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delete her links to her existing neighbors and make offers to her best choices. This

can be demonstrated by a minimal counterexample of three players.

Example 4.7. Consider a network of three players with w12 = H, w13 = M , and

w23 = L with H > M > L > 0. Suppose that c′1(1) < H and c′1(2) > M , as well

as c′3(1) < L and c′3(2) > M meaning that players 1 and 3 can entertain only one

neighbor, while c′2(2) < L, player 2 can entertain two neighbors. Then, the unique

MBE is x∗ = {{1, 2}, {2, 3}}, which is not monotonic, thus preferences are not

aligned. Starting from x∗ if player 3 receives an optimistic shock she will sever her

link running to 2 and offers one to 1 which will be unreciprocated. These networks

are shown in Figure 3.

1 2

3

H

LM

1 2

3

H

LM

Figure 3: The network of Example 4.7. Player 2 can accommodate two neighbors,

players 1 and 3 only one. The unique MBE (left) is pairwise stable, but unstable for an

optimistic surge by player 3 who will sever her link with 2 and make an unreciprocated

offer to 1 instead (right).

We conclude this section by showing convergence in the linear case, which is

not covered by the case of aligned preferences.

Proposition 4.8. Let the cost functions be linear. Then, for every x ∈ X and

the unique x∗ ∈ V ∗ we have limm→∞ p
m(x, y−1(x∗)) = 1.

Proposition 4.8 extends the convergence result laid out in Proposition 4.5 to all

games with linear costs, without the precondition of aligned preferences. This is

due to the fact that, under linear costs the unique MBE, which coincides with
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the unique pairwise stable equilibrium, is stable for both optimistic and best-

responding deviations.

5 Concluding remarks

In this paper we investigate a model of network formation with players facing

ambiguity with respect to their opponents’ linking decisions. We model this un-

certainty using NEO-additive beliefs: players respond to mixtures of their rational

beliefs as expressed by a probability measure of their opponents’ actions, their op-

timistic beliefs, and their pessimistic ones.

To our knowledge, ours is the first project to consider ambiguity in strategies

in a network formation game. We intuit that such a combination of frameworks

is natural and fits well with behavioral considerations of network formation: opti-

mistic players believe their linking offers are likely to be reciprocated, pessimistic

players believe that opponents are unlikely to reciprocate. These considerations

provide behavioral explanation to the existence of asymmetric interactions in so-

cial networks, namely, persistent one-way links. Similar explanations are absent

in models focusing on joint improvements or individual rational behavior. Di-

rected interactions may arise due to optimism as a player believes the opponent

will reciprocate and thus make an offer to link without coordinating with the op-

ponent. Even if the opponent does not reciprocate, if the optimism of the offering

player persists, so does the one-way link. Under repeated surges of optimism fol-

lowed by best-responding behavior, the linking offer is attempted and withdrawn

repeatedly.

By explicitly modeling player optimism we also allow the link-formation pro-

cess to be governed proactively by the players. Under Nash equilibrium, link

formation was governed by the players passively best-responding to each other’s

actions or their beliefs about their opponents. In what has proven to be the mod-
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ern benchmark tool, pairwise stability, link-formation is governed by the logic of

random pairwise interactions where, upon meeting a mutually beneficial oppo-

nent, the pair decides to form a link. Here, players remain passive in creating

these interactions and only act if the opportunity arises through events outside

their control. Under our framework, optimistic players proactively seek out their

best possible links, creating linking opportunities through a costly investment.

Our investigation of equilibrium under ambiguity reveals that optimism can, as

expected, lead to better equilibrium outcomes by selecting against underconnected

equilibria. Too much optimism, on the other hand, makes players blind to their

available prospects in favor of the best they could possibly achieve and thus there is

no general monotonic relationship between equilibrium connectivity and optimism.

Monotonic equilibria, however, do improve in terms of connectivity if the players

become more optimistic, as they feature no tradeoff between the players’ available

links and their best possible links. In these cases, optimism is helpful for the

players to seek out additional profitable partners without severing their links to

existing ones.

In addition to equilibrium, we study network realignment under ambiguity.

Under aligned preferences, best-response dynamics with optimistic shocks lead to

all links of a Pareto optimal network forming; specifically, one that maximizes

benefits from links. This insight sheds some light to the role of optimism in a

society: individual optimism begets an optimal social network without relying on

formal or informal multilateral coordination devices. It is noteworthy that both

optimism and realism are found to be necessary attitudes to produce this result,

with optimism being the driving force to seek out newer and better links, while

realism compels players to accept the status quo. If the frequency of optimistic

shocks is high, efficient networks are reached faster but the system will spend more

time in networks with directed links – even after all links of the Pareto optimal
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equilibrium network have been formed. If this frequency is lower, Pareto optimal

equilibria are reached later but players spend more time at their objective best

response – i.e. in the actual equilibrium network. This suggests that there is an

optimal amount, or rate, of optimism for a society which strikes a balance between

the speed of convergence to the set of Pareto optimal networks, and mitigating

the efficiency loss arising from the wasted effort of extending unreciprocated links.

Finding this is an interesting direction for future research.

If preferences are not aligned, optimistic shocks are not enough to produce

efficient networks – even the concept of an efficient network becomes more elusive

as the efficiency notion that planners may be interested in, the maximum-benefit

equilibria, and the one pertaining to the players’ well-being, Pareto optimality, are

not in agreement. We thus cannot resolve the prevailing conflict between stability

and efficiency in the general case. A possible way to relax the aligned preferences

condition is by considering a higher degree of player sophistication. For instance,

in Example 4.7, a player 2 who is informed of player 1’s payoff function may

anticipate that player 1 will not sever her first-best link and is thus, unavailable.

Alternatively, after several unsuccessful tries, she can also learn that player 1 will

never reciprocate. Both would allow player 2 to be satisfied with her second-best

outcome, which stabilizes the Pareto optimal network. This type of sophisticated

selection of neighbors is beyond the scope of this paper.

Our model is without explicit network externalities. This choice simplifies our

analysis as players evaluate their linking choices “link-wise”. Furthermore, this

avoids the additional complexity of modeling the players’ beliefs of their neighbors’

(neighbors’, etc.) links, as well as their responses to these beliefs. As the players’

reliable information of links in the network that are distant from them can be

scarce, a more general model of ambiguity in networks under explicit network

externalities necessitates an epistemic foundation of players’ beliefs of distant links.
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Finally, we mention pessimism, which, in our model, does not seem to have

any positive role in building the network or realigning efficiently. Pessimistic

shocks in our model amount to (possibly temporary) severances of links without

forming new ones. Such a behavior may play a role in preventing the network

from becoming too cluttered. This may be to the benefit of society if network

interactions bring negative externalities, such as during a pandemic where being

part of a connected social component exposes the individual to risk of infection.

This is another interesting direction for future research.

A Appendix

A.1 Aligned preferences conditions

In this section we discuss implications and conditions of the preferences being

aligned. Aligned preferences represent a restriction on the players’ preferences

in a way that individual considerations to link to one’s favorite opponents, i.e.

play monotonic strategies, are in agreement with social considerations that seek

to maximize the players’ sum of realized benefits.

If preferences are not aligned, MBE networks are not guaranteed to be Pareto

optimal. This is illustrated by a counterexample.

Example A.1. Consider a network of six players shown in Figure 4.

1

2 3

4

5 6

4

5

4

5

4

5

4

Figure 4: The weight network of example A.1. Links not shown in the figure are assumed

to offer no benefits.
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Suppose that the cost structure is such that d1 = d4 = 2, while d2 = d3 = d5 =

d6 = 1. Then, the only MBE network is x∗ = {{1, 2}, {1, 3}, {4, 5}, {4, 6}} for a

total weight of 16, but it is not monotonic for any player, hence preferences are

not aligned.

Suppose that c1(1) = c4(1) = 3.8 and c1(2) = c4(2) = 7.7, which respects

d1 = d4 = 2. Then, the network given by x = {{1, 4}, {2, 3}, {5, 6}}, with its

weight of 15 Pareto dominates x∗.

Example A.1 also shows that the reverse of Lemma 4.3 is not true, that is,

the existence of an equilibrium network which is monotonic and Pareto optimal

does not imply that preferences are aligned. In the example the Pareto optimal

equilibrium network is monotonic but preferences are not aligned as it is not an

MBE network.

We highlight the special case where the benefits of all links are equal, i.e. players

are only interested in the number of their neighbors. In this case preferences

are always aligned and MBE networks are the largest equilibrium networks in

the number of links. Then, can derive an even stronger statement, every Nash

equilibrium network that is not an MBE network is Pareto dominated by the

MBE network closest to it.

Lemma A.2. If for every i, j we have wij = w for some w ∈ R+, then for every

x′ ∈ X∗ \ V ∗ and every x ∈ V ∗ that is closest to x′ in V ∗, x Pareto dominates x′.

Proof: Let x′ ∈ X∗ \ V ∗, let x be an element of V ∗ that is closest to x′,

and assume that x does not Pareto dominate x′. Then, there exists i ∈ I such

that degi(x
′) > degi(x). Hence, there exists a player j ∈ Ni(x

′) \ Ni(x). If

degj(x) < degj(x
′), then either degj(x) < dj and hence, {i, j} could be added to

x, contradicting x ∈ V ∗, or we have degj(x
′) > dj = degj(x), contradicting the

fact that x′ is an equilibrium network.
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If degj(x) > degj(x
′), then there must exist k ∈ Nj(x) \ Nj(x

′). Consider

the network x′′ which we get from x by removing the link {j, k} and adding the

link {i, j}. It is clear that x′′ ∈ X∗, since degi(x
′′) ≤ degi(x

′) ≤ di , degj(x
′′) =

degj(x
′) = dj, and degk(x

′′) = degk(x) − 1 < dk. Furthermore, x′′ ∈ V ∗, since x

has the same number of links as x′′. However, we have φ(x′, x′′) = φ(x′, x) − 2,

thus we contradict the choice of x as a closest element of V ∗ to x′. Thus, x must

Pareto dominate x′.

�

There is no equivalent statement for games with aligned preferences in general as

a player i’s first-best network need not be an MBE network and thus it is possible

for this player to be worse off in every MBE network.

As finding MBE is computationally demanding, checking whether preferences

are aligned in a game is difficult as well. We conclude this section by deriving a set

of sufficient conditions under which a game’s unique MBE network is monotonic,

which in turn implies that preferences are aligned.

Lemma A.3. Suppose that

1. for every i ∈ I there exists a value w̄i such that |{k : wik ≥ wi}| = di, and

2. for every i, j ∈ I we have wij ≥ w̄i ⇔ wij ≥ w̄j.

Let x∗ be given as follows: x∗ij = 1 if wij ≥ wi, x
∗
ij = 0 otherwise. Then, x∗ is

the unique MBE network and it is monotonic.

Proof: It is clear that x∗ is monotonic and, by property (2), it is undirected.

Furthermore, by property (1) it holds that for every i ∈ I we have degi(x
∗) = di.

Thus, every player has the maximum number of neighbors and is linked to her

best choice of di opponents. Thus, x∗ is the only MBE network.
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Lemma A.3 lays out two sufficient conditions for preferences to be aligned: (1)

each player must have a well-defined set of ‘favorite’ opponents to link to that

will satiate her, and (2) reciprocity in ‘favorite’ opponents. The first condition

precludes, among other settings, the uniform benefits case; even though uniform

benefits represent aligned preferences they do not generally imply uniqueness of

the MBE network. If indifferences are not allowed, as is often the case in matching

where individuals have a strict ranking of opponents, this condition is automat-

ically satisfied. The second condition ensures reciprocity of links if all players

link to their set of favorite opponents and is the main restrictive condition in the

lemma. These conditions are strong but, given the matrix of weights, easy to

check.

A.2 Proofs for Section 3

Lemma 3.1

The ⇐ direction is clear; if the link towards a player j appears profitable and

there is no better alternative to connect to, then player i’s best response is to link

to j. The ⇒ direction consists of two simple parts: (1) linking to j cannot be a

best response if it does not appear profitable, (2) linking to j but not linking to

an apparently more profitable k cannot be a best response.

�

Proposition 3.3

We show this statement by the use of strict best-response paths. A strict best-

response path is a sequence of networks (xt)t∈{0,...,T} such that for every t ∈

{1, . . . , T} there exists a player it such that xt−it = xt−1
−it , x

t−1
it /∈ Bi(νi(·|αi, δi, xt)),
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and xtit ∈ Bi(νi(·|αi, δi, xt)). In a strict best-response path every period has ex-

actly one player move from a strategy that isn’t a best response to the current

strategies of her opponents to a best response. We will show that no matter the

starting network x0, the order of updates, or the length of the sequence, there are

no cycles in this process, i.e. there does not exist a non-trivial strict best-response

path for which x0 = xT . Given this fact and due to the finiteness of the set of

possible networks with n players, starting from any network, any sequence of such

strict improvements by players who are not at their best response will lead to an

EUA.

So, for contradiction suppose that such a cycle (xt)t∈{0,...,T} exists with x0 = xT .

We say that the link {i, j} is changing in this sequence if there exist two time

periods t and t′ such that xtij 6= xt
′
ij. It is clear that such links must exist in any

strict best-response path.

Claim A.4. In a strict best-response cycle there must exist a changing link {i, j}

and a time period t such that xtij = xtji = 1.

To show this, suppose for contradiction that such a changing link does not

exist. Take a player i and two distinct time periods t < t′ such that it = it
′

= i

and for every t′′ ∈ {t + 1, . . . , t′ − 1} we have it
′′ 6= i. For any cycle such periods

may be found by an appropriate time shift. It is clear that t and t′ cannot be

consecutive time periods in a strict best-response path and that there must exist

a link {i, j} such that xt+1
ij 6= xt

′+1
ij otherwise xt

′
i = xt

′+1
i , contradicting that

xt
′
i /∈ Bi(νi(·|αi, δi, xt

′
)). Since there are no changing reciprocal links we must

have Ni(x
t) = Ni(x

t+1) = Ni(x
t′) = Ni(x

t′+1). Furthermore, for every k ∈ I with

xtik = 0 and xtki = 1 we have xt+1
ik = 0, otherwise a changing reciprocal link would

appear. Similarly, for every k ∈ I with xt
′

ik = 0 and xt
′

ki = 1 we have xt
′+1
ik = 0.

It follows that xt+1
i ∈ Bi(νi(·|αi, δi, xt)) implies xt+1

i ∈ Bi(νi(·|αi, δi, xt
′
)) as

no player can form a link to i, nor delete a link to i that she would reciprocate
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forming or deleting in t′ as there can be no changing reciprocated links. Since

xt+1
i = xt

′
i due to the fact that i hasn’t changed her action between t and t′ we

have xt
′
i ∈ Bi(νi(·|αi, δi, xt

′
)), a contradiction by the fact that we assumed a strict

best-response cycle.

�

Secondly, we show that a strict best-response cycle also cannot contain a re-

ciprocated changing link. The two statements together imply that there are no

strict best-response cycles.

Claim A.5. In a strict best-response cycle there cannot be a changing link {i, j}

and a time period t such that xtij = xtji = 1.

Once again, suppose for contradiction that such a link exists in a strict best-

response cycle. Let i, j be a pair and t a time period such that {i, j} is a recip-

rocated changing link with the largest value wij, i
t = i, xtij = xtji = 1, xt+1

ij = 0,

and |{k ∈ Ni(x
t) : wik = wij}| ≥ |{k ∈ Ni(x

t+1) : wik = wij}|. In words, i, j is a

best-value reciprocated changing link that was deleted by i in period t and she

does not have more links of value wij in period t + 1 than in period t. Such i, j

and t are guaranteed to exist in a strict best-response cycle.

Let time period t′ < t be such that it
′

= i, xt
′
ij = 0, xt

′+1
ij = 1. As before, for

any cycle, such periods may be found by an appropriate time shift.

Let Ki = {k : wikαiδi > wijαiδi + 1 − δi} denote the set of players whom i

strictly prefers to j even if j reciprocates but they do not. If this set is empty,

player i will never delete a link with j. It is clear that we must have xt
′+1
ik = 1

for every k ∈ Ki, otherwise we cannot have xt
′+1
ij = 1 as a best response to xt

′

by Lemma 3.1. This in turn implies that xtik = 1 for every k ∈ Ki, otherwise we

would have a time period t′′ ∈ {t′ + 1, . . . , t − 1} where i deletes her link to a

k ∈ Ki but keeps the link to j, which cannot happen in a best response.
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So, at time t, when i deletes her link to j, every link that offers a better payoff

was already formed, and since she cannot have more neighbors of equal value in

t+ 1 by the choice of j, it is impossible that xt+1
i is a best response to xt provided

that xti was not a best response to xt. This concludes the proof of Claim A.5 and

thus of Proposition 3.3.

�

Proposition 3.5

The statement follows from the fact that for every i, j ∈ I and every x−i ∈ X−i it

holds that wij(αiδi + xji(1− δi)) ≥ wij(α
′
iδi + xji(1− δi)), thus in best response to

both situations, more optimism will lead to a weakly higher number of out-links.

�

Proposition 3.7

We decompose the network formation game with parameters (δ, α′) into two parts:

the mutual links that are formed in the equilibrium x of the game (δ, α), y(x) and

the remaining links. In particular, we will look at the network formation game

with parameters (δ, α′) such that

w̃ij = 0 for all {i, j} ∈ y(x) (3)

w̃ij = wij for all {i, j} /∈ y(x)

c̃i (r) = ci (r + degi(x)) for r ∈ N, i ∈ I

Clearly, for every i ∈ I the maximal number of links in this game is given by

d̃i = d̄i − degi(x). Furthermore, by Proposition 3.3, this game has an equilibrium

– denote such an equilibrium by x̃. Note that since c̃i (r) > 0 for all r, x̃ij = 0

holds for all {i, j} ∈ y(x).
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For the original game with parameters (δ, α′), define the strategy combination

x′ by x′ij = 1 for all {i, j} ∈ y(x) and x′ij = x̃ij for all {i, j} /∈ y(x). Note that for

each i,

deg+
i (x′) = deg+

i (x̃) + degi(x) (4)

We now show that x′ ∈ X∗ (δ, α′) by showing that x′i satisfies the two conditions

in Lemma 3.1, i.e. it is a best response to x′−i, starting with condition 1. Take an

{i, j} such that x′ij = 1.

Case 1: If {i, j} ∈ y(x), and there exists some k such that x′ik = 1 and

{i, k} /∈ y(x), then we have

wij
[
α′iδi + (1− δi)x′ji

]
≥ wik [α′iδi + (1− δi)x′ki] > c̃′i

(
deg+

i (x̃)
)

= c′i
(
deg+

i (x′)
)
,

where the first inequality follows from the fact that x is monotonic and thus

wij ≥ wik, the second inequality follows from the fact that x′ki = x̃ki and x̃ is an

equilibrium of (3) and the equality is a consequence of the definition of c̃ and (4).

Case 2: If {i, j} ∈ y(x) and N+
i (x′) = Ni(x) then we have

wij [α′iδi + (1− δi)] ≥ wij [αiδi + (1− δi)] > c′i (degi(x)) = c′i
(
deg+

i (x′)
)
,

where the first inequality is due to α′i ≥ αi, the second is due to the fact that

{i, j} ∈ y(x) and x was an EUA of the game with α, and the equality is by the

definition of c̃ and (4).

Case 3: If {i, j} /∈ y(x), then x′ij = x̃ij

wij
[
α′iδi + (1− δi)x′ji

]
> c̃′i(degi(x̃)) = c′i(degi(x)),

where the inequality holds due to the fact that x̃ is an equilibrium of (3) and the

equality is a consequence of the definition of c̃ and (4).

Thus, condition 1 of Lemma 3.1 is satisfied whenever x′ij = 1.
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Take next an {i, j} such that x′ij = 0. Clearly, {i, j} /∈ y(x) and thus x′ij = x̃ij.

Since x̃ij is an equilibrium of the game defined by (3), we have

wij
[
α′iδi + (1− δi)x′ji

]
< c̃′i

(
deg+

i (x̃)
)

= c′i
(
deg+

i (x′)
)
.

Thus, condition 1 of Lemma 3.1) is satisfied whenever x′ij = 0 as well.

Finally, we check condition 2. Suppose that there exist distinct players i, j and

k such that wij(α
′
iδi+(1−δi)x′ji) > wik(α

′
iδi+(1−δi)x′ji), but x′ik = 1 and x′ij = 0.

Clearly, {i, j} /∈ y(x). If {i, k} ∈ y(x) then x′ki = 1, and since wik ≥ wij by the fact

that x is monotonic, this contradicts wij(α
′
iδi+(1−δi)x′ji) > wik(α

′
iδi+(1−δi)x′ji).

Hence, {i, k} /∈ y(x). Since x̃ is an EUA of the game (3), by condition 2 of Lemma

3.1 we have

wij [α′iδi + (1− δi)x̃ji] = wij
[
α′iδi + (1− δi)x′ji

]
≤

wik(α
′
iδi + (1− δi)x′ji) = wik(α

′
iδi + (1− δi)x̃ji),

a contradiction.

Therefore, all conditions of Lemma 3.1 holds.

�

A.3 Proofs for Section 4

Lemma 4.3

Proof: Take an x∗ ∈ V ∗. For contradiction, assume an x ∈ X∗ exists that Pareto

dominates x∗. Suppose that for every i ∈ I we have degi(x) ≥ degi(x
∗). Then, for

every i ∈ I we have ci(x) ≥ ci(x
∗), thus, for ui(x) ≥ ui(x

∗) to hold we must have∑
j∈Ni(x) wij ≥

∑
j∈Ni(x∗) wij, for each i ∈ I and strict inequality for at least one

player, contradicting the weight-maximality of x∗. Thus, there exists a player i

with degi(x) < degi(x
∗). However, since x∗ is monotonic, ui(x) ≥ ui(x

∗) requires

degi(x) ≥ degi(x
∗), a contradiction.
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Proposition 4.4

We first prove a supporting statement.

Lemma A.6. Suppose that the players exhibit aligned preferences. For a T ∈ N let

(xt)t∈{0,...,T} be a finite sequence of networks obeying the defined updating rule such

that x0 ∈ V ∗ and xt ∈ y−1(V ∗) for t ∈ {0, . . . , T}. Then, for every t ∈ {0, . . . , T}

and every i ∈ I we have w′i(x
t) > c′i(di).

Proof: Suppose that we have w′i(x
t) < c′(di). Let t denote the first such period,

i.e. xti ∈ Bi(x
t) or xti ∈ Bo

i (x
t). It is clear that the latter is impossible as optimistic

players never initiate or accept such links, thus we must have xti ∈ Bi(x
t). Since

y(xt) ∈ V ∗ and since preferences are aligned xti is monotonic for i. This means

that for every k such that w′i(x
t) < wik we have {i, k} ∈ xt. However, by the

definition of di, this has to imply deg+
i (x) > di, which is also impossible as a

best-responding player would not initiate more than di links.

�

Proof of Proposition 4.4: We first show that y(x′) ∈ X∗. Take a sequence

(xt)t∈{0,...,T} obeying the defined updating rule with x0 ∈ V ∗. Since x0 is a

Nash equilibrium, then by the updating rule, for every xt we have w′it(x
t) >

c′it(degit(x
t)). Thus, for every t′ ∈ {0, . . . , T} and every i, j ∈ I with xt

′
ij = xt

′
ji = 1

we have wij > c′i(deg+
i (xt

′
)) ≥ c′i(degi(x

t′)), satisfying the conditions of a Nash

equilibrium.

Thus, for contradiction, suppose that x′ ∈ S(x∗) and y(x′) /∈ V ∗. Then we must

have v(x′) < v(x∗), as v(x′) = v(y(x′)) > v(x∗) would contradict the choice of x∗

as a maximum-benefit equilibrium, while v(x′) = v(x∗) would imply y(x′) ∈ V ∗.

Thus, the value of the network must decrease along the sequence between x∗ and

46



x′. Suppose that x′ is the earliest element of the sequence with v(x′) < v(x∗), let

x denote the element immediately preceding it and let i denote the player who

updated between x and x′, i.e. x−i = x′−i. Since v(x) > v(x′) there must exist

{i, j} ∈ x \ x′ and by Lemma A.6 it must satisfy wij > c′i(di).

Suppose that x′i ∈ Bi(x). Then, since i drops her link with j as a best response

even though j reciprocates, we must have wij < c′i(deg+
i (x′)+1) = c′i(degi(x

′)+1).

Thus, degi(x
′)+1 > di, meaning that degi(x

′) = di. Since i made a best response,

ui(x) ≤ ui(x
′), and since the number of neighbors in x′ is at maximum, and thus

the weak increase in utility did not come through a decrease in costs, the total

value of i’s links must have weakly increased from x to x′. Hence, we have

v(x) =
∑
j 6=i

wijxijxji +
∑
j 6=k 6=i

wjkxjkxkj ≥
∑
j 6=i

wijx
′
ijxji +

∑
j 6=k 6=i

wjkxjkxkj = v(x′),

a contradiction to v(x′) < v(x).

Suppose that x′i ∈ Bo
i (x). Then, since x′i is monotonic for i and i drops her

link with j, deg+
i (x′) = di. Since wij > c′i(di), and yet i chose not to reciprocate

j’s link, there must exist k ∈ I with wij = wik such that {i, k} ∈ x′. Since y(x)i

is monotonic, and {i, j} ∈ x for every ` ∈ I with wi` > wij we have {i, `} ∈ x.

Since x′i is monotonic for i, {i, `} ∈ x′ as well. Furthermore, for every ` ∈ I with

wij = wi` and x′i` = 1 we must have x′`i = x`i = 1 as well, otherwise deleting a link

to an unreciprocated opponent of equal value is better for i than deleting her link

to j. Thus, deg+
i (x′) = degi(x

′) = di. Finally, x′i being monotonic means that i

has a reciprocal link to exactly di of her most favored opponents. So as before we

have

v(x) =
∑
j 6=i

wijxijxji +
∑
j 6=k 6=i

wjkxjkxkj ≥
∑
j 6=i

wijx
′
ijxji +

∑
j 6=k 6=i

wjkxjkxkj = v(x′),

a contradiction to v(x′) < v(x).
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Proposition 4.5

Lemma A.7. For every x ∈ X there exists x∗ ∈ X∗ ∩S(x) such that for all i ∈ I

we have w′i(x
∗) > c′i(di).

Proof: First we show that there exists x′ ∈ X∗ ∩ S (x). Take an arbitrary x ∈ X.

Then, suppose that in the next n periods, all players {1, . . . , n} are given an

ambiguity-neutral best-responding revision opportunity in increasing order. Call

the resulting network x′. The probability of this happening is ((1 − β)/n)n > 0,

so we must have x′ ∈ S(x). Then, for every i ∈ I we have w′i(x
′) > c′i

(
deg+

i (x′)
)

and for every pair with i > j we can have x′ij = 1 only if xji = 1. Thus, repeating

the same process in the reverse order will lead to an undirected network x′′ with

w′i(x
′′) > c′i (degi (x

′′)) for all i ∈ I, satisfying the equilibrium conditions.

This shows that we can take x ∈ X∗ at the start. Take a player i such

that w′i(x) < c′i(di). If none can be found, we are done. If such a player exists,

suppose that she receives an optimistic revision opportunity. Then since for every

xoi ∈ Bo
i (x) we have w′i(x

o
i , x−i) > c′i(di), she will sever all links with players giving

her less benefits than c′i(di) and possibly initiate some links to others. Then, allow

all her neighbors with whom she severed her links to best-respond in an ambiguity-

neutral way, their only best response being is to sever their unreciprocated links

towards i and make no other changes. Finally, let player i best-respond to sever all

unreciprocated links she had initiated as an optimist. Call the resulting network

x′. Since pm (x, x′) > 0 for some m ≤ Ni(x) + 1 we must have x′ ∈ S(x).

At x′, we clearly have w′i(x
′) > c′(di) since all players j 6= i with wij < c′i(di)

now have no outgoing links towards i while Ni(x) ⊇ Ni(x
′). Thus, we have

x′i ∈ Bi(x
′), meaning that x′ ∈ X∗. Furthermore, w′i(x

′) > c′i(di), as well as

|x′| < |x|, since player i lost links and no player gained any. If there exists j 6= i
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with w′j(x
′) < c′j(dj), we can repeat this process. If the process does not terminate

sooner with a desired network, it will terminate by reaching the empty network

which trivially satisfies the conditions of the statement of the lemma.

�

The next lemma shows that the learning process enters the set of maximum-

benefit equilibria that are monotonic, V ∗, for any starting state with a positive

probability.

Lemma A.8. Suppose that the players exhibit aligned preferences. For every

x ∈ X there exists an x∗ ∈ V ∗ ∩ S(x).

Proof: By Lemma A.7 we may take x ∈ X∗ such that w′i(x) > c′i(di) for all i ∈ I.

Let x∗ ∈ V ∗ be the closest element of V ∗ to x. If x ≥ x∗, then we must have

x = x∗ otherwise we contradict the choice of x∗ as an element of V ∗, in which case

we are done. If x 6≥ x∗, we have x∗ \ x 6= ∅.

We will show that there exists an x′′ ∈ X∗ ∩S(x) which also satisfies w′i(x
′′) >

c′i(di) for every i ∈ I and for which φ(x′′, x∗) < φ(x, x∗). Through a repeated

application of this argument the distance eventually decreases to 0, meaning that

we reach x∗. We distinguish two cases.

Case 1. There exists a player i and a link {i, j} ∈ x∗ \x such that degi(x) < di.

Let j ∈ argmax j′∈Ni(x∗)\Ni(x) wij′ be the most valuable such link for player i. Then

let x′i be a strategy profile which is monotonic for i, deg+
i (x′i, x−i) = di, and

N+
i (x′i, x−i) ⊇ (Ni(x) ∩ Ni(x

∗)) ∪ {j}. By Lemma 3.1, and due to x satisfying

w′i(x) > c′i(di), we must have x′i ∈ Bo
i (x). Let player i receive an optimistic

revision opportunity and suppose that she revises to x′i.

Case 1a. If degj(x) < dj, then we must have wij ≥ w′j(x
∗) > c′j(dj) ≥

c′j(degj(x) + 1). Therefore, Bj(x
′
i, x−i) is a singleton with its only element, which

we denote by x′j, satisfying x′jk = 1 if and only if k ∈ Nj(x) ∪ {i}. Suppose

49



that player j receives a best-responding revision opportunity, and thus, selects

the strategy x′j. For each k ∈ Ni(x) \N+
i (x′i, x−i) let k receive a best-responding

revision opportunity, their only best response being is to keep all of their existing

links except those with i who had severed her link to each k.

Finally, let player i also receive best-responding revision opportunity. Her

only best response, which we denote by x′′i , is to delete all unreciprocated links

she initiated when she moved to x′i, that is, x′′ik = 1 if and only if k ∈ (Ni(x) ∩

Ni(x
∗)) ∪ {j}. Let the resulting network be denoted by x′′. It is clear that x′′ is

an equilibrium network, w′(x′′) ≥ c′(d), and φ(x′′, x∗) < φ(x, x∗). Since the above

process leads to x′′ from x, we have x′′ ∈ S(x) as well.

Case 1b. If degj(x) = dj ≥ degj(x
∗), then there must exist a link {j, k} ∈ x\x∗.

Since x∗ is monotonic we must also have wij ≥ wjk. Thus, there must exist an

x′j ∈ Bj(x
′
i, x−i) such that x′j` = 1 if and only if ` ∈ (Nj(x) \ {k})∪ {i}. As before

let j receive a best-responding revision opportunity and suppose that she selects

x′j. Let this be followed by player k best-responding; her only best response being

to cut her now unreciprocated link towards j and keeping all her other neighbors.

Then, as before, for each k′ ∈ Ni(x) \ N+
i (x′i, x−i) let k′ receive a best-

responding revision opportunity, their only best response being to keep all of

their existing links except those with i, who had severed her link to each k′.

Finally, let i best-respond, her only best response being to delete all unrecip-

rocated links she initiated when she moved to x′i, that is, x′′ik = 1 if and only if

k ∈ (Ni(x)∩Ni(x
∗))∪{j}. Let the resulting network be denoted by x′′. As before,

x′′ ∈ X∗, satisfies w′(x′′) ≥ c′(d) and φ(x′′, x∗) < φ(x, x∗), as well as x′ ∈ S(x),

completing Case 1.

Case 2. For every link {i, j} ∈ x∗\x we have degi(x) = di and degj(x) = dj. We

will show that there must exist such a link {i, j} for which there exists {i, k} ∈ x\x∗

such that wij > wik.
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Suppose this is not true, i.e. for every i, j, k with {i, j} ∈ x∗\x and {i, k} ∈ x\x∗

we have wij ≤ wik. Since degi(x) = di for all i with Ni(x) 6= Ni(x
∗) we must have

degi(x) ≥ degi(x
∗) for all i. These two facts imply that v(x) ≥ v(x∗) which

can only hold with equality as x∗ is a maximum-benefit equilibrium network. If

degi(x) > degi(x
∗) for some i ∈ I and degj(x) ≥ degj(x

∗) for all other j 6= i,

then v(x) = v(x∗) can hold only if we have such a trio i, j, k with {i, j} ∈ x∗ \ x,

{i, k} ∈ x\x∗, and we have wij > wik, a contradiction. So suppose that degi(x) =

degi(x
∗) for all i.

Now we will show that under these conditions x is monotonic, a contradiction

since that would mean x ∈ V ∗. Take a player i and suppose that there exist j, k 6= i

such that {i, j} ∈ x, {i, k} /∈ x and wij < wik. If no such player can be found, x is

monotonic. We must have {i, k} /∈ x∗ by assumption thus {i, k} ∈ x\x∗. However,

due to degi(x) = degi(x
∗) there must exist an ` ∈ Ni(x

∗) \ {j} and by assumption

we must have wik > wij ≥ wi`. Thus, since {i, k} /∈ x∗, this is a contradiction as

x∗ is monotonic.

Therefore if for every link {i, j} ∈ x∗\x we have degi(x) = di and degj(x) = dj,

then there must exist {i, j} ∈ x∗ \ x and a {i, k} ∈ x \ x∗ such that wij > wik. In

particular, let j ∈ argmax j′∈Ni(x∗)\Ni(x) wij′ and let k ∈ argmin j′∈Ni(x)\Ni(x∗) wij′ .

Construct a strategy x′i such that it is monotonic and for every ` ∈ (Ni(x) ∩

Ni(x
∗)) ∪ {j} we have x′i` = 1. By the fact that wij > wik, we must have such a

strategy with deg+
i (x′i, x−i) = di as player i can include j to her set of neighbors

and exclude k and still maintain an out-degree of di. By Lemma 3.1, we have x′i ∈

Bo
i (x). As in Case 1, let i receive an optimistic revision opportunity and suppose

she picks the optimistic best response x′i. From here by the same process as in

Case 1b we can reach x′′ ∈ X∗∩S(x) with w′(x′′) > c′(d) and φ(x′′, x∗) < φ(x, x∗).

�

Finally, given that we reach V ∗, the proof of the Proposition itself follows
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simply from Proposition 4.4.

Proof of Proposition 4.5. By Lemma A.8 for every x ∈ X we have a x∗ ∈ V ∗

with x∗ ∈ S(x). Since there are finitely many networks, with probability one, the

process enters V ∗ and thus y−1(V ∗). By Proposition 4.4, the game never leaves

y−1(V ∗).

�

Proposition 4.8

As before, we first show that the dynamic system will take the game into V ∗,

which is a unique network x∗ in the linear case.

Lemma A.9. Let the cost functions be linear. For every x ∈ X and the unique

x∗ ∈ V ∗ we have x∗ ∈ S(x).

Proof: By Lemma A.7 we can take x ∈ X∗. We show that if x = x∗ there

exists x′ ∈ S(x) ∩ X∗ such that φ(x′, x∗) < φ(x, x∗). Take a link {i, j} ∈ x∗ \ x.

Then, we must have wij > max{ci, cj}. Take the following series of updates: i

receives a revision opportunity as an optimist, j receives a revision opportunity

as a best-responder, then i receives a revision opportunity as a best-responder. It

is clear that an optimistic player i will link to j, as well as keep all of her links to

her neighbors in x. A best-responder j will make no changes except reciprocate

player i’s link. Finally, player i deletes all the unreciprocated links she made as

an optimist. For the resulting network, x′ = x∪ {i, j}, we have x′ ∈ X∗ as well as

φ(x′, x∗) = φ(x, x∗)− 1.

�

Secondly, we show that once x∗ is reached, the game never leaves the set y−1(x∗).

Lemma A.10. Let the cost functions be linear. For the unique x∗ ∈ V ∗ we have

S(x∗) ⊆ y−1(x∗).
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Proof: Suppose for contradiction that there exist a pair x, x′ ∈ S(x∗) such that

x ∈ y−1(x∗), x′ ∈ S1(x), and x′ /∈ y−1(x∗). Then, there must exist {i, j} ∈ x′ \ x,

with wij > max{ci, cj}. Clearly, one of i and j must have updated to get from x

to x′ so suppose it was i, i.e. x−i = x′−i. If x′i ∈ Bi(x), then, since x′ji = xji = 1,

deleting the link to j cannot be a best response. If x′i ∈ Bo
i (x), then, since wij > ci,

deleting the link to j cannot be an optimistic best response, so we have arrived at

a contradiction.

This completes the proof of the proposition.

�
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