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Abstract: The main contribution of this paper consists of the development of two methods for
actuator fault estimation in dealing with the partially decoupled disturbances of the descriptor
system, which is divided into decoupled and non-decoupled unknown inputs (UI). Based on
the conventional UI observer, both of the solutions decouples the fault estimation with the
first group of UI, while the second UI group is handled differently by each method. Finally, a
numerical example with comparisons points out the performance of each approach.

Keywords: Unknown Input Observer, H∞ synthesis, Descriptor system, Fault estimation,
Frequency-shaping filter.

1. INTRODUCTION

Nowadays, the descriptor system, i.e. singular system,
plays an important role in both theoretical and practical
aspects as it can be used to model a wide range of chemical,
mineral, electrical and economic systems (see Dai (1989)).
That leads to a great interest dedicated to the analysis,
design, and especially fault detection and diagnosis (FDD)
techniques, which not only identify faults but also esti-
mate their magnitudes and shapes under the existence of
disturbances. The FDD process in the descriptor system is
inspired by state estimator, which was realized through the
works of Darouach and Boutayeb (1995); Hou and Muller
(1999). Then questions concerning the solution for system
perturbed by unknown inputs (UI) are placed, which pro-
motes the development of the well-known unknown input
(UI) observer in Darouach et al. (1996); Chen et al. (1996);
Koenig et al. (2008). By choosing properly a group of para-
metric matrices that decouple the UI disturbances in state
estimation, the dynamics of estimation error is asymptot-
ically stable, i.e. the convergence towards 0. Regarding
FDD purpose, a proportional multi-integral UI observer
has been introduced in Koenig (2005) by considering the
high-order polynomial fault and its derivatives as states
of an augmented system. However, one notable drawback
associated with this kind of UI observer design is the
satisfaction of decoupling and detectability conditions (see
Lemma 2 in Koenig (2005)). Consequently, the design of
UI observer with partially decoupled disturbances becomes
an interesting topic in the research community.

To the best of authors’ knowledge, few works such as that
of Bezzaoucha et al. (2011) were conducted to handle the

? This work is supported by the ITEA3 European Project through
EMPHYSIS under Grant 15016.

above problems in linear systems with partially decoupled
disturbances by using the UI observer. In terms of FDD,
Xu et al. (2016) and Gao et al. (2016) have presented a
novelty of UI-observer. In that design, the disturbances are
divided into two main groups: one can be decoupled by
choosing the appropriate matrices, and the other contains
all non-decoupled disturbances. As a result, the estimation
error is now only affected by the group of the second one.
In Xu et al. (2016), the fault detection has been realized
by using the set-theorem to deal with this non-decoupled
group; while for 2nd-order polynomial fault estimation in
Gao et al. (2016) the gains of UI observer are calculated
to ensure the stability of estimation error dynamics as
well as its insensitivity to disturbances by using the H∞
synthesis. Despite its performance, those papers are only
focused on the special case of the singular matrix (E = I)
and the H∞ performance can be affected when tackling
a great amount of non-decoupled UIs. Inspired by this
strategy, Liu et al. (2018) introduced an UI observer for the
descriptor system generated from system state and fault.
However, this solution is implemented only if the initial
system is non-singular, not to mention that its existence
conditions only concern the new augmented descriptor
system instead of the original one. Hence, there is a need
to complete this kind of observer design for the descriptor
system framework.

For such above reasons in UI observer-based design, au-
thors are motivated to make the following contributions
for the FDD process in the UI descriptor system:

• Development of the global H∞ approach as an ex-
tension result of Gao et al. (2016) with its existence
conditions depending directly on the parameters of
the initial descriptor system.
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• A novel approach to overcome the limitation of global
H∞ solution in handling the non-decoupled UIs,
which is resulted from the combination of frequency-
shaping filter and the H∞ synthesis.

Additionally, a numerical example is presented to demon-
strate the approaches. Through the frequency analysis
and time simulation, the performance of methods is high-
lighted.

The paper is organized as follows. Firstly, Section 2 in-
troduces the system representation. To deal with partially
decoupled disturbances, the observer design with the two
approaches is defined in Section 3 where the proof of
detectability condition is provided in the Appendix. Then,
a numerical example with comparisons in Section 4 illus-
trates the performance of each solution. A general discus-
sion on existence conditions of observer and frequency-
shaping filter is mentioned in Section 5. Finally, Section 6
concludes the paper.

Notations: Rn and Rm×n respectively represent the n-
dimensional Euclidean space and the set of all m × n real
matrices; XT is the transpose of the matrix X; 0 and I
denote, respectively, the zero and the identity matrix with
appropriate dimensions; X† is the Moore-Penrose inverse
of X; the symbol (∗) denotes the transposed block in the
symmetric position; R(x) is the real part of the complex
number x; eig(X) presents all eigenvalues of matrix X;
and we denote He{A} = A+AT .

2. PROBLEM FORMULATION

Consider the following descriptor system with faulty actu-
ator: {

Eẋ = Ax+Bu+Dww +Bf

y = Cx
, (1)

where:

• x ∈ Rnx is the state vector; y ∈ Rny is the measure-
ment output vector; u ∈ Rnu is the input vector

• w ∈ Rnw =
[
wT

1 wT
2 wT

3

]T
is the disturbance vector.

In which,
· w1 ∈ Rnw1 is the UI satisfying decoupling condi-

tion in UI observer design.
· w2 ∈ Rnw2 is the bounded UI with known band-

width [fw2 , fw2
] and does not satisfy decoupling

condition in UI observer design.
· w3 ∈ Rnw3 is the non-decoupled disturbance with

unknown bandwidth.
• f ∈ Rnu is the actuator fault vector to be estimated,

which can be presented as a polynomial to address
a wide range of faults, such as abrupt faults (ḟ = 0)

and incipient faults (f̈ = 0) (see Ding (2008)), or even
the degradation (see Do et al. (2019)).

f(t) = α0 + α1t+ . . .+ αn−1t
n−1 + αnt

n, (2)

where the (n+1)th derivative of f is null (i.e, f (n+1) =
0) and αi (i = 0, 1, . . . , n) is unknown constant vector.

• Matrices E,A,B,C, Dw = [Dw1 Dw2 Dw3] are con-
stant matrices with appropriate dimension.

By considering the derivatives of f as extended states, an
augmented system is obtained:

{
Eaẋa = Aaxa +Bau+Dwaw

y = Caxa
, (3)

where xa =
[
xT fT f (1)T . . . f (n−1)T f (n)T

]T ∈ Rnxa ,

nxa
= nx + (n + 1)nu, Ca = [C 0 0 . . . 0 0], Ea =

E 0 0 . . . 0 0
0 I 0 . . . 0 0
0 0 I . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . I 0
0 0 0 . . . 0 I

, Aa =


A B 0 . . . 0 0
0 0 I . . . 0 0
0 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 I
0 0 0 0 . . . 0

,

Ba =


B
0
0
. . .
0
0

, and Dwa =


Dw

0
0
. . .
0
0

 = [Dw1a Dw2a Dw3a].

The observer design to estimate fault f under the existence
of UI w is presented in the next section.

3. OBSERVER DESIGN

In this section, the UI w1 of w is decoupled from estimation
process by the conventional UI observer-based design,

whereas the impact of the UI w23 =
[
wT

2 wT
3

]T
on fault

estimation are studied in the two following approaches:

Approach 1: Global H∞ attenuation for both non-
decoupled UIs w2 and w3, similar to the approach sug-
gested by Gao et al. (2016). In which, the existence con-
ditions are derived from the initial descriptor system and
observer parameters satisfy the following objectives.

• For w23 = 0, the estimation error is asymptotically
stable.
• For w23 6= 0, attenuation of exogenous input w23 on

the fault estimation error ef is achieved by minimiz-
ing γ23 such that:

‖ef‖2
‖w23‖2

≤ γ23, (4)

where ef = f − f̂ is fault estimation error and f̂ is the
estimated fault.

Approach 2: Combination of the frequency-shaping filter
and H∞ attenuation, where UIs w2 and w3 are handled
separately:

• UI w2 is attenuated by a frequency-shaping filter
corresponding to its known bandwidth.

• UI w3 is attenuated by H∞ optimization as men-
tioned in Approach 1. For w3 6= 0, attenuation of
exogenous input w3 on the fault estimation error ef
is achieved by minimizing γ3 such that:

‖ef‖2
‖w3‖2

≤ γ3. (5)

Remark 1: Comparing to Approach 1, this method
relaxes the number of elements in non-decoupled UI vector
used for H∞ optimization.

The details on observer design for each approach are
presented in subsections 3.1 and 3.2, respectively.



For the existence of observer, the following assumptions
are considered:

(A.1) rank

[
E Dw1

C 0

]
= nx + nw1. (6)

(A.2) rank

[
(sE −A) −B Dw1

0 sI 0
C 0 0

]
= nx + nw1,∀R(s) ≥ 0. (7)

It is noted that the condition (A.1) corresponds to not only
the impulse-free condition of the singular system but also
the UI-decoupling condition. Meanwhile, the assumption
(A.2) is the condition for R-detectability.

3.1 Approach 1: Global H∞ attenuation

The UI observer has the structure (as illustrated in Fig.
1): 

ż = Fz +Gu+ Ly

x̂a = z +Ny

f̂ = Caf x̂a

, (8)

where x̂a =
[
x̂T f̂T f̂ (1)T . . . f̂ (n−1)T f̂ (n)T

]T
is the es-

timated state of xa in (3); f̂ is the estimated fault; and
Caf =

[
0nu×nx

Inu
0nu,nxa−nx−nu

]
.

f

u y

f̂

{
ż = Nz +Gu+ Ly

x̂a = z + T2y

Plant

w =
[
wT

1 wT
2 wT

3

]T
x̂

Fig. 1. General scheme of UI observer

Choose e = xa − x̂a as the estimation error and suppose
that there exists T such that

TEa +NCa = I, (9)

we obtain:

e = xa − z −Ny = TEaxa − z. (10)

Then, its dynamics is presented as:

ė = TEaẋa − ż (11)

= Fe+ (TAa − FTEa − LCa)xa
+ (TBa −G)u+ TDw1aw1 + TDw23aw23, (12)

where w23 =
[
wT

2 wT
3

]T ∈ Rnw23 , nw23 = nw2 + nw3 and

Dw23a = [Dw2a Dw3a].

In order for e to be stabilized and decoupled from the UI
w1, the following conditions have to be satisfied:

F is Hurwitz, i.e. R(eig(F )) < 0, (13)

TAa − FTEa − LCa = 0, (14)

G = TBa, (15)

TDw1a = 0. (16)

From (14), by replacing TEa = I−NCa and then choosing
K = L− FN , it follows that:

TAa −KCa − F = 0 (17)

By combining the three conditions which are TEa+NCa =
I, (16) and (17), we obtain:

[T N K F ] Θ = Ω, (18)

where Ω =
[
Inxa

0nxa×(nxa+nw1)

]
, Θ =

Ea Aa Dw1a

Ca 0 0
0 −Ca 0
0 −Inxa

0


The solution of (18) exists if and only if rank

[
Θ
Ω

]
=

rank(Θ), which is equivalent that Θ is a full-column rank
matrix (see Koenig (2005)), i.e. rank(Θ) = 2nxa + nw1

⇔ rank

[
Ea Dw1a

Ca 0

]
= nxa + nw1. (19)

Replacing the definition of Ea, Ca, andDw1a with matrices
of original system (1), a condition which is equivalent to
assumption (A.1) is obtained.

Under (A.1), the generalized solution of (18) is given as:

[T N K F ] = ΩΘ† − ZΘ⊥, (20)

where Θ⊥ = (I −ΘΘ†) and Z is an arbitrary matrix.

From (12), (17) and (20), the influence of w23 on estima-

tion error ef = f − f̂ is expressed as:{
ė = (TAa −KCa)e+ TDw23aw23

ef = Cafe
(21)

In other words,{
ė = (ΩΘ†φ1 − ZΘ⊥φ1)e+ (ΩΘ†φ2 − ZΘ⊥φ2)w23

ef = Cafe

(22)

where φ1 =

 Aa

0ny×nxa

−Ca

0nxa×nxa

 and φ2 =

[
Dw23a

0(2ny+nxa )×nw23

]
.

The above error dynamics can be stabilized thanks to
the detectability of the pair (ΩΘ†φ1,Θ

⊥φ1) given as the
condition below:

rank

[
sI − ΩΘ†φ1

Θ⊥φ1

]
= nxa

∀ R(s) ≥ 0, (23)

which is equivalent to condition (A.2) (proof is easily
derived from Appendix of Koenig et al. (2008)). Then,
the gain Z satisfying the objective (4) can be found from
the following theorem.

Theorem 1. Under (A.1) and (A.2), if there exist a sym-
metric positive-definite matrix P and a matrix Q which
minimize γ23 in (4) and satisfy that: Γ PΩΘ†φ2 +QΘ⊥φ2 C

T
af

(∗) −γ223I 0
(∗) (∗) −I

 < 0, (24)

with

Γ = He{PΩΘ†φ1 +QΘ⊥φ1}, (25)

φ1 =
[
AT

a 0Tny×nxa
−CT

a 0Tnxa×nxa

]T
, (26)

φ2 =
[
DT

w23a 0T(2ny+nxa )×nw23

]T
, (27)



the estimation error in (22) satisfies the objectives in
Approach 1 with the gain Z = −QP−1.

Remark 2: If E = I and the columns of Z corresponding
to parametric matrices T and N in (20) are null, the
result in Gao et al. (2016) is re-obtained. According to
Gao et al. (2016), the parameters T and N are only the
basic results of generalized solution, i.e. without the tuning
of the arbitrary matrix, thus limiting the freedom of the
observer design comparing to that in Theorem 1.

Proof. The sufficient condition for the stability of (22)
and attenuation objective (4) is that:

V̇ + eTf ef − γ223wT
23w23 < 0. (28)

By choosing the Lyapunov function V = eTPe and Q =
−PZ, it follows that:[
eT wT

23

] [Γ + CT
afCaf PΩΘ†φ2 +QΘ⊥φ2

(∗) −γ223I

] [
e
w23

]
< 0.

(29)

The above inequality holds ∀
[
eT wT

23

]T 6= 0 if:[
Γ + CT

afCaf PΩΘ†φ2 +QΘ⊥φ2
(∗) −γ223I

]
< 0. (30)

Applying the Schur complement to above LMI, the condi-
tion (24) is obtained, which completes the proof.

The parameters [T N K F ] are calculated by replacing
values of Z in (20), then L = K + FN and G = TBa.

3.2 Approach 2: Combination of the frequency-shaping
filter and H∞ attenuation

The aim of UI observer is to decouple the estimation
error from disturbances, which is equivalent to a trans-
mission zeros from UIs to the measurement (see Chen
et al. (1996)). Based on this idea, to generate similarly
the behavior of UI w2 as that of a possibly-decoupled dis-
turbance, a frequency-shaping filter is implemented to the
output y, which characterizes the disturbance attenuation
in the known bandwidth [fw2 , fw2 ] of UI w2. The output
ȳ of the stable filter Q can be now considered as a new
measurement not perturbed by UI w2. The design process
is summarized in Fig. 2

Q

{
ẋQ = AQxQ + BQy

ȳ = CQxQ + DQy

f

u y

ȳ

f̂

UI Observer

Plant

w =
[
wT

1 wT
2 wT

3

]T
[fw2, fw2]

x̂

Fig. 2. Frequency-shaping filter implementation for UI
observer

The stable filter Q can be expressed as:

Q :

{
ẋQ = AQxQ +BQy

ȳ = CQxQ +DQy
(31)

where AQ is Hurwitz.

It yields an augmented system:{
Ēa ˙̄xa = Āax̄a + B̄au+ D̄waw

ȳ = C̄ax̄a
(32)

In which, x̄a =

[
xa
xQ

]
∈ Rnx̄a , Ēa =

[
Ea 0
0 I

]
, Āa =[

Aa 0
BQCa AQ

]
, B̄a =

[
Ba

0

]
, D̄wa =

[
Dwa

0

]
, C̄a =

[DQCa CQ].

The observer design for the above system (32) has the
same structure as that of conventional UI observer to
decouple w1 while integrating implicitly the frequency-
shaping effect for non-decoupled UI w2:

ż = F̄ z + Ḡu+ L̄ȳ
ˆ̄xa = z + N̄ ȳ

f̂ = C̄af x̂a

(33)

where ˆ̄xa is the estimated state of x̄a and C̄af =[
0nu×nx Inu 0nu,nx̄a−nx−nu

]
.

As Q is a stable filter, the conditions for observer existence
(A.1) and (A.2) are also those for augmented system
(32). Similarly to Approach 1, the following results are
obtained: [

T̄ N̄ K̄ F̄
]

= Ω̄Θ̄† − Z̄Θ̄⊥, (34)

L̄ = K̄ + F̄ N̄ , (35)

Ḡ = T̄ B̄a, (36)

where Θ̄ =

Ēa Āa D̄w1a

C̄a 0 0
0 −C̄a 0
0 −Inx̄a

0

 and Ω̄ =
[
Inx̄a

0 0
]
.

Due to the implementation of the output filter, the dy-
namics of observer can be reduced as follows:{

˙̄e = (Ω̄Θ̄†φ̄1 − Z̄Θ̄⊥φ̄1)ē+ (Ω̄Θ̄†φ̄2 − Z̄Θ̄⊥φ̄2)w3

ef = Caf ē

(37)

where ē = x̄a − ˆ̄xa, φ̄1 =
[
ĀT

a 0Tny×nx̄a
−C̄T

a 0Tnx̄a×nx̄a

]T
and φ̄2 =

[
D̄T

w3a 0T(2ny+nx̄a )×nw3

]T
. The gain Z̄ is derived

from Theorem 2.

Theorem 2. Under (A.1) and (A.2), if there exist a sym-
metric positive-definite matrix P̄ and a matrix Q̄ which
minimize γ3 in (5) and satisfy that: Γ̄ P̄ Ω̄Θ̄†φ̄2 + Q̄Θ̄⊥φ̄2 C̄

T
af

(∗) −γ23I 0
(∗) (∗) −I

 < 0, (38)

with

Γ̄ = He{P̄ Ω̄Θ̄†φ̄1 + Q̄Θ̄⊥φ̄1}, (39)

φ̄1 =
[
ĀT

a 0Tny×nx̄a
−C̄T

a 0Tnx̄a×nx̄a

]T
, (40)

φ̄2 =
[
D̄T

w3a 0T(2ny+nx̄a )×nw3

]T
, (41)

the estimation error in (37) satisfies the objectives in
Approach 2 with the gains Z̄ = −Q̄P̄−1.



This theorem is similar to Theorem 1, so the proof is
omitted.

In the next section, the comparison between the two above
approaches is conducted to illustrate the performance of
each method.

4. NUMERICAL EXAMPLE

4.1 Model Example

The following example is modified from the descriptor
system in Darouach et al. (1996):

• Distribution Matrices: E =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

,

A =

−1 1 0 0
−1 0 0 1
0 −1 −1 0
0 0 0 1

, B =

0
0
1
1

, Dw1 =

−0.5
0
0
0

,

Dw2 =

 0
0.4
0
0

, Dw3 =

 0
0.2
0.1
0

, and C =

[
1 0 0 0
0 0 −1 1

]
.

• Actuator fault: is supposed to be a 3rd order poly-
nomial (see Fig. 3), so n = 3 is chosen for observer
design.

f =

n=3∑
i=1

(−0.21)i

i!
(t)i. (42)

Remark 3: The order n of the estimated fault f̂ chosen
for observer synthesis must be greater or equal to the
real order of the existing fault f .
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Fig. 3. Actuator fault f
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Fig. 4. Output filter

• Frequency bandwidth of UI w2: fw2 ∈ [10, 30] (Hz).
Consequently, the filter Q is designed as a stable 8th

order Butterworth-bandstop (see Fig. 4).

4.2 Frequency Analysis

In this part, the frequency behavior of the two approaches
in Section 3 are compared. Solving the optimization prob-
lem in Theorems 1 and 2 by using Yalmip (see Lofberg
(2004)) and Sedumi solver (see Sturm (1999)), the para-
metric matrices for observer designs in Approach 1 and
Approach 2 are synthesized. The attenuation level for
disturbances in both approaches are presented and com-
pared in the Table 1:

Table 1. Disturbance attenuation Comparison

Approach 1 Approach 2

w2 γ23 = −6.990 (dB)
Characteristics of filter Q

w3 γ3 = −13.978 (dB)

In Fig. 5, a sudden drop in frequency domain [10, 30]
(Hz) expresses the result of filter Q’s implementation,
as expected from the usage from the frequency-shaping
approach.

According to Table 1 and Figs. 5 and 6, by relaxing the size
of disturbance vector in H∞ synthesis, Approach 2 gives
better attenuation of disturbance influence on estimation
error.

4.3 Test Conditions

• Simulation duration: 25 seconds.
• Disturbances:

· w1 = 5sin(2πfw1) with fw1 = 10 (Hz);
· w2 = 10sin(2πfw2) with fw2 = 17.5 (Hz) to illus-

trates clearly the difference in both approaches;
· w3 = 15sin(2πfw3) with fw3 = 35 (Hz).

• Control input: is chosen as a sinusoidal signal:

u = 5sin(2π). (43)

• System output: is considered not to be perturbed by
noise in this study, as described in (1).

• Initial condition: x(0) = [0.001 0 0.0020 0]
T

, xQ(0) =
0, and x̂(0) = 0.
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Fig. 5. Sensitivity |ef/w2|
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Fig. 7. Fault estimation under influence of w1
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Fig. 8. Estimation error under influence of w1
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4.4 Simulation results

Fig. 7 illustrates the estimation of actuator fault through
the existence of disturbances, while Figs. 8-10 demonstrate
the estimation error. As observed, all fault estimations
are converging to fault reference after about 10 seconds,
i.e. the estimation error converges towards 0. However,
Approach 1, i.e. global H∞ attenuation method, is more
likely to be affected by disturbances w2 and w3 comparing
to Approach 2 due to its poor frequency behavior as
discussed in subsection 4.2.
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Fig. 10. Fault error under influence of all UIs (w1, w2, w3)

Table 2. RMS of estimation error

Scenarios Approach 1 Approach 2

w1 3.881e-4 2.070e-4

[w1, w2] 7.008e-4 2.045e-4

[w1, w3] 18.656e-4 5.952e-4

[w1, w2, w3] 19.557e-4 5.941e-4

To evaluate the accuracy of estimation, the root-mean-
square value (RMS) of estimation errors is calculated in
Table 2. From this comparison, when there is only w1,
the decoupling between the UI w1 and fault estimation
error ef works correctly as designed in both cases; whereas
the differences start to appear in the solutions coping
with non-decoupled disturbances. It also proves the better
performance of Approach 2 by treating separately UIs
w2 and w3, thus relaxing the amount of non-decoupled
UIs implemented in H∞ synthesis.

5. GENERAL DISCUSSION

5.1 Observer conditions

As noted in (A.1) and (A.2), these assumptions concern
only the parameter of possibly-decoupled UI w1, i.e. Dw1,
thereby being less restrictive than those of Darouach et al.
(1996); Koenig (2005) for all UIs in w, i.e. Dw.

5.2 Frequency-shaping filter implementation

In Approach 1, the H∞ performance can also be opti-
mized for a specific bandwidth [fw2

, fw2
] of w2 by generat-

ing a fictive disturbance w̄2 through a weighting function
Fw, which is strictly stable and causal (see Koenig et al.
(2016)).

The weighting function Fw can be displayed as:

Fw :

{
ẋw = Awxw +Bww̄2

w2 = Cwxw +Dww̄2
. (44)

The process is summarized in Fig. 11:

As a result, the system can be rewritten as:{
ẋF = AFxF +BFu+DF w̄

y = CFxF
, (45)

where xF =

[
xa
xw

]
, AF =

[
Aa Dw2aCw

0 Aw

]
, BF =

[
Ba

0

]
,

DF =

[
Dw1a Dw2aDw Dw3a

0 Bw 0

]
, and CF = [Ca 0].

Similarly to Approach 1, the objective of observer design
for (45) is derived from (4) and is displayed as:
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Fig. 11. Weighting function implementation in H∞ syn-
thesis.

‖ef‖2
‖w̄23‖2

≤ γ23, (46)

where w̄23 =
[
w̄T

2 wT
3

]T
.

In other words,
‖ef‖2
‖w̄2‖2

≤ γ23
‖ef‖2
‖w3‖2

≤ γ23
⇔


‖ef‖2
‖w2‖2

≤ γ23‖Fw‖−1

‖ef‖2
‖w3‖2

≤ γ23
(47)

Consequently, the influence of the non-decoupled w2 on
fault estimation can be shaped by the choice of inversed
filter F−1w .

Comparing to Approach 2, both inversed function F−1w
and frequency-shaping filter Q have the same function-
ality; however, filter Q only needs to be stable, instead
of being simultaneously stable and causal as Fw. Hence,
this difference highlights the advantage of the frequency-
shaping filter in Approach 2. For example, to achieve
good attenuation in a narrow bandwidth as that in the
numerical example of Section 4, a high-order weighting
function F−1w or frequency-shaping filter Q is required
under the form of Butterworth bandstop. In this case, a
stable filter Q can be easily designed, whereas the inverse
of F−1w , i.e. Fw is not ensured to be stable.

6. CONCLUSION

In this study, two different approaches which are based on
the conventional UI observer to deal with non-decoupled
disturbances in the descriptor system have been intro-
duced. The first of which considers the global H∞ syn-
thesis for UI impact attenuation, while the other handles
the UIs based on the knowledge of their bandwidth. The
comparison in fault estimation between the two solutions
has highlighted the performance of the proposed sepa-
ration strategy, where each non-decoupled disturbance is
analyzed independently.

For future work, as the problem of partial disturbance
in descriptor linear parameter-varying (D-LPV) system
has not been broadly studied yet, an extension result
of the two above approaches, as well as the impact of
frequency-shaping filter on closed-loop performance, can
be an interesting topic.
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