

Orbital control on exceptional fossil preservation

Farid Saleh, Bernard Pittet, Jean-Philippe Perrillat, Bertrand Lefebvre

▶ To cite this version:

Farid Saleh, Bernard Pittet, Jean-Philippe Perrillat, Bertrand Lefebvre. Orbital control on exceptional fossil preservation. Geology, 2019, 47, pp.103 - 106. 10.1130/g45598.1. hal-03005022

HAL Id: hal-03005022 https://hal.science/hal-03005022v1

Submitted on 13 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Orbital control on exceptional fossil preservation

2	Farid Saleh*, Bernard Pittet*, Jean-Philippe Perrillat*, and Bertrand Lefebvre*
3	Univ. Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276
4	Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, F-69622
5	Villeurbanne, France
6	*E-mails: farid.saleh@univ-lyon1.fr; bernard.pittet@univ-lyon1.fr; jean-
7	philippe.perrillat@univ-lyon1.fr; bertrand.lefebvre@univ-lyon1.fr
8	ABSTRACT
9	Exceptional preservation is defined by the preservation of soft to lightly
10	sclerotized organic tissues. The two most abundant types of soft tissues preservation are
11	carbonaceous compressions and replicates in authigenic minerals. In the geological
12	record, exceptionally preserved soft fossils are rare and generally limited to only a few
13	stratigraphic intervals. In the Fezouata Shale (Lower Ordovician), we found that deposits
14	yielding pyritized soft tissues contain iron-rich silicate minerals. These minerals played a
15	crucial role in inhibiting decaying bacteria and are comparable to those found in
16	formations yielding carbonaceous soft parts around the world. Furthermore, we found
17	that iron-rich minerals show a cyclic pattern of occurrence (of ~100 kyrs periodicity)
18	implicating a short eccentricity control through the general oceanic and atmospheric
19	circulations on iron availability. Our results identify, for the first time, an external climate
20	forcing on exceptional preservation and show that orbital forcing may be a level-selective
21	parameter responsible for the discontinuous occurrence of horizons preserving soft parts
22	around the world.

23 INTRODUCTION

24	Exceptional preservation consists of the preservation of soft to lightly sclerotized
25	organic tissues (e.g., feathers, guts, skins) in the geological record (Butterfield, 1995).
26	The transfer of such tissues from the biosphere to the lithosphere is the result of a
27	succession of multiple, complex biological and geological mechanisms. Deciphering
28	these mechanisms is essential to understanding why exceptional preservation is limited to
29	specific intervals in the sedimentary record. Recent studies have shown that the
30	absence/presence of carbonaceous soft tissues is strongly correlated with the mineralogy
31	of the depositional environment and most importantly with iron-rich minerals that can
32	inhibit bacterial decay of soft tissues through the oxidative damage of bacterial cells
33	(McMahon et al., 2016; Anderson et al., 2018). However, little attention has been paid so
34	far to discover within which sediment minerals the pyritized soft tissues occur and what
35	are the processes behind the deposition of these minerals.
36	The Fezouata Shale crops out in the Zagora region in southern Morocco. This
37	Lower Ordovician succession consists of blue-green to yellow-green sandy mudstones
38	and siltstones that coarsen upwards. These sediments are up to 900 m thick in the Zagora
39	region (Destombes et al., 1985; Martin et al., 2016; Vaucher et al., 2017). The entire
40	succession was deposited in a marginal basin at high latitude close to the paleo-South

41 pole (Torsvik and Cocks, 2011, 2013). The shallow depositional setting ranges from the

42 foreshore to the upper offshore. It was storm-wave dominated (Martin et al., 2016) and

43 indirectly influenced by tides (Vaucher et al., 2017). The Fezouata Shale has yielded

44 abundant remains of soft-bodied organisms preserved with high fidelity, showing the

45 association of post-Cambrian taxa typical of the Great Ordovician Biodiversification

46 Event along with iconic taxa of the Cambrian Explosion (Van Roy et al., 2010, 2015).

47	Most soft bodied organisms were pyritized and are now preserved in iron oxides.
48	However, this weathering impact is not substantial as numerous fossils still show original
49	framboidal pyrite crystals. The presence of levels yielding both mineralized and soft
50	bodied organisms, as well as the highly constrained stratigraphic framework of this
51	formation (Gutiérrez-Marco and Martin, 2016; Lehnert et al., 2016; Martin et al., 2016;
52	Nowak et al., 2016; Lefebvre et al., 2018), make the Fezouata Shale a good candidate to
53	investigate whether specific sediment minerals are correlated with pyritized soft parts,
54	and if these mineralogical signatures change through time.

55 MATERIAL AND METHODS

56 Mineralogical Signatures

57 Part of the sedimentary succession of the Fezouata Shale (Vaucher et al. 2016) 58 was included in this study. The mineralogy of all fossiliferous levels in this section was 59 investigated. Mineral assemblages of levels yielding exceptional preservation were 60 compared to those in levels bearing only sclerotized remains. Matrix samples from each 61 level were prepared as randomly orientated powdered aggregates ($< 10 \mu m$), without any 62 specific treatments, on thermoplastic polymer (PMMA) substrates. X-ray diffraction 63 (XRD) was performed using a Bruker D8 Advance diffractometer, employing a CuK α 64 source and Bruker LynxeveX detector. Peak positions were adjusted for slight variations 65 in sample height displacement error using positions of quartz peaks as internal standards. 66 Mineral phases were then retrieved based on indexation of their diffraction lines, between 67 0 and 75° 20 values, from the ICDD (International Centre for Diffraction Data) PDF4+ 2016 reference database. Illite is generally characterized by its basal (001) peak at ~10 Å. 68 69 Quartz is characterized by its intense (011) reflection at 3.34 Å. The differentiation

70	between chlorite minerals is verified based on the lateral variations of their characteristic
71	(001) and (002) peaks, respectively at 14 and 7 Å, as iron enrichment causes an increase
72	in d-spacing that shifts peaks positions toward higher 20 values (Fig. 1). Phase
73	proportions were estimated from the relative intensity of diffraction lines of each mineral
74	species.
75	Sequence Reconstructions
76	The depositional environment of the Fezouata Shale is storm/wave dominated and
77	indirectly influenced by tides (Martin et al. 2016; Vaucher et al., 2016, 2017). In the
78	Fezouata Shale, the interaction of oscillations with surface sediments generated
79	oscillatory structures. The wavelength of these structures decreased from shallow to deep
80	environments (Nichols, 2010; Vaucher et al. 2016). Additionally, coarser sediments
81	indicate a shallower environment, while finer sediments are deposited in deeper settings
82	(Vaucher et al., 2016, 2017). These sediments and structural heterogeneities permitted the
83	establishment of a model of facies for the Fezouata Shale (Vaucher et al. 2017). Based on
84	this model, the alternation of deeper and shallower facies F1, F2 and F4 of Vaucher et al.
85	(2017) allowed us to identify small-, medium- and large-scale sequences. Small-scale
86	sequences correspond to the shortest variations of the sea level (Fig. 2), whereas medium-
87	and large-scale sequences correspond to longer terms sea-level changes.
88	Bathymetry and Oxygenation
89	The depth of the water column was estimated accordingly with medium-scale sea
90	level sequences (Lefebvre et al., 2016; Vaucher et al., 2017). Relative oxygen
91	abundances in superficial sediments was reconstructed based on depth variations of the
92	water column. In the Fezouata environment, in deep environments, in shelf settings

93	below storm wave base, rapid burial did not occur, inhibiting the establishment of anoxic
94	conditions in surface sediments (Vaucher et al., 2017). Above storm wave base, where
95	rapid burial during storm events occurred, the establishment of anoxic conditions in
96	surface sediments below the storm deposits was influenced by wave/sediment
97	interactions. Wave/sediment interactions are more pronounced in shallow-most settings
98	(Nichols, 2010), leading to an increase in the oxygen penetration depth from the water
99	column to the sediments (Chatelain and Guizien, 2010). Thus, anoxic/dysoxic conditions
100	occur rarely in the shallowest environments (decimetric wavelength of storm oscillatory
101	structures, high oxygen penetration depth) and may occur only in less shallow deposits
102	(centimetric wavelength of storm structures, limited oxygen penetration depth) just above
103	the storm wave base (Fig. 2) in the Fezouata Shale (Vaucher et al. 2016., 2017).
104	RESULTS
105	All samples show a similar composition with an absence of organic matter, a high
106	abundance of illite (K,H ₃ O)(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)] (~60%) and quartz
107	SiO ₂ (~30%), and a small portion (<10%) of chlorite minerals (see Table DR1 in the Data
108	Repository for precise percentages). However, the nature of the chlorite phase differs
109	between samples as some specimens show the presence of clinochlore
110	(Mg ₅ Al)(AlSi ₃)O ₁₀ (OH) ₈ , while others show iron-rich clinochlore
111	$(Mg,Fe)_{5}Al(Si_{3}Al)O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ chamosite \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(AlSi_{3})O_{10}(OH)_{8} (iron \ content \ \sim 12\%) \ or \ (Fe_{5}Al)(Alb)(Alb)(Alb)(Alb)(Alb)(Alb)(Alb)(A$
112	(iron content \sim 30%) (Fig. 2). In the Fezouata Shale, the occurrence of soft tissues is
113	discontinuous and is limited only to few stratigraphic levels in interval 1 (Fig. 2).

114	The entire sedimentary succession was deposited around the storm wave base.
115	Both intervals 1 and 3 (Fig. 2), were deposited under anoxic/dysoxic conditions. The
116	largest part of interval 2 was deposited under oxic conditions (Fig. 2).
117	The studied section contains \sim 2 medium-scale and 9 small-scale sequences. The
118	occurrence of 4 small-scale sequences per medium-scale sequence deduced from facies
119	changes (Fig. 2) in the entire sedimentary succession suggests an eccentricity control on
120	sequence formation through its 100 and 400 kyrs periodicities. The studied sediments
121	were deposited during the Tremadocian (duration of 7.7 ± 3.3 Ma). In the Tremadocian,
122	10 main graptolites subdivisions (biozones) of ~0,7 Ma have been identified (Loydell,
123	2012). In the Fezouata Shale, the first three biozones of the Tremadocian are missing
124	(Gutiérrez-Marco and Martin, 2016; Lefebvre et al., 2018). This suggests that the
125	Tremadocian sediments (450 m) of the Fezouata Shale were deposited over 5.7 ± 2.4 Ma.
126	In addition, the sedimentation of the Fezouata Shale appears to be uniform (i.e.,
127	monotonous sequence dominated by siltstones) and formed by the stacking of storm
128	deposits (mm- to cm-thick sandstone or coarse siltstone levels separated by mm-thick
129	argillaceous siltstone or fine-grained siltstone layers) (Vaucher et al., 2016, 2017). This
130	homogeneity of the sediments and the absence of observed long or short-term
131	sedimentary hiatus (Vaucher et al., 2017) both suggest a relatively stable accumulation
132	rate of ~79 m/Ma. Thus, the studied 67 m-thick section was deposited over ~ 0.84 ± 0.35
133	Ma. One medium-scale sequence would then represent a time interval of $\sim 0.42 \pm 0.17$
134	Ma, and one small-scale sequence of 0.09 ± 0.03 Ma. These estimated durations are in
135	accordance with the durations of eccentricity cycles.
120	DIGCUGGION

136 **DISCUSSION**

137	The sediment in the Fezouata Shale has a relatively simple composition
138	comparable to other Paleozoic sites with exceptional preservation (Anderson et al., 2018).
139	In this formation, chamosite appears to be correlated with levels recording exceptional
140	preservation (Fig. 2). Chamosite can be formed directly from the transformation of
141	primary clay minerals (kaolinite, glauconite) at high temperatures (T>175 °C) or from the
142	transformation of berthierine, an iron rich serpentine phyllosilicate, in less extreme
143	conditions (T<100 °C; Tang et al., 2017). In the Fezouata Shale, sediments did not
144	endure extreme temperatures and burial conditions, and only 2-3 km (i.e., equivalent of
145	burial temperatures between 70 and 100 °C using a mean geothermal gradient of 30° per
146	km in passive margins) of sediments were deposited over these shales (Ruiz et al., 2008).
147	Thus, berthierine is the most probable precursor for chamosite in the Fezouata Shale. In
148	addition to that, chamosite occurrences appear to be correlated with an intermediate
149	bathymetry, as it occurs only in intervals 1 and 3 (Fig. 2). In the Fezouata Shale, specific
150	parameters (e.g. bathymetry, oxygenation) controlled the precipitation of berthierine in
151	the depositional environment and were thus indirectly responsible of the selective
152	presence of chamosite.
153	In a depositional environment, the presence of a significant amount of iron under

reducing conditions leads to the precipitation of berthierine (Tang et al., 2017), a mineral which can inhibit decay bacteria (McMahon et al., 2016). Afterward, during a deeper burial, most of the berthierine is transformed to chamosite (Hornibrook and Longstaffe, 1996). In some levels of intervals 1 and 3, reducing conditions and abundant iron were available, leading to berthierine precipitation in sediments in addition to the pyritization of decaying soft parts. In interval 1, some levels, deposited under similar bathymetry (i.e.,

160	fast burial and sedimentary anoxia), yield mostly clinochlore instead of chamosite.
161	Clinochlore and chamosite belong to the same chlorite mineral group, and lie on its
162	magnesium-rich and iron-rich poles respectively (Curtis et al., 1985). The occurrence of
163	both chamosite and clinochlore in intervals with different porosities suggests that the
164	formation of these minerals is independent from the physical parameters in the sediments
165	Instead, the presence of clinochlore is likely related to iron deficiencies in these levels
166	during early diagenesis.

In interval 2, chamosite is absent, and was mainly replaced by iron rich
clinochlore indicating the presence of iron. The absence of chamosite and exceptional
preservation in this interval were due to the absence of favorable reducing conditions
(Fig. 2).

171 Iron, an important element for the formation of both berthierine and pyrite, may 172 have different sources such as (i) circulation of iron-rich hydrothermal fluids (Tang et al., 173 2017), (ii) microbial extraction of iron from clay minerals after their deposition in marine 174 sediments (Vorhies and Gaines, 2009) or (iii) iron inputs to the sea from other marine or 175 continental sources (Odin and Matter, 1981). In the Fezouata Shale, illite, which is the 176 main clay mineral in sedimentary basins (Ruiz et al. 2008), is present in all intervals. 177 However, chamosite does not occur in all levels showing a different distribution than 178 illite. This implies that the scenario considering microbial iron extraction from clay 179 minerals is not parsimonious. In addition, the occurrence of chamosite at the end of a 180 regression/ beginning of a transgression of a small-scale sequence (Fig. 2) rules out 181 hydrothermal fluids as the main source of iron and favors marine and/or continental 182 inputs. The Fezouata Shale was deposited in a shallow sea near the South Pole with a

183	limited oceanic circulation (Martin et al., 2016, Vaucher et al., 2017). Thus, the
184	enrichment of iron is considered as continental in origin.
185	According to duration estimations based on graptolite biostratigraphy, any two
186	consecutive iron rich intervals in interval 1 were deposited with an average delay of ~ 100
187	kyrs in pace with eccentricity-controlled sea-level cycles (Fig. 2). Astronomic
188	calculations confirmed that even if the periodicity of the obliquity and precession
189	decreased with time, eccentricity frequency was stable over the last 500 million years
190	(Berger et al., 1992). These calculations were validated through robust responses of
191	different sedimentary systems to astronomically controlled climate forcing from recent
192	times to the Cambrian (Osleger and Read, 1991). Every 100 kyrs, eccentricity transitions
193	from a circular to an elliptic orbit, or vice versa, influencing precession and thus,
194	insolation and seasonal variations (Fig. 3). Consequently, these variations influence the
195	evaporation/precipitation cycle, ice volume (Rampino, 1979), if any, as well as river
196	fluxes and continental weathering (Horton et al., 2012), and thus the inputs of iron to the
197	sea (Fig. 3). These inputs constitute a major contributor to iron abundances in oceans
198	(Elrod et al., 2004), and lead to berthierine formation in shallow environments at the
199	water/sediment interface (Odin and Gupta, 1988; Kozłowska and Maliszewska, 2015)
200	when anoxic conditions are present (Tang et al. 2010).
201	For the first time, our results (1) provide detailed information on the
202	mineralogical context in which pyritized soft tissues occur, (2) identify a temporal
203	variation of minerals in a sedimentary succession with soft tissue preservation, and (3)
204	evidence an orbital control on soft tissue fossilization. This external climate forcing may
205	be responsible for the discontinuous occurrence of soft tissues in numerous formations

- around the world in which iron discrepancies between levels yielding exceptional
- 207 preservation and those with only skeletal remains are evidenced (Anderson et al., 2018).

208 ACKNOWLEDGMENTS

- 209 This paper is a contribution to the TelluS-INTERRVIE project 'Mécanismes de
- 210 préservation exceptionnelle dans la Formation des Fezouata', funded by the INSU,
- 211 CNRS. The authors thank Pierre Sansjofre and Muriel Vidal for assistance during field
- 212 work in Morocco, Guillaume Suan and Vincent Perrier for their advices, and Ruben Vera
- 213 for assistance in XRD preparation. Three reviewers are also thanked for their helpful and
- constructive remarks.

215 **REFERENCES CITED**

- 216 Anderson, R.P., Tosca, N.J., Gaines, R.R., Mongiardino Koch, N., and Briggs, D.E.,
- 217 2018, A mineralogical signature for Burgess Shale–type fossilization: Geology,

218 v. 46, p. 347–350, https://doi.org/10.1130/G39941.1.

- 219 Berger, A., Loutre, M.F., and Laskar, J., 1992, Stability of the astronomical frequencies
- over the Earth's history for paleoclimate studies: Science, v. 255, p. 560–566,
- 221 https://doi.org/10.1126/science.255.5044.560.
- 222 Butterfield, N.J., 1995, Secular distribution of Burgess-Shale-type preservation: Lethaia,

223 v. 28, p. 1–13, https://doi.org/10.1111/j.1502-3931.1995.tb01587.x.

- 224 Chatelain, M., and Guizien, K., 2010, Modelling coupled turbulence–dissolved oxygen
- 225 dynamics near the sediment–water interface under wind waves and sea swell: Water
- 226 Research, v. 44, p. 1361–1372, https://doi.org/10.1016/j.watres.2009.11.010.
- 227 Curtis, C.D., Hughes, C.R., Whiteman, J.A., and Whittle, C.K., 1985, Compositional
- 228 variation within some sedimentary chlorites and some comments on their origin:

- 229 Mineralogical Magazine, v. 49, p. 375–386,
- 230 https://doi.org/10.1180/minmag.1985.049.352.08.
- 231 Destombes, J., Hollard, H., and Willefert, S., 1985, Lower Palaeozoic rocks of Morocco,
- 232 in Holland, C.H., ed., Lower Palaeozoic Rocks of the World, volume 4: Lower
- 233 Palaeozoic rocks of Northwest and West-Central Africa: Chichester, UK, John Wiley
- and Sons, p. 91–336.
- 235 Elrod, V.A., Berelson, W.M., Coale, K.H., and Johnson, K.S., 2004, The flux of iron
- from continental shelf sediments: A missing source for global budgets: Geophysical
- 237 Research Letters, v. 31, L12307, https://doi.org/10.1029/2004GL020216.
- 238 Gutiérrez-Marco, J.C., and Martin, E.L.O., 2016, Biostratigraphy and palaeoecology of
- 239 Lower Ordovician graptolites from the Fezouata Shale (Moroccan Anti-Atlas):
- 240 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 460, p. 35–49,
- 241 https://doi.org/10.1016/j.palaeo.2016.07.026.
- 242 Hornibrook, E.R.C., and Longstaffe, F.J., 1996, Berthierine from the Lower Cretaceous
- 243 Clearwater Formation, Alberta, Canada: Clays and Clay Minerals, v. 44, p. 1–21,
- 244 https://doi.org/10.1346/CCMN.1996.0440101.
- 245 Horton, D.E., Poulsen, C.J., Montañez, I.P., and DiMichele, W.A., 2012, Eccentricity-
- 246 paced late Paleozoic climate change: Palaeogeography, Palaeoclimatology,
- 247 Palaeoecology, v. 331–332, p. 150–161,
- 248 https://doi.org/10.1016/j.palaeo.2012.03.014.
- 249 Kozłowska, A., and Maliszewska, A., 2015, Berthierine in the Middle Jurassic sideritic
- rocks from southern Poland: Geological Quarterly, v. 59, p. 551–564.

- 251 Lefebvre, B., et al., 2016, Palaeoecological aspects of the diversification of echinoderms
- in the Lower Ordovician of central Anti-Atlas, Morocco: Palaeogeography,
- 253 Palaeoclimatology, Palaeoecology, v. 460, p. 97–121,
- 254 https://doi.org/10.1016/j.palaeo.2016.02.039.
- 255 Lefebvre, B., Gutiérrez-Marco, J.C., Lehnert, O., Martin, E.L.O., Nowak, H., Akodad,
- 256 M., El Hariri, K., and Servais, T., 2018, Age calibration of the Lower Ordovician
- 257 Fezouata Lagerstätte, Morocco: Lethaia, v. 51, p. 296–311,
- 258 https://doi.org/10.1111/let.12240.
- 259 Lehnert, O., Nowak, H., Sarmiento, G.N., Gutiérrez-Marco, J.C., Akodad, M., and
- 260 Servais, T., 2016, Conodonts from the Lower Ordovician of Morocco contributions
- to age and faunal diversity of the Fezouata Lagerstätte and peri-Gondwana
- biogeography: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 460, p. 50-
- 263 61, https://doi.org/10.1016/j.palaeo.2016.03.023.
- 264 Loydell, D.K., 2012, Graptolite biozone correlation charts: Geological Magazine, v. 149,
- 265 p. 124–132, https://doi.org/10.1017/S0016756811000513.
- 266 Martin, E.L.O., et al., 2016, The Lower Ordovician Fezouata Konservat-Lagerstätte from
- 267 Morocco: Age, environment and evolutionary perspectives: Gondwana Research,

```
268 v. 34, p. 274–283, https://doi.org/10.1016/j.gr.2015.03.009.
```

- 269 McMahon, S., Anderson, R.P., Saupe, E.E., and Briggs, D.E., 2016, Experimental
- 270 evidence that clay inhibits bacterial decomposers: Implications for preservation of
- 271 organic fossils: Geology, v. 44, p. 867–870, https://doi.org/10.1130/G38454.1.
- 272 Nichols, G., 2010, Sedimentology and Stratigraphy: Chichester, UK, Wiley-Blackwell,
- 273 432 p.

- 274 Nowak, H., Servais, T., Pittet, B., Vaucher, R., Akodad, M., Gaines, R.R., and
- 275 Vandenbroucke, T.R., 2016, Palynomorphs of the Fezouata Shale (Lower
- 276 Ordovician, Morocco): Age and environmental constraints of the Fezouata Biota:
- 277 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 460, p. 62–74,
- 278 https://doi.org/10.1016/j.palaeo.2016.03.007.
- 279 Odin, G.S., and Gupta, B.K.S., 1988, Geological Significance of the Verdine Facies:
- 280 Developments in Sedimentology, v. 45, p. 205–219, https://doi.org/10.1016/S0070-
- 281 4571(08)70064-5.
- Odin, G.S., and Matter, A., 1981, De glauconiarum origine: Sedimentology, v. 28,
- 283 p. 611–641, https://doi.org/10.1111/j.1365-3091.1981.tb01925.x.
- Osleger, D., and Read, J.F., 1991, Relation of eustasy to stacking patterns of meter-scale
- 285 carbonate cycles, Late Cambrian, USA: Journal of Sedimentary Research, v. 61,
- 286 p. 1225–1252.
- 287 Rampino, M.R., 1979, Possible relationships between changes in global ice volume,
- 288 geomagnetic excursions, and the eccentricity of the Earth's orbit: Geology, v. 7,
- 289 p. 584–587, https://doi.org/10.1130/0091-7613(1979)7<584:PRBCIG>2.0.CO;2.
- 290 Ruiz, G., Helg, U., Negro, F., Adatte, T., and Burkhard, M., 2008, Illite crystallinity
- 291 patterns in the Anti-Atlas of Morocco: Swiss Journal of Geosciences, v. 101, p. 387-
- 292 395, https://doi.org/10.1007/s00015-008-1267-z.
- 293 Tang, D., Shi, X., Jiang, G., Zhou, X., and Shi, Q., 2017, Ferruginous seawater facilitates
- the transformation of glauconite to chamosite: An example from the
- 295 Mesoproterozoic Xiamaling Formation of North China: American Mineralogist,
- 296 v. 102, p. 2317–2332, https://doi.org/10.2138/am-2017-6136.

- 297 Torsvik, T.H., and Cocks, L.R.M., 2011, The Palaeozoic palaeogeography of central
- 298 Gondwana: Geological Society of London, Special Publications, v. 357, p. 137–166,
 299 https://doi.org/10.1144/SP357.8.
- 300 Torsvik, T.H., and Cocks, L.R.M., 2013, New global palaeogeographical reconstructions
- for the Early Palaeozoic and their generation: Geological Society, London, Memoir
 302 38, p. 5–24.
- 303 Van Roy, P., Orr, P.J., Botting, J.P., Muir, L.A., Vinther, J., Lefebvre, B., El Hariri, K.,
- and Briggs, D.E., 2010, Ordovician faunas of Burgess Shale type: Nature, v. 465,
- 305 p. 215–218, https://doi.org/10.1038/nature09038.
- 306 Van Roy, P., Briggs, D.E.G., and Gaines, R.R., 2015, The Fezouata fossils of Morocco;
- 307 an extraordinary record of marine life in the Early Ordovician: Journal of the
- 308 Geological Society, v. 172, p. 541–549, https://doi.org/10.1144/jgs2015-017.
- 309 Vaucher, R., Martin, E.L.O., Hormière, H., and Pittet, B., 2016, A genetic link between
- 310 Konzentrat and Konservat Lagerstätten in the Fezouata Shale (Lower Ordovician,
- 311 Morocco): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 460, p. 24–34,
- 312 https://doi.org/10.1016/j.palaeo.2016.05.020.
- 313 Vaucher, R., Pittet, B., Hormière, H., Martin, E.L.O., and Lefebvre, B., 2017, A wave-

dominated, tide-modulated model for the lower Ordovician of the anti-atlas,

- 315 Morocco: Sedimentology, v. 64, p. 777–807, https://doi.org/10.1111/sed.12327.
- 316 Vorhies, J.S., and Gaines, R.R., 2009, Microbial dissolution of clay minerals as a source
- 317 of iron and silica in marine sediments: Nature Geoscience, v. 2, p. 221–225,
- 318 https://doi.org/10.1038/ngeo441.
- 319

320 FIGURE CAPTIONS

- 321
- 322 Figure 1. Minerals identification in samples from the Fezouata Shale from X-ray powder
- 323 diffraction. The box with red margins is an expansion of the area indicated in the main
- 324 plot.

325

- 326 Figure 2. From left to right: sequences of various scales translating sea-level cycles at
- 327 different timescales, part of the sedimentary succession of Fezouata Shale with location
- 328 of samples, facies F1, F2 and F4 as described in Vaucher et al. (2017) used to identify the
- 329 sequences, relative bathymetry changes and oxygen fluctuations.

330

- 331 Figure 3. Model explaining the effect of orbital forcing on seasonality, and thus on soft
- 332 tissues preservation.
- 333
- 334 1GSA Data Repository item 2018xxx, xxxxxxxxxxxx, is available online at
- 335 http://www.geosociety.org/datarepository/2018/, or on request from
- 336 editing@geosociety.org.

