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Abstract Global water erosion strongly affects the terrestrial carbon balance. However, this process is
currently ignored by most global land surface models (LSMs) that are used to project the responses of
terrestrial carbon storage to climate and land use changes. One of the main obstacles to implement
erosion processes in LSMs is the high spatial resolution needed to accurately represent the effect of
topography on soil erosion and sediment delivery to rivers. In this study, we present an upscaling scheme for
including erosion‐induced lateral soil organic carbon (SOC) movements into the ORCHIDEE LSM. This
upscaling scheme integrates information from high‐resolution (3″) topographic and soil erodibility data into
a LSM forcing file at 0.5° spatial resolution. Evaluation of our model for the Rhine catchment indicates
that it reproduces well the observed spatial and temporal (both seasonal and interannual) variations in river
runoff and the sediment delivery from uplands to the river network. Although the average annual lateral
SOC flux from uplands to the Rhine River network only amounts to 0.5% of the annual net primary
production and 0.01% of the total SOC stock in the whole catchment, SOC loss caused by soil erosion over a
long period (e.g., thousands of years) has the potential to cause a 12% reduction in the simulated equilibrium
SOC stocks. Overall, this study presents a promising approach for including the erosion‐induced lateral
carbon flux from the land to aquatic systems into LSMs and highlights the important role of erosion
processes in the terrestrial carbon balance.

Plain Language Summary Global land surface models (LSMs) are the main tools used to
simulate the terrestrial carbon (C) cycle and to predict its response to climate and land cover changes.
Currently, the processes of vertical C fluxes between soils, plants, and the atmosphere (e.g., photosynthesis,
plant growth, and litter and soil organic matter decomposition) has been well represented in many LSMs;
however, the lateral soil C delivery through the river network caused by water erosion is still missing
in most LSMs. This study introduces a LSM approach which is suitable to simulate the large‐scale soil C
delivery from upland soils to inland waters at high temporal resolution (daily) and accounting for the
small‐scale (~90 m) spatial variability in topography and soil properties. Evaluation of our model in the
Rhine catchment demonstrates a good performance with regard to reproducing the spatial and temporal
(daily, seasonal, and interannual) variability of soil C delivery rate from uplands to river networks
at large spatial scale and for exploring the impacts of changes in vegetation cover (land use change) and
climate (e.g., changes in rainfall amounts and regimes) on the regional soil C balance.

1. Introduction

The lateral carbon (C) transfer from land to ocean through water erosion and inland waters transport pro-
cesses plays an important role in the regional to global terrestrial C balance on time scales ranging from dec-
adal to millennial (Ciais et al., 2008; Regnier et al., 2013; Galy et al., 2015). The magnitude of this lateral C
flux is, however, highly uncertain. For instance, the study of Cole et al. (2007) estimated a global C delivery
from land to inland waters of 1.9 Pg C yr−1 (1 Pg ¼ 1015 g), while the study of Drake et al. (2018) estimated
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that this flux could reach up to 5.1 Pg C yr−1 globally. A significant proportion of this flux is due to erosion of
soil organic C (SOC) delivered to rivers as particulate organic C. Along with the lateral translocation of SOC,
the terrestrial‐atmosphere C exchange is modified through different mechanisms. On the one hand, erosion
might lead to additional CO2 emissions due to the mineralization of eroded SOC during sediment transport
as a result of soil aggregate breakdown (Chappell et al., 2014; Van Hemelryck et al., 2011; Wang et al., 2010).
On the other hand, erosion might lead to C sequestration due to the dynamic replacement of SOC at the
eroding uplands and the decreased decomposition rate of eroded SOC that is redeposited and buried in flood-
plains and lakes (Stallard, 1998; Van Oost et al., 2007). In addition, soil and SOC loss influences
terrestrial‐atmosphere CO2 fluxes indirectly by affecting terrestrial productivity, nutrient concentrations
in soil and aquatic systems, food webs and optical properties of inland and coastal waters (Beusen et al., 2005;
Regnier et al., 2013; Vigiak et al., 2017). To date, many uncertainties still remain in the quantitative assess-
ment of the net effect of large‐scale lateral soil and C redistribution on terrestrial‐atmosphere CO2 fluxes
(Berhe et al., 2007; Doetterl et al., 2016; Lal, 2003; Liu et al., 2003; Stallard, 1998; Van Oost et al., 2007;
Wang et al., 2017). This knowledge gap partly results from the lack of reliable models capable of simulta-
neously simulating vertical land‐vegetation‐atmosphere C fluxes and pools, lateral C transport from land
to aquatic systems, as well as the interaction between these vertical and lateral C fluxes.

Water erosion and the resulting transport of SOC from land to aquatic systems are still ignored by most land
surface models (LSMs) which are used to simulate the exchange of water, energy and C between land and
atmosphere, and their evolution in response to climate and anthropogenic land use drivers (Krinner
et al., 2005; Kucharik et al., 2000; Sitch et al., 2003). SOC is a C pool that is difficult to represent in LSMs
due to the simplified representation of soil biogeochemical processes and the exclusion of some key pro-
cesses such as erosion‐induced lateral C translocation (Borrelli et al., 2017; Doetterl et al., 2016;
Todd‐Brown et al., 2014). The absence of water erosion‐related fluxes in LSMs induces systematic bias in
the modeling of regional and global C budgets. The sign and magnitude of this bias is poorly constrained
and may range from a 1 Pg C yr−1 source of atmospheric CO2 to a sink of 1 Pg C yr−1 (Van Oost et al., 2012;
Regnier et al., 2013; Nadeu et al., 2015; Lauerwald et al., 2017; Naipal et al., 2018). One of the main reasons
why water erosion processes are not routinely included in LSMs is the high spatial resolution required to
represent the effects of topography on overland flow, erosion and sediment redistribution along hillslopes
and floodplains (Naipal et al., 2016) and the long time scales involved that would require too much compu-
tational resources for integrating this process in a full‐fledged LSM.

Soil erosion and the delivery of eroded soil are processes that are highly variable in space and time due to
high spatial variability in topography, soil properties, land use and management and the episodic nature
of erosive rainfall events. Therefore, current regional erosion and sediment transport models typically rely
on forcing data at high spatial and temporal resolution (e.g., 10 to 100 m, 1 min to 1 hr) to represent the lat-
eral soil and C movements (Francesconi et al., 2016; Nearing et al., 1989; Singh et al., 2006). Several
large‐scale studies have estimated soil erosion and the resulting C loss using high‐resolution topography
and soil data (Van Oost et al., 2007; Doetterl, Van Oost, & Six, 2012; Borrelli et al., 2018). However, these
studies did not represent the temporal evolution of terrestrial ecosystem fluxes as they relied on static vege-
tation and SOCmaps (Table S1 in the supporting information). Naipal et al. (2015, 2016, 2018) went one step
further and introduced a scheme that couples a sediment C removal module with biomass and soil C
dynamics controlled by climate, CO2 and land use to simulate the large‐scale lateral movement of sediment
and C during the last century. However, as the sediment budget module was not embedded into the terres-
trial C cycle model (in this case, the ORCHIDEE LSM), this approach cannot account for the feedbacks of
soil erosion on the ecosystem C cycle. Tian et al. (2015) developed a scheme that simulates lateral C and
nutrient fluxes from land to ocean by coupling a soil erosion model to DLEM (Dynamic Land Ecosystem
Model, v2.0). The upgraded DLEM simulates soil and SOC erosion at the high spatial resolution of 5′
(~9 km) for a large‐scale LSM, but which still smoothens topographical properties, especially in hilly and
mountainous regions.

In this study, the Modified Universal Soil Loss Equation model (MUSLE, Williams, 1975) is dynamically
integrated into the ORCHIDEE LSM (Organizing Carbon and Hydrology In Dynamic Ecosystems,
Krinner et al., 2005) based on a novel upscaling scheme that allows accounting for topographical and soil
heterogeneities at the unprecedentedly high spatial resolution of 3″ (~90 m). The MUSLE model is used to
predict event‐based sediment discharge (Mg per rainfall event) from the outlets of small water catchments
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(Williams, 1975). It was adapted from the original Universal Soil Loss Equation (USLE) approach
(Wischmeier & Smith, 1978) by using runoff instead of rainfall intensity and amount to estimate erosion
fluxes. Although USLE and its revised version RUSLE (Renard et al., 1997) are widely used soil erosion mod-
els, they were developed for estimating the annual gross soil loss from individual slopes, and are thus not
well suited to estimate the sediment delivery from headwater basins to river network. Applications of
USLE for individual storm events over large areas lead to biases because this model does not explicitly con-
sider runoff, which is a key factor in sediment and C transport (Kinnell, 2005; Odongo et al., 2013; Sadeghi &
Mizuyama, 2007). The runoff‐based approach of MUSLE partly overcomes this bias and has the additional
advantage to be compatible with a LSM that simulates changes in the soil water balance following each rain-
fall event at relatively high temporal resolution (e.g., half hour). By focusing on the sediment delivery from
the outlets of headwater catchments (i.e., gross soil erosion from all hillslopes—soil deposition on footslopes
or plains within that headwater catchment), the proposed approach circumvents the need for a detailed
representation of the complex and uncertain processes of soil erosion, sediment transport and redeposition
along each hillslope.

The main aim of this study is to develop a LSM that can be used to simulate the soil and SOC deliveries from
upland ecosystems to rivers and to assess the potential impact of these lateral fluxes on SOC dynamics. For
this purpose, the erosion model MUSLE is coupled to the ORCHIDEE LSM. Calibration and evaluation of
the coupled ORCHIDEE‐MUSLE model (and its upscaling scheme) is achieved by applying it to the
Rhine catchment in Central Europe (Figure S1). The Rhine catchment is characterized by contrasted topo-
graphy, climate and vegetation conditions and has been widely monitored over the past decades. We evalu-
ate the model results with observed runoff data and previous high‐resolution model estimates of net soil
erosion/deposition rates from Borrelli et al. (2017). Next, we present the simulated spatial and temporal
(interannual and seasonal) variations of soil and SOC delivery rates from uplands to the Rhine river.
Finally, we quantify the effects of lateral soil and C redistribution on the SOC stock in the Rhine
Catchment over the period 1901–2014.

2. Materials and Methods
2.1. ORCHIDEE LSM

ORCHIDEE is a process‐based LSM, which is described in detail by Krinner et al. (2005). In short, the core of
ORCHIDEE is organized around three models: (1) the SECHIBA model (Ducoudré et al., 1993) that
describes the fluxes of energy and water at the interface of atmosphere and land surface, including the soil
water dynamics, (2) the STOMATE model (Saclay Toulouse Orsay Model for the Analysis of Terrestrial
Ecosystems, Viovy, 1996) that simulates the C fluxes between soil, vegetation, and atmosphere, including
processes such as plant phenology, photosynthesis, C allocation, and SOC decomposition, and (3) the
dynamic vegetation module inherited from the dynamic vegetation model LPJ (Lund‐Potsdam‐Jena)
(Sitch et al., 2003), which simulates vegetation dynamics such as plant establishment and mortality, light
competition and the introduction or elimination of a plant type due to fire or some other lethal environmen-
tal conditions.

We selected the ORCHIDEE‐SOM version (Version r5039, Camino‐Serrano et al., 2018) that provides a
depth‐dependent description of the production and decomposition of SOC as basis for the development of
ORCHIDEE‐MUSLE. Following the CENTURY model (Parton et al., 1987), the soil C in
ORCHIDEE‐SOM is subdivided into two litter pools (metabolic and structural) and three SOC pools (active,
slow and passive) that differ in their respective turnover times. The vertical soil profile is described by an
11‐layer discretization of a 2 m soil profile (Figure S2), with geometrically increasing layer thickness from
top to bottom (Camino‐Serrano et al., 2018). Vegetation in ORCHIDEE‐SOM is represented by 13 plant func-
tional types (PFT): one PFT for bare soil, eight for forests, two for grasslands, and two for croplands (Krinner
et al., 2005). There can be multiple PFTs (up to 13 in the default ORCHIDEE‐SOM) growing in 1 pixel of the
model although the specific locations of different PFTs in each pixel are not explicitly represented. Area frac-
tions (0–1, unitless) of different PFTs in each of the simulated pixel can be obtained from land cover forcing
data every year or simulated by the vegetation dynamic module, depending on the model settings. Plant phe-
nology, canopy photosynthesis, C allocation, litterfall production, and the dynamic of litter and SOC in every
pixel are simulated for each PFT separately. The average conditions (e.g., average LAI, living biomass stock,
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SOC density) in each pixel are calculated from specific values for each PFT present on that pixel and their
corresponding area fractions.

The hydrological processes in ORCHIDEE are simulated at a time step of 30 min (Campoy et al., 2013;
Guimberteau et al., 2014). Based on gridded precipitation forcing data at a temporal resolution of 3 hr,
ORCHIDEE‐SOM first calculates canopy interception and throughfall, the latter being further divided
into infiltration and surface runoff through a time‐splitting procedure according to Green and Ampt
(1911) where the wetting front moves with time through the deep soil layers (D'Orgeval et al., 2008).
Soil water balance is controlled by the soil hydraulic properties, climate driven and plant‐mediated tran-
spiration and bare soil evaporation. Note that the precipitation forcing data only provides the total pre-
cipitation amount for each 3 hr (mm 3 hr−1), but no information about the rainfall intensity for time
scales shorter than 3 hr. To better capture the temporal distribution of rainfall and surface runoff, a
parameter (PREC_SPRED) has been introduced in the model to distribute the rainfall intensity within
each 3 hr period. When PREC_SPRED is set to 1, it is assumed that all of the rainfall in each 3 hr
occurs within the first 30 min of the 3 hr period (high rainfall intensity). When PREC_SPRED is set
to 6, the rainfall is evenly distributed across the 3 hr (low rainfall intensity). In this study,
PREC_SPRD is set to 1, because the simulated runoff in Rhine catchment is closest to observations
when the PREC_SPRD is set to 1, compared to the simulation results using a larger PREC_SPRD (see
section 3).

Soil hydraulics are simulated based on an 11‐layer soil diffusion scheme (Campoy et al., 2013; De Rosnay
et al., 2000). In that scheme, the vertical soil water flow is simulated using the Fokker‐Planck equation that
resolves water diffusion in nonsaturated conditions according to Richards equation (Richards, 1931). The
relationships between hydraulic conductivity, volumetric water content and matrix potential are described
by the Mualem‐Van Genuchten model (Mualem, 1976; Van Genuchten, 1980). The maximum soil water
content in the 2 m soil is between 820 kg m−2 (coarse and fine classes) and 860 kg m−2 depending on soil
texture. The saturated hydraulic conductivity has been modified (D'Orgeval et al., 2008) to take into account
two properties that have opposite effects on conductivity (Beven, 1984; Beven & Germann, 1982): (1)
increased soil compactness with depth and (2) enhanced infiltration capacity due to the presence of vegeta-
tion that increases soil porosity in the root zone. Free gravitational drainage in the lowest soil layer occurs
when actual soil water content is higher than the residual water content (Campoy et al., 2013). More detailed
information about the simulation of hydrological processes in ORCHIDEE can be found in Campoy
et al. (2013) and Guimberteau et al. (2014).

2.2. The MUSLE

The MUSLE event‐based sediment delivery model (Williams, 1975) is based on a combination of controlling
factors describing runoff and catchment characteristics, expressed by

Y ¼ a Q qð Þb K LS C P (1)

where Y is the sediment delivery (Mg per rainfall event) to rivers from the outlet of a catchment for a given
storm event, Q (m3 per rainfall event) is the volume of surface runoff produced over a catchment during
that event, q is the peak flow rate (m3 s−1) at the outlet of the catchment, K is the soil erodibility factor
(Mg MJ−1 mm−1), LS is the slope length and gradient factor (dimensionless), C is the cover management
factor (dimensionless), P is the factor of erosion control practice (0–1, dimensionless), and a and b are
empirical coefficients.

MUSLE has been used and tested in many different catchments with diverse climate, soil, vegetation and
topography conditions around the world (e.g., Sadeghi et al., 2014; Zhang et al., 2009). Compared to more
complex erosion models such as WEPP (Nearing et al., 1989) and ANSWERS (Francesconi et al., 2016;
Singh et al., 2006), the structure of MUSLE is relatively simple, and its input parameters can be obtained
from existing geodata. In addition, the runoff and vegetation factors used in MUSLE can be calculated
directly from the daily total runoff volume, daily peak discharge rate, root biomass, litter stocks, and canopy
cover as simulated by ORCHIDEE.
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2.3. Coupling Between ORCHIDEE and MUSLE

The coupled ORCHIDEE‐MUSLE was run at 0.5° spatial resolution using the global climate forcing
GSWP3 (the Global Soil Wetness Project Phase 3). The applied temporal resolution was the default
30 min time step of ORCHIDEE‐SOM for all vertical exchanges of water, C and energy between atmo-
sphere, vegetation, and soils, while the lateral erosion fluxes were simulated at a daily time step. As
MUSLE is an event‐based erosion model, we assumed that all episodes of rainfalls occurring in the same
day belong to one single rainfall event and that the rainfalls occurring in different consecutive days belong
to different rainfall events. In what follows, the upscaling strategy required for the ORCHIDEE‐MUSLE
coupling is described in details.
2.3.1. Sediment Delivery for Reference Conditions
MUSLE is developed to estimate the sediment delivery at the outlet of an individual catchment. We thus
applied MUSLE in headwater basins to calculate the sediment delivery from land to the river network, with
headwater basins delineated as explained below. First, we extracted the topographic features of each head-
water basin in the study area from the high‐resolution (3″) digital elevation model (DEM) HydroSHEDS
(http://hydrosheds.cr.usgs.gov). We then computed the flow direction (Figure S3b), the flow accumulation
(defined by accumulated number of upstream cells, Figure S3c) and the slope steepness (Figure S3e) across
the Rhine catchment based on the DEM at 3″ (~90 and 60 m along the latitude and longitude directions,
respectively) (Figure S3a) from HydroSHEDS using ESRI's ArcGIS 10.2. The river network (Figure S3d)
was then extracted from the flow accumulation map by considering that grid cells with flow accumulation
equal to or larger than 1,000, that is a drainage area of approximately 6.5 km2, belong to the river channel.
Using river network and flow direction maps, we then extracted all grid cells that directly discharge into the
river network and correspond to the outlets of headwater basins (Figure S3d). Finally, headwater basins
(Figure S3d), as well as their drainage area (DA) and average slope steepness (θ) were calculated based on
each headwater basin outlet and flow direction. In total (i.e., over the whole Rhine catchment), more than
1.1 million headwater basins with drainage area ranging from less than 0.01 km2 to more than 6.0 km2 were
extracted.

To scale up the daily sediment delivery computed at the level of headwater basin to the 0.5° grid of
ORCHIDEE—a scale required to maintain computational efficiency, we first calculated the daily sediment
delivery (Yi_ref, Mg day−1, Figure 1d) in each headwater basin for a given set of reference conditions of runoff
and vegetation cover:

Figure 1. Flowchart for implementing lateral soil and C redistribution processes into the land surface model ORCHIDEE. K factor is the soil erodibility factor
(Mg MJ−1 mm−1); Qref is the daily water discharge rate from each water basin (m3 day−1) under an assumed reference daily runoff condition (reference
runoff ¼ 10 mm day−1, Equation 3); qref is the daily peak flow rate (m3 s−1) under the assumed reference runoff condition (Equation 5); Cref (¼0.1,
dimensionless) is the assumed reference cover management factor; Pref (¼1.0, dimensionless) is the reference factor for soil conservation practices. See Table 1 for
the description of the forcing data (DEM, soil erodibility, climate, vegetation distribution, and soil properties) used in this study.
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Yi ref ¼ a Qi ref qi ref

� �b
Ki LSi Cref Pref (2)

where Qi_ref is the total water discharge (m3 day−1) at the outlet of headwater basin i for the daily refer-
ence runoff condition (Rref) of 10 mm day−1, calculated according to

Qi ref ¼ 10−3 Rref DAi (3)

DAi ¼ flacci Δlati Δloni (4)

where DAi is the drainage area of each headwater basin i (m2), computed from flacci, the flow accumula-
tion at the outlet of water basin i. Δlat and Δlon are the grid size (m) in latitude and longitude direction. In
Equation 2, qi_ref is the daily peak flow rate (m3 s−1) at the headwater basin outlet under the assumed
reference runoff condition. Similar to the SWAT model (Soil and Water Assessment Tool, Neitsch
et al., 2011), qi_ref was calculated from the maximum 30 min runoff depth and drainage area according
to the following equation:

qi ref ¼
R30 ref

30 × 60
DAi

d DAi
cð Þ

� �
1000 (5)

where R30_ref (¼1 mm 30 min−1) is the assumed daily maximum 30 min runoff. As runoff produced at dif-
ferent locations of a basin does not reach the outlet at the same time, we introduced the parameters c and
d to account for the impacts of water convergence on qi_ref. The calibration of those parameters is
described in section 2.4.3.

In Equation 2, the term LSi is the combined dimensionless slope length and steepness factor (Moore &
Burch, 1986; Moore & Wilson, 1992) given by

LSi ¼ 10−6 DAi

22:13

� �0:4 sinθi
0:0896

� �1:3

(6)

where θi is the average slope steepness of headwater basin i. Cref (0–1, dimensionless) in Equation 2 repre-
sents the cover management factor and is set to 0.1 for the reference state. The soil erodibility factor Ki

(Mg MJ−1 mm−1) for the Rhine catchment (Figure S3f) was taken from the high‐resolution (500 m) soil
erodibility data set (Panagos et al., 2014) provided by the European Soil Data Centre (ESDAC). The term
Pref was set to 1.0, as we did not consider the impacts of soil conservation practices in reducing soil erosion
rate. Note that the choice of reference values for the runoff (Rref and R30_ref), land cover (Cref) and factor of
erosion control practice (Pref) does not affect the simulated sediment delivery rate, that is, any set of values
would lead to the same result.
2.3.2. Spatial Upscaling Procedure (Reference Conditions)
For the reference state, the total sediment delivery from uplands to the river network in a specific 0.5° × 0.5°
pixel k (Yk_ref, Mg day−1) is equal to the sum of sediment delivery from all headwater basins (i) in this pixel:

Yk ref ¼ ∑n
i¼1 f ik Y i ref
� �

(7)

where n is the total number of headwater basins in pixel k and fik (0–1, dimensionless) is the area fraction
of headwater basin i located in pixel k. Combining Equations 2 and 7 allows to generate a map of daily
sediment delivery from uplands to the river network at 0.5° spatial resolution (Figure 1e) for the reference
conditions of runoff and vegetation cover. This map is then used in ORCHIDEE‐MUSLE to simulate the
daily sediment delivery as described in the next section.
2.3.3. Daily Sediment Delivery From Uplands to the River Networks (Actual Conditions)
The daily sediment delivery from headwater basins to the river networks (Yk_tot, Mg day−1) at 0.5° spatial
resolution for any arbitrary value of runoff and vegetation cover is given by
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Yk tot ¼ ∑n
i¼1 f ik Yið Þ ¼ ∑n

i¼1 f ik ∑
m
j¼1 a Qi qið Þb Ki LSi Cij vf kj
� �� �

(8)

where Yi (Mg day−1) is the daily sediment delivery from headwater basin i. k and j are the indexes of 0.5°
pixel and PFT, respectively. Qi is the daily total water discharge (m3 day−1) at the outlet of water basin i,
and it is calculated as

Qi ¼ 10−3 Rk DAi (9)

where Rk (mm day−1) is the daily total surface runoff in pixel k simulated by ORCHIDEE‐MUSLE at 0.5°
spatial resolution every 30 min. We assumed that the surface runoff is evenly distributed in every 0.5°
pixel, that is, all headwater basins (i ¼ 1:n) in 1 pixel (k) have the same surface runoff (Ri ¼ 1:n ¼ Rk).
In Equation 8, qi denotes the daily peak flow rate (m3 s−1) at water basin outlet, calculated from the max-
imum value of the 48 half‐hour runoffs in each day (R30_k, mm 30 min−1):

qi ¼
R30k

30 × 60
DAi

d DAi
cð Þ

� �
103 (10)

Vegetation dynamics in ORCHIDEE are simulated at 0.5° spatial resolution. Thus, all headwater basins in
one 0.5° pixel were assigned the same vegetation cover condition. The vegetation in ORCHIDEE is how-
ever represented by 13 PFTs (m ¼ 13). In Equation 8, the term vfkj (0–1, dimensionless) thus denotes the
(evenly distributed) fraction of pixel k covered by each PFT number j (j ¼ 1:m). The cover management
factor Cij (0–1, dimensionless) in Equation 8 was calculated in ORCHIDEE‐MUSLE as a combination of
a canopy cover factor (f (vcij), 0–1, dimensionless), a litter factor (f (littij), 0–1, dimensionless) and a root
factor (f (rootij), 0–1, dimensionless). As all small headwater basins (i ¼ 1:n) located in one 0.5° pixel
(k) have the same vegetation cover condition, Cij can be calculated by

Cij ¼ f vckj
� �

f littkj
� �

f rootkj
� �

(11)

where f (vckj) is calculated from vegetation cover following the method proposed by Yang and Shi (1994)
and already applied by, for example, Shi et al. (2004), Zhou et al. (2008), Schönbrodt et al. (2010), and
Zhang et al. (2014):

f vcij
� � ¼

1:0; vckj ≤ 0:1

0:658 − 0:343log10 vckj
� �

; 0:1<vckj<78:3

0:01; vckj ≥ 78:3

8><
>: (12)

where vckj (%) is the canopy cover fraction (equal to the ratio of canopy cover area to the distribution area
of each PFT) of PFT j in pixel k. vckj is updated daily in ORCHIDEE‐MUSLE based on the phenology and
growing stage of PFT j. Previous studies reported significant impacts of plant litter and plant root in redu-
cing soil erosion (Durán Zuazo & Rodríguez Pleguezuelo, 2008; Li et al., 2014; Poesen et al., 2016).
Following the equations implemented in the ANSWERS model (Byne, 1999), the adjustment factor of
plant litter (f (littkj)) and living roots (f (rootkj)) are calculated from the litter stock and standing root bio-
mass according to the following equations:

f littkj
� � ¼ e−0:56Clitt kj=1000 (13)

f rootkj
� � ¼ e−0:56Croot kj=1000 (14)

where Clitt_kj (g C m−2) is the sum of aboveground and belowground litter‐C stocks in the top seven soil
layers (0–19 cm) for PFT j in pixel k, and Croot_kj (g C m−2) is the total root biomass. Note that the
above‐ground biomass in croplands is assumed to be harvested every year and f (littkj) for croplands is thus
only calculated based on the belowground litter stock.

The daily sediment delivery from uplands to the river network in each 0.5° pixel k was computed for the
reference runoff and vegetation cover conditions (Yk_ref) as described in sections 2.3.1 and 2.3.2. We can
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now directly calculate the actual daily sediment delivery (Yk_tot) for any other pair of runoff value and vege-
tation cover characteristics corresponding to a PFT j in pixel k (Ykj_tot, Mg day−1):

Ykj tot ¼ Yk ref
Rk R30 k

Rref R30 ref

� �bvf kj f vckj
� �

f littkj
� �

f rootkj
� �

Cref
(15)

This approach has the major advantage that the sediment delivery from headwater basins to the river net-
work is only computed once at the very high spatial resolution of 3″ and is used to scale the sediment
delivery for any arbitrary value of runoff and vegetation cover from their reference values. From the
PFT‐specific total amount of daily sediment delivery (Ykj_tot), the area‐averaged sediment delivery rate
for a given PFT (NEkj, kg m−2 day−1, that is, the net soil loss rate (gross soil erosion—soil deposition on
footslopes or plains) from uplands to river channels) can be calculated according to

NEkj ¼ Ykj tot

10−3 vf kj Ak
(16)

where Ak (m
2) is the total area of pixel k. The depth of eroded soil per day (Zkj, m day−1) is then obtained

by dividing the area‐averaged sediment delivery rate by the soil bulk density (BDkj, kg m−3):

Zkj ¼ NEkj

BDkj
(17)

In ORCHIDEE‐MUSLE, the depths of the 11 soil layers are fixed (Figure S2). Following soil erosion, some
of the soil and C originally located in a given layer will progressively move into the overlying upper soil
layer. The deepest, 11th soil layer (bottom soil layer, 1.5–2.0 m) is replenished by subsoil located deeper
than 2 m (Figure S2). We assumed that there is no organic C below 2 m, and there is always sufficient soil
at depths deeper than 2 m to replenish the soil loss in the surface layers.
2.3.4. Carbon Redistribution and Profile Evolution
Like in the original ORCHIDEE‐SOM (Camino‐Serrano et al., 2018), SOC in ORCHIDEE‐MUSLE is subdi-
vided into three pools (active, slow and passive) and is discretized over 11 soil layers down to 2 m depth. In
general, the simulated SOC concentration decreases exponentially from surface to deep soil layers. SOC
decomposition is represented by first order kinetics and the decomposition rate depends on the specific turn-
over rate of each SOC pool. The decomposition process is modulated by soil moisture, temperature, clay con-
tent and the “priming effect” of labile organic matter (Camino‐Serrano et al., 2018; Guenet et al., 2016).
Moreover, the vertical transport of SOC between different soil layers induced by bioturbation is simulated
according to a diffusion‐type law (Camino‐Serrano et al., 2018). Overall, the daily net change of SOC pools
in each layer is represented by the mass conservation equation:

dSOC
dt

¼ IC − τ f a SOC þ DC (18)

where IC is the carbon input from decomposed litter or other related donor C pools, fa is the modulating
factor adjusting the decomposition rate based on soil temperature, moisture, texture (clay content) as well
as the priming effect of fresh C input (Guenet et al., 2016, 2018) and DC is the net SOC exchange with adja-
cent soil layers through vertical transport induced by bioturbation.

The daily area‐averaged SOC delivery rate from each headwater basin to the river network (equal to the
delivery rate of particulate organic C (POC)) induced by soil erosion is simulated based on the average
SOC concentration in the top seven soil layers (0–19 cm). For PFT j in pixel k, the SOC delivery rate
(NE_Ckj) is calculated by

NE Ckj ¼ Zkj

Z7
SOC7kj (19)

SOC7kj ¼ ∑7
l¼1SOCkjl (20)
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where SOC7kj (g C m−2) denotes the sum of SOC stock in the top seven soil layers. Z7 is the depth at the
bottom of the seventh soil layer (0.19 m) and SOCkjl is the SOC content (g C m−2) of layer l.

We assumed that the amount of SOC eroded from each of the top seven soil layers is positively related to the
pool size of the corresponding soil layer. As a result of the loss in surface soil, part of the SOC that was ori-
ginally stored in deeper soil layers will be transported up the sediment column and eventually exposed to
erosion if it reaches the surface soil layers. This migration process of SOC in a soil layer l of PFT j in pixel
k is simulated according to

SOCkjl new ¼

1 −
Zkj

Z7

� �
SOC7kj þ Zkj

Z8 − Z7
SOCkj8

� �
SOCkjl

SOC7kj
; l ≤ 7

1 −
Zkj

Zl − Zl − 1

� �
SOCkjl þ Zkj

Zl þ 1 − Zl
SOCkj l þ 1ð Þ ; 8 ≤ l ≤ 10

1 −
Zkj

Zl − Zl − 1

� �
SOCkjl ; l ¼ 11:

8>>>>>>>><
>>>>>>>>:

(21)

where SOCkjl_new (g C m−2) is the updated SOC stock in soil layer l (layl) of the pixel k. Note that the ver-
tical evolution of the SOC profile is simulated separately for each of three SOC pools of differing reactivity
(active, slow and passive).

2.4. Model Evaluation
2.4.1. Study Area
ORCHIDEE‐MUSLE was calibrated and evaluated at the regional scale of the Rhine catchment (Figure S1),
which is characterized by a drainage area of about 1.6 × 105 km2. The elevation and slope steepness vary
drastically in Rhine catchment (Figure S3). In the northern and central plains, the elevation is generally
lower than 100 m and the slope steepness is mostly less than 1°. In the mountainous regions, especially
the Alps, the elevation can be above 3,000 m and slope steepness can be larger than 30°. A large fraction
of the catchment is under the influence of a temperate climate with mean annual precipitations varying
between 600 mm in central Rhine and 2,500 mm in the Alps (Van Dijk & Kwaad, 1998). The main land
use types consist of forest (35%), crop land (22%), grass land (39%) and urban area (4%), and the land cover
has changed extensively during the past decades (Hurkmans et al., 2009).
2.4.2. Forcing Data and Model Protocol
Themeteorological forcing data used for our simulations were obtained from the global reanalysis product of
the Global Soil Wetness Project Phase 3 (GSWP3, Table 1). The GSWP3 data set contains globally gridded
data of near surface wind, air temperature, humidity, air pressure, incoming short‐wave and long‐wave
radiation, rainfall and snowfall rates for the period 1901 to 2014 on a 3‐hourly time step at 0.5° resolution
(http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings). Every year during the whole simula-
tion period since 1901, the vegetation distribution was dynamically prescribed using PFT maps obtained

Table 1
Source and Spatial Resolution of the Main Forcing and Validation Data Used in This Study

Data Resolution Source

Forcing Climate 0.5° GSWP3a

Vegetation cover 0.5° LUHa.rc2b

Soil bulk density 0.5° HWSD v1.2c

DEM 3″ HydroSHEDSd

Soil erodibility 500 m Panagos et al. (2014)
Validation Net soil erosion/deposition rate 100 m Borrelli et al. (2018)

Runoff discharge Site observation GRDCe

SOC stocks 30″ HWSD v1.2c

5′ GSDE (Shangguan et al., 2014)
1 km OCTOP (Jones et al., 2005)

ahttps://www.isimip.org/gettingstarted/details/4/; bhttp://luh.umd.edu/readme_LUHa_v1.shtml; cFAO/IIASA/
ISRIC/ISSCAS/JRC, 2012 (https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/);
dhttp://hydrosheds.cr.usgs.gov; ehttps://www.bafg.de/GRDC/EN/Home/homepage_node.html
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from the LUHa.rc2 data set (Land Use History). Soil type was defined based on Zobler (1999). Soil bulk den-
sity was taken from the HWSD database (Harmonized World Soil Database v1.2, FAO/IIASA/ISRIC/
ISSCAS/JRC, 2012).

Daily sediment and SOC delivery from headwater basins to the river network was simulated at 0.5° spatial
resolution yet with the upscaling from 1.1 million headwater catchments over the period 1901–2014. Before
launching this historical simulation, ORCHIDEE‐MUSLEwas run over a “spin‐up” period of 10,000 yr start-
ing from “bare ground” (with zero vegetation and SOC content) until the SOC pools reached a steady state.
During the “spin‐up” period, the meteorological data, PFT maps and atmospheric CO2 concentrations from
1901 to 1910 were used repeatedly to drive the model. Moreover, in order to assess the impacts of
erosion‐induced soil loss on the land C cycle in Rhine catchment, we also ran the default
ORCHIDEE‐SOM model (Version r5039) following exactly the same modeling protocol. The impact of ero-
sion on the SOC balance was quantified by comparing the model outputs from ORCHIDEE‐SOM and
ORCHIDEE‐MUSLE.
2.4.3. Calibration and Validation
Although several studies already estimated the gross soil erosion rates in the Rhine catchment or across
Europe (Cerdan et al., 2010; Naipal et al., 2016, 2018; Panagos et al., 2015), to our knowledge, only a few stu-
dies have estimated the sediment delivery from uplands to the river network (Van Dijk & Kwaad, 1998;
Asselman, 1999; Borrelli et al., 2018). In this study, the gridded product of net soil erosion/deposition rate
(erosionminus deposition, in Mg ha−1 yr−1) from ESDAC (Table 1, Borrelli et al., 2018) was used to calibrate
the model parameters a, b, c, and d in Equations 1, 2, 5, 8, and 10 and to evaluate the simulated results. The
ESDAC product provides the net soil erosion/deposition rate across all European Union countries using the
land cover map of 2010 at 100 m spatial resolution, as simulated by the WaTEM/SEDEM model using
high‐resolution data of land cover, soil erodibility, topography and rainfall. This product has been exten-
sively calibrated and validated against observed sediment fluxes from 24 European catchments (Borrelli
et al., 2018).

As the net soil erosion/deposition rates from the ESDAC product (100m) andORCHIDEE‐MUSLE (0.5°) are
simulated at quite different spatial resolutions, the parameters a, b, c, and d (Equations 2, 5, 8, and 10) were
calibrated here against the area‐averaged sediment delivery rates in 28 subcatchments of the Rhine
(Figure S1). The area of the 28 subcatchments ranges from less than 500 to 13,600 km2. The four subcatch-
ments that are mainly located in Switzerland were excluded because ESDAC product only provides the esti-
mate of net soil erosion/deposition rates in European Union countries. For the ESDAC product, the
area‐averaged sediment delivery rate in a specific subcatchment is calculated by averaging the net soil
erosion/deposition rates for all 100 × 100 m grid cells within that subcatchment. For ORCHIDEE‐
MUSLE, we first calculated the area‐averaged sediment delivery rate at the headwater basin scale (NEi,
kg m−2 day−1, Figure S4) by

NEi ¼ Yi ref

Yk ref
∑m

j¼1 Ykj tot
� �� �

=DAi (22)

Then, the area‐averaged sediment delivery rate for each of the 28 subcatchment of the Rhine (Figure S1)
was calculated as the mean value (weighted by the drainage area of each headwater basin) of all head-
water basins within each subcatchment.

We used the “leave‐one‐out” cross‐validation method (Tramontana et al., 2016) to evaluate the simulated
area‐averaged sediment delivery rate, and quantify uncertainties in the parameters a, b, c, and d. The
cross validation was conducted 28 times according to the following procedure: Each time, the
area‐averaged sediment delivery rates in 27 subcatchments were used to calibrate parameters, and the
subcatchment excluded in the calibration was then taken as the validation sample. Parameter optimiza-
tion was performed using the shuffled complex evolution (SCE) algorithm developed by Duan et al. (1993,
1994), which has been proven to be effective for global optimization in many previous studies (e.g.,
Franchini et al., 2009; Muttil & Jayawardena, 2008). The root‐mean‐square error (RMSE, Equation 23)
between sediment delivery rates obtained from the ESDAC product and the simulated results from the
ORCHIDEE‐MUSLE was used as the objective metrics, and parameter values that minimize the RMSE
were regarded as optimal.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

isub¼1 NEisub WS − NEisub OMð Þ2
n

 !vuut (23)

where n (n ¼ 28) is the number of training samples, NEisub_WS and NEisub_OM (kg m−2 yr−1) are the
area‐averaged sediment delivery rates in subcatchment isub simulated by WaTEM/SEDEM (subscript
WS) and ORCHIDEE‐MUSLE (subscript OM), respectively. We also used the area‐averaged sediment
delivery rates for all of the 28 subcatchment together as training samples to optimize an average value
of a, b, c, and d. All simulation results shown in section 3 are based on parameters (a ¼ 43.79,
b ¼ 0.50, c ¼ −0.048, d ¼ 1.78) calibrated against area‐averaged sediment delivery rates of the 28 subcatch-
ments together, unless specified otherwise.

The simulated runoff from ORCHIDEE‐MUSLE was evaluated against observed annual water discharge
(m3 yr−1) at 14 hydrological gauging stations corresponding to variable drainage areas (Figure S1). The gau-
ging data were extracted from the Global Runoff Data Centre (GRDC, 56068 Koblenz, Germany). The simu-
lated SOC stocks were evaluated against the SOC stocks from three spatially gridded soil databases: the
Harmonized World Soil Database (HWSD, v1.2), the Topsoil Organic Carbon Content for Europe
(OCTOP, Jones et al., 2005), and the Global Soil Dataset for use in Earth System Models (GSDE,
Shangguan et al., 2014).
2.4.4. Analysis of Uncertainties
Based on the 28 cross validations and the calibration using all subcatchments together as training samples,
we obtained 29 sets of parameter values a, b, c, and d. By comparing these parameter values, we estimated
the mean and standard deviation of parameters a (40.58 ± 5.81), b (0.51 ± 0.014), c (−0.053 ± 0.010), and
d (1.91 ± 0.26). The spread in values was then used to quantify uncertainties in simulated area‐averaged sedi-
ment delivery rates induced by the parameter uncertainties.

Uncertainties arising from the land cover forcing data were quantified by comparing the LUHa.rc2 used
in this study to the CORINE land cover data (https://land.copernicus.eu). The CORINE land cover was
developed by image analysis and land use/cover digitalization of Landsat photos in a GIS environment.
The data are available in a raster format at a pixel resolution of 100 m, and correspond to the years
1990, 2000, 2006, and 2012 (the data for 1990 was not used here as it excludes the upper part of the
Rhine Catchment located in Switzerland). Validation of the CORINE land cover data for Europe relies
on extensive field surveys and results indicate that the achieved accuracy exceeds 85% (Buttner, 2014).
Note that there are 45 land cover types in the original CORINE data set. We thus developed a lookup
table (Table S2 in the supporting information) to reclassify these 45 land cover types into the 13 PFTs
of ORCHIDEE. More detailed information about the CORINE land cover data can be found in
Panagos et al. (2015).

To simulate the sediment delivery rate using the high‐resolution CORINE land cover maps, we first calcu-
lated the fractions of different PFTs in each 0.5° pixel according to the CORINE data product. Then, the
resulting land cover data, was used in combination with the daily runoff (Equation 15) and vegetation factors
(Equation 11, for each PFT) simulated by ORCHIDEE‐MUSLE to drive the MUSLE (Equation 8) to perform
a CORINE‐based simulation of the daily sediment delivery rate from uplands to river networks in each 0.5°
pixel. In our model, the land cover conditions of all headwater basins that belong to the same 0.5° pixel are
also assumed to be identical. To explore the uncertainties in simulated sediment delivery rate caused by the
averaging of land cover conditions at 0.5° spatial scale, we conducted a simulation where the land cover com-
position in each headwater basin is specified according to the high‐resolution CORINE land cover map. We
then compared the so‐derived sediment delivery rates to the sediment delivery rates simulated using the
average land cover condition of each 0.5° pixel.

Uncertainties in the soil erodibility (K) data used in this study have already been estimated by Panagos
et al. (2014). We thus used their results to discuss the potential uncertainties in our simulation results
caused by the soil erodibility. Panagos et al. (2015) have also estimated the factor of erosion control prac-
tice (e.g., contour farming, stone walls and grass margins) at the European scale. We used their estimates
to quantify the P factor in the Rhine catchment, as well as the potential uncertainties arising from this
factor in our model.
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3. Results and Discussion
3.1. Model Evaluation

Comparison of simulated and observed annual water discharge indicates that ORCHIDEE‐MUSLE can
reproduce the magnitude and interannual variations of runoff at gauging stations capturing different drai-
nage areas (Figure 2). For most of the 14 gauging stations, ORCHIDEE‐MUSLE explains more than 80%
of the interannual variation in runoff during the period 1901–2014 (Figure S5). At site S1 located close to
the estuary of the Rhine River and draining the entire catchment area, 86% of the interannual variations

Figure 2. Comparison of simulated (green) and observed (blue) annual water discharge at 14 gauging stations in the Rhine watershed. DA denotes the drainage
area of each gauging station.
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of water discharge are explained by the simulation results (Figure S5). On average, the simulated annual
water discharge at site S1 is 6.5 × 1010 (±1.4 × 1010, standard deviation representing interannual
variation) m3 yr−1, which is only 9% lower than the observed value (7.2 × 1010 (±1.4 × 1010) m3 yr−1).

The simulated area‐averaged sediment delivery rates from uplands to the river network in different sub-
catchments of the Rhine using ORCHIDEE‐MUSLE are overall comparable to those of WaTEM/SEDEM
(Figures 3 and S6). The relative biases between the two models are generally lower than 30%, with larger
biases occurring mostly in the smaller subcatchments (<5,000 km2). For all of the 28 subcatchments of
the Rhine (excluding the four subcatchments in Switzerland, Figure S6), the average sediment delivery rate
estimated in our study is 74.6 (±3.3) g m−2 yr−1, which is close to the estimated value by WaTEM/SEDEM
(71.7 g m−2 yr−1). Although the biases in simulated average sediment delivery rates are large in several small
subcatchments (Figure 3), they have very limited impact on the estimation error for the total yearly soil
delivery over the whole Rhine catchment (9.1 ± 0.4 Tg yr−1, Figure S6). In other words, the estimation errors
for the large subcatchments mainly determine the overall estimation accuracy over the Rhine catchment
(Figure S6).

Comparison of simulated SOC stocks from ORCHIDEE‐MUSLE and SOC stocks from the HWSD and
OCTOP soil databases indicates that the model overestimates the SOC stocks (in the top 30 cm or 1 m soil
layer) in the central portion of the Rhine catchment, while it underestimates the SOC stocks in the northern
and southern parts (Figures 4 and S7–S9). In contrast, when the GSDE is used as benchmark, ORCHIDEE
mostly underestimates SOC stocks in the whole Rhine catchment (Figures 4c and 4f). These results indicate
that SOC stock estimates from soil databases are already quite uncertain, as already pointed out by Tifafi
et al. (2018). Not surprisingly, the SOC stocks simulated by ORCHIDEE‐MUSLE are generally lower than
those obtained with ORCHIDEE‐SOM without erosion (Figures S7d, S7e, S8c, and S8d) due to the effects
of erosion removal in the former model version (Figure 5).

3.2. Spatiotemporal Dynamics of Sediment and SOC Delivery Rates

The sediment and SOC delivery rates from headwater basins to the river network show large spatial varia-
tions across the Rhine catchment (Figure 5). From the Southeast to the Northwest portions of the catchment
and largely following the S‐N gradient from steeper to flatter topography, the sediment delivery rates
decrease from more than 3 g C m−2 yr−1 to less than 0.05 g C m−2 yr−1. On average, the annual sediment

Figure 3. Comparison of the area‐averaged sediment delivery rates from uplands to the river network simulated by WaTEM/SEDEM and by ORCHIDEE‐MUSLE
for 28 subcatchments of the Rhine (excluding the four subcatchments in Switzerland). DA denotes the drainage area of different subcatchments (km2).
The black dot in figure (b) denotes the simulated average sediment delivery rate in all of the 28 subcatchments. The solid line is the regression line of
simulation results from ORCHIDEE‐MUSLE against WaTEM/SEDEM. Error bars denote the uncertainties in the simulated sediment delivery rates caused by the
uncertainties of parameters a, b, c, and d in Equations 1, 2, 5, and 10.
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and SOC delivery rates across the entire Rhine catchment are 107.1 g m−2 yr−1 and 1.19 g C m−2 yr−1,
respectively. The higher value reported here compared to the one reported above (74.6 g C m−2 yr−1)
stems from the contribution of the four Swiss subcatchments.

The seasonal dynamics in sediment delivery rates are mainly controlled by runoff (Figure 6a) and vegetation
growth (Figure 6b), with values generally higher in winter and spring and lower in summer and autumn
(Figure 6c). The highest monthly sediment delivery rate (2.83 Tg month−1) during the period 1901–2014

Figure 4. Difference between observed SOC stocks in the top 30 cm soil layer extracted from three large‐scale soil databases (SOCHWSD from HWSD v1.2,
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012; SOCOCTOP from OCTOP, Jones et al., 2005; and SOCGSDE from GSDE, Shangguan et al., 2014) and simulated
values from the default ORCHIDEE‐SOM (SOCORC‐SOM, a, b, c) and the upgraded ORCHIDEE‐MUSLE (SOCORC‐MUSLE, d, e, f) models. Red colors
(positive values) indicate an overestimation while blue colors (negative values) indicate an underestimation by the models. Diffave is the average difference
between SOC stocks extracted from soil databases and the simulated values for the entire Rhine catchment.

Figure 5. Spatial distributions of simulated average sediment (a) and soil organic carbon (SOC, b) delivery rates from uplands to the river network of the Rhine
during the period 1901–2014.
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occurs in March and is more than four times larger than the minimum value found in October
(0.60 Tgmonth−1). The net SOC delivery rates follow the same seasonal pattern, with higher values in winter
and spring compared to summer and autumn (Figure 6d).

From 1901 to 2014, the annual sediment and SOC delivery rates from uplands to the river network of the
Rhine declined significantly (Figure 7). The annual total runoff in the Rhine catchment varies between years,
but it does not show a significant trend over the last century that could explain this decline (Figure 7a). In
contrast, land use has changed substantially over the last century.Many croplandswere transformed to grass-
lands during the period 1901–1940, followed by transformations from croplands and grasslands into forests
during the period 1940–1960. After 1960, the same transformations were pursued but at a significantly slower
pace (Figure 7b). The abandonment of croplands, which have a higher sediment delivery rate than forests and
grasslands, largely explains why the annual sediment delivery rate in the catchment has decreased signifi-
cantly from about 20 Tg yr−1 at the beginning of the twentieth century to 13 Tg yr−1 in recent years
(Figure 7c). Despite abandonment, croplands remain the main contributors to the total sediment delivery
during the entire simulation period, from about 58% in 1901–1910 to 42% in 2001–2014. The contribution
of forest to total sediment delivery increased from 6% in 1910s to 18% in 2000s due to the expansion of forest
area, while the contribution of grasslands increased from 36% to 40% over the same period. The interannual
dynamics of SOC delivery rate, as well as the percentages of SOC delivery rates from croplands, grasslands
and forests are overall similar to those of sediment delivery rates (Figure 7d).

Figure 6. Seasonal dynamics of average runoff (a), revised C factor (b, Equation 11), and sediment and SOC delivery rates from uplands to river network (c, d) in
the whole Rhine catchment. The line with dots denotes the average value for the period from 1901 to 2014. The shaded area denotes the standard deviation
of interannual variations. TeNE: temperate needle‐leaved evergreen forest; TeBE: temperate broadleaved evergreen forest; TeBS: temperate broadleaved
summer‐green forest; BoNE: boreal needle‐leaved evergreen forest; C3 and C4: crops using C3 and C4 photosynthesis pathways, respectively. Note that the
runoff, sediment, and SOC delivery rates shown in the figure correspond to the sum of these variables over all 0.5° pixels within the Rhine catchment, but not
the water, sediment, and SOC delivery from the outlet of the Rhine catchment.
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Our results show that ORCHIDEE‐MUSLE is a useful tool to estimate the impacts of seasonal vegetation
dynamics and changing rainfall regimes on sediment and C delivery from soils to rivers, and further on
the SOC budget of a large catchment. This is an advantage over complex, mechanistic erosion models
(Francesconi et al., 2016; Nearing et al., 1989; Singh et al., 2006) which are only applicable for single small
catchments, due to the limitations of data needed for model parameterization and the considerable compu-
tation workloads. In the past two decades, a growing number of large‐scale soil erosion‐C cycle models have
been developed (Bouchoms et al., 2017; Chappell et al., 2016; Liu et al., 2003; Lugato et al., 2016; Naipal
et al., 2016, 2018; Van Oost et al., 2005; Zhang et al., 2014). However, most of these models are run at a time
step of 1 year or even a decade (Rosenbloom et al., 2001), and thus cannot represent the impacts of seasonal
vegetation and event‐based rainfall dynamics on C erosion and river delivery. In ORCHIDEE‐MUSLE, vege-
tation growth is updated daily and litter dynamics are simulated at a half‐hour time step. Therefore, our
model can represent temporal changes resulting from the variability in vegetation cover on soil erosion in
detail. The hydrological processes (e.g., evapotranspiration, infiltration and surface runoff) in
ORCHIDEE‐MUSLE are also simulated at half‐hourly time step. Besides the total amount of daily surface
runoff, the daily maximum half‐hourly runoff that reflects rainfall intensity to a certain degree is also an
important factor accounted for in our sediment delivery model (Equations 8, 10, and 15). Therefore, our
model can be used to study the impacts of changes in rainfall regimes (e.g., changes in rainfall frequency
and intensity induced by climate change) on lateral C transfers.

3.3. Effects of Large‐Scale Soil Erosion on Soil C Balance

Comparison of simulated equilibrium SOC stocks from ORCHIDEE‐SOM and ORCHIDEE‐MUSLE reveals
that the soil and SOC deliveries from headwater basins to the river network lead to substantial changes in the
land C balance of the Rhine catchment (Figure 8). The erosion‐induced decrements of equilibrium SOC
stocks range from less than 0.1 kg C m−2 to more than 3 kg C m−2 locally (Figure 8a). On average, our

Figure 7. Interannual variations in total runoff (a), vegetation cover (b), and annual sediment and SOC delivery rates from uplands to river network (c, d)
in the Rhine catchment from 1901 to 2014. * and ** denotes significant (p < 0.05) and very significant (p < 0.01) changes in the trend, respectively. Black dots in (c)
and (d) indicate total sediment and SOC delivery rate, respectively.

10.1029/2020MS002121Journal of Advances in Modeling Earth Systems

ZHANG ET AL. 16 of 24



simulation results show that an increment of 100 g m−2 yr−1 in the sediment delivery rate results in a 5.7%
decrease in the SOC stock (Figure 8b).

Further statistics indicate that although the average annual SOC delivery (1.19 g C m−2 yr−1) from head-
water basins to the river network represents about 0.5% of the annual net vegetation production
(234.7 g C m−2 yr−1) and 0.01% of the total SOC stock in the top 2 m soil layer (10.4 kg C m−2), long‐term
soil erosion in the Rhine catchment has the potential to cause a 12.4% reduction in the total top 2 m SOC
stocks. The erosion of surface SOC and exposure of former subsoil SOC are assumed to induce a reduction
of SOC stock (Lal, 2003; Doetterl, Six, et al., 2012; Wang et al., 2014). However, there are also studies arguing
that the erosion‐induced reduction of SOC stock might be limited because the eroded SOC can be dynami-
cally replaced by new litter‐C input unless the erosion rates are large enough to offset plant productivity
(Berhe et al., 2007; Harden et al., 1999). Our results suggest that even when the reductions in vegetation pro-
ductivity and plant litterfall caused by soil erosion are ignored (impacts of soil erosion on soil nutrient avail-
ability and vegetation growth are not represented in the current version of ORCHIDEE‐MUSLE), soil
erosion over a long period of time (e.g., hundreds to thousands of years) can still result in a significant
(p < 0.01) reduction (12.4% in the Rhine catchment) in the equilibrium SOC stock (Figures 8 and S7).

The incorporation of MUSLE into the ORCHIDEE‐SOM LSM through a computationally efficient upscaling
scheme (see section 2.3.1) appears to be an effective strategy to simulate erosion‐induced sediment and SOC
delivery rates from uplands to river networks at the large spatial scale typically used for global LSM applica-
tions. The processes of soil erosion and sediment delivery imperatively need to account for the spatial varia-
bility in topography and soil properties at a scale of tens to hundreds of meters, as those environmental
controls have a strong and nonlinear effect on erosion rates (Bouchoms et al., 2017; Kirkels et al., 2014;
Morgan et al., 1998; Van Rompaey et al., 2010). LSMs resolve rainfall and runoff at high temporal resolution
(Krinner et al., 2005; Sitch et al., 2003), which is of advantage when simulating the event‐dependent magni-
tude of erosion processes. However, LSMs are generally run at relatively coarse spatial resolutions (e.g., 0.5°)
determined by the resolution of global climate forcing data sets and CPU limitations. In this study, the imple-
mentation of erosion processes based on our upscaling scheme that accounts for the fine‐scale effects of topo-
graphy induces only a 40% increase in the computation time of ORCHIDEE. In contrast, if the model had
been run directly at the 3″ spatial resolution of the topography data, the number of grid cells represented
in the model would increase by a factor of 360,000, which would entrain a similar increase in computation
costs and in the storage capacity.

3.4. Model Uncertainties
3.4.1. Uncertainties in Forcing Data
Biases in the land cover and soil erodibility forcing files, as well as the lack of constrains regarding erosion
control practices induce uncertainties in the simulation results. Land cover conditions provided by the

Figure 8. Changes in equilibrium SOC stocks (calculated as the difference between SOC stocks in 2014 simulated by ORCHIDEE‐MUSLE and ORCHIDEE‐SOM)
caused by lateral soil and carbon movement (a); relationship between sediment delivery rate and erosion‐induced relative changes in SOC stocks (b).
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LUHc.v2 data set is obviously different from that provided by the CORINE data set (Figure S10). For the
whole Rhine catchment, the grassland fraction (0.39) in the LUHc.v2 data set is higher than in the
CORINE data set (0.18). The forest (0.34) and cropland (0.26) fractions extracted from the LUHc.v2 data
set, however, are lower than those (forest: 0.38, cropland: 0.31) extracted from the CORINE data set.
Biases in the LUHc.v2 land cover data impact the simulated sediment delivery rates (Figure S11) and for
the whole Rhine catchment, the average value (102.6 g m−2 yr−1) for the years 2000, 2006 and 2012 com-
bined is about 9% higher than the estimation based on the CORINE data set (93.2 g m−2 yr−1). In some spe-
cific pixels of the Rhine catchment, the relative differences between both land cover products can even
exceed 40% in absolute terms (Figure S11d). Uncertainties in sediment delivery rates caused by the upscaling
of land cover conditions from headwater basin scale to the scale of a 0.5° pixel are significantly smaller
(Figure S12). Our analysis indicates that the relative differences between sediment delivery rates simulated
assuming average land cover condition in each 0.5° pixel and that simulated using the actual CORINE land
cover data for each headwater basin are generally smaller than 5% in absolute terms. Integrated over the
entire Rhine catchment, the sediment delivery rate simulated with average land cover conditions for each
0.5° pixel (93.2 g m−2 yr−1) is almost same to that simulated at the headwater basin scale (93.4 g m−2 yr−1).

Uncertainties in soil erodibility data have been estimated by Panagos et al. (2014). Compared to soil erodibil-
ity studies performed at smaller scales across Europe (e.g., Bakker et al., 2008; de Moor & Verstraeten, 2008;
Tetzlaff et al., 2013), the estimate of Panagos et al. (2014) shows an average deviation of ±14.3%. As the sedi-
ment delivery rate simulated byMUSLE is linearly related to the soil erodibility factor (Equation 1), the sedi-
ment delivery rate simulated here, and which rely on the Panagos data set, is also potentially biased by
±14.3%. In our model, the effects of soil conservation practices, which would decrease erosion rates, are also
ignored. However, the study of Panagos et al. Study of Panagos, Borrelli, Meusburge, Alewell, et al. (2015),
based on extensive observations from the Land Use/Cover Area frame Statistical survey (LUCAS) in 2012,
suggests that areas with soil conservation practices only cover 14.7% the whole Rhine catchment, and only
in 1.6% of these areas, soil conservation practices have been found to decrease soil erosion rates by 20% or
more (Figure S13). For the whole Rhine catchment, these results suggest that soil conservation practices
may only decrease total soil erosion by less than 3% (Figure S13). Thus, excluding soil conservation practices
should have limited impact in our simulations.

Even though the spatial (0.5°) and temporal (3 hr) resolutions of the precipitation forcing data used in this
study can be considered high‐resolution for global‐scale LSM runs, the precipitation forcing data can still
introduce uncertainties in simulated sediment delivery rates. Many observations have revealed that both
rainfall amount and intensity show strong spatial variability, especially in hilly and mountainous regions
(e.g., Ballabio et al., 2017; Isotta et al., 2013; Rysman & Lemaitre, 2016). The precipitation forcing data at
0.5° spatial resolution thus cannot represent the rainfall variability at the smaller scale of headwater basins.
Moreover, the climate forcing data used in this study only provides the total rainfall amount (mm) every 3 hr,
but no information is available regarding the rainfall distribution within these 3 hr periods. Therefore,
although the hydrological module of ORCHIDEE runs at a half‐hour time step and the parameter
PREC_SPRED (¼1) allows to tune the rainfall intensity (see section 2.1 for details) at the 30 min time scale,
the simulated daily total runoff (Q) and daily peak flow rate (q) could still be biased compared to the real
values.
3.4.2. Uncertainties in Model Parameters
Uncertainties in model parameters and in empirical functions used to calculate the runoff (Equations 5 and
10) and vegetation (Equations 11–14) factors of MUSLE induce some uncertainties in our simulation results.
Peak flow rate at the outlet of a water basin is closely related to the drainage area and shape, average slope,
the Manning's roughness and the depth of surface runoff (Ascough et al., 1995; Williams, 1995). The
process‐based functions for calculating peak flow rate are complex and hard to parameterize and calibrate
for large‐scale applications (Ascough et al., 1995). In this study, we introduced a simple empirical function
of drainage area and depth of the maximum half‐hour runoff (Equations 5 and 10) to calculate the peak flow
rate. Our analysis indicates that the uncertainties in parameters a, b, c, and d (Equations 1, 2, and 5) used to
calculate the runoff factors (Q and q) of MUSLEmay lead to a 3–15% change in simulated sediment delivery
rates compared to the “baseline run” (see section 2.4.3), depending on the subcatchment (Figures 3 and S6).
For the whole Rhine, uncertainties in these four parameters result in up to 10% variation in average sedi-
ment delivery rate. Another source of uncertainty arises from the equation applied to constrain the
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canopy cover factor in MUSLE (Equation 12). Equation 12 has been developed based on observations in a
subcatchment of the Yangtze River in China. Although more than 200 soil erosion rates measured from
30 runoff‐erosion plots under both natural and simulated rainfall events have been included to calibrate that
equation, there might still be some biases when applying it to other river basins.
3.4.3. Uncertainties in Model Algorithm
Uncertainties also arise from the model structure itself, in particular in the way the erosion‐induced vertical
SOC profile is updated. In ORCHIDEE‐MUSLE, the simulation of, for example, hydrological processes, litter
and carbon decomposition, root vertical distribution depend on an 11‐layer discretization scheme of the soil
column down to 2 m depth. In our scheme, we assumed that there is no organic C in the subsoil deeper than
2 m, and that the depth of soil layer deeper than 2 m is always larger than the depth of eroded soil. This is a
simplification as in many areas where the depth of the erodible soil layer is larger than 2 m, there is still a
certain amount of SOC in the deep soil (>2 m), although the SOC concentrations are in general very small
(Jobbagy & Jackson, 2000). In addition, the soil erosion rates in some catchments with steep slopes, low vege-
tation cover or high frequency of storms can be significantly higher than the local soil formation rates
(Pimentel, 2006; Verheijen et al., 2009). After a long time (e.g., hundreds to thousands of years) of soil ero-
sion, there will thus be very little or even no erodible soil in these catchments. Application of our model in
catchments with high soil erosion rate but shallow erodible soil layer over long timescales may thus overes-
timate sediment and SOC delivery rates. In this study, we applied ORCHIDEE‐MUSLE for 114 yr. As the
annual sediment delivery rates in Rhine subcatchments are generally lower than 300 g m−2 yr−1

(~0.3 mm yr−1, Figure 5a), the depths of total eroded soil from 1901–2014 in most areas should be lower than
3.5 cm. Therefore, our assumption that there is always enough erodible soil is a reasonable approximation
for this study.

Unknown small‐scale heterogeneity of vegetation cover, topographic condition and soil erodibility within
headwater basins might also generate uncertainties in our simulation results. Different from spatially dis-
tributed erosion models (e.g., WEPP, Nearing et al., 1989) which explicitly simulate the gross soil erosion
from slopes and the delivery of eroded soil from slopes to catchment outlets through the channel network
(i.e., the connectivity between slope and river), MUSLE is a spatially lumped model which directly simulates
the sediment delivery from catchment outlets (Williams, 1975) based on a combination of controlling factors
including runoff, vegetation, soil erodibility and topographic characteristics. Although extensive studies
have proved the effectiveness of MUSLE in simulating the sediment delivery rates based on average land
cover conditions and topographic properties (e.g., slope steepness) of the whole catchment (e.g., Sadeghi
et al., 2014; Zhang et al., 2009), other studies have shown that the spatial distribution of vegetation cover
or geomorphic units can strongly affect the sediment and flow connectivity between slopes and river channel
(Borselli et al., 2008; Heckmann et al., 2018), in addition to the fractions of each vegetation cover and the
average slope steepness. Moreover, the SOC delivery rates (for each vegetation type) are calculated based
on the average sediment delivery rate in each 0.5° pixel, rather than on the sediment delivery rate in each
headwater basin. This might also induce biases in the simulated SOC fluxes. Finally, croplands in
ORCHIDEE are represented in a simplified way by classifying crops into two groups (the C3 crop and C4
crop) based on their photosynthesis characteristics. Therefore, ORCHIDEE might not be able to accurately
capture the seasonal dynamics of planting, canopy growth rate and harvest for all crop types.

3.5. Model Limitations

As described before, soil erosion can alter land‐atmosphere C exchange by influencing vegetation productiv-
ity; however, this feedback mechanism has not yet been included in the current version of ORCHIDEE‐
MUSLE. Vegetation production directly determines the ability of terrestrial ecosystems to absorb atmo-
spheric CO2 as well as the inputs of plant litter to soil (Bouchoms et al., 2019; Frankenberg et al., 2011;
Melillo et al., 1993; Schimel, 2010; Sitch et al., 2008). As soil erosion can significantly alter soil nutrient avail-
ability (e.g., nitrogen (N) and phosphorus (P)), soil water holding capacity and soil structure and texture, it
might have a significant impact on vegetation productivity (Lal, 2010; Larson et al., 1983; Quine &
Zhang, 2002). Recently, terrestrial N and P cycles have already been incorporated into the ORCHIDEE
model (Goll et al., 2017; Zaehle et al., 2010). By coupling ORCHIDEE‐MUSLE and the ORCHIDEE branches
that simulate terrestrial N and P cycling (e.g., ORCHIDEE‐CNP, Goll et al., 2017), it will be possible to
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develop a more comprehensive LSM that can simulate the feedbacks of soil erosion on vegetation productiv-
ity and the erosion‐induced N and P fluxes along the land‐ocean continuum.

We also showed that ORCHIDEE‐MUSLE is able to capture the sediment and C delivery from uplands to
inland waters, but the transport and deposition processes of sediment and C in floodplains and river net-
works are not represented. The fate of eroded SOC that is eroded and delivered to rivers directly affects
land‐ocean and land‐atmosphere C fluxes (Lal, 2003; Regnier et al., 2014; Smith & Buddemeier, 2005).
Mineralization of particulate organic C during the transport process in river will increase aquatic CO2 emis-
sion and decrease the C flux from land to ocean, as already shown for dissolved organic carbon (Bowring
et al., 2019; Hastie et al., 2019; Lauerwald et al., 2017). Particulate organic C redeposited on flat slopes, flood-
plains, deltaic or waterlogged environments (e.g., lakes, reservoirs and coastal oceans) however can be pre-
served for a long time and results in a long‐term increase of land C storage (Chappell et al., 2014; Hoffmann
et al., 2013; Smith et al., 2001; Stallard, 1998; Wang et al., 2010). A logical next step in terms of model devel-
opment will be to include the transport, deposition and decomposition processes of particulate organic C in
aquatic systems into our model for estimating the lateral C movements and their impacts on
land‐atmosphere C exchange more accurately and comprehensively.

4. Conclusions

In this study, we introduced an upscaling scheme for coupling the soil erosion model MUSLE, which simu-
lates the sediment delivery from headwater basins, into the LSM ORCHIDEE‐SOM, which represents the
terrestrial C cycle at regional to global scales. Our modeling strategy allows including a wide range of tem-
poral scales affecting erosional fluxes, from event‐based and seasonal variability to multicentennial trends in
sediment deliveries. Application and evaluation of the upgraded model ORCHIDEE‐MUSLE to the Rhine
catchment proves that our model reproduces the spatiotemporal variation in river runoff and sediment
delivery rates from uplands to the river network. Our simulation results reveal that at centennial time scale,
soil erosion induces a significant reduction in simulated SOC stocks. Ignoring soil erosion—as done in tradi-
tional LSMs—leads to significant overestimation of regional SOC accumulation. Furthermore, according to
our simulations sediment and SOC delivery rates have decreased significantly over the period 1901–2014,
mainly due to a conversion of croplands to forests.

To our knowledge, this is the first attempt to incorporate high‐resolution (3″) erosion and lateral C redistri-
bution into a LSM by using an upscaling scheme that calculates the sediment delivery from small headwater
catchments before aggregating them to the coarse resolution of the LSM. Even though several uncertainties
remain, we show that this is a promising approach to incorporate lateral particulate C fluxes from land to
ocean into LSMs. In order to give a more accurate and comprehensive evaluation on the role of lateral C
redistribution within the global C cycle, it is necessary to further calibrate our model for other river catch-
ments and incorporate missing but essential processes into our model such as the fate of particulate organic
C delivered to the river network, the C dynamics in floodplains and aquatic sediments, and the feedbacks of
soil erosion on vegetation productivity.

Data Availability Statement

The source code of ORCHIDEE‐MUSLEmodel developed in this study is available online (https://forge.ipsl.
jussieu.fr/orchidee/browser/branches/publications/ORCHIDEE-MUSLE-r6129) from 22 July 2019. All for-
cing and validation data used in this study are publicly available online. The specific websites for these data
can be found in section 2.4.
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