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Abstract

We analyze a model of endogenous two-sided network formation where play-

ers are affected by uncertainty in their opponents’ decisions. We model this

uncertainty using the notion of equilibrium under ambiguity (Eichberger

and Kelsey, 2014). Unlike the set of Nash equilibria, the set of equilibria

under ambiguity does not always include underconnected and thus ineffi-

cient networks such as the empty network. On the other hand, it may

include networks with unreciprocated, one-way links, which comes with an

efficiency loss as linking efforts are costly. We characterize equilibria under

ambiguity and provide conditions under which increased player optimism

comes with an increase in efficiency in equilibrium. Next, we analyze the

dynamic situation with one-sided, myopic updating with regular optimistic

shocks and derive a global stability condition of benefit-maximizing equi-

librium networks.

1 Introduction

The question of how social networks form and which structures are both stable and

efficient is of primary interest in economic literature. The use of classic equilibrium

∗The authors would like to thank Cécile Aubert, Christophe Bravard, Gyögy Kozics, Stéphane
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concepts such as the Nash equilibrium, however, invites a problem of multiplicity:

the set of Nash equilibria encompasses both Pareto-optimal, as well as Pareto-

dominated networks such as the empty network. Different refinements such as

pairwise stability, (Jackson and Wolinsky, 1996), and strong stability (Jackson

and van den Nouweland, 2005), have been considered in the literature, but the

problem of equilibrium selection and conflict between efficiency and stability in

case of pairwise stability, and existence in case of strong stability persists.

We highlight these issues in models of endogenous network formation where an

investing player bears the cost even if her intended partner does not reciprocate

(Bala and Goyal, 2000), but link formation is two-sided, hence consent (and in-

vestment) is required from both participants. The potential benefits of a link, as in

Bloch and Dutta (2009); Ding (2019), are exogenous. Examples of such networks

abide ranging from friendships, scientific collaborations and provider-client rela-

tionships. As usual, strategic complementarities give rise to multiple equilibria.

Most crucially, the Nash equilibria of this game permit underconnected networks

as, for any two individuals i and j, i not linking to j is always a best response to

the belief that j does not link to i, no matter how attractive the players are to each

other. Resolving this multiplicity in favor of more efficient equilibria has been a

long-standing issue in the economic literature on networks. As first suggested by

Harsanyi and Selten (1988), what is at hand is the players’ reaction to uncertainty

in their opponents’ strategies – their inability to uniquely predict the behavior of

their potential partners.

Social psychology has offered some insight into the problem by noting that op-

timistic people might be more likely to form and sustain links which are beneficial

to them (Brissette et al., 2002; Andersson, 2012). The “tendency to expect favor-

able outcomes” (Srivastava and Angelo, 2009) results in optimists attaching more

weight to their partners reciprocating their efforts towards establishing a relation-

ship. Such expectations may become self-fulfilling as opponents reciprocate these

linking offers even when they themselves are not optimistic. In general, optimism

is identified as a pervasive individual feature (Peterson, 2000), which is positive

both for individuals and the society as a whole (Tiger, 1979; Freud, 1928).

Experimental studies have shown that ambiguity in opponents’ strategies is

indeed present and leads to deviations of observed behavior from Nash equilibrium

(Pulford and Colman, 2007; Di Mauro and Castro, 2008; Eichberger et al., 2008;
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Kelsey and Le Roux, 2015, 2017). Furthermore, attitudes towards such ambiguity

are heterogeneous and show non-negligible rates of both optimism and pessimism

(Camerer and Karjalainen, 1994; Ivanov, 2011; Eichberger et al., 2008; Li et al.,

2019). Recent developments in decision theory under ambiguity (Chateauneuf et

al., 2007) and games under ambiguity (Eichberger and Kelsey, 2000, 2002, 2014)

have offered the possibility to model such optimistic and pessimistic expectations

(see Beauchene (2014) for a review).

So far, economic applications of ambiguity have been mainly focused on pes-

simism. Ellsberg (1961)’s thought experiment indicates preferences for the non-

ambiguous (versus the ambiguous) urn. Gilboa and Schmeidler (1989)’s seminal

model of max-min expected utility captures an extreme form of aversion against

ambiguity, whereas Schmeidler (1989)’s Choquet expected utility, although not re-

strictive in terms of attitude towards ambiguity, is in general associated with the

axiom of ambiguity-aversion and thus, beliefs in the form of a convex capacity. In-

deed, ambiguity aversion, or pessimism has been shown to play an important role

in economic interactions, as, e.g., in financial markets (Collard et al., 2011) and

to be robust to market selection, (Guerdjikova and Sciubba, 2015; Eichberger and

Guerdjikova, 2018). However ambiguity aversion is “the exception, not the rule”

and ambiguity seeking behavior is common, in particular in situations involving

losses and low probabilities of success (Kocher et al., 2018). Notably, optimism can

select Pareto-dominant equilibria in coordination games (Eichberger et al., 2008)

and leads to an increase in payoffs in the maximal equilibrium in supermodular

games (Schipper, 2019).

In this paper, we combine these approaches by introducing optimistic and pes-

simistic attitudes into a network formation game. Despite the complementarity

of linking efforts, the game is not supermodular and thus, equilibrium existence

cannot be established by Topkis (1979)’s theorem. Instead, we show that start-

ing from any network, a sequence of unilateral best-responses (under ambiguity)

leads to an equilibrium in a finite number of steps. This result provides both an

algorithm for computing equilibria under ambiguity in a network formation game

and proves that such equilibria always exist.

We next document the insight generated by social psychology that optimists

tend to have more links in equilibrium. Optimism increases the weight players

place on others reciprocating and thus increases the number of links a player
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might optimally initiate. Sufficiently high degrees of optimism imply that links will

form in every equilibrium, ruling out (some) underconnected equilibria. Despite

this, as illustrated in Section 1.1, increasing optimism need not always increase

connectivity: an optimistic player might sever an existing two-way link in favor of

a more valuable one, which would not be reciprocated.

We call a network monotonic if for each player, any link she formed is at least

as valuable to her as any of the links that she has not formed, i.e., each player’s

linking decision is a monotonic function of her opponents values. We show that

this property is decisive for determining if optimism increases efficiency. Notably,

starting from a monotonic equilibrium an increase in optimism leads to a game

which has a more connected equilibrium than the initial one and thus, generates

a higher value of established links.

In a second step, we address the issue of equilibrium selection. We identify a

class of networks, called maximum-weight networks, which are Nash equilibria and

at the same time maximize the total value of links in the society. Such networks

are both socially desirable and can be decentralized provided that coordination

on the specific Nash equilibrium is achieved. This allows us to resolve the conflict

between efficiency and stability common for such games (for recent studies see

Griffith (2019); Baumann (2019)). If these networks are monotonic, then they

are also Pareto-optimal within the equilibrium set. In this case, social desirability

aligns with individual incentives to link to one’s most preferred opponents, hence

we say that preferences are aligned.

As is well known from experimental studies, (Cooper et al., 1990; Van Huyk et

al., 1990), it is not realistic to expect that coordination on a socially optimal equi-

librium obtains in a one-shot game with multiple players. Following the approach

of Kandori et al. (1993) (henceforth KMR) and Young (1993), the literature has

studied best-response dynamics in network formation games (Watts, 2001) as well

as in games on a network with simultaneous choice of links and actions (Ely, 2002;

Jackson and Watts, 2002a,b; Goyal and Vega-Redondo, 2005; Hojman and Szeidl,

2006; Galeotti and Goyal, 2010; Dawid and Hellman, 2014), see Hellman and

Staudigl (2012) for a review. In general, neither uniqueness of the stochastically

stable state, nor its efficiency are guaranteed (see, however, Staudigl (2011); Luo

et al. (2018)). Furthermore, the techniques developed by KMR present computa-

tional challenges when the set of equilibria is large as in most network formation
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games.

In this paper, we study the best-response dynamic of the network formation

game and consider the long-run outcome. As in KMR, we assume that players

undergo occasional mutations during this process, but rather than making random

mistakes in their strategies as is typically assumed, players experience surges of

optimism, which leads to a change in their best-response correspondence. Baillon

et al. (2013) shows that increases in optimism could be a consequence of emotions

such as sadness, joy and fear. Thus, ambiguity attitude might indeed be subject

to random shocks. A surge of optimism generates higher expectations that the

player’s partners will reciprocate a link and leads the player to more actively pursue

high-value partnerships. Notably, an optimistic shock leads to a destruction of an

existing link only if a link of a greater value is simultaneously initiated.

If all maximum-weight networks are monotonic, the Markov process defined by

our best-response dynamic subject to optimistic shocks has an absorbing set – the

set of directed networks whose underlying undirected graph is a maximum-weight

network. This set is almost surely reached in finite time, regardless of the initial

condition, thus maximizing the total value of links formed. When the probability

of shocks is small, the fraction of time in the limit that the process spends in an

undirected maximum-weight network (and thus, in a Pareto optimal equilibrium)

is close to 1. In the long-run, players behave as if they are maximizing the total

value of links in the society.

The rest of the paper is organized as follows: We present an illustrative exam-

ple in Section 1.1. Section 2 introduces the network formation game, specifies the

notion of a maximum-weight network and defines the equilibrium under ambiguity

concept. Section 3 is devoted to the analysis of the static network formation game.

We characterize the set of equilibrium networks without ambiguity and show that

when preferences are aligned, maximum-weight networks are Pareto-optimal. In

a second step, we extend the analysis to games with ambiguity, characterize the

set of equilibrium networks under ambiguity, show existence and discuss compar-

ative statics with respect to the players’ attitude towards ambiguity. In Section

4, we turn towards a dynamic analysis, introduce a best-response dynamic with

optimistic shocks and analyze its long-term behavior. We demonstrate that for

aligned preferences, as well as for linear cost, the dynamic almost surely reaches

the set of maximum-weight networks in finite time. We use examples to illustrate
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the failure of this result when preferences are not aligned. Section 5 concludes.This

can lead to the formation of reciprocal links, which are beneficial to both parties

and which persist even after the player’s expectations return to being realistic.

1.1 An illustrative example

We illustrate the best-response dynamics with surges of optimism using a matching

example of four players: A, B, C, D. A is the preferred choice of B and vice-

versa, whereas C and D are each other’s preferred choices. This is represented

as follows: the match between A and B as well as the one between C and D

create a high value H > 0, while all other matches create a low value L ∈ (0, H).

Each player is limited to have at most one link. The only efficient network is

thus given by {{A,B}, {C,D}} and in this network each player is matched with

their most preferred partner. Thus, the maximum-weight equilibrium network is

monotonic. Yet, other complete matchings, such as {{A,D}, {B,C}}, are also

pairwise stable. Starting from this network suppose that A receives an optimistic

shock, which leads her to believe that B would be willing to replace her current

match C out with her. She then severs her link to D and offers a link to B. If

B gets a chance to respond next (whether as a realist, or as an optimist) she

will accept the link with A, severing the link with C and thus forming the link

{A,B}. Another optimistic shock to D will result in her offering a link to C which

will be accepted, thus establishing the efficient network. In this special case, the

efficient network is an absorbing state, which will persist regardless of any further

optimistic shocks.

A B

CD

H

L

H

L
L L

A B

CD

H

L

L

H
H L

Figure 1: The weight network of the illustrative example. The left side shows a network
with aligned preferences, the right side shows a network with non-aligned preferences.

We thus conclude that a dynamics based on optimistic surges can act as a

refinement on the set of Nash equilibria by selecting those that maximize the

total value of formed links. This, however, depends on the monotonicity of the
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maximum-weight network. Otherwise, a surge of optimism might destroy existing

links without the possibility of creating new ones. Consider, e.g., the situation

in which every player prefers to be matched with A (all links with A offer value

H, all other links offer value L). {{A,B}, {C,D}} is again a maximum-weight

network but no longer monotonic as both C and D are matched with someone

other than their preferred match. Starting from this network, player C, under an

optimistic shock, will sever her link with D and instead try to link to A, who,

being indifferent may or may not reciprocate, cutting her link towards B if she

does so. In turn, D will sever her now unreciprocated link towards C. Thus the

link {B,D}, once dissolved, will never be reestablished. By symmetry we can

conclude that any low-value link, once dissolved, will not be reestablished, thus

no maximum-weight network is stable in this network. Optimism can thus prevent

players from preserving a second-best link, even when their first-best match is not

achievable.

Our matching example is rather special in that each player can only form a

single link (i.e., the cost function is extremely convex) and thus, the condition of

aligned preferences imposes a rather strict restriction on the individual rankings

of matching partners. It is however well suited to provide an intuition for (i) how

optimistic shocks can lead to the creation of new and more valuable links whenever

preferences are aligned, and (ii) how optimism .

2 The network formation game

2.1 Notation and definitions

Let n > 1 and let I = {1, . . . , n} be the finite set of players. A network on these

players is represented by a binary n × n matrix x. For a disjoint pair i, j ∈ I

if xij = 1, then we say that i has a directed link towards j, or i links to j. If

xij = xji = 1, we say that i and j are reciprocally linked to each other. As a

shorthand we write {i, j} ∈ x to mean xij = xji = 1 and {i, j} /∈ x to mean

xij = xji = 0. By convention, for every i ∈ I we set the values xii to 0. Let the

set of networks of n players be denoted by X.

The network x ∈ X is undirected if for every disjoint i, j ∈ I it holds that

xij = xji. Note that any such network can be identified by the set of all established

links.
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Definition 2.1 (Neighborhoods and degrees in directed networks). For i ∈ I we

let N+
i (x) = {j ∈ I : xij = 1}, N−i (x) = {j ∈ I : xji = 1} denote the set of players

who player i links to and the set of players who link to player i in network x,

respectively. The set Ni(x) = N+
i (x)∩N−i (x) is called the neighborhood of player

i.

For i ∈ I let deg+
i (x) = |N+

i (x)|, deg−i x = |N−i (x)|, and degi(x) = |Ni(x)|
denote player i’s out-degree, in-degree, and degree, respectively.

It is clear that for undirected networks, the three neighbor sets and degrees

coincide.

Definition 2.2 (Maximal undirected network contained in a network). Let the

map y : X → X be defined as follows: for every disjoint i, j ∈ I, y(x)ij = y(x)ji =

xijxji. The network y(x) is the maximal undirected network contained in x.

For X ′ ⊆ X we let y(X ′) denote the image of X ′. We introduce y(X) = Y to

denote the set of undirected networks. For Y ′ ⊆ Y we let y−1(Y ′) denote the pre-

image of Y ′, i.e. the set of directed networks, whose maximal undirected network

is a member of Y ′.

For an undirected network y ∈ Y let |y| =
∑

i∈I degi(y)/2 denote the number

of links in y.

Definition 2.3. For two networks x, x′ we say that x′ is more connected than x,

denoted by x ≤ x′ if for every i, j ∈ I we have xij ≤ x′ij.

As typical, we write x < x′ to denote the asymmetric part of the relation x ≤ x′.

For undirected networks x, x′ ∈ Y , the union and set subtraction operators ∪
and \ are interpreted the same way as for sets. Specifically, the network (x \ x′)∪
(x′ \ x), containing all links that appear in exactly one of x and x′ is called the

symmetric difference between x and x′.

Definition 2.4 (Distance between undirected networks). For two undirected net-

works x, x′ ∈ Y the value φ(x, x′) = |(x\x′)∪(x′\x)| is called the distance between

x and x′.

2.2 Game definition

We now define a game of network formation with additive benefits gained from

direct interactions. Let W be an n×n non-negative, symmetric, real matrix with
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the convention wii = 0 for i ∈ I, called the matrix of benefits. Let ci : N → R+

be a strictly monotonically increasing, weakly convex function, such that ci(0) =

0, called player i’s cost function. A strategy of player i is a binary n-vector

xi = (xij)j∈I with xij = 1 representing the choice by i to link to j, and xij = 0

representing the choice not to link. By convention we take xii = 0 for all i ∈ I.

The aggregate of the players’ decisions (xi)i∈I forms the directed network x. Let

Xi denote player i’s set of strategies.

The payoff of player i ∈ I is given as follows.

ui(x) =
∑
j 6=i

wijxijxji − ci(deg+
i (x)). (1)

The interpretation is the following. The players may form costly links with

other players to receive the benefit associated with that link as given by the weight

matrix. Benefits of links are only realized by the participants if both decide to

link to one another. If only one decides to link to the other, a one-sided link is

formed without any benefits to either player, if both decide not to connect, no

link is formed and no benefits are realized. Crucially, players incur costs of all

outgoing links even ones that are not reciprocated.

Our game therefore bears close resemblance to Myerson (1991)’s independent

link-formation process in which players independently make a list of their oppo-

nents with whom they wish to link and a mutual link ends up forming if and

only if both participants name each other. In our game players realize benefits

from direct neighbors in the resultant network but pay costs for the number of

opponents added to their list.

It is useful to introduce the following definition for marginal links.

Definition 2.5 (Marginal benefits, marginal costs). Let a network x ∈ X be

given. Then, player i’s benefit on her marginal link is w′i(x) = minj∈N+
i (x){wij}.

For r ∈ N, player i’s marginal cost function is given by c′i(r) = ci(r)− ci(r − 1) if

r is positive and c′(0) = 0.

By convention we have min ∅ = ∞. Note that, while player i’s benefit on her

marginal link equals the lowest value of her reciprocated link (i.e. her marginal

benefit) if x is undirected, in directed networks we look at outgoing links. In the

special case of linear cost functions, we denote constant marginal cost of player i

by ci.
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We assume for simplicity that marginal costs are never equal to marginal ben-

efits, that is, for every natural integer r and disjoint pair of players i, j ∈ I we

have wij 6= c′i(r). We make this assumption to simplify characterizations by avoid-

ing indifference, but it may also be interpreted as the players always preferring

to connect (or not to connect) in case they are indifferent between linking to a

player or not. Within the set of all possible matrices w and cost functions c, this

property is generic.

2.3 Stable and efficient Nash equilibria

We now define the equilibrium concepts

For a player i ∈ I, let X−i = {0, 1}(n−1)×(n−1) be the set of i-incomplete

strategy combinations. As usual, the best response of a player i to the strategy

combination chosen by her opponents is given by Bi (x−i) defined by:

Bi (x−i) = arg max
xi∈{0,1}n

(∑
j 6=i

wijxijxji − ci(deg+
i (x))

)
As is usual in the literature, we write Bi (x), whenever appropriate.

Definition 2.6. A network x is a Nash equilibrium of the game of network for-

mation iff xi ∈ Bi (x) for all i ∈ I.

Let the set of Nash equilibrium networks be denoted by X∗. It is clear that,

since linking to a player without reciprocation is costly without giving any imme-

diate benefits, every Nash equilibrium is undirected. Hence, although in principle,

we allow for the formation of undirected networks, as we will show below, such

networks will not constitute a Nash equilibrium. However, they might still obtain

as equilibria under ambiguity.

In general, network formation games have a multiplicity of Nash equilibria.

Jackson and Wolinsky (1996) thus proposes a refinement called pairwise stability.

Definition 2.7 (Pairwise stable equilibria). A Nash equilibrium network x is

pairwise stable if for any two distinct players i, j ∈ I xij = 0 implies ui(x∪{i, j}) <
ui(x) or uj(x ∪ {i, j}) < uj(x).

Pairwise stable networks have two properties: no player should be better off by

the deletion of an existing link, and no two unlinked players should be better off
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by forming a reciprocated link between them. The first requirement is embedded

in the definition of the Nash equilibrium, as severing a link is a unilateral decision,

while the second distinguishes the notion of pairwise stability from that of a Nash

equilibrium. Indeed, even for mutually profitable links, xij = xji = 0 can be a

part of a Nash equilibrium network.

One of the most common questions in the economics of network formation

is whether efficient networks can form. In this paper we discuss two notions of

efficiency, Pareto optimality, and utilitarian efficiency in realized benefits.

Definition 2.8 (Pareto optimal network). A network x is Pareto optimal if there

does not exist a network x′ such that ui (x
′) ≥ ui (x) for all i ∈ I with at least one

strict inequality.

Clearly, a Pareto optimal Nash equilibirium network has to be pairwise stable,

but not every pairwise stable equilibrium is Pareto optimal.

To allow for selection within Pareto optimal equilibria, we define efficiency

notion. For a network x, let v(x) =
∑

i 6=j wijxijxji denote the total sum of realized

benefits. It is clear that v(x) = v(y(x)).

Definition 2.9 (Maximum-weight equilibrium networks). The network x∗ ∈ X∗

is called a maximum-weight equilibrium network if x ∈ argmax x∈X∗ v(x).

Let the set of maximum-weight equilibria be denoted by V ∗. Such networks max-

imize total benefits from connections in the society, while ensuring that for each

player i, the value she derives from her marginal link exceeds her cost, and i chooses

her connections optimally given the behavior of the other players. Thus, they sat-

isfy a participation constraint and an incentive constraint for each individual and

can thus be, in principle, decentralized.

It is clear that maximum-weight equilibrium networks are also pairwise stable.

Efficiency in realized benefits is a very similar notion to utilitarian efficiency but we

do not explicitly consider costs – although they do play some role as we select from

the set of Nash equilibrium networks. We raise two conceptual reasons for this:

(1) we think of costs as player-specific constraints of maintaining social links, as

such they are not transferable or easily measurable, (2) planners may be interested

in the total weight that can be realized in the network without taking costs into

account.
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We conclude this section with the observation that if all players’ cost functions

are linear, the notions of pairwise stability, Pareto-efficiency, and maximum-weight

equilibrium coincide in a unique network.

2.4 Ambiguity attitudes and equilibrium under ambiguity

The concept of Nash equilibrium presupposes that players have correct beliefs

about their opponents’ behavior and best-respond to these beliefs. In games with

multiple Nash equilibria, such an assumption seems rather strong. While players

might indeed entertain beliefs about the behavior of the other players in the game,

they might have limited confidence in such beliefs. The theory of ambiguity allows

us to model such uncertainty about opponents’ strategies formally by the use of

non-additive probabilities called capacities.

Let X−i denote the set of all subsets of X−i.

Definition 2.10 (Schmeidler (1989)). A capacity on (X−i,X−i) is a function

νi : X−i → [0, 1] with νi(∅) = 0, νi(X−i) = 1 and νi(A) ≤ ν(A′), whenever A ⊆ A′.

In words, a capacity is a non-additive measure, which is normalized between

0 and 1 and satisfies monotonicity with respect to set inclusion. In particular,

a capacity will in general violate additivity: the measures assigned to an event

A ⊆ X−i, νi (A), and its complement X−i \ A, νi(X−i \ A) need not sum up to 1.

The notion of a capacity is very general. In this paper, we will use a special

class of capacities, called NEO-additive capacities which allow for a distinction

between the strength of a players’ perception of ambiguity and their attitude to

such ambiguity, optimism or pessimism. These characteristics of the players are

captured by two parameters, αi ∈ [0, 1], and δi ∈ [0, 1].

Definition 2.11 (Chateauneuf et al. (2007)). For a player i, given her ambiguity

parameters αi, δi, and a probability measure πi on (X−i,X−i), the NEO-additive

capacity νi(·|αi, δi, πi) on (X−i,X−i) is defined as follows:

νi(A|αi, δi, πi) =


0 if A = ∅,
1 if A = X−i,
δiαi + (1− δi)πi(A) otherwise.

A NEO-additive capacity can be interpreted as follows: the probability dis-

tribution πi player i’s belief about the behavior of her opponents. The degree of
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confidence of i in this belief is given by (1− δi). In particular, if δi = 0, the degree

of confidence is 1, i is not affected by ambiguity, and her subjective beliefs are

represented by πi itself. When the degree of confidence (1 − δi) < 1, the player

perceives ambiguity δi with respect to her best estimate πi. Intuitively, δi identifies

a set of probability distributions given by the convex combination of πi with the

set of all possible probability measures on X−i, ∆ (X−i),

Πi = (1− δi) {πi}+ δi∆(X−i)

that the player takes into account when deciding on her strategy.

The effect of such ambiguity on i’s beliefs about an event A depends on the

player’s degree of optimism, αi. When αi = 0, the player is a complete pessimist

and her beliefs scale down the probability of any event A (except for the whole

event X−i) by her degree of confidence, (1− δi). For a fully optimistic player with

αi = 1, the probabilities of all events (except the impossible one, ∅) are over-

weighted. More generally, for intermediate degrees of optimism, i will overweigh

events with low probability and underweight those with high probabilities.

In this paper, we will restrict attention to pure strategies and thus, to capacities

for which πi is a Dirac measure on some i-incomplete strategy combination x−i ∈
X−i, πi(x−i) = 1. Slightly abusing notation, we will write νi(·|αi, δi, x−i) to denote

such a capacity.

Given i’s subjective beliefs expressed by NEO-additive capacity νi(·|αi, δi, x−i),
her Choquet expected payoff from choosing a strategy xi is given by the Choquet

integral of the payoff function ui with respect to νi.

Definition 2.12 (Chateauneuf et al. (2007)). The Choquet expected payoff with

respect to a NEO-additive capacity νi with parameters αi, δi and πi such that

πi (x−i) = 1 for some x−i ∈ X−i is given by:

Ui(xi, νi(·|αi, δi, x−i)) =

∫
ui(xi, x̃−i)dνi

= δi

[
αi max

x̃−i∈X−i

ui (xi, x̃−i) + (1− αi) min
x̃−i∈X−i

ui (xi, x̃−i)

]
+ (1− δi)ui (xi, x−i)

= αi max
π∈(1−δi){πi}+δi∆(X−i)

Eπ [ui (xi, x̃−i)] + (1− αi) min
π∈(1−δi){πi}+δi∆(X−i)

Eπ [ui (xi, x̃−i)]

In words, player i’s Choquet expected payoff of strategy xi given her subjective

belief νi is the sum of the expected payoff she would obtain under her objective
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belief πi with weight 1−δi, the highest possible payoff attainable by xi with weight

δiαi, and the lowest payoff attainable by xi, with weight δi(1−αi). There are three

extreme cases: for a realistic player i (δi = 0), the Choquet expected payoff of

xi given νi coincides with the payoff of xi given x−i, for an optimistic/pessimistic

player i (δi = αi = 1 and δi = 1, αi = 0 respectively), the Choquet expected

payoff of xi ignores the objective belief πi and equals the largest/smallest payoff

available through xi.

Alternatively, the Choquet expected payoff can be interpreted as an αi-max-

min expected utility over the set of probability distributions centered around πi

with a “radius” of δi.

Notice that in our network formation game maxx−i∈X−i
ui(xi, x−i) is always

obtained at xji = 1 for every j 6= i, whereas minx−i∈X−i
ui(xi, x−i) obtains at

xji = 0 for every j 6= i and thus,

Ui(xi, νi(·|αi, δi, x−i)) =
∑
j 6=i

xijwij(δiαi + (1− δi)xji)− ci(deg+
i (x)),

The best response correspondence of player i given that her beliefs are repre-

sented by a NEO-additive capacity vi is defined as usual by

Bi(νi(·|αi, δi, x−i)) = arg max
xi∈Xi

Ui(xi, νi(·|αi, δi, x−i)).

As most definitions of equilibrium, the equilibrium under ambiguity imposes

consistency between equilibrium beliefs and equilibrium behavior. Differently from

the standard Nash equilibrium concept, in our framework, players perceive ambi-

guity about the behavior of their opponents. Hence, their beliefs will in general

assign positive weight to strategies, which are not used in equilibrium. The con-

sistency notion is thus imposed on a subset of strategies assigned positive weights,

on those that are in the support of the the objective beliefs, πi. In the case, in

which πi is a Dirac measure on some x−i, the support of πi is given by x−i, the

i-incomplete strategy combination played by the other players.

We now adapt the equilibrium under ambiguity concept of Eichberger and

Kelsey (2014) to our framework as follows:

Definition 2.13 (Eichberger and Kelsey (2014)). A vector of NEO-additive ca-

pacities (ν∗i )i∈I form an equilibrium under ambiguity (EUA) if for every i ∈ I,

x∗−i ∈ B−i(ν∗−i).
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EUA imposes constraints both on players’ strategies and on players’ beliefs. In

particular, whenever player i’s best estimate is that strategy combination x−i will

be played by her opponents, this strategy combination is a vector of each of her

opponent’s best responses according to their respective equilibrium beliefs given

by ν∗−i. It is easily seen that this condition can be equivalently rewritten as:

x∗i ∈ Bi

(
νi
(
· | αi, δi, x∗−i

))
for all i ∈ I, which illustrates the similarity of the concept to the Nash equilibrium.

3 Static results

In this section we characterize static solutions of the network formation game and

explore comparative statics between network size and value with respect to player

optimism.

3.1 Equilibrium, stability and efficiency without ambigu-
ity

We first introduce the following useful notation for the maximum degree of a player

in an equilibrium network. Let

di = max
x∈X
{degi (x) : xi ∈ Bi (x)} = {degi (x) : xi ∈ Bi (x | xji = 1 for all j 6= i)}

denote player i’s largest degree across all networks where she is at her best re-

sponse. In particular, this is the degree of i’s best-response to all other players

extending links to i. In any equilibrium network x∗ ∈ X∗ it is true that for each

i ∈ I we have degi(x
∗) ≤ di.

We next characterize a player’s best response without ambiguity.

Lemma 3.1 (Best response characterization). For x ∈ X and i ∈ I, and x′i ∈ Xi

let x′ = (x′i, x−i). Then, x′i ∈ Bi(x) if and only if for every j 6= i we have

x′ij = 1⇔ xji = 1 and wij > c′i(degi(x
′))

and there do not exist j, k such that xki = 1, x′ik = 0, x′ij = 1 and wik > wij.

The proof of Lemma 3.1 is postponed as it is implied by a later, more gen-

eral statement, Lemma 3.12. Note that the best response of a player is weakly

increasing in x−i, thus, the game exhibits strategic complementarities.
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We can therefore characterize the set of Nash equilibria.

Lemma 3.2 (Nash equilibrium characterization). A network x∗ is a Nash equi-

librium if and only if it is undirected and w′i(x
∗) > c′i(degi(x

∗)) for all i ∈ I.

Proof: The fact that x∗ is undirected is a clear necessary condition for a Nash

equilibrium, while the second property ensures that no player has an incentive to

delete any existing link.

�

Next, we characterize pairwise stable equilibria.

Lemma 3.3 (Pairwise stable equilibrium characterization). The network x∗ is a

pairwise stable equilibrium if and only if x∗ is a Nash equilibrium and for every

i, j ∈ I for which x∗ij = x∗ji = 0 we have wij < max{c′i(degi(x
∗) + 1), c′j(degj(x

∗) +

1)}.

Proof: Only if direction: if x∗ is not a Nash equilibrium then it cannot be

pairwise stable by definition, while if there exists a pair i, j ∈ i with x∗ij = x∗ji = 0

with wij > max{c′i(degi(x
∗) + 1), c′j(degj(x

∗) + 1), then both participants would

prefer to add the link {i, j}.
If direction: As the only if direction shows, no player has an incentive to add

links, while x∗ being a Nash equilibrium ensures that no player has an incentive

to sever links either.

�

Pairwise stable networks, as demonstrated by Lemma 3.3, have desirable prop-

erties relating to efficiency as all links that do not form are not profitable for at

least one participant, thus, grossly underconnected equilibria such as the empty

network are ruled out. The hindrance in reaching efficiency by spontaneous pair-

wise coordination is that, the number of links formed may be far too low compared

to efficient networks. For example, if benefits offered by the links are close to each

other, players with low di values linking to each other decreases overall efficiency

as players with high di values run out of players to link to and thus become unsa-

tiated. This is illustrated by the following example.
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Example 3.4. Let m > 1 and consider an example of 2m players. Suppose that

benefits of all links are equal and assume that there are two groups of players, I1

and I2 with |I1| = |I2| = m such that di = m − 1 if i ∈ I1 and di = 2m − 1 if

i ∈ I2.

Then, the most efficient pairwise stable equilibrium is the one where every

member of I1 is linked to m − 1 members of I2 and every member of I2 is linked

to each other. The total number of links formed is then 1.5m(m − 1). The least

efficient pairwise stable equilibrium is the one where every member of I1 is linked

to every other member of I1 and all members of I2 are linked to every member

of I2. The total number of links formed is then m(m − 1), so a pairwise stable

equilibrium may accommodate an efficiency loss as large as 33%.

We address the question of achieving efficiency through optimistic shocks in section

4. We now move on to the notion of monotonic networks, a central notion in our

paper.

Definition 3.5 (Monotonic network). Network x is monotonic in linking decisions

(monotonic, for short) for player i if for every j, k ∈ I such that wij ≥ wik we have

xij ≥ xik. Network x is monotonic if for every i ∈ I it is monotonic for i.

If x is monotonic, then all players i link to some selection of their top deg+
i (x)

choices of opponents. If an undirected network is monotonic, a player can only

increase the value of her links by forming more links, not by replacing her existing

links with better ones.

Definition 3.6 (Aligned preferences). The players exhibit aligned preferences if

every maximum-weight equilibrium network x∗ ∈ V ∗ is monotonic.

Under aligned preferences, maximum-weight equilibrium networks are not only

optimal for the society but also for the individuals; no player could be better

off without increasing their number of neighbors, but increasing the number of

neighbors in a way that is profitable for all participants is impossible. This is

an appealing property for a game to have, as without it we observe a conflict

between overall efficiency and the players’ incentives, but it is not a general one.

Indeed, it may be that none of the pairwise stable equilibria is monotonic. If

preferences are not aligned, then conflicts may exist between different efficiency

notions; maximum-weight equilibrium networks can be Pareto-dominated by other

equilibrium networks, as shown in the following example.
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Example 3.7. Consider a network of six players shown in Figure 2.

1

2 3

4

5 6

4

5

4

5

4

5

4

Figure 2: The weight network of example 3.7. Links not shown in the figure are assumed
to offer no benefits.

Suppose that the cost structure is such that d1 = d4 = 2, while d2 = d3 = d5 =

d6 = 1. Then, the only maximum-weight equilibrium network is the one given by

x∗ = {{1, 2}, {1, 3}, {4, 5}, {4, 6}} for a total weight of 16, but it is not monotonic

for any player, hence preferences are not aligned.

Suppose that the cost structure of players 1 and 4 is such that they prefer a

single link with value 5 to two links with values 4, e.g. c1(1) = c4(1) = 3.8 and

c1(2) = c4(2) = 7.7. Then, the network given by x = {{1, 4}, {2, 3}, {5, 6}}, with

its weight of 15 Pareto-dominates x∗.

In case preferences are aligned, maximum-weight equilibrium networks are Pareto-

optimal, thus these efficiency notions mutually support each other.

Lemma 3.8. Suppose that the players exhibit aligned preferences. Then every

x∗ ∈ V ∗ is Pareto-optimal in the set of Nash equilibria.

Proof: Take an x∗ ∈ V ∗. For contradiction, assume an x ∈ X∗ exists that

Pareto-dominates x∗. Suppose that for every i ∈ I we have degi(x) ≥ degi(x
∗).

Then, for every i ∈ I we have ci(x) ≥ ci(x
∗), thus, for ui(x) ≥ ui(x

∗) to hold we

must have
∑

j∈Ni(x) wij ≥
∑

j∈Ni(x∗)
wij, for each i ∈ I and strict inequality for at

least one player, contradicting the weight-maximality of x∗. Thus, there exists a

player i with degi(x) < degi(x
∗). However, since x∗ is monotonic, ui(x) ≥ ui(x

∗)

requires degi(x) ≥ degi(x
∗), a contradiction.

�

The reverse of Lemma 3.8 is not true, that is, the existence of an equilibrium

network which is monotonic and Pareto-undominated does not imply that pref-

erences are aligned. In Example 3.7 the Pareto-dominant equilibrium network is
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monotonic but preferences are not aligned as it is not a maximum-weight equilib-

rium.

In the special case where the benefits of all links are equal, preferences are

always aligned and maximum-weight equilibrium networks are the largest equi-

librium networks in the number of links. There we can derive an even stronger

statement, every non-maximum-weight equilibrium network is Pareto-dominated

by the maximum-weight equilibrium network closest to it.

Lemma 3.9. If for every i, j we have wij = w for some w ∈ R+, then for every

x′ ∈ X∗ \ V ∗ and every x ∈ V ∗ that is closest to x′ in V ∗, x Pareto-dominates x′.

Proof: Let x′ ∈ X∗ \ V ∗, let x be an element of V ∗ that is closest to x′,

and assume that x does not Pareto-dominate x′. Then, there exists i ∈ I such

that degi(x
′) > degi(x). Hence, there exists a player j ∈ Ni(x

′) \ Ni(x). If

degj(x) < degj(x
′), then either degj(x) < dj and hence, {i, j} could be added to

x, contradicting x ∈ V ∗, or we have degj(x
′) > dj = degj(x), contradicting the

fact that x′ is an equilibrium network.

If degj(x) > degj(x
′), then there must exist k ∈ Nj(x) \ Nj(x

′). Consider

the network x′′ which we get from x by removing the link {j, k} and adding the

link {i, j}. It is clear that x′′ ∈ X∗, since degi(x
′′) ≤ degi(x

′) ≤ di , degj(x
′′) =

degj(x
′) = dj, and degk(x

′′) = degk(x) − 1 < dk. Furthermore, x′′ ∈ V ∗, since x

has the same number of links as x′′. However, we have φ(x′, x′′) = φ(x′, x) − 2,

thus we contradict the choice of x as a closest element of V ∗ to x′. Thus, x must

Pareto-dominate x′.

�

There is no equivalent statement for games with aligned preferences in general as

a player i’s first-best network need not be a maximum-weight equilibrium network

and thus it is possible for this player to be worse off in every maximum-weight

equilibrium network.

As mentioned, uniform benefits of linking implies that preferences are aligned

as the condition that all opponents who offer higher benefits than any neighbor

must be neighbors as well is empty. To conclude this subsection, we derive a suffi-

cient condition under which the unique maximum-weight equilibrium is monotonic,

which in turn implies that preferences are aligned.
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Lemma 3.10. Suppose that

1. for every i ∈ I there exists a value w̄i such that |{k : wik ≥ wi}| = di, and

2. for every i, j ∈ I we have wij ≥ w̄i ⇔ wij ≥ w̄j.

Let x∗ be given as follows: x∗ij = 1 if wij ≥ wi, x
∗
ij = 0 otherwise. Then, x∗ is

the unique maximum-weight equilibrium network and it is monotonic.

Proof: It is clear that x∗ is monotonic and, by property (2), it is undirected.

Furthermore, by property (1) it holds that for every i ∈ I we have degi(x
∗) = di.

Thus, every player has the maximum number of neighbors and is linked to her

best choice of di opponents. Thus, x∗ is the only maximum-weight equilibrium

network.

�

Lemma 3.10 lays out two sufficient conditions for preferences to be aligned: (1)

each player must have a well-defined set of favorite opponents to link to that

will satiate her, and (2) reciprocity in favorite opponents. The first condition

precludes, among other settings, the uniform benefits case; even though uniform

benefits represent aligned preferences they do not generally imply uniqueness of

the maximum-weight equilibrium. If indifferences are not allowed, as is often the

case in matching, this condition is automatically satisfied. The second condition

ensures reciprocity of links if all players link to their set of favorite opponents.

Lemma 3.11 (Unique efficient network in the linear cost case). Let all player’s

cost functions be linear. Define the network x∗ as follows: x∗ij = 1 if and only if

wij > max{ci, cj}. Then, x∗ is the unique pairwise stable, Pareto efficient, and

maximum-weight equilibrium network.

The proof of Lemma 3.11 is straightforward. The uniqueness of the efficient equi-

librium ensures that optimism has very clear, positive effects on efficiency in the

linear case.
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3.2 Equilibrium under ambiguity characterization and com-
parative statics

Analogously to the case without ambiguity, we begin by a characterization of a

player’s best response under ambiguity parameters αi and δi. To simplify the

analysis and avoid the cases of indifference we will discuss ambiguity parameters

δi, αi, i ∈ I such that for every i, j ∈ I and every r ∈ N we have wijδiαi 6= c′i(r)

and wij(δiαi + 1− δi) 6= c′i(r), which is a generic setting of parameters.

Lemma 3.12 (Best response under ambiguity). For x ∈ X and i ∈ I, and x′i ∈ Xi

let x′ = (x′i, x−i). Then, x′i ∈ Bi(νi(·|αi, δi, x−i)) if and only if for every j 6= i we

have xij = 1 if and only if the following two properties hold:

1. wij(δiαi + (1 − δi)xji) > c′i(degi(x
′)) (the benefit of linking to j exceeds

marginal cost),

2. for every k such that x′ik = 0 we have wij(δiαi + (1 − δi)xji) ≥ wik(δiαi +

(1− δi)xki) (none of the non-neighbors is a better pick than j).

Proof: The⇐ direction is clear; if the link towards a player j appears profitable

and there is no better alternative to connect to, then player i’s best response is to

link to j. The ⇒ direction consists of two simple parts: (1) linking to j cannot

be a best response if it does not appear profitable, (2) linking to j but not linking

to an apparently more profitable k cannot be a best response.

�

It is clear that Lemma 3.12 implies Lemma 3.1.

Lemma 3.13 (EUA characterization). The network x∗ is an EUA of a game given

by W and c if and only if for every trio i, j, k ∈ I such that x∗ij = 1, x∗ik = 0 we

have

wij(δiαi + x∗ji(1− αi)) ≥ wik(δiαi + x∗ki(1− αi))

and every pair i, j ∈ I x∗ follows rules presented by Table 1.

Proof: Both conditions follow from Lemma 3.12.

�
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wij >
c′j(x∗)

δjαj
∈
(

c′j(x∗)

δjαj+1−δj ,
c′j(x∗)

δjαj

)
<

c′j(x∗)

δjαj+1−δj

>
c′i(x

∗)

δiαi
x∗ij = x∗ji = 1 x∗ij = x∗ji = 1 x∗ij = 1, x∗ji = 0

∈
(

c′i(x
∗)

δiαi+1−δi ,
c′i(x

∗)

δiαi

)
x∗ij = x∗ji = 1 x∗ij = x∗ji = 0 or 1 x∗ij = x∗ji = 0

<
c′i(x

∗)

δiαi+1−δi x∗ij = 0, x∗ji = 1 x∗ij = x∗ji = 0 x∗ij = x∗ji = 0

Table 1: EUA characterization. High-value directions always form, low-value directions
never form in equilibrium. In-between-value directions form only if reciprocated, either
because the opposite direction is high-value, or because the opposite direction is also an
in-between-value. If, for two players, both directions are in-between-value, there exist
multiple equilibria. Note: we use the convention 1/0 =∞.

There are two important differences between Nash equilibrium networks and EUA:

First, the empty network is not always an EUA, since, as Table 1 shows, some

players may find it optimal to link to an opponent under any circumstance. As a

result, existence becomes a non-trivial issue. Note that whenever the cost function

is strictly concave, the game is not supermodular in the players’ own strategies

and thus, the standard existence result of Topkis (1979) cannot be used. Second,

as Table 1 shows once again, in general, EUA may contain directed links. As

mentioned, a sufficiently optimistic player will link to a highly profitable opponent

even without reciprocation, while if the opponent is sufficiently pessimistic or does

not find the link profitable, she will not reciprocate.

Proposition 3.14 (Existence of EUA). An equilibrium under ambiguity exists for

any network formation game and any set of ambiguity parameters that satisfy the

assumptions of no indifference.

Proof: We show this statement by the use of strict best-response paths. A strict

best-response path is a sequence of networks (xt)t∈{0,...,T} such that for every t ∈
{1, . . . , T} there exists a player it such that xt−it = xt−1

−it , xt−1
it /∈ Bi(νi(·|αi, δi, xt)),

and xtit ∈ Bi(νi(·|αi, δi, xt)). In a strict best-response path every period has exactly

one player move from a strategy that isn’t a best response to the current strategies

of her opponents to a best response. We will show that no matter the starting

network x0, the order of updates, or the length of the sequence, there are no cycles

in this process, i.e. there does not exist a non-trivial strict best-response path for

which x0 = xT . Given this fact and due to the finiteness of the set of possible

networks with n players, starting from any network, any sequence of such strict

improvements by players who are not at their best response will lead to an EUA.

So, for contradiction suppose that such a cycle (xt)t∈{0,...,T} exists with x0 = xT .
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We say that the link {i, j} is changing in this sequence if there exist two time

periods t and t′ such that xtij 6= xt
′
ij. It is clear that such links must exist in any

strict best-response path.

Claim 3.15. In a strict best-response cycle there must exist a changing link {i, j}
and a time period t such that xtij = xtji = 1.

To show this, suppose for contradiction that such a changing link does not

exist. Take a player i and two distinct time periods t < t′ such that it = it
′

= i

and for every t′′ ∈ {t + 1, . . . , t′ − 1} we have it
′′ 6= i. For any cycle such periods

may be found by an appropriate time shift. It is clear that t and t′ cannot be

consecutive time periods in a strict best-response path and that there must exist

a link {i, j} such that xt+1
ij 6= xt

′+1
ij otherwise xt

′
i = xt

′+1
i , contradicting that

xt
′
i /∈ Bi(νi(·|αi, δi, xt

′
)). Since there are no changing reciprocal links we must

have Ni(x
t) = Ni(x

t+1) = Ni(x
t′) = Ni(x

t′+1). Furthermore, for every k ∈ I with

xtik = 0 and xtki = 1 we have xt+1
ik = 0, otherwise a changing reciprocal link would

appear. Similarly, for every k ∈ I with xt
′

ik = 0 and xt
′

ki = 1 we have xt
′+1
ik = 0.

It follows that xt+1
i ∈ Bi(νi(·|αi, δi, xt)) implies xt+1

i ∈ Bi(νi(·|αi, δi, xt
′
)) as

no player can form a link to i, nor delete a link to i that she would reciprocate

forming or deleting in t′ as there can be no changing reciprocated links. Since

xt+1
i = xt

′
i due to the fact that i hasn’t changed her action between t and t′ we

have xt
′
i ∈ Bi(νi(·|αi, δi, xt

′
)), a contradiction by the fact that we assumed a strict

best-response cycle.

�

Secondly, we show that a strict best-response cycle also cannot contain a re-

ciprocated changing link. The two statements together imply that there are no

strict best-response cycles.

Claim 3.16. In a strict best-response cycle there cannot be a changing link {i, j}
and a time period t such that xtij = xtji = 1.

Once again, suppose for contradiction that such a link exists in a strict best-

response cycle. Let i, j be a pair and t a time period such that {i, j} is a recip-

rocated changing link with the largest value wij, i
t = i, xtij = xtji = 1, xt+1

ij = 0,

and |{k ∈ Ni(x
t) : wik = wij}| ≥ |{k ∈ Ni(x

t+1) : wik = wij}|. In words, i, j is a
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best-value reciprocated changing link that was deleted by i in period t and she

does not have more links of value wij in period t + 1 than in period t. Such i, j

and t are guaranteed to exist in a strict best-response cycle.

Let time period t′ < t be such that it
′

= i, xt
′
ij = 0, xt

′+1
ij = 1. As before, for

any cycle, such periods may be found by an appropriate time shift.

Let Ki = {k : wikαiδi > wijαiδi + 1 − δi} denote the set of players whom i

strictly prefers to j even if j reciprocates but they do not. If this set is empty,

player i will never delete a link with j. It is clear that we must have xt
′+1
ik = 1

for every k ∈ Ki, otherwise we cannot have xt
′+1
ij = 1 as a best response to xt

′

by Lemma 3.12. This in turn implies that xtik = 1 for every k ∈ Ki, otherwise

we would have a time period t′′ ∈ {t′ + 1, . . . , t− 1} where i deletes her link to a

k ∈ Ki but keeps the link to j, which cannot happen in a best response.

So, at time t, when i deletes her link to j, every link that offers a better payoff

was already formed, and since she cannot have more neighbors of equal value in

t+ 1 by the choice of j, it is impossible that xt+1
i is a best response to xt provided

that xti was not a best response to xt. This concludes the proof of Claim 3.16 and

thus of Proposition 3.14.

�

We now turn our attention towards the comparative statics with respect to

changes in the optimism parameters αi. We begin by the introduction of minimal

and maximal out-degrees under ambiguity.

Definition 3.17 (Minimal and maximal out-degree). For player i ∈ I her minimal

and maximal out-degree, denoted by di and di are defined as

di(αi, δi) = deg+
i (x) where xi ∈ Bi

(
νi

(
·|αi, δi, (xji = 0)j 6=i

))
,

di(αi, δi) = deg+
i (x) where xi ∈ Bi

(
νi

(
·|αi, δi, (xji = 1)j 6=i

))
,

respectively.

In words, the values di and di are the number of links player i offers in a best

response to the belief that no players link to i and all players link to i, respectively.

Since indifferences of linking and not linking are ruled out, these values are well-

defined, with di being the largest degree r such that r ≥ |{j ∈ I : αiδiwij > c′i(r)}|
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holds and di being the largest degree r such that r ≥ |{j ∈ I : (αiδi+(1−δi))wij >
c′i(r)}| holds.

It is clear that without ambiguity, di = 0 and di = di, while for general am-

biguity parameters we have di ≥ 0 and di ≤ di. These values are crude lower

and upper estimates of the number of out-links player i can have in any equilib-

rium. We now show that an increase of a player’s optimism without changing her

perception of ambiguity raises both these bounds.

Lemma 3.18 (Minimal and maximal out-degree comparative statics). If, for some

i ∈ I we have α′i > αi, then di(α
′
i, δi) ≥ di(αi, δi), and di(α

′
i, δi) ≥ di(αi, δi).

Proof: The statement follows from the fact that for every i, j ∈ I and every

x−i ∈ X−i it holds that wij(αiδi+xji(1− δi)) ≥ wij(α
′
iδi+xji(1− δi)), thus in best

response to both situations, more optimism will lead to a weakly higher number

of out-links.

�

By Lemma 3.18, a player’s bounds on the number of out-links increase in any

best response and in any equilibrium with the player’s optimism as the perceived

value of all potential links also increases. However, the number of links in the

equilibrium network, or even the equilibrium degree of the player becoming more

optimistic, may decrease. For this reason the comparative statics between player

optimism and the size of the equilibrium network is not straightforward.

There are cases, however, where the equilibrium number of links, and thus the

total benefits in the network, will increase as a result of an increase in optimism.

We show that if an equilibrium is monotonic, then if the optimism parameter of all

players increases, there will always exist an equilibrium under the new parameters

with weakly more links.

Proposition 3.19 (Monotonic equilibrium comparative statics). Let x ∈ X∗(δ, α)

be monotonic and consider an α′ ≥ α. Then, there exists an equilibrium under

ambiguity, x′ ∈ X∗(α′, δ) such that y(x) ≤ y(x′).

Proof: We decompose the network formation game with parameters (δ, α′) into

two parts: the mutual links that are formed in the equilibrium x of the game (δ, α),

y(x) and the remaining links. In particular, we will look at the network formation

game with parameters (δ, α′) such that
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w̃ij = 0 for all {i, j} ∈ y(x) (2)

w̃ij = wij for all {i, j} /∈ y(x)

c̃i (r) = ci (r + degi(x)) for r ∈ N, i ∈ I

Clearly, for every i ∈ I the maximal number of links in this game is given by

d̃i = d̄i−degi(x). Furthermore, by Proposition 3.14, this game has an equilibrium

– denote such an equilibrium by x̃. Note that since c̃i (r) > 0 for all r, x̃ij = 0

holds for all {i, j} ∈ y(x).

For the original game with parameters (δ, α′), define the strategy combination

x′ by x′ij = 1 for all {i, j} ∈ y(x) and x′ij = x̃ij for all {i, j} /∈ y(x). Note that for

each i,

deg+
i (x′) = deg+

i (x̃) + degi(x) (3)

We now show that x′ ∈ X∗ (δ, α′) by showing that x′i satisfies the two conditions

in Lemma 3.12, i.e. it is a best response to x′−i, starting with condition 1. Take

an {i, j} such that x′ij = 1.

Case 1: If {i, j} ∈ y(x), and there exists some k such that x′ik = 1 and

{i, k} /∈ y(x), then we have

wij
[
α′iδi + (1− δi)x′ji

]
≥ wik [α′iδi + (1− δi)x′ki] > c̃′i

(
deg+

i (x̃)
)

= c′i
(
deg+

i (x′)
)
,

where the first inequality follows from the fact that x is monotonic and thus

wij ≥ wik, the second inequality follows from the fact that x′ki = x̃ki and x̃ is an

equilibrium of (2) and the equality is a consequence of the definition of c̃ and (3).

Case 2: If {i, j} ∈ y(x) and N+
i (x′) = Ni(x) then we have

wij [α′iδi + (1− δi)] ≥ wij [αiδi + (1− δi)] > c′i (degi(x)) = c′i
(
deg+

i (x′)
)
,

where the first inequality is due to α′i ≥ αi, the second is due to the fact that

{i, j} ∈ y(x) and x was an EUA of the game with α, and the equality is by the

definition of c̃ and (3).

Case 3: If {i, j} /∈ y(x), then x′ij = x̃ij

wij
[
α′iδi + (1− δi)x′ji

]
> c̃′i(degi(x̃)) = c′i(degi(x)),
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where the inequality holds due to the fact that x̃ is an equilibrium of (2) and the

equality is a consequence of the definition of c̃ and (3).

Thus, condition 1 of Lemma 3.12 is satisfied whenever x′ij = 1.

Take next an {i, j} such that x′ij = 0. Clearly, {i, j} /∈ y(x) and thus x′ij = x̃ij.

Since x̃ij is an equilibrium of the game defined by (2), we have

wij
[
α′iδi + (1− δi)x′ji

]
< c̃′i

(
deg+

i (x̃)
)

= c′i
(
deg+

i (x′)
)
.

Thus, condition 1 of Lemma 3.12) is satisfied whenever x′ij = 0 as well.

Finally, we check condition 2. Suppose that there exist distinct players i, j and

k such that wij(α
′
iδi+(1−δi)x′ji) > wik(α

′
iδi+(1−δi)x′ji), but x′ik = 1 and x′ij = 0.

Clearly, {i, j} /∈ y(x). If {i, k} ∈ y(x) then x′ki = 1, and since wik ≥ wij by the fact

that x is monotonic, this contradicts wij(α
′
iδi+(1−δi)x′ji) > wik(α

′
iδi+(1−δi)x′ji).

Hence, {i, k} /∈ y(x). Since x̃ is an EUA of the game (2), by condition 2 of Lemma

3.12 we have

wij [α′iδi + (1− δi)x̃ji] = wij
[
α′iδi + (1− δi)x′ji

]
≤

wik(α
′
iδi + (1− δi)x′ji) = wik(α

′
iδi + (1− δi)x̃ji),

a contradiction.

Therefore, all conditions of Lemma 3.12 holds.

�

By Proposition 3.19, we thus obtain that if an equilibrium is monotonic, an

increase in the players’ optimism will lead to more reciprocated links, increasing

the value of realized benefits in the network as well.

In the special case when all cost functions are linear, the game is supermodular

and the result of Proposition 3.19 holds regardless of whether the initial equilib-

rium x is monotonic (Schipper, 2019).

4 Dynamic results

Static equilibrium concepts such as the Nash equilibrium and pairwise stability

often suffer from multiplicity and thus result in indeterminacy of the equilibrium

network. In contrast, strongly stable equilibria may fail to exist. Since the seminal
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works of KMR and Young (1993), models of myopic adaptation with random

mutations have been used as a selection device in games with multiple equilibria.

In general, such models postulate a best-response type of adaptive dynamics.

In each period, a player is chosen at random and revises her strategy by playing a

best response to the current strategy combination of her opponents. With strictly

positive probability, mutations (such as mistakes, experimentation) occur; instead

of playing her best response, the player chooses a strategy at random.

In this paper player mutations, instead of leading to a random choice of a

strategy, will affect the player’s ambiguity parameters, her perception of ambi-

guity and optimism. Specifically, we are interested in mutations that amount to

optimistic shocks; the affected player best-responds to the belief that every one of

her opponents is willing to form a link to her. We use this process to select for

equilibria that are stable for such optimistic deviations. In addition, we allow for

players to best-respond to the current network in the classic sense as well.

Our dynamic process takes place in discrete time, t ∈ N. The network at

time t will be denoted by xt. Take an initial network structure xt−1. In period

t, a player it is chosen at random with uniform probability 1/n and receives an

opportunity to revise her strategy to xit . All other players continue playing the

strategies corresponding to xt−1
−it .

For player i ∈ I let δ̄i ∈ (0, 1) and ᾱi ∈ [0, 1] such that for every j, k ∈ I \ {i}
such that wij > wik we have δ̄iᾱiwij > wik. Such values are guaranteed to exist

with both δ̄i and ᾱi being close to 1, as the player set is finite. These parameters

represent highly optimistic behavior but not the complete ignorance of objective

beliefs. This has three important effects on behavior: (1) if pressed to make a

choice, the player will strictly prefer an unreciprocated link of a higher value to a

reciprocated link of a lower value, (2) due to δ̄i < 1 the player will strictly prefer

a reciprocated link to an unreciprocated one of equal value, (3) the player always

finds it optimal to have exactly di out-links to her top di choices, i.e. di = di = di.

The main parameter governing our dynamic process is the frequency of op-

timistic shocks, denoted by β ∈ (0, 1). If close to zero, our process resembles a

best-response dynamic with regular, but infrequent optimistic shocks, and if close

to 1, the players almost always react optimistically. The ambiguity parameters of

player it at the time of revision are thus given by the following time-independent

probability distribution:
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δtit = 0 and αtit arbitrary with probability 1− β,

δtit = δ̄it and αtit = ᾱit , with probability β,

Given her current ambiguity parameters, the revising player behaves myopically

and chooses a best response to xt−1
−it :

xtit ∈ Bit(νit(·|αtit , δtit , xt−1
−it ))

If the best response Bit (·) is not a singleton, player it chooses a best response in

Bit (·) uniformly at random. The resulting network at time t, xt, is then given by

xt(xt−1, it, αtit , δ
t
it) = (xtit , x

t−1
−it ).

In words, any updating player is an optimist with uniform probability β and a best-

responder with probability 1− β. In a naive learning and experimenting process,

the case of a small, but positive β is of interest, meaning that players behave

as myopic best-responders most of the time but sometimes experience optimistic

shocks. Our results below, however, apply for general values of β.

In what follows, we will shorten the notation of an optimistic player’s best

response to x to Bo
i (x) = Bi(νi(·|ᾱi, δ̄i, x−i)).

This dynamic process describes a Markov chain on the set X. For x, x′ ∈ X let

p(x, x′) denote the one-step transition probability from x to x′. It is clear that for

every x, x′ ∈ X with p(x, x′) > 0 there exists i ∈ I such that either x′i ∈ Bi(x) or

x′i ∈ Bo
i (x) and for every j 6= i we have x′−i = x−i. For m ∈ N let pm(x, x′) denote

the transition probability from x to x′ in exactly m steps. For a set of networks

X ′ ⊆ X let pm(x,X ′) =
∑

x′∈X′ p
m(x, x′) denote the probability of reaching this

set from x in exactly m steps.

Definition 4.1 (Successor). For x, x′ ∈ X and m ∈ N we say that x′ is an

m-successor of x if pm(x, x′) > 0.

We denote the set ofm-successors of network x by Sm(x) and let
⋃
m∈N S

m(x) =

S(x) denote the set of all successors of x. By convention we include x ∈ S(x).

We now present our main result of this section: If preferences are aligned,

then the dynamic described above always pushes the game towards networks that

contain a maximum-weight equilibrium network, and, possibly, some additional

one-way links.
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Proposition 4.2 (Optimism leads to benefit-maximizing equilibrium value under

aligned preferences). Suppose that the players exhibit aligned preferences. Then,

for every x ∈ X we have limm→∞ p
m(x, y−1(V ∗)) = 1

To obtain the desired result, we first show that for sufficiently high degrees of

ambiguity and optimism, an optimistic shock to a given player i incentivizes her

to initiate her di most preferred links, even if they are currently not reciprocated.

By definition, all such links have a value of at least c′i (di). Combined with an

appropriate sequence of “realistic” best-responses in which other players are given

the opportunity to reciprocate the links offered by i and subsequently i can with-

draw all non-reciprocated links, this gives rise to a network, in which all of i’s links

are reciprocated and have a value of at least c′i (di). Repeating this procedure for

all players results in a Nash equilibrium network, in which the links of any player

have a value of at least c′i (di).

Once such an equilibrium is reached, and provided that it is not already a

maximum-weight one, we identify a closest maximum-weight network (one that

can be reached with a minimal number of changes in links) which is monotonic by

the assumption that preferences are aligned. We then show that this maximum-

weight equilibrium is reached by some series of updates.

Specifically, we show that we can choose a link {i, j} which is part of the

maximum-weight network, but not formed at the current step, and a player i

who would initiate this link under an optimistic shock. If this is followed by j

being given a best-responding revision opportunity she may reciprocate this link,

possibly severing some others. We show that there exist a series of best-responses

by j and possibly by some other players through which we obtain a network which

is strictly closer to the desired maximum-weight equilibrium network (notably by

the inclusion of the link {i, j} and the exclusion of some unnecessary links).

Since the set of all networks is finite, repeating this process allows the dynamic

to reach V ∗ in finite time. Finally, we show that once a network in V ∗ is reached,

the value of the network cannot decrease on the path of the best-response dynam-

ics: This is because realistic best-responders have no interest in severing any links

in a maximum-weight equilibrium as they are all profitable and reciprocated, while

optimists don’t sever links because maximum-weight equilibria are monotonic and

hence they already link to a top selection of their opponents.

After a maximum-weight equilibrium is reached, optimistic shocks could lead
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to the creation of additional non-reciprocated links and realistic best-responders

may reciprocate these links while severing others that are equally valuable, thus

the game may shift from one maximum-weight equilibrium to another. However,

the total value of reciprocal links stays at its maximum thereafter.

We note the difference between our approach and that of KMR. Similarly

to their approach, our best-response dynamic with optimistic shocks defines a

Markov process on the set of strategy combinations and thus, on the set of directed

networks. In KMR, the random mutations imply that any strategy can be chosen

with strictly positive probability and thus, the Markov process visits any of the

Nash equilibria infinitely often. When the probability of mutations goes to 0,

only the equilibrium with the largest basin of attraction remains as a long-run

equilibrium of the game. In 2x2 games, this dynamic selects for the risk-dominant

(as opposed to the Pareto-dominant) equilibrium.

In contrast, in our model, the asymmetric nature of the optimistic shocks

implies that, (as long as the probability of a shock is strictly positive), the Markov

process reaches the set of maximal weight networks, with probability 1, regardless

of initial conditions. Furthermore, the set y−1 (V ∗) is absorbing. Thus, rather

than selecting for a single equilibrium, our dynamic selects for a set of equilibrium

networks which are Pareto-optimal.

We formally prove this result by a series of lemmata.

Lemma 4.3. For every x ∈ X there exists x∗ ∈ X∗ ∩ S(x) such that for all i ∈ I
we have w′i(x

∗) > c′i(di).

Proof: First we show that there exists x′ ∈ X∗ ∩ S (x). Take an arbitrary x ∈ X.

Then, suppose that in the next n periods, all players {1, . . . , n} are given an

ambiguity-neutral best-responding revision opportunity in increasing order. Call

the resulting network x′. The probability of this happening is ((1 − β)/n)n > 0,

so we must have x′ ∈ S(x). Then, for every i ∈ I we have w′i(x
′) > c′i

(
deg+

i (x′)
)

and for every pair with i > j we can have x′ij = 1 only if xji = 1. Thus, repeating

the same process in the reverse order will lead to an undirected network x′′ with

w′i(x
′′) > c′i (degi (x

′′)) for all i ∈ I, satisfying the equilibrium conditions.

This shows that we can take x ∈ X∗ at the start. Take a player i such

that w′i(x) < c′i(di). If none can be found, we are done. If such a player exists,

suppose that she receives an optimistic revision opportunity. Then since for every
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xoi ∈ Bo
i (x) we have w′i(x

o
i , x−i) > c′i(di), she will sever all links with players giving

her less benefits than c′i(di) and possibly initiate some links to others. Then, allow

all her neighbors with whom she severed her links to best-respond in an ambiguity-

neutral way, their only best response being is to sever their unreciprocated links

towards i and make no other changes. Finally, let player i best-respond to sever all

unreciprocated links she had initiated as an optimist. Call the resulting network

x′. Since pm (x, x′) > 0 for some m ≤ Ni(x) + 1 we must have x′ ∈ S(x).

At x′, we clearly have w′i(x
′) > c′(di) since all players j 6= i with wij < c′i(di)

now have no outgoing links towards i while Ni(x) ⊇ Ni(x
′). Thus, we have

x′i ∈ Bi(x
′), meaning that x′ ∈ X∗. Furthermore, w′i(x

′) > c′i(di), as well as

|x′| < |x|, since player i lost links and no player gained any. If there exists j 6= i

with w′j(x
′) < c′j(dj), we can repeat this process. If the process does not terminate

sooner with a desired network, it will terminate by reaching the empty network

which trivially satisfies the conditions of the statement.

�

The next lemma shows that the learning process enters the set of maximum-

weight equilibria that are monotonic, V ∗, for any starting state with a positive

probability.

Lemma 4.4. Suppose that the players exhibit aligned preferences. For every x ∈ X
there exists an x∗ ∈ V ∗ ∩ S(x).

Proof: By Lemma 4.3 we may take x ∈ X∗ such that w′i(x) > c′i(di) for all i ∈ I.

Let x∗ ∈ V ∗ be the closest element of V ∗ to x. If x ≥ x∗, then we must have

x = x∗ otherwise we contradict the choice of x∗ as an element of V ∗, in which case

we are done. If x 6≥ x∗, we have x∗ \ x 6= ∅.
We will show that there exists an x′′ ∈ X∗ ∩S(x) which also satisfies w′i(x

′′) >

c′i(di) for every i ∈ I and for which φ(x′′, x∗) < φ(x, x∗). Through a repeated

application of this argument the distance eventually decreases to 0, meaning that

we reach x∗. We distinguish two cases.

Case 1. There exists a player i and a link {i, j} ∈ x∗ \x such that degi(x) < di.

Let j ∈ argmax j′∈Ni(x∗)\Ni(x) wij′ be the most valuable such link for player i. Then

let x′i be a strategy profile which is monotonic for i, deg+
i (x′i, x−i) = di, and

N+
i (x′i, x−i) ⊇ (Ni(x) ∩ Ni(x

∗)) ∪ {j}. By Lemma 3.12, and due to x satisfying
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w′i(x) > c′i(di), we must have x′i ∈ Bo
i (x). Let player i receive an optimistic revision

opportunity and suppose that she revises to x′i.

Case 1a. If degj(x) < dj, then we must have wij ≥ w′j(x
∗) > c′j(dj) ≥

c′j(degj(x) + 1). Therefore, Bj(x
′
i, x−i) is a singleton with its only element, which

we denote by x′j, satisfying x′jk = 1 if and only if k ∈ Nj(x) ∪ {i}. Suppose

that player j receives a best-responding revision opportunity, and thus, selects

the strategy x′j. For each k ∈ Ni(x) \N+
i (x′i, x−i) let k receive a best-responding

revision opportunity, their only best response being is to keep all of their existing

links except those with i who had severed her link to each k.

Finally, let player i also receive best-responding revision opportunity. Her

only best response, which we denote by x′′i , is to delete all unreciprocated links

she initiated when she moved to x′i, that is, x′′ik = 1 if and only if k ∈ (Ni(x) ∩
Ni(x

∗)) ∪ {j}. Let the resulting network be denoted by x′′. It is clear that x′′ is

an equilibrium network, w′(x′′) ≥ c′(d), and φ(x′′, x∗) < φ(x, x∗). Since the above

process leads to x′′ from x, we have x′′ ∈ S(x) as well.

Case 1b. If degj(x) = dj ≥ degj(x
∗), then there must exist a link {j, k} ∈ x\x∗.

Since x∗ is monotonic we must also have wij ≥ wjk. Thus, there must exist an

x′j ∈ Bj(x
′
i, x−i) such that x′j` = 1 if and only if ` ∈ (Nj(x) \ {k})∪ {i}. As before

let j receive a best-responding revision opportunity and suppose that she selects

x′j. Let this be followed by player k best-responding; her only best response being

to cut her now unreciprocated link towards j and keeping all her other neighbors.

Then, as before, for each k′ ∈ Ni(x) \ N+
i (x′i, x−i) let k′ receive a best-

responding revision opportunity, their only best response being to keep all of

their existing links except those with i, who had severed her link to each k′.

Finally, let i best-respond, her only best response being to delete all unrecip-

rocated links she initiated when she moved to x′i, that is, x′′ik = 1 if and only if

k ∈ (Ni(x)∩Ni(x
∗))∪{j}. Let the resulting network be denoted by x′′. As before,

x′′ ∈ X∗, satisfies w′(x′′) ≥ c′(d) and φ(x′′, x∗) < φ(x, x∗), as well as x′ ∈ S(x),

completing Case 1.

Case 2. For every link {i, j} ∈ x∗\x we have degi(x) = di and degj(x) = dj. We

will show that there must exist such a link {i, j} for which there exists {i, k} ∈ x\x∗

such that wij > wik.

Suppose this isn’t true, i.e. for every i, j, k with {i, j} ∈ x∗\x and {i, k} ∈ x\x∗

we have wij ≤ wik. Since degi(x) = di for all i with Ni(x) 6= Ni(x
∗) we must have
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degi(x) ≥ degi(x
∗) for all i. These two facts imply that v(x) ≥ v(x∗) which

can only hold with equality as x∗ is a maximum-weight equilibrium network. If

degi(x) > degi(x
∗) for some i ∈ I and degj(x) ≥ degj(x

∗) for all other j 6= i,

then v(x) = v(x∗) can hold only if we have such a trio i, j, k with {i, j} ∈ x∗ \ x,

{i, k} ∈ x\x∗, and we have wij > wik, a contradiction. So suppose that degi(x) =

degi(x
∗) for all i.

Now we will show that under these conditions x is monotonic, a contradiction

since that would mean x ∈ V ∗. Take a player i and suppose that there exist j, k 6= i

such that {i, j} ∈ x, {i, k} /∈ x and wij < wik. If no such player can be found, x is

monotonic. We must have {i, k} /∈ x∗ by assumption thus {i, k} ∈ x\x∗. However,

due to degi(x) = degi(x
∗) there must exist an ` ∈ Ni(x

∗) \ {j} and by assumption

we must have wik > wij ≥ wi`. Thus, since {i, k} /∈ x∗, this is a contradiction as

x∗ is monotonic.

Therefore if for every link {i, j} ∈ x∗\x we have degi(x) = di and degj(x) = dj,

then there must exist {i, j} ∈ x∗ \ x and a {i, k} ∈ x \ x∗ such that wij > wik. In

particular, let j ∈ argmax j′∈Ni(x∗)\Ni(x) wij′ and let k ∈ argmin j′∈Ni(x)\Ni(x∗) wij′ .

Construct a strategy x′i such that it is monotonic and for every ` ∈ (Ni(x) ∩
Ni(x

∗)) ∪ {j} we have x′i` = 1. By the fact that wij > wik, we must have such a

strategy with deg+
i (x′i, x−i) = di as player i can include j to her set of neighbors

and exclude k and still maintain an out-degree of di. By Lemma 3.12, we have

x′i ∈ Bo
i (x). As in Case 1, let i receive an optimistic revision opportunity and

suppose she picks the optimistic best response x′i. From here by the same process

as in Case 1b we can reach x′′ ∈ X∗ ∩ S(x) with w′(x′′) > c′(d) and φ(x′′, x∗) <

φ(x, x∗).

�

Finally, we show that under aligned preferences, once a maximum-weight equi-

librium value is reached, then all subsequent networks reached will contain a

maximum-weight equilibrium networks as well as some additional one-way links.

In other words, the set y−1(V ∗) is absorbing under our dynamic process.

Proposition 4.5. Suppose that the players exhibit aligned preferences. For every

x∗ ∈ V ∗ and every x′ ∈ S(x∗) we have x′ ∈ y−1(V ∗).

We first prove a supporting statement.
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Lemma 4.6. Suppose that the players exhibit aligned preferences. For a T ∈ N let

(xt)t∈{0,...,T} be a finite sequence of networks obeying the defined updating rule such

that x0 ∈ V ∗ and xt ∈ y−1(V ∗) for t ∈ {0, . . . , T}. Then, for every t ∈ {0, . . . , T}
and every i ∈ I we have w′i(x

t) > c′i(di).

Proof: Suppose that we have w′i(x
t) < c′(di). Let t denote the first such period,

i.e. xti ∈ Bi(x
t) or xti ∈ Bo

i (x
t). It is clear that the latter is impossible as optimistic

players never initiate or accept such links, thus we must have xti ∈ Bi(x
t). Since

y(xt) ∈ V ∗ and since preferences are aligned xti is monotonic for i. This means

that for every k such that w′i(x
t) < wik we have {i, k} ∈ xt. However, by the

definition of di, this has to imply deg+
i (x) > di, which is also impossible as a

best-responding player would not initiate more than di links.

�

Proof of Proposition 4.5: We first show that y(x′) ∈ X∗. Take a sequence

(xt)t∈{0,...,T} obeying the defined updating rule with x0 ∈ V ∗. Since x0 is a

Nash equilibrium, then by the updating rule, for every xt we have w′it(x
t) >

c′it(degit(x
t)). Thus, for every t′ ∈ {0, . . . , T} and every i, j ∈ I with xt

′
ij = xt

′
ji = 1

we have wij > c′i(deg+
i (xt

′
)) ≥ c′i(degi(x

t′)), satisfying the conditions of a Nash

equilibrium.

Thus, for contradiction, suppose that x′ ∈ S(x∗) and y(x′) /∈ V ∗. Then we must

have v(x′) < v(x∗), as v(x′) = v(y(x′)) > v(x∗) would contradict the choice of x∗

as a maximum-weight equilibrium, while v(x′) = v(x∗) would imply y(x′) ∈ V ∗.
Thus, the value of the network must decrease along the sequence between x∗ and

x′. Suppose that x′ is the earliest element of the sequence with v(x′) < v(x∗), let

x denote the element immediately preceding it and let i denote the player who

updated between x and x′, i.e. x−i = x′−i. Since v(x) > v(x′) there must exist

{i, j} ∈ x \ x′ and by Lemma 4.6 it must satisfy wij > c′i(di).

Suppose that x′i ∈ Bi(x). Then, since i drops her link with j as a best response

even though j reciprocates, we must have wij < c′i(deg+
i (x′)+1) = c′i(degi(x

′)+1).

Thus, degi(x
′)+1 > di, meaning that degi(x

′) = di. Since i made a best response,

ui(x) ≤ ui(x
′), and since the number of neighbors in x′ is at maximum, and thus

the weak increase in utility did not come through a decrease in costs, the total

value of i’s links must have weakly increased from x to x′. Hence, we have
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v(x) =
∑
j 6=i

wijxijxji +
∑
j 6=k 6=i

wjkxjkxkj ≥
∑
j 6=i

wijx
′
ijxji +

∑
j 6=k 6=i

wjkxjkxkj = v(x′),

a contradiction to v(x′) < v(x).

Suppose that x′i ∈ Bo
i (x). Then, since x′i is monotonic for i and i drops her

link with j, deg+
i (x′) = di. Since wij > c′i(di), and yet i chose not to reciprocate

j’s link, there must exist k ∈ I with wij = wik such that {i, k} ∈ x′. Since y(x)i

is monotonic, and {i, j} ∈ x for every ` ∈ I with wi` > wij we have {i, `} ∈ x.

Since x′i is monotonic for i, {i, `} ∈ x′ as well. Furthermore, for every ` ∈ I with

wij = wi` and x′i` = 1 we must have x′`i = x`i = 1 as well, otherwise deleting a link

to an unreciprocated opponent of equal value is better for i than deleting her link

to j. Thus, deg+
i (x′) = degi(x

′) = di. Finally, x′i being monotonic means that i

has a reciprocal link to exactly di of her most favored opponents. So as before we

have

v(x) =
∑
j 6=i

wijxijxji +
∑
j 6=k 6=i

wjkxjkxkj ≥
∑
j 6=i

wijx
′
ijxji +

∑
j 6=k 6=i

wjkxjkxkj = v(x′),

a contradiction to v(x′) < v(x).

�

Proof of Proposition 4.2. By Lemma 4.4 for every x ∈ X we have a x∗ ∈ V ∗

with x∗ ∈ S(x). Since there are finitely many networks, with probability one, the

process enters V ∗ and thus y−1(V ∗). By Proposition 4.5, the game never leaves

y−1(V ∗).

�

Proposition 4.2 shows that if weight-efficient networks are monotonic, then, by

the individual updates of players, an efficient network will eventually form and its

value is never lost in future periods. If there is more than one efficient network,

the dynamic process may shift from one to another and back as unsatiated opti-

mistic players keep forming directed links and satiated best-responders randomly

reciprocate them while deleting links towards existing neighbors, thus the game

may not converge to a single equilibrium network.
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If preferences are not aligned, then maximal-weight equilibrium networks are

not stable for optimistic shocks; a player who is not linked to her best choice of

neighbors, upon experiencing an optimistic shock, will invariably delete her links

to her existing neighbors and make offers to her best choices (see the illustrative

matching example of the introduction).

We conclude this section by showing convergence in the linear case, which is

not covered by the case of aligned preferences.

Proposition 4.7. Let the cost functions be linear. Then, for every x ∈ X and

the unique x∗ ∈ V ∗ we have limm→∞ p
m(x, y−1(x∗)) = 1.

As before, we prove the statement by showing that the dynamic system will

take the game into x∗ from any starting network.

Claim 4.8. Let the cost functions be linear. For every x ∈ X and the unique

x∗ ∈ V ∗ we have x∗ ∈ S(x).

Proof: By Lemma 4.3 we can take x ∈ X∗. We show that if x = x∗ there

exists x′ ∈ S(x) ∩ X∗ such that φ(x′, x∗) < φ(x, x∗). Take a link {i, j} ∈ x∗ \ x.

Then, we must have wij > max{ci, cj}. Take the following series of updates: i

receives a revision opportunity as an optimist, j receives a revision opportunity

as a best-responder, then i receives a revision opportunity as a best-responder. It

is clear that an optimistic player i will link to j, as well as keep all of her links to

her neighbors in x. A best-responder j will make no changes except reciprocate

player i’s link. Finally, player i deletes all the unreciprocated links she made as

an optimist. For the resulting network, x′ = x∪ {i, j}, we have x′ ∈ X∗ as well as

φ(x′, x∗) = φ(x, x∗)− 1.

�

Secondly, we show that once x∗ is reached, the game never leaves the set y−1(x∗).

Claim 4.9. Let the cost functions be linear. For the unique x∗ ∈ V ∗ we have

S(x∗) ⊆ y−1(x∗).

Proof: Suppose for contradiction that there exist a pair x, x′ ∈ S(x∗) such that

x ∈ y−1(x∗), x′ ∈ S1(x), and x′ /∈ y−1(x∗). Then, there must exist {i, j} ∈ x′ \ x,

with wij > max{ci, cj}. Clearly, one of i and j must have updated to get from x
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to x′ so suppose it was i, i.e. x−i = x′−i. If x′i ∈ Bi(x), then, since x′ji = xji = 1,

deleting the link to j cannot be a best response. If x′i ∈ Bo
i (x), then, since wij > ci,

deleting the link to j cannot be an optimistic best response, so we have arrived at

a contradiction.

�

Proposition 4.7 extends the convergence result laid out in Proposition 4.2 to all

games with linear costs, without the precondition of aligned preferences. This is

due to the fact that, under linear costs the unique maximum weight equilibrium,

which coincides with the unique pairwise stable equilibrium, is stable for both

optimistic and best-responding deviations.

5 Conclusion

In this paper we investigate a dynamic model of network formation with players

facing ambiguity with respect to their beliefs on their opponents’ strategies. We

model this uncertainty using NEO-additive beliefs: players respond to mixtures

of their rational beliefs as expressed by a probability measure of their opponents’

actions, their optimistic beliefs, corresponding to beliefs in which opponents are

trying to maximize their payoffs, and their pessimistic beliefs, corresponding to

beliefs in which opponents are trying to minimize their payoffs.

To our knowledge, ours is the first project to consider ambiguity in strategies

in a network formation game. We intuit that such a combination of frameworks

is natural and fits well with behavioral considerations of network formation: op-

timistic players believe their linking offers are always reciprocated, pessimistic

players believe that opponents never reciprocate. These considerations provide

behavioral explanation to the existence of asymmetric interactions in social net-

works. Similar explanations are absent in models focusing on pairwise improve-

ments or larger coalitional improvements. Directed interactions may arise due to

optimism as a player believes the opponent will reciprocate and thus make an offer

to connect without coordinating with the opponent.

By explicitly modeling player optimism we also allow the link-formation process

to be governed proactively by the players. Under the classical tool, that of the Nash

equilibrium, link formation was governed by the players passively best-responding
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to each other’s actions or their beliefs about their opponents. In what has proven

to be the modern benchmark tool, pairwise stability, link-formation is governed

by the logic of random pairwise interactions where, upon meeting a mutually

beneficial opponent, the pair decides to form a link. Here, while the decision to

form a new link is an active one once the interaction happens, the players remain

passive in their opportunities to create these interactions. Under optimism, players

proactively seek out their best possible links and the most possible links, and create

linking opportunities through a costly investment.

A natural definition for socially optimal networks is the total value gained from

connections by the players. We show that if costs of connection are linear such

networks are also Pareto-optimal. The same holds under convex costs provided

that individual benefits are aligned with the social optimum. It is well-known that

pairwise coordination is generally not enough to reach the social optimum as an

improving coalition may be arbitrarily large.

Our second main result concerns the dynamic process of network formation.

If all players are best-responders but receive optimistic shocks to their beliefs in

certain time periods, then all links in a social optimum will form. If the frequency

of shocks is high, optimum links are reached faster but players will spend more

time in networks where they are not at their objective best response. If this

frequency is lower, optimum links are reached later but players spend more time

at their objective best response – i.e. in the actual social optimum.

Our results suggest that optimism plays a crucial role in the formation of

social networks. Generally, optimal coordination across very large networks is

achieved by selfish, myopic improvements by the players. Without coordination,

efficient outcomes of network formations cannot be expected. For instance, it is

well-known that in two-sided network formation games there is a multiplicity of

Nash equilibria with many being inefficient, e.g., the empty network is always an

equilibrium. Player optimism improves social gains in two ways: (1), it motivates

players to offer links to opponents without an immediate reciprocation, and (2), it

motivates players to seek out the most profitable links of their opponents. Through

optimism, the players, and thus society will improve social value from connections

until only their best links remain. These links, however, will only be reciprocated if

both players find it optimal to connect to each other. Thus, whether the outcome

is a social optimum depends on whether individual preferences align with social
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ones to reach the maximum-weight network. Unless this condition is met, however,

the social optimum is generally not Pareto-optimal nor pairwise stable, hence we

cannot expect it to be self-enforcing.

Several questions remain to be addressed in future research. First, it would be

of interest to allow also for pessimistic shocks and study their impact on network

formation. We conjecture that as long as pessimistic shocks are relatively rare with

respect to optimistic ones, the optimality results established above will continue

to hold. Second, it would be of interest to examine further the properties of the

networks which form as a result of our adaptive dynamics and check in how far

they satisfy other refinement criteria suggested in the literature, such as, e.g.,

strong stability as defined by Jackson and van den Nouweland (2005). Finally,

generalizing the shape of the link-strength function, similarly to the works of

Griffith (2019); Baumann (2019); Ding (2019) might be of interest as well.
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