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On the role of sheared waves on instabilities and turbulence in rotating hydrodynamics and magneto--hydrodynamics

In this paper we make a survey of some of our previous works devoted to the studies of sheared flows with emphasis put on their applications to geophysics and astrophysics.

Some relevant related topics are geophysical fluids, with possible involved dynamo effects in magnetized cases, fluid behavior in stellar interiors and the study of stability of astrophysical accretion disks. These works include the findings of new invariants and the generalization of previous results of the current literature in terms of dispersion relations, wave--vortex decomposition and so on, for various systems which all share the common feature of being under differential rotation (i .e with both pure rotation and shear) but with also possible additional effects like precession, medium stratification, buoyancy, gravity and magnetic fields. Our main tool relies on the use of rapid distorsion theory for analysis of perturbations and interactions with the mean flow in terms of sheared waves with time dependent wave vectors with further linear theory performed in the spectral space. This method allows in particular the description of sub-critical instabilities which can exhibit finite time transient growth phenomena and non linear transverse cascades, in otherwise time asymptotically linearly spectral stable flows. We stress also on the general comment/observation that for these systems the linear perturbations can be regenerated by suitable phase tuning feedbacks between them and their triggered non linear perturbations, which make possible the comparison at least asymptotically in time of the predictions of the linear spectral analysis 1 with the results obtained with full DNS (direct numerical simulations) performed on the same total systems.

(This paper may be considered as a 'complement' to the paper subcritical instabilities in neutral fluids and plasmas , to appear in the same special issue )

Introduction

There is an ubiquity of specific waves and turbulence in geophysics and astrophysics areas that are driven by rotation and magnetic fields including shear flows.

There are a great number of geophysical and astrophysical flows which are turbulent and strongly influenced by rotation. Here all the flows under consideration share the same constraint to be in differential rotation, thus sheared. But to cover various applications we have studied rather different cases with specific additional properties.

The Shearing Sheet Approximation (SSA), introduced by [?], consists of considering a single circular sheet in the rotating disc around r = r 0 . Once "unrolled", the rectilinear band resulting from the circular band corresponds to a fluid domain with constant S = S(r 0 ) and constant Ω = Ω(r 0 ). The peripheral direction yields the streamwise direction x 1 , the axial direction holds for the spanwise one x 2 , and the radial one holds for the cross-gradient, or vertical, one. This explains why the mode k 1 = 0, or two-dimensional manifold in the streamwise direction, is called the (axi)symmetric mode in the astrophysical community. In addition, the frequency 2Ω(2Ω -S), equal to S √ B (in terms of the Bradshaw number, e.g. chosen positive), is called the epicyclic frequency. Finally, the numerical method by Rogallo was recovered by Lesur in 2005, resulting in a "Snoopy" numerical code, very popular among astrophysicists.

In addition, the study of rotating sheared flows allows to look at very different systems such as laboratory rotating fluids, Earth' ocean and atmosphere, stellar interiors, planetary cores, accretion disks and so on. More specifically, some applications address the star stellar radiative zones, including the tachocline case. They are subjected to magneto-rotational effects but possibly stabilized by high stratification. Their fluid dynamics is thus submitted to the Archimedes and Lorentz forces together with the centrifugal and Coriolis forces. They are also sources of transport for heat, angular mo-r r 0 S ⌦ + ⌦(r) ⇠ r q S(r) ⇠ qr q ⌦ ⇠ ⌦(r 0 ) S ⇠ r d⌦ dr | r 0 R = 2⌦/( S) = 2/q q = 3 2 (r⌦ 2 ⇠ r 2 ) R = 4/3
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Figure 1: Sketch for the SSA mentum, magnetic field and chemical compounds. These transfers can induce rotational mixing which modifies the stellar structure and further governs, together with the nuclear reactions, the secular evolution of stars. For stellar interiors there are four main processus of transport in the radiatives zones:

1. the meridional circulation at large scale induced by the differential rotation and the extraction of the angular momentum at the star surface by the wind, which advects the angular momentum and the chemical compounds.

2. the shear turbulence linked to the horizontal and vertical shears also induced by the differential rotation.

3. the fossil magnetic field due to the trapping of the magnetic flux at the period of creation of the radiative zone of the star, which acts through the Lorentz force and the instabilities related to its geometrical properties.

Figure 2: Rotating shear with mean stratification 4. the internal gravity waves that are excited by the turbulent convection which are depositing angular momentum where there are thermically dissipated.

The MAC (magnetic-Archimedes-Coriolis) waves contribute here to the fourth mecanism, with our paper 5 [?] as an application, since the internal waves are modified by Archimedes and Lorentz forces to become MAC like waves. The latter were first studied in the context of the Earth's liquid core of in geophysics.

The Coriolis force induces inertial waves , but also the so called geostrophic vortices which are persistent in time living structures aligned with the rotation axis, due the balance between pressure and Coriolis forces. In rotating turbulence these vortices are often dominant, rather at large scale, over the inertial waves advecting and deforming them.

For instance, in paper 1 [?], we consider precession and MHD, and initial waves are inertial, Alfven and mixed ones (magneto-inertial), with emphasis on their possible resonant coupling, leading to instabilities and growth rate depending on 3 parameters.

In paper 2 [?], we got the magneto-stratified and rotating shear waves, with application to MRI (Magneto-Rotational Instability) with additional stratification gradients, for magnetized accretion disks.

In paper 3 [?], transient growth (TG) effects are investigated in the presence of dominant vortices, that may be different from geostrophic vortices.

In paper 4 [?], we investigate the parametric instability in secondary flow with its growth rate according to shear and stratification. This is a special case of the saturation of parametric instabilities in rotating fluids, that are relevant for planetary and star interiors.

Paper 5, particular suitable for the study of star interiors, was already quoted.

The scope of our present survey is twofold: i) To extract the salient features of these 5 papers, with references therein, as a contribution to this field. ii) To put the accent of commonly used methods, essentially to treat linearized problems, but in connection with DNS results.

The methods include the so-called homogeneous Rapid Distortion Theory (RDT) with time dependent wavenumbers (t), well suited for sheared flows. This is closely connected to Spectral Linear Theory (SLT). Related mathematical problems address the behaviour of linear systems of the kind dX/dt = M (t)X(t) with time-dependent matrix. The long-time, asymptotic, solution of these systems is particularly useful, and involves different techniques, from WKBJ method to more general analyses related to the Levinson theorems, if they apply.

We will discuss how these purely linear analysis for transient growth (TG) can be incorporated in the study of nonlinear (NL) transverse cascades and energy transfers with main concentration of the energies towards some waveplanes, corresponding to low dimension manifolds, in Fourier -space.

Continuing the nonlinear analysis using existing DNS results, it is interesting to better understand why linear techniques remain relevant for predicting similar/comparable results for long time. Nonlinearity is not necessary asymptotically weak, as expected in some flows in which long-term Beltramization is expected. It is also relevant to consider that nonlinearity can be implicitely involved in regerneration mechanismes, with no pressing need to evaluate it explicitly.

The paper is organized as follows. BLABLA

2 General methods common to the papers

Rapid Distorsion Theory (RDT) or SLT (Spectral Linear Theory)

There is a very large litterature, with often very different nomenclatures and taxonomy, regarding different communities, from engineering to geophysics and astrophysics. A large review, with an attempt to reconcile the different communities and jargons, can be found in the monograph homogeneous turbulence dynamics of Sagaut and Cambon, 2018, [?], and references therein. Historically, the RDT approach was first introduced by Batchelor and Proudman (1954) [?] by dropping in the Navier-Stokes equations for the perturbations of velocity and pressure p all the non linear terms and the viscous term. The Navier Stokes equation reads

˙= -p + ν∇ 2 , = 0, (1) 
where the 'overdot' holds for the Lagrangian time-derivative (...

) = ∂ t + . (2) 
By decomposition of and p (static pressure divided by constant density) into mean (capital letters) and fluctuating quantities (with prime) is found:

∂ i ∂t + U j ∂ i ∂x j + j ∂U i ∂x j + ∂ ∂x j ( ij -ij ) Nonlinear term = - ∂ ∂x i Pressure term + ν ∂ 2 i ∂x j ∂x j Viscous term (3) 
and

∂ i ∂x i = 0. ( 4 
)
The equation for the mean velocity is not recalled for the sake of brevity: in general, it is again the same equation as the one for the whole velocity field, but with the additional term coming from the feed-back of the Reynolds stress tensor, as ∂ ∂x j ( ij ). The validity of this approximation relies of course on the assumption that the interaction of the turbulence (or the fluctuations) with itself stays negligible with respect to its interaction with the mean flow. This is sometimes exact for single Fourier mode which might not interact with itself. But also it supposes a priori that the time of distorsion by the mean flow is short enough as compared to the turbulence evolution.

It is worthwhile at this stage to distinguish the most general concept of RDT from the one of homogeneous RDT, only retained in this paper. In the most general case, the feed-back from the gradient of the Reynolds stress tensor ought to be conserved, so that the mean flow is no longer a particular solution of Navier-Stokes equations, and cannot be a priori given. Some instance of the generalized RDT approach exist in some systems approaches to turbulence, as the adiabatic reduction used in the study of planetary flows.

Statistical homogeneity restricted to fluctuations implies that the Reynolds stress tensor, as any correlation tensor in terms of the fluctuating components, is space-invariant, so that its gradient vanishes, and the mean flow is a solution of basic Navier-Stokes equation. An other necessary condition is that the gradient of the mean flow, involved in the third term in Eq. (??), is space-invariant as well, or

U i = U 0 i + A ij (t)x j , (5) 
in which the first term can be ignored, by virtue of Galilean invariance.

This concept of extensional mean flow, related to exact solutions of Navier-Stokes equations, was recovered, whitout invoking statistical homogeneity, in the community of hydrodynamic stabilty by various authors, from [?] to Bayly, and Craik and coworkers (refs in [?]).

In terms of advection-distortion, one can write the evolution equation in components for the fluctuations around such an extensional mean flow. As a salient feature, we set a perturbation solution for and p around the mean flow (??) under the form

(, t) = (t) exp(ı(t)), p (, t) = b(t) exp(ı(t)), (6) 
instead of an usual spatial eigenmode form, such as exp(ı-σt), where now (t) can be a function of time, since we have not necessarily true eigenmodes in the system. The wavenumber (t) is now a function of time, whose dependence is prescribed since it has to satisfy an eikonal-like equation (??), below, obtained by injection of the Ansatz (??) into the advection term in Eq. (??). This kind of perturbation is particularly useful in the case of sheared flow.

For the historical survey (see also [?]), it is worthwhile to recall that the preliminary RDT study by [?] was restricted to irrotational mean flows, with purely symmetric. In this case, the essence of RDT response is the linear stretching of fluctuating vorticity by mean deformation, also in agreement with a linearized Kelvin theorem; acccordingly, the 3D Fourier space can be seen as a tool only for converting vorticity fluctuation into velocity fluctuation, in avoiding the more complex two-point formalism of Biot-Savart law in physical space. Because the main difficulty of the so-called homogeneous (thereby spectral) RDT is to treat rotational mean flows, we consider that the first generic study for RDT/SLT was given by Moffatt (1967) [?] for the mean plane shear, with a (old, end of nineteen century!) reference to Lord Kelvin.

We thus get the so called Kelvin-Moffatt equations [?] for (t) and (t) as follows , which are linear ODE's:

dk i dt + A ji kj = 0 (7) 
and

da i dt + M in A nj aj = 0, (8) 
with

M in = δ in -2k i k n /k 2 (9) 
The solutions of Eq. (??), with Eq. (??, can be written in terms of propagator involving Green functions (, , t, t ) for (, t). In space, this yields solutions as i (, t) = G ij (, t, t 0 )((t 0 ), t 0 ), [START_REF] Eastham | The asymptotic solution of liner differential systems, applications of the Levinson theorem[END_REF] in which the single-mode amplitude a i can be replaced by a 3D Fourier transform of , denoted (, t). Similarly, the Eikonal-type equation (??) for is solved as

k i (t) = F ij (t, t 0 )k j (t 0 ), (11) 
where is the Cauchy matrix ([?]) related to the mean flow.

RDT/SLT with additional mean magnetic field and/or buoyancy/stratification

Our paper 1 [?], summarized in Appendix A1, gives an illustration of RDT/SLT for precessing flows, in which the system vorticity 2 C is orthogonal to the angular velocity of the flow in the rotating frame. In this case, the Coriolis term 2 c × is added to the distortion term related to in Eq. (??). does not reduces to a simple antisymmetric term related to , but the gyroscopic torque induced by the misaligment of and c must be balanced by additional mean plane shear, that scales with the (small) Poincaré number Ω c /Ω. Such a balance results from what is called admissibility conditions in the community of hydrodynamic stability: This is equivalent to say that the mean flow has to be a solution of basic Navier-Stokes equations, so that the mean absolute vorticity must satisfy a given Helmholtz equation. Two different cases of mean shear flow were investigated, corresponding to Mahalov and Keshwell, respectively (see also Salhi and Cambon, 2009, ref. in [?]).

Another important ingredient in this paper is the presence of a mean magnetic field, , with the additional Lorentz force to be added to linearized Eq. (??) and the coupling with the linearized induction equation for . For the Kerswell flow (KBF), the mean shear is horizontal, with system rotation in the vertical direction, and the mean magnetic field has both horizontal and vertical components. For the Mahalov flow (MBF), the cross-gradient direction of the mean shear is vertical and the mean magnetic field is vertical only. FIGURE REQUESTED for the axes? The corresponding matrices and time-dependent (or not) wave-vector are recalled in Appendix A1 (ALL COULD BE gathered in a table for a subsequent version)

An additional mean stratification, resulting in a frequency N , is considered in paper 2, and the buoyancy force is incorporated. Accordingly, we have four external (mean) parameters: shear with rate S , system rotation Ω, stratification and magnetic field, with along the vertical direction. In this case the matrix reads:

A ij = Sδ i1 δ j2 , (12) 
as for a pure plane shear [?]. and thus a linear dependence in time is found for (t) as:

= (k 1 = K 1 , k 2 (t) = K 2 -K 1 St, k 3 = K 3 ) T , (13) 
and the mean field is also sheared with time, according to admissibility conditions extended to the induction equation, and one has:

∂ t B 1 = SB 2 , ∂ t B 2 = 0, ∂ t B 3 = 0. (14) 
We shall use Levinson theorems in the stability analyis to study the time asymptotic limit in the case of asymmetric perturbations for this system. In paper 3, the shear flow is again subjected to mean vertical stratification, with frequency N , but with different axes and no mean magnetic field.

A ij = -Λδ i1 δ j2 + N δ i3 δ j1 sin N t, (15) 
with =??, and (t) is a mixed linear and periodic function of time, recalled in Appendix A3.

RDT/SLT: More on linearized equations, for MHD,buoyancydriven and compressible flows

Let us write a rather general system covering our cases but also extending to possible compressible MHD, making also the Boussinesq approximation for the possible buoyancy. Equations for velocity involve additional Coriolis, Lorentz force, and buoyancy force. The magnetic field , scaled as a velocity, is governed by the induction equation.

˙= -

1 ρ p -2 × + 1 ρ (×) + ν∇ 2 θ (16) ˙= () -+η∇ 2 (17) ρ = -ρ, (18) 
with θ = -g ρ ρ 0 , = ×, = 0.
In addition, it is possible to distinguish in the total pressure term, a static contribution p, a centrifugal contribution p c , and a magnetic contribution p m . By splitting as before the variables into their mean and fluctuating parts, we obtain the corrsponding equations for fluctuations ( , p , , ρ ), in the presence of the basic (or mean) flow (, P, ρ 0 , ). Complete equations are not written here for the sake of brevity. one only retains that the advection operator is restricted to mean-flow advection, with

˙ = ∂ ∂t + , (19) 
and similarly for ˙ and ρ . As in [?], the 'overdot' is kept, from advection by the whole flow to advection by its mean part. Mean-advection terms ˙ , ˙ , and ρ are thereby balanced by a sum of linear terms and nonlinear ones. By dropping all the nonlinear terms we can now write the system in -space as follows, as for the purely kinematic RDT/SLT in Sect. 3.1, under similar assumptions. A 3D Fourier transform (e.g. in the sense of distributions) of linearized equations governing ( , , ρ ) is performed, but the convolutions in -space of mean gradients with the seaked fluctuations are simplified, when the mean gradient matrix is space-uniform.

˙((t), t) = -νk 2 -() -ı p + ı () -2 × + ρ (20) ˙ = -ηk 2 + ı () (21) ˙ ρ((t), t) = -χk 2 ρ -N 2 . ( 22 
)
Divergence-free constraints amount to , always valid, and = 0. Their algebraic form allows the removal of pressure fluctuation, that is exactly solved, as in Eq. (??). Finally, provided that is considered as time-dependent, in accordance with the Eikonal equation (??), the advection operator behaves as a simple time-derivative. Because all other (linear) terms are local and algebraic in -space, our linearized system amounts to a system of ODE (Ordinary Differential equations) but with possibly time-dependent coefficients.

A system given by Eq. (??), possibly extended to divergent velocity fluctuations, allows to study a variety of waves : Alfven , acoustic, gravity, inertial, internal, Archimedes ones and their combinations. In the presence of shear we have (t) thus waves are time dependent through (t), as an implicit advection by the mean shear, but they are also explicitly altered by the mean shear flow deformation, as compared to usual eigenwaves.

As relevant examples, paper 2 is discussed in Sect. 2.2., with (t) given by Eq. (??). In paper 5, is constant with time, in the absence of mean shear, and the related study will be revisited in Sect. 5 and 6.

New Invariant

The potential vorticity is a useful invariant for the study of various flows with variable density, especially in geophysics. In paper 2 it is recalled that the absolute potentiel vorticity defined by:

π = θ, with = × + 2 (23) 
is a Lagrangian nonlinear invariant in the pure hydrodynamical case without dissipation. This property comes from the removal of the baroclinic torque, proportional to ρ × p, in the dynamical equation for absolute vorticity, by projecting it on the density gradient (or on its surrogate θ.)

In the magnetized case, it is is no longer invariant since the contribution from the Lorentz force cannot be removed; its evolution equation reads: π = ×(×)θ

But if we define a new quantity which we name potential magnetic induction by:

π m = θ, (24) 
its evolution equation in the non linear case without dissipation is πm = 0, i.e. it is a suitable new Lagrangian invariant. One notices that from the more general NL system (as given by equations (21-24)?) we find an equation for π m , in which the advection term is balanced by a source term comprising several nonlinear and diffusion terms.

Cancelling the diffusion terms, in the absence of dissipation, we are left with a source term which is trilinear in ρ, and ., or πm = ()(ρ). [START_REF] Salhi | Magnetohydrodynamic instabilities in rotating and precessing sheared flows: an asymptotic analysis[END_REF] Thus in the incompressible case, with , and without dissipation we get that m is a Lagrangian invariant of the flow, even in the presence of mean stratification and buoyancy force, within Boussinesq approximation.

However it is no longer invariant in the most general compressible case.

Linear invariant π l m

Starting rather from the linearized general equations (25-28 ?) in real space, we find that the linearized counterpart π l m of π m is given by ? and solution of ??

In 3D Fourier -space we have:

π l m = ı() θ (l) +?? (26) 
As examples, we get from paper 2 that

π l m = ı() θ (l) + i=1,2 N 2 i b (l) i , (27) 
whereas in paper 5 we have:

π l m = ı() θ (l) + N 2 3 b (l) 3 (28) 
and thereby the same equation if N 2 = 0. The invariant allows to win one degree of freedom and to reduce of one the dimensionality of the final dynamical system.

Refined Time Stability Analysis

As seen with Eq.(??) above we have to deal with linear dynamical systems of the kind d(t) = (t)(t) in the initial frame of reference , where is a ndimensional vector composed with the Fourier components of the vectors ((t), t), ((t), t), and the scalars p((t), t), ρ((t), t) with n ≤ 8, is a square nXn matrix with real or complex coefficients, that are themselves functions of time. Moreover, additional relationships like b(, t) = 0, = 0, possible existence of invariants, suitable change of referentials, and so on, allow to significantly reduce the dimensionality of the system.

Floquet analysis for time-dependency

Periodicity induced by (t) is a generic feature of elliptical flow instability, with details and references in [?]. This behavior is illustrated in paper 1 by the case of precessional instability.

Because of solenoidal properties for both and , the vectors and are normal to and thereby have only two components using a suitable frame of reference: the so-called Craya-Herring frame of reference is used in -space, as a counterpart of a simplified toroidal / poloidal decomposition for a solenoidal field [?, ?]. Consequently, the matrix of the relevant linear system reduces to a 4X4 matrix.

The principle of the Floquet's analysis amounts to diagonalize the matrix after one period, when it is possible, in order to exponentiate it at the norder, for having the solution of the system after n-periods, and thereby its asymptotic behavior. Of course, this is simple only if all eigenvalues are distinct.

For our magnetized precessional cases, it is found that det() = 1, so that the product of the four eigenvalues is unity. The general solution of the system is a linear superposition of the Floquet modes c(τ ) = exp(sτ )f (τ ) , where f (τ ) is 2π time-periodic, and s = 2πλ. If any of the eigenvalue λ has a modulus superior to unity, there is an exponential growing solution thus an instability. The Floquet system has the property that if λ is an eigenvalue of the Floquet matrix then does its inverse λ -1 and its complex conjugate λ * . It follows that:

i) in the stable case all the eigenvalues lie on the unit circle. ii) if an eigenvalue is at the onset of instability it must have a multiplicity of 2 at least.

Accordinly, a necessary condition for the onset of linear instability is a resonance where two Floquet multipliers coincide. In our case the resonance condition reads:

ω i -ω j = l, i, j = 1, 2, 3, 4. (29) 
But the asymptotic analysis at lowest order in the Poincaré number shows that the following conditions are forbidden by precession:

ω 1 -ω 2 = 1; ω 1 -ω 3 = 1; ω 3 -ω 4 = 1, (30) 
so that sub -harmonics instabilites appear , and numerical results show also the presence of other harmonic resonances where: 

ω 1 -ω 2 = l 1 , (31) 
ω 3 -ω 3 = l 2 , (32) ω 3 -ω 4 = l 3 , ( 33 
)
in which 2 ≤ l 1 ≤ E + 1, 2 ≤ l 2 ≤ E, 2 ≤ l 3 ≤ E -1,
P -1B) = D(t)(P -1B) -(P -1B)M . by setting E = P -1B, E must solve : E = D(t)E(t) -E(t)M (t) (63)
Where in (63) M is the given matrix and we have room to choose D(t) : for example we can take for D the diagonal matrix involving the eigenvalues of M ! We may compute E(t) by solving the matricial system of EDO's coupled (given by ( 63)) with the choice of D(t) and of P (which could be the passage matrix "frozen" at a time t=ti for example). We roughly wish here to approximate C by the matrix of its eigenvalues and a passage matrix which is frozen in time.

Asymptotic time behavior of the dynamical system

However when the λ's are time dependent to analyze the stability of the system we shall make use below of the Levinson theorems, when they apply, which helps to to get the time asymptotic behavior of the (linear) system in terms of its (maximal) eigenvalue (as a function of time). The theorem will allow a considerable simplification in the resolution of the initial system at large times. -with non zero shear S : case of sheared waves This computation is not straight and need a machinery : here it is just a formal derivation from the caracteristic polynom Pn. Only in special cases one can derive a dispersion like relation w(k) or k(w) together with the fact that k(t) which involves at least a two time scale expansion. In particular it is not obvious as said that the sheared waves are obtained by merely changing k and related relevant other components linked to k into k(t) and. . . , by just adding the new involved terms proportional to the shear S (= -qΩ0) in the dispersion relation (plus possible shifts). Each case must be examined separatly and compared to what is known in the litterature for example for acoustic waves alone in presence of shear S , then for Alfven (magneto) waves +S , inertial waves +S , and for their combination such as magneto-acoustic waves +S, magneto-inertial waves +S, acoustic-inertial waves +S or more complicate cases like magneto-acoustic-inertial waves +S.

Example : In general we shall have second or higher order in time derivatives ODE's involving time variable coefficients. For example suppose we get the relation (I) or (II) : . . . . (64)

All the following can be done at two levels : together semi-analytical and semi numerical, as in our previous studies. Levinson theorems for the time asymptotic evolution of the dynamical differential system Idea : we have in the general case n distinct eigenvalues which are time dependent for the matrix M(t). We have first to study their time evolution and look at the dominant eigenvalue for large time in order to precise the behavior of our linear system. The Perron-Frobenius theorem insures the existence of a maximal eigenvalue here (see also available analytical techniques for the localization of eigenvalues). As said before the solutions for the carateristic polynom Pn(x)=0 can always be found numerically and can be studied as a function of time to select the dominant one. However the determination of the associated dominant eigenvector may be not at all a trivial task. Another interest of this theorem is to show whether the solutions of (20) are bounded in time or not as connected to the fact that there is stability of the dynamical system or not at large time. The Levinson theorems allow also to say something in regimes of parameters where the WKB fails to describe the asymptotic behavior of solutions.

Recall : the WKB approximation consists in approximating the coefficients of the M matrix at large k , eventually becoming time independent , to get the asymptotic behavior of the solutions.

When the Levinson theorems are applicable, see conditions below , they give a simple way to get the required ( maximal) eigenvector :

Version 1 of Levinson theorem 1 ([?, ?, ?]) : If M is a n x n squared matrix in C that can be split into : M = M 0 + M 1(t) , where M0 is a matrix with constant coefficients and n distinct eigenvalues λ1lambdan and if M1 is suitably bounded in norm for t going to infinity the asymptotic solution (in time) to the equation Y = M Y is given by the following : For j in (1,. . . n) Yj=(Y0j+O(1))exp(λt) (66) where Y0j is the eigenvector of the constant matrix M0 associated to the eigenvalue λ. The bounded condition for M1(t) reads : (67). . . .. Theorem 2 : If all solutions of the systemdY /dt = (M 0 + M 1(t))Y are bounded for t going to infinity , the same is true for the inhomogeneous system :

dY /dt = (M 0 + M 1(t))Y + h(t) provided the condition (67) on M1 in theorem 1 is satisfied and h(t) is impulsively small as t goes to infinity : (68). . . . Version 2 of Levinson theorem ([?]): In the case of the possible splitting M=M0+M1(t) +M2(t), with M1(t) and M2(t) satisfying bounding conditions (see below), the eigenvalues of M0 being n distinct λ's and if now the µ j (t) are the eigenvalues of the complete matrix M that are satisfying a dichotomy condition (see also below) then the time asymptotic solutions of the equation Y = M Y in terms of eigenvectors will be : For j in (1,. . . n) Yj(τ )=(Y0j+O(1)) . . . . (69) Y0j (for j=1,n)being the eigenvector associated to the eigenvalue λ. The bounding condition for M1 and M2 are now : M1(t) is locally absolutely continuous in (t0,infinity) and goes to zero if t goes to infinity and : (70a) while M2 satisfies the condition : (70b) The dichotomy relations for the µ j 's(t) are : For each pairs of integers i and j in (1,n) with i different of j and for all t and x such that either : a) (71a)

or : (71b) where q1 and q2 are constants. Thus the eigenvectors of M are dominantly those of the constant matrix M0 when the coefficients of the M1(t) (and M2) matrix are going to zero at large t , which is a reasonable assumption.

The results (66-69) allow to analyze the time asymptotic stability of the system.

Examples of applications: In paper 3 we have quote versions 1 of the theorems and we have checked their applicability, while in paper 2 we have used the version 2 with theorem 3. In paper 2 we had only 2-2 matrices and it was possible to show that the two eigenvalues were satisfying the dichotomy relation of theorem 3 which has allowed to prove the stability of the fluctuations at large time for horizontal wave vector (k3 vertical one equals to zero). Instead for k3 non zero and asymmetric perturbations (k1 non zero) the Levinson theorem cannot help to conclude. But in this case a WKBJ analysis shows an oscillatory behavior for sufficiently long times. However when the parameter k.V/Ω = η S/Ω becomes comparable to the small WKBJ parameter k1/k3 the time scale of evolution of the perturbation is no longer rapid as compared to the k changing time scale and a numerical integration is required. This is linked to possible transient growth effects, see the section on this topic, and further considerations in paper 2. In paper 3 we use version 1 with the theorem 2 again for 2-2 matrices to show that a disk under stable vertical stratification (N32¿0) is also stable under non axi-symmetric disturbances. This theorem 2 allows also to recover the relevant wave -vortex decomposition introduced in [?]. In this case since the potential vorticity (PV) is an invariant the wave and vortex are corresponding respectively to the cases of zero and non zero values of PV. Remark : there are more general and more recent theorems ([?]) involving projectors, than the Levinson theorems to handle with the asymptotic behavior of linear differential system such as Y = M (t)Y (t). Modern extensions of these theorems are now available including the gap lemna and Evans products ([?]).

Case adiabatic-non adiabatic with WKBJ asymptotics

This technique is not used explicitly in our past papers but rather in work in progress. We show it briefly here since it may be of general interest. It consists in the case of k(t) varying for example linearly in time, in distinguishing two regimes in the evolution of the dynamical system. Let us work on a generic case. Suppose that the k(t) is given by the following : k1=k10,k2=k20-Sk10t, k3=k30 S=-qΩ being the shear rate. We define the adiabatic and non adiabatic regions as follows : The adiabatic regime is achieved when the time variation of k2(t) remains small thus for small enough r = /k1/k2/ << 1 ratios. Here k2 is radial and k1 is in the azimuthal direction. This condition implies that the time-dependent radial wavenumber k2(t) varies a little during the shearing time, (S -1)|dk2/dt| = |k1||k2(t)|, so that the WKBJ, or adiabatic approximation holds with respect to the small parameter r and hence the effect of disc flow shear due to non-axisymmetry of perturbations does not play a role. Instead the non adiabatic case is given by the opposite case : k2 becomes a noticeable function of time with possible r > 1 (which ensues eventually as k2(t) drifts along the k2axis), the dynamics is non-adiabatic (non-WKBJ) and transient shear-induced effects are important for a finite time duration. -adiabatic case The usual procedure allows to determine the eigenvalues by writing : Det (M-ixId) =0 yielding the dispersion relation. For the diagonalization we can write h=P f, with the equation df /dt = Df (t) with f = P -1h, with D = P -1AP , P being the passage matrix with the rows associated to the eigenvectors linked to the eigenvalues : D = Diag(iwi. . . .). The coefficients Pij are not exactly constant but almost in the adiabatic approximation. In this case we can keep the dispersion relation by merely putting k(t) where it is necessary and write also w(k(t)) for the frequencies, while we can look for the modes in the WKBJ usual form as : (72) with another adiabaticity condition such that : /'(t)/¡¡2(t) (73) . . . . -non adiabatic case In the non adiabatic case we have now to take into account the explicit dependence of k2 and thus of k as functions of time thus we get instead the result : df /dt = (D(t) + N (t))f (t) (74) , with again f = P -1(t)h and thus N (t) = P -1dP/dt (75) , the coefficients Nij of N are thus proportional to dk2/dt=qk1Ω due to the shear S. Thus the system (74) shows that now there is a linear coupling between the various eigenmodes (identified in the adiabatic regime) with possible exchange of energy inbetween them. There is also the possibility of modification of the diagonal elements thus new possible linear (exponential) instabilities of the hence new "eigenmodes" may arise but only during a finite time due to the shear. This kind of consideration can modify completly the dynamics of the initial system. Important remark : (ou à placer ailleurs?/TG) At this stage we may have also TRANSIENT exponential instability (for example in the MRI case) occurring on times such that a specific inequality for here MRI is satisfied for any relevant mode and given parameters. But there can be a competition between axi and non axi-symmetric modes (to be studied by their coupling). This situation is in contrast with more usual TG cases where we have an algebraic growth only during also a finite time, for initially spectrally linearly stable systems. Practical example for MRI in a now compressible magnetized sheared flow : with a relation such as p=ρcs2 the dispersion of the MRI mode is here given by (76b): (76a) (76b) (77) we can have an exponential usual MRI instability (ω 2 3 < 0) for a3¿0 if ω 2 3 < 2qΩ 2 at small enough radial wavenumbers (noted as k1 here ) such that : (78) (78) supposes thus a weak enough B field with respect to a sufficient shear strength (79)

We can look now if the system is integrable analytically, if not we can study it numerically for example with a suitable Runge-Kutta algorithm.

Transient growth (TG) for shear flows

We have already seen that the (t) time-dependence is due to the mean shear rate S of the flow. In the simple case of an uniform shear rate, we get a linear time variation for (t). But more tricky cases may happen such as periodic variation or mixed linear and periodic time dependence and so on. Let us focus here on the simple case of linear time-dependence for (t). The transient growth (TG) of disturbances consists in their algebraic growth (power law as opposed to exponential one) during a finite time. (This can be considered as a "modern" version of the RDT/SLT.) The TG can trigger a transition to turbulence by allowing to reach a sufficiently high level of the perturbations as compared to their initial amplitudes. This is the so called by-pass transition to turbulence which has been investigated by both physicists and mathematicians since 1993 (see references below). In our case the team from Georgia has been pionnering the applications to astrophysics. In effect, it is very probable that unmagnetized Keplerian discs (or dead zones of others) are turbulent even if they are spectrally linearly stable , and the by-pass transition could be a suitable mecanism to explain it. It is also a possible competing mechanism with the linear initial exponential instability in the case of MRI (magneto-rotational instability) for magnetized zones of discs, as we have seen an example just above, see also below. For more discussion on this topic see chapter 11 of book ([?]) and references therein.

Non Linear Tranverse Cascades (NLTC)

Add something on the regeneration of the linear terms by phase tuning as said in the abstract, since it will be important to understand the sucessfull comparisons with DNS . Example : We can look at the types of nonlinear cascades in Fourier k-space in spectrally stable shear flows: Usually, linear processes (dynamics) in many flow systems depend on a certain combination of wavenumbers (e.g., k2 = k12 + k22 + k32 in isotropic case). As a result, nonlinear processes often appear to be also dependent on a similar combination of wavenumbers and change the latter, leading to direct or/and inverse cascades. Classical examples are the Kolmogorov's isotropic uniform HD turbulence or Iroshnikov-Kraichnan theory of MHD (however anisotropic) turbulence, where nonlinear cascades change only the wavenumber magnitude of the harmonics. Non-normal nature of linear dynamics of spectrally/modally stable shear flows and its consequences were well-understood and extensively fig-t-a1.pdf Figure 3: Sketch of the bypass scenario applied to Keplerian disc flows, in the wave vector plane of the mean shear. Here, k x (for k 3 ) is the wavenumber in the radial direction (or cross-gradient using SSA) and k y (for k 1 ) in the azimuthal direction (or streamwise using SSA). The wave vector (t) of the velocity Fourier mode (, t) drifts from its initial position 1, (, t) is amplified in quadrant II, reaches maximum amplitude in 2, is attenuated in quadrant I, and undergoes viscous dissipation in 3. But the amplification quadrant II is repopulated through nonlinear interaction from velocity Fourier modes located in the attenuation quadrants I and III (see text for more details).

Reproduced from [?], with permission of A & A.

analyzed by the HD community in the 1990s ([?, ?, ?, ?]) Implications of nonnormality : Eigenfunctions of linearized equations in modal analysis of shear flows are non-orthogonal and strongly interfere. Due to the non-normality perturbations display important and diverse finite-time (transient) phenom-Figure 4: Sketch for the NLTC ena, which are typically missed out in the classical modal/spectral analysis.In spectrally stable shear flows, the subtle interplay of linear transient, or nonmodal amplification phenomena and nonlinear feedback determines subcritical transition and maintenance of turbulence. In effect at sufficiently large amplitude a positive feedback througn the NL interactions can repopulate the growing disturbances. Generally, linear nonmodal processes are anisotropic in wavenumber/Fourier space due to flow shear. This strong anisotropy of linear processes in shear flows, in turn, leads to anisotropy of nonlinear processes (cascades) in k-space ( [?],[?],[?]). We refer to this shear-induced anisotropic redistribution of Fourier harmonics over wavevector angles as a nonlinear transverse cascade (NTC) : a new type of nonlinear cascade emerging in shear flows . This can be shown schematically on the following two pictures :

Classical case without shear flow. Forcing is at narrow wavenumber range In the shear flow case : there is a so called vital area source of energy exchanges between the red zones, located into the inner circle where NTC occur.

Example of applications in our papers : In paper 2 : we have studied TG in the case of a pure azimuthal magnetic fiel, ans we have shown that the total energy growth comes here from the toroidal mode (kinetic and magnetic energies). We have also recovered previous results by ([?]) in the case of 2D incompressible unstratified shear flow. Also for asymmetrical perturbations we found strong TG of total energy for different vertical wavenumbers k3. In paper 3 : we also looked at the TG of energy in vertically stratified disks and found strong effects as well as in the case of combined radial and vertical stratifications for non axisymmetric disturbances. Here the vortex mode is mainly responsible for the TG at large scales but its is the wave mode which dominates this process at small scales.

Green Matrix , energies, spectra and initial conditions

The semi analytical-numerical program is now to compute the Green matrix and the spectral energies and spectra in our linear case and to make links in the full NL case of the relevant diagnosis for transient growth caracterisation.

Green function/matrix

It may be convenient to solve the initial differential system in terms of Green matrix/ function (or fundamental matrix) as already done in some examples above. The general relationship is given by Eq. (??) when the state-vector only includes velocity components. In the general case, the solution of the relevant system of differential equations is given by

((t), t) = (, t, t 0 )((t 0 ), t 0 ), (34) 
for the initial-value problem, and satisfies the same equation, with initial data corresponding to the identity matrix. As for the matrix of the linear system, ˙+ = 0, various forms can be used, with a minimum number of components, for instance in accounting for solenoidal properties = 0, = 0. If conveniently reduced, as or g ij with a minimal number of components, the matrix is always diagonalizable, and the sum and the product of its eigenvalues is given by T r and det, respectively, with det = k(0)/k(t), always positive and nonzero.

Energies and initial conditions

It is easy to derive linear solutions for statistical covariance matrices in terms of from the basic solution (??). The search of such equations for statistical quantities was the first goal of RDT. In this sense, this is a specific application, which difer from the classical domain of hydrodynamic stability, even though 'homogeneous' RDT or SLT is a special case of stability analysis when a single mode is concerned for . Statistical applications allow consideration of initial statistical covariance matrices, which implies a dense spectrum of individual modes, and can correspond to high Reynolds number. Accordingly, we can define various spectral densities of energy, and derive their purely linear dynamics via RDT. Such energies can be kinetic, magnetic, potential (for buoyancy-related flows) and even dilatational kinetic -not only solenoidal -when full compressibility is addressed. For instance, different energy spectra are defined using ensemble averaging ... , by virtue of statistical homogeneity, as follows

1 2 * i (, t) i (, t) = E c (, t)δ 3 (-) (35) 1 2 b * i (, t) b i (, t) = E m (, t)δ 3 (-) (36) 1 2 ρ * (, t) ρ(, t) = E (pot) (, t)δ 3 (-). ( 37 
)
They are derived from the initial data via the linear equation (??), by taking the ensemble average of the scalar product, so that

E (tot) ((t), t) = g * im (, t, t -0)g in (, t, t 0 )V nm ((t 0 ), t 0 ). (38) 
At this stage, some remarks on the meaning of the previous equation are informative.

• The linear dynamical equation involves not only the initial data of the scalar energies, but the whole tensorial covariance matrix from * ⊗, called V mn , because anisotropy is reflected in tensorial g ij .

• The total energy, say E (tot) , generally is the sum of the three kind of energies, kinetic, magnetic and potential.

• In the statistical equation for the total energy, we use the simplification due to the fact that is self-adjoint. This is obvious in statistically homogeneous turbulence, in which is algebraic and often purely real, but could be more complex in the most general case, with need for a transconjugate matrix.

Simplified choice of initial data

A large choice of the initial covariance matrix V ij in Eq. (??) is possible, but 3D isotropy allows drastic simplifications. It is also in the essence of RDT to show how an anisotropic structure is naturally generated from a pre-existing initial turbulent field, that is unstructured. Isotropy allows to rely angle-dependent spectra to spherically-integrated spectra, that depend only on the modulus k of the wavevector . For instance, the first equation of (??) becomes

E c (, t) = E c (k, t) 4πk 2 , (39) 
and similarly for the other types of energies. Accordingly, only diagonal components are kept in V ij (, t 0 ) in Eq. (??). There is no need to prescribe the pdf of the initial field, e.g. Gaussianity, in statistical equations derived from RDT, but Gaussianity can be invoked for justifying the absence of triple correlations in the equations that govern second-order correlations. This important point is rediscussed when DNS are addressed, and is revisited in our conclusions.

Maximum growth rate for TG

The maximum energy growth rate useful for transient growth study can be defined by : (86) In many studies the Rayleigh quotient is defined rather by : (87) also is used to characterize the transient growth (as done also in our paper 3).

spectral energy densities

Due to the isotropic chosen initial conditions we can write the above densities of energies as : (89a-b-c) The total energy should be conserved in the absence of dissipation.

-1D and 2D spectra and possible diagnosis We can define the 1D spectra by the formula :

(90) also radial spectra can be defined by integrating over the angles (spherical coordinates) : (91) What is especially useful , as in our previous studies, is the comparison of the various ratios of spectra for a given kj : S1i1(kj, t)/S1i2(kj, t). Remark : However in the case of transient growth it can be more useful (not done yet by us) to integrate over the modulus and not over the angles (more useful to look at direct and inverse cascades) of the wavenumber to characterize the anisotropies of the energy transfers in the spectral space in the case of transverse cascades. However of course the SLT analysis could be limited in such a description.

(92)

We have defined also 2D energy components by multiplying the above 1D spectrum S(ki,t) by an integral length (refs ). cf add MORE HERE on it . . . A semi analytical numerical computation along these lines could follow in the relevant cases.

Comparison of SLT predictions with DNS

The SLT analysis is useful at large spatial scales (small k) while the non linear terms are a priori dominant at small spatial case (large k). However often as observed in our previous studies not the energies alone but for example energy ratios are still well described (at different k , and for t varying) by the SLT analysis as compared to direct numerical simulations (DNS) which was our main motivation here to undertake such a SLT study. We have studied a number of these ratios in our different papers and have compared with DNS when available. Other DNS were recently performed by ours, allowing to to provide additional comparisons (([?]) for DNS in precession, and ([?])about DNS for rotating MHD.

draw conclusions about these last DNS ? The DNS with precession is an extension of previous studies (like paper 1 ? but with B=0, see other studies by ([?]) starting with a Mahalov (([?])basic flow but in the full non linear case. The other DNS study for rotating MHD is an extension of our paper 5, giving new insights into the involved nonlinear dynamics, by investigating cases where the mean magnetic field is either aligned or orthogonal to the angular velocity of the rotating frame.

(something linked in these DNS with LST or not reacheable by LST here ?)

6.1 Essay of explanations of the asymptotic behavior qualitative agreement between LST and DNS (in some cases)

In the case of inertial waves they are naturally of type Beltrami in the sense that for a single Fourier mode we have curl(u) being parallel to u. If the rotation is dominant and if we are in this regime of wave turbulence we may think that the Beltramization of the flow can suppress the non linear terms in Curl(u)x u and hence the SLT theory becomes exact. Beltramization of flow in turbulence has been also studied in the community (see for example ([?]). Another possible explanation comes from the mecanism of NL feedback in sheared flows themselves ; since there is a regeneration of the linear terms by the NL ones we expect the turbulence in its saturated stationnary asymptotic state to be dominated by the linear non normal modes and then SLT is naturally appropriate to describe them properly.

Show more here ? with practical examples drawn from our papers ?/figures and compare with DNS figures ?

General Conclusions

In this paper we have wished to make a review of some useful methods currently used in the study of sheared flows occuring in various physical situations relevant in geophysics and astrophysics. These methods allow to derive a wealth of new physical results. We would like to stress on specific features quoted all along the text. Summary of main results : The RDT is a general method often powerful to capture a lot of features of the turbulent state reached by the system even if not describing all the the finer scales. The development of anisotropy can also be followed by this technique. The SLT allow to deal with the linear stability but also with transient growth when it exists leading to mode coupling by the shear and to possible non linear transverse cascades which are specific of shear flows. Thanks to the feedback between the linear non normal modes and the non linear perturbations the time asymptotic behavior of the full non linear system is often qualitatively described by SLT as compared to DNS. A few papers of the Georgian team +coll :

A1, Magnetohydrodynamic instabilities in rotating and precessing sheared flows: An asymptotic analysis [?]

Linear magnetohydrodynamic instabilities are studied analytically in the case of unbounded inviscid and electrically conducting flows that are submitted to both rotation and precession with shear in an external magnetic field. For given rotation and precession the possible configurations of the shear and of the magnetic field and their interplay are imposed by the admissibility condition , i.e. the base flow must be a solution of the magnetohydrodynamic Euler equations": we show that an admissible basic magnetic field must align with the basic absolute vorticity. For these flows with elliptical streamlines due to precession we undertake an analytical stability analysis for the corresponding Floquet system, by using an asymptotic expansion into the small parameter (Poincaré number) ratio of precession to rotation frequencies by a method first developed in the magneto-elliptical instabilities study by Lebovitz and Zweibel, 2004 [?]. The present stability analysis is performed into a suitable frame that is obtained by a systematic change of variables guided by symmetry and the existence of invariants of motion. The obtained Floquet system depends on three parameters: , η (ratio of the cyclotron frequency to the rotation frequency) and ζ = cos α, with α being a characteristic angle which, for circular streamlines, = 0, identifies with the angle between the wave vector and the axis of the solid body rotation. We look at the various (centrifugal or precessional) resonant couplings between the three present modes: hydrodynamical (inertial), magnetic (Alfvén), and mixed (magnetoinertial) modes by computing analytically to leading order in the instabilities by estimating their threshold, growth rate, and maximum growth rate and their bandwidths as functions of , η and ζ. We show that the subharmonic magnetic mode appears only for η > 5/2 and at large η (gg1) the maximal growth rate of both the hydrodynamic and magnetic modes approaches /2, while the one of the subharmonic mixed mode approaches zero.

A2, Magnetized stratified rotating shear waves [?]

We present a spectral linear analysis in terms of advected Fourier modes to describe the behavior of a fluid submitted to four constraints: shear (with rate S), rotation (with angular velocity ), stratification, and magnetic field within the shearing box model in astrophysics. As a consequence of the fact that the base flow must be a solution of the Euler-Boussinesq equations, only radial and/or vertical density gradients can be taken into account. Ertel's theorem being no longer valid to show the conservation of potential vorticity, in the presence of the Lorentz force, but a similar theorem can be applied to a potential magnetic induction: the scalar product of the density gradient by the magnetic field is a Lagrangian invariant for an inviscid and non diffusive fluid. The linear system with a minimal number of solenoidal components, two for both velocity and magnetic disturbance fields, is expressed as a four-component inhomogeneous linear differential system in which the buoyancy scalar is a combination of solenoidal components (variables) and the (constant) potential magnetic induction. We study the stability of such a system for both an infinite streamwise wavelength (k 1 = 0, axisymmetric disturbances) and for finite k 1 (non-axisymmetric disturbances). In the case (k 1 = 0), we recover and extend previous results characterizing the magnetorotational instability (MRI) for combined effects of both radial and vertical magnetic fields and with combined effects of radial and vertical density gradients. We derive an expression for the MRI growth rate in terms of the stratification strength, which indicates that purely radialstratification can inhibit the MRI instability, while purely vertical stratification cannot completely suppress the MRI instability. In the case of nonaxisymmetric disturbances, we only consider the effect of vertical stratification, and we use Levinson's theorem to demonstrate the stability of the solution at infinite vertical wavelength (k 3 = 0): an oscillatory behavior is found for τ > 1+ | K 2 /k 1 |, where τ = St is a dimensionless time and K 2 is the radial wave vector component at τ = 0. The model is suitable to describe instabilities leading to turbulence by the by-pass mechanism that can be relevant for the analysis of magnetized stratified Keplerian disks with a purely azimuthal field. For initial isotropic conditions, the time evolution of the spectral density of total energy (kinetic + magnetic + potential) is considered. At k 3 = 0, the vertical motion is purely oscillatory, and the sum of the vertical (kinetic + magnetic) energy plus the potential energy does not evolve with time and remainng at its initial value. The horizontal motion can induce a rapid transient growth provided K 2 /k 1 1. This rapid growth is due to the aperiodic velocity vortex mode that behaves like

K h /k h where k h (τ ) = [k 2 1 + (K 2 k 1 τ ) 2 ]
1/2 and K h = k h (0). After the leading phase (τ > K 2 /k81 1), the horizontal magnetic energy and the horizontal kinetic energy exhibit a similar (oscillatory) behavior yielding a high level of total energy. The contribution to energies coming from the modes k 1 = 0 and k 3 = 0 is addressed by investi-gating the one-dimensional spectra for an initial Gaussian dense spectrum. For a magnetized Keplerian disk with a purely vertical field, an important contribution to magnetic and kinetic energies comes from the region near k 1 = 0. The limit at k 1 = 0 of the streamwise one-dimensional spectra of energies, or equivalently, the streamwise two-dimensional (2D) energy, is then computed. The comparison of the ratios of these 2D quantities with their three-dimensional counterparts provided by previous direct numerical simulations shows a quantitative agreement with our findings.

A3, Wave-Vortex mode coupling in astrophysical accretion disks under combined radial and vertical stratification [?] Accretion disk flow under combined radial and vertical stratification in a local Cartesian (or shearing box approximation [?] is examined for both axisymmetric and nonaxisymmetric disturbances within the Boussinesq approximation. Under axisymmetric disturbances, a new dispersion relation is derived. It reduces to the Solberg-Hoïland criterion in the case without vertical stratification. It shows that, asymptotically, stable radial and vertical stratification cannot induce any linear instability; Keplerian flow is accordingly stable. Previous investigations strongly suggest that the so-called bypass concept of turbulence (i.e. finely tuned disturbances of any inviscid smooth shear flow can reach arbitrarily large transient growth) can also be applied to Keplerian disks. We present an analysis of this process for 3D plane-wave disturbances comoving with the shear flow of a general rotating shear flow under combined stable radial and vertical rotation, and demonstrate that large transient growth occurs for K 2 /k 1 1 and k 3 = 0 or k 1 ∼ k 3 where k 1 , K 2 and k 3 are respectively the azimuthal, radial and vertical components of the initial wave vector. By using a generalized wave-vortex decomposition of the disturbance, we show that the large transient energy growth in a Keplerian disk is mainly generated by the transient dynamics of the vortex mode. The analysis of the power spectrum of the total (kinetic+potential) energy in the azimuthal or vertical directions shows that the contribution coming from the vortex mode is dominant at large scales, while the one coming from the wave mode is important at small scales. These findings may be confirmed by appropriate numerical simulations in the high Reynolds number regime. mined considering initial isotropic conditions. For Magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V A k/f ß1; the Alfven ratio S k (k, t)/S m (k, t) behaves like k -2 if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [?], and like k -1 if the rotation axis is perpendicular to the magnetic field. At small scales, such that V A k/f 1, there is an equipartition of energy between magnetic and kinetic components. For Magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V A k/N ß1); there is an equipartition of energy between magnetic and potential components, while at small scales (V A k/N 1); the ratio S p (k, t)/S k (k, t) behaves like k -1 and S k (k, t)/S m (k, t) = 1. Also, for MAC weak wave turbulence, it is shown that, at small scales (V A k/(N 2 +f 2 ) 1/ 21, the ratio S p (k, t)/Sk(k, t) behaves like k -1 and S k (k, t)/S m (k, t) = 1.

  where E is the entire part of the number kV a /Ω 0 .

	3.2 Asymptotic stability theory for (t) linear in time
	3.2.1 suggestion for possible numerical procedure

Starting from eq.(

20

) we want to write a new system with a new matrix C (t) such as : Z = C(t)Z (61). Multiplying on the left the equation Y'=M(t)Y by a matrix B(t), we set Z = BY , thus we get : (BY ) = C(BY ), withC = (BM B -1 + B B -1) (62) We would like to have C as a diagonal or a diagonalizable matrix with a change of basis being if possible time independent for the passage matrix P : C(t) = P D(t)P -1, thus we have : (

Appendix A: Short summary of the main results obtained in our previous papers

The different systems which we have analyzed in this context are the following:

1. analysis of possible magneto--precessional instabilities in MHD fluid conductors submitted to magnetic field with both rotation and precession.

2. Derivation of a new magnetic invariant (magnetic vorticity potential) for a fluid under differential rotation including stratification and magnetic field, with generalization of previous results for the magneto-rotational instability in the case of transient growth behavior.

3. Study of transient growth dynamics for Keplerian unmagnetized accretion disks which are submitted to both radial and vertical stratifications by using a generalized decomposition of perturbations into waves and vortices.

4. Instability in vertically stratified accretion shear flows with uniform rotation under primary and secondary perturbations.

5. Analysis of Short summary of the main results obtained in our previous papers the energy partition, scale by scale, in Alfven--Coriolis--Archimedes weak wave turbulence.

A4, Instability in stratified accretion flows under primary and secondary perturbations [?]

We consider horizontal linear shear flow (shear rate denoted by ) under vertical uniform rotation (ambient rotation rate denoted by Ω 0 ) and vertical stratification (buoyancy frequency denoted by N ) in an unbounded domain.

We show that, under a primary vertical velocity perturbation and a radial density perturbation consisting of a one--dimensional standing wave with frequency N and amplitude proportional to ω 0 sin( N x/Ω 0 ) ∼ N x ( 1), where x denotes the radial coordinate and a small parameter, a parametric instability can develop in the flow, provided N 2 > 8Ω 0 (2Ω 0 Λ). For astrophysical accretion flows and under the shearing sheet approximation, this implies N 2 > 8Ω 2 0 (2q) where q = Λ/Ω 0 is the local shear gradient. In the case of a stratified constant angular momentum disk, q = 2, there is a parametric instability with the maximal growth rate σ m / = 3 √ 3/16 for any positive value of the buoyancy frequency N . In contrast, for a stratified Keplerian disk, q = 3/2, the parametric instability appears only for N > 2Ω 0 with a maximal growth rate that depends on the ratio Ω 0 /N and approaches (3 √ 3/16) (but) for large values of N .

A5, Energy partition, scale by scale, in magnetic -Archimedes -Coriolis weak wave turbulence [?]

Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (SLT) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesqfluid. At the scale k -1 the maximal frequencies of magnetic (Alfven) waves, gravity (Archimedes) waves and inertial (Coriolis) waves, are respectively, denoted as V A k, N and f . By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [?], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD shallow water waves [?] . A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S k (k, t), magnetic, S m (k, t), and potential, S p (k, t) energies is deter-