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Continuous anisotropic damage as a twin modelling
of discrete bi-dimensional fracture

C. Oliver-Leblond, R. Desmorat, B. Kolev

Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMT - Laboratoire de Mécanique et Technologie, 91190, Gif-sur-Yvette, France

Abstract

In this contribution, the use of discrete simulations to formulate an anisotropic damage model is investigated. It is
proposed to use a beam-particle model to perform numerical characterization tests. Indeed, this discrete model explicitly
describes cracking by allowing displacement discontinuities and thus capture crack induced anisotropy of quasi-brittle
materials such as concrete. Through 2D discrete simulations, the evolution of the effective elasticity tensor for various
loading tests, up to failure, is obtained. The analysis of these tensors through bi-dimensional harmonic decomposition
is then performed to estimate the tensorial damage evolution. It is shown in a quantitative manner that a second order
–instead of a fourth order– damage tensor is sufficient in practice, even when the micro-cracks are strongly interacting.
As a by-product of present work we obtain an upper bound of the distance to the orthotropic symmetry class of bi-
dimensional elasticity.

Keywords: Anisotropic Damage, Crack Density, Harmonic Decomposition, DEM, Beam-Particle, Lattice, Discrete
simulation

Introduction

For most quasi-brittle materials, the initial mechanical
behaviour of the uncracked material can be considered as
isotropic. On the other hand, degradation induced by
mechanical loading generally leads to anisotropy. Indeed,
cracks are naturally oriented and therefore their appear-
ance will not affect the material properties in an isotropic
manner. We note that the orientation of these cracks for an
initially isotropic material can be determined by the direc-
tion and sign of the loading (Mazars et al., 1990; Ramtani
et al., 1992).

To obtain an explicit representation of cracking – and
thus of its impact on material properties – it is possible
to use discrete models of the lattice or particle type. The
first lattice models were historically introduced by Poisson
(1828) and more recently by Hrennikoff (1941) to solve
classical elasticity problems. The elastic material is dis-
cretized using 1D elements – springs or beams – which
allow for the transfer of forces between the nodes of the
lattice. The development of numerical simulations has al-
lowed for its extension to the study of fracture behaviour
by considering a brittle behaviour for the elements form-
ing this lattice (Herrmann et al., 1989). The approach was
then applied to the quasi-brittle fracture of concrete sub-
jected to tension (Schlangen and Van Mier, 1992). How-
ever, these models do not allow for the representation of
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compression cracking nor of cyclic loading. Particulate
models were proposed in 1979 to study the behaviour of
granular (Cundall and Strack, 1979) joints. For these ap-
plications, contact forces alone were sufficient to correctly
describe the behaviour. A cohesive version has been pro-
posed latter (Meguro and Hakuno, 1989) but does not offer
the simplicity and rapidity of the lattice models. In the
present work, we propose to use a beam-particle model
combining the lattice approach and the particulate ap-
proach (D’Addetta et al., 2002; Delaplace, 2008; Vassaux
et al., 2016). Concrete is represented via an assembly of
polygonal particles bounded together by brittle beams.
After the beams break, frictional contact forces are in-
troduced between the particles. This model allows for a
fine and explicit description of the cracking and the asso-
ciated mechanisms (initiation, propagation, closure with
stiffness recovery, friction). Its application to structural
calculations is not yet common but can be envisaged with
the implementation of high-performance calculation tech-
niques. These discrete methods can be used as numerical
experimentation tools at the scale of the Representative
Elemental Volume or at the scale of a laboratory speci-
men to establish and identify the constituent equations of
a continuous model (Vassaux et al., 2015a) or simply a
part of these equations (Delaplace and Desmorat, 2007).

In order to obtain a representative, robust and efficient
numerical model, it is common to use macroscopic laws
that account for the formation, propagation and coales-
cence of micro-cracks by introducing an internal damage
variable. A fourth order damage tensor has been in-
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troduced by1 Chaboche (1978, 1979, 1984), Leckie and
Onat (1980) and Ju (1989), with then the difficulty to
derive an evolution law representative of induced dam-
age anisotropy for complex loading. To tackle this issue,
micro-mechanics –two-scale– approaches have been devel-
oped (Kachanov, 1993; Cormery and Welemane, 2010;
Dormieux and Kondo, 2016; Wulfinghoff et al., 2017).
From the macroscopic continuum damage mechanics point
of view, the use of a second order damage tensor has a
strong practical interest, as shown by works on different
materials (Cordebois and Sidoroff, 1982; Ladevèze, 1983;
Murakami, 1988; Papa and Talierco, 1996; Lemaitre et al.,
2000; Carol et al., 2001; Menzel et al., 2002; Brunig, 2003;
Lemaitre and Desmorat, 2005; Voyiadjis and Kattan, 2006;
Pröchtel and Häußler-Combe, 2008; Badreddine et al.,
2015; Fassin et al., 2019). Indeed, it is possible to ensure
the positivity of the intrinsic dissipation for any loading
case, proportional or not, and it is quite easy to formu-
late families of evolution laws for second order anisotropic
damage, which even take into account the Lode angle de-
pendency (Mattiello and Desmorat, 2021).

One of the first damage models for quasi-brittle ma-
terials (Mazars, 1984) made it possible to reproduce the
degradation of the concrete material with loading, via a
scalar damage variable, by considering concrete as a ho-
mogeneous material at the scale of the volume element
of continuum mechanics. This isotropic damage model is
commonly used to study the behaviour of concrete struc-
tures but its isotropic nature does not allow for it to take
into account complex multi-axial loading (as observed by
Mazars and his collaborators, Ramtani et al. (1992), see
also the work of Halm and Dragon (1998) and of Fichant
et al. (1999)). Damage models with induced anisotropy –
such as the one proposed for concrete by Desmorat et al.
(2007) and made more robust later (Desmorat, 2016) –
can be used for Finite Element computations. In this kind
of modelling, developed within the framework of the ther-
modynamics of irreversible processes, the damage is rep-
resented by a tensor variable of order 2 and its rate is
governed by the positive part of a strain tensor. It should
be noted that these macroscopic models are globally phe-
nomenological because their formulation and identification
are based on experimental observations of the behaviour
of quasi-brittle materials. It is the same for their laws of
evolution (Ramtani et al., 1992; Lemaitre and Desmorat,
2005) or their non-local character. Their representative-
ness is thus limited by the capacity to carry out experi-
ments on the degraded material.

Discrete cracking models and continuous damage mod-
els both have advantages and limitations, and it makes
sense to combine these advantages by combining the two
modelling methods. In this paper, we investigate the rel-
evance to use the beam-particle model to perform virtual
tests in order to formulate an anisotropic damage model.

1even a eight order damage tensor in (Chaboche, 1978).

Let us recall that in (Delaplace and Desmorat, 2007) the
methodology was limited to the identification of a single
parameter of the continuous model (certainly delicate to
measure on real tests because it was the one governing the
so-called ”shear-bulk” coupling of a more important effect
of the damage on compressibility than on shear). More re-
cent studies have proposed the formulation of continuous
damage models from a discrete analysis: by introducing
scalar damage variables calculated from the macroscopic
loss of stiffness in a lattice simulation (Rinaldi and Lai,
2007; Rinaldi, 2013; Jivkov, 2014), or by continualization
of discrete equations (Challamel et al., 2015).

In this paper, the goal is to derive a second order tenso-
rial damage variable from discrete simulations. The tools
for the intrinsic analysis of tensors, introduced by Backus
(1970) in elasticity and by Leckie and Onat (1981) in dam-
age mechanics, mixing harmonic analysis and the notion
of covariants (generalizing that of invariants, Olive et al.
(2018b)), are used here in order to analyze the effective
elasticity tensors obtained through discrete simulations,
without reference to a particular basis, and to achieve a
general tensorial representation of damage. Discrete simu-
lations will be used to obtain the evolution of the effective
elasticity tensor during the rupture of a numerical speci-
men under different mechanical loads. The analysis of the
tensors via the harmonic decomposition and their covari-
ant reconstruction (Olive et al., 2018a) will then allow us
to estimate the evolution of the tensor damage.

In section 1, definitions relating to the properties of fully
symmetrical tensors are recalled. The harmonic decom-
position of a bi-dimensional elasticity tensor is then per-
formed in section 2 and it is reminded that the fourth order
harmonic part of this elasticity tensor is always an har-
monic square. In section 3, a covariant reconstruction of
2D orthotropic elasticity tensors is used to derive an upper
bound of the distance to the orthotropic symmetry class in
bi-dimensional elasticity. The beam-particle model, used
in this contribution as a numerical testing tool, is pre-
sented in section 4 as well as the methodology to extract
the effective elasticity tensor from the discrete simulations.
A first analysis is realised in section 5 to check whether the
initial elasticity tensor, of the uncracked medium, can be
considered as isotropic. In section 6, the analysis of the
effective elasticity tensors – and more precisely of their
harmonic part – of cracked media for various loading test
up to failure is achieved. Finally, the analysis of those
tensors through harmonic decomposition/covariant recon-
struction is then performed in section 7 to estimate the
tensorial damage evolution.

1. Definitions

We next make use of the Euclidean structure of ℝ2 and
do not make difference between covariant, contravariant or
mixed tensors.
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1.1. Symmetric tensor product

We denote byTs the totally symmetric part of a possibly
non symmetric tensor T. More precisely, if T ∈ ⊗𝑛ℝ𝑑 is
of order 𝑛,

Ts(𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑛) :=
1

𝑛!

∑︁
𝜎∈S𝑛

T(𝑥𝑥𝑥𝜎(1), . . . ,𝑥𝑥𝑥𝜎(𝑛)),

where S𝑛 is the permutation group of 𝑛 elements.
The symmetric tensor product of two tensors T1 and

T2, of respective orders 𝑛1 and 𝑛2, is the symmetrization
of T1 ⊗ T2, defining a totally symmetric tensor of order
𝑛 = 𝑛1 + 𝑛2:

T1 ⊙T2 := (T1 ⊗T2)
s.

1.2. Traces – Harmonic tensors

Contracting two subscripts 𝑖, 𝑗 of a tensor T of order
𝑛 defines a new tensor of order 𝑛 − 2 denoted as tr𝑖𝑗 T.
For a totally symmetric tensor T, this operation does not
depend on a particular choice of the pair 𝑖, 𝑗. Thus, we
can refer to this contraction just as the trace of T and we
will denote it as trT. It is a totally symmetric tensor of
order 𝑛− 2. Iterating the process, we define

tr𝑘 T = tr(tr(· · · (trT))),

which is a totally symmetric tensor of order 𝑛− 2𝑘.
Harmonic tensors H are by definition totally symmetric

traceless tensors, i.e. such as H = H𝑠, trH = 0. In 2D,
the vector space of 𝑛-order harmonic tensors is denoted
by ℍ𝑛(ℝ2) with dimℍ𝑛(ℝ2) = 2. The harmonic tensors
of order two (i.e. the deviatoric tensors) will be denoted
by lowercase letter h.

1.3. Harmonic product

LetH1 andH2 be two harmonic tensors of orders 𝑛1 and
𝑛2 respectively. The harmonic product H1 *H2, defining
an harmonic tensor of order 𝑛 = 𝑛1 + 𝑛2, has been intro-
duced in (Olive et al., 2018a) as the leading harmonic part
of the symmetric tensor product H1 ⊙H2,

H1 *H2 := (H1 ⊙H2)
′ ∈ ℍ𝑛1+𝑛2(ℝ2).

The harmonic product is associative and commutative,

H1 * (H2 *H3) = (H1 *H2) *H3, H1 *H2 = H2 *H1.

In previous works, the leading harmonic part was some-
times denoted (H1 ⊙H2)0. As it is a generalization of the
deviatoric part, the notation (·)′ is here preferred to (·)0.
In practice, the harmonic product H1 * H2 is computed
as the unique harmonic component H of maximal order
𝑛 = 𝑛1 + 𝑛2 in the harmonic decomposition of the totally
symmetric tensor H1⊙H2. It is given by the fourth equa-
tion of (2.2) in section 2 for the case 𝑛 = 4. For the general
bi-dimensional case, one has to use the harmonic decompo-
sition formula at order 𝑛 given in (Desmorat et al., 2020a,
Appendix B).

Let us particularize the harmonic product for specific
cases of 2D vectors and harmonic second-order tensors (be-
longing thus to ℍ𝑛(ℝ2) for 𝑛 = 1, 2):

Example 1.1. For two vectors 𝑤𝑤𝑤1,𝑤𝑤𝑤2 ∈ ℍ1(ℝ2), we have

𝑤𝑤𝑤1 *𝑤𝑤𝑤2 =(𝑤𝑤𝑤1 ⊙𝑤𝑤𝑤2)
′

=
1

2
(𝑤𝑤𝑤1 ⊗𝑤𝑤𝑤2 +𝑤𝑤𝑤2 ⊗𝑤𝑤𝑤1)−

1

2
(𝑤𝑤𝑤1 ·𝑤𝑤𝑤2)1,

where 𝑤𝑤𝑤1 ·𝑤𝑤𝑤2 = 𝑤𝑤𝑤𝑇
1𝑤𝑤𝑤2 is the scalar product.

Example 1.2. For two second-order harmonic (deviatoric)
tensors h1,h2 ∈ ℍ2(ℝ2), we have (Olive et al., 2018a)

h1 * h2 =(h1 ⊙ h2)
′

=h1 ⊙ h2 −
1

4
tr(h1h2)1⊙ 1.

Example 1.3. The harmonic square of a 2D second order
harmonic (deviatoric) tensor h ∈ ℍ2(ℝ2) writes (Olive
et al., 2018a):

h * h =(h⊙ h)′

=h⊙ h− 1

4
(h : h)1⊙ 1

=h⊗ h− 1

2
(h : h)J,

(1.1)

where

J = I− 1

2
1⊗ 1. (1.2)

with 𝐼𝑖𝑗𝑘𝑙 =
1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘).

1.4. Covariants of a tensor T (for the rotation group)

The action 𝑔 ⋆T of a rotation 𝑔 ∈ SO(2) on a tensor T
of order 2 or 4 is

(𝑔 ⋆T)𝑖𝑗 = 𝑔𝑖𝑘𝑔𝑗𝑙𝑇𝑘𝑙, (𝑔 ⋆T)𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑝𝑔𝑗𝑞𝑔𝑘𝑟𝑔𝑙𝑠𝑇𝑝𝑞𝑟𝑠.

A tensor A(T) is said to be a covariant of tensor T for
SO(2) if

𝑔 ⋆A(T) = A(𝑔 ⋆T), ∀𝑔 ∈ SO(2),

The algebra of polynomial covariants of the elasticity
tensor has been defined and studied in (Olive et al., 2018b;
Desmorat et al., 2020b).

2. Harmonic fourth order part H of the 2D elas-
ticity tensor as an harmonic square

2.1. Harmonic decomposition

The harmonic decomposition of tensors is a powerful
mathematical tool (Schouten, 1989; Spencer, 1970), that
has first been applied to three-dimensional elasticity ten-
sors C ∈ 𝔼la(ℝ3) by Backus (1970). Formally in 2D, it is
the equivariant decomposition

C = (𝜇, 𝜅,d′,H) ∈ 𝔼la(ℝ2),

3



into two scalars (invariants) 𝜇, 𝜅 ∈ ℍ0(ℝ2) ≃ ℝ, 𝜇 be-
ing the shear modulus, 𝜅 the bi-dimensional bulk mod-
ulus, one harmonic (deviatoric) second order covariant
d′ = d′(C) ∈ ℍ2(ℝ2) and one harmonic fourth order co-
variant H = H(C) ∈ ℍ4(ℝ2), such as

𝑔 ⋆C = (𝜇, 𝜅, 𝑔 ⋆ d′, 𝑔 ⋆H) ∀𝑔 ∈ SO(2).

An explicit harmonic decomposition of C ∈ 𝔼la(ℝ2) is:

C = 2𝜇J+ 𝜅1⊗ 1+
1

2
(1⊗ d′ + d′ ⊗ 1) +H, (2.1)

with J defined by (1.2). The closed form expressions of
harmonic components 𝜇, 𝜅, d′ and H are gained thanks to
the definition of dilatation and Voigt second order tensors
d = tr12 C and of v = tr13 C,

𝜇 =
1

8
(2 trv − trd),

𝜅 =
1

4
trd,

d′ =d− 1

2
(trd)1,

H =C− 2𝜇J− 𝜅1⊗ 1− 1

2
(1⊗ d′ + d′ ⊗ 1) .

(2.2)

In the isotropic (initial) case, one has H = 0 and

d = 2𝜅1, v = (2𝜇+ 𝜅)1,

the Young’s modulus and Poisson’s ratio being

𝐸 =
4𝜅𝜇

𝜅+ 𝜇
, 𝜈 =

𝜅− 𝜇

𝜅+ 𝜇
.

Remark 2.1. In 2D the deviatoric parts of dilatation and
of Voigt second order tensors are equal, v′ = d′, and the
term 1⊗d′ +d′ ⊗1 is also equal to 1⊗d′ +d′ ⊗1, where
(a⊗b)𝑖𝑗 =

1
2 (𝑎𝑖𝑘𝑏𝑗𝑙 + 𝑎𝑖𝑙𝑏𝑗𝑘).

One can also perform the harmonic decomposition of
the compliance tensor S = C−1, and gets then

d′(S) = v′(S) = (tr12 S)
′,

where

S =
1

2𝜇
J+

1

4𝜅
1⊗ 1+

1

2
(1⊗ d′(S) + d′(S)⊗ 1) +H(S),

and H(S) is the harmonic (totally symmetric and trace-
less) fourth order part of S.

Recall finally that a minimal generating set (a mini-
mal integrity basis) of the invariant algebra of the elas-
ticity tensor in 2D, under the action of the orthogonal
group O(2), consists in the following 5 invariants (Vianello,
1997),

𝜇 =
1

8
(2 trv − trd),

𝜅 =
1

4
trd,

𝐼2 = ‖d′‖2 = d′ : d′,

𝐽2 = ‖H‖2 = H :: H,

𝐾3 = d : H : d.

(2.3)

2.2. The harmonic part H ∈ ℍ4(ℝ2) as an harmonic
square

In 2D, it has been shown that any fourth order harmonic
tensor H ̸= 0 is of the form (Desmorat and Desmorat,
2015)

H = 2Λ e * e, tr e = 0, ‖e‖ = 1, (2.4)

where e is a unit deviatoric (second order) eigentensor as-
sociated with a non zero eigenvalue Λ of the Kelvin repre-
sentation of H (i.e. such that H : e = Λe in an orthonor-
mal basis).

Remark 2.2. Since H ̸= 0 has two opposite eigenvalues
Λ+ > 0 and Λ− = −Λ+ < 0, this implies that any bi-
dimensional fourth order harmonic tensor is always an har-
monic square (Desmorat and Desmorat, 2015, 2016). The
corresponding explicit formula is as follows,

H = h * h, h = ±
√︀

2Λ+ e+, (2.5)

where the unit deviatoric second order tensor e = e+ is
the eigentensor of H associated with the strictly positive
eigenvalue Λ+. Observe that there are two opposite har-
monic square roots h of H, which are opposite to each
other. A new proof of this result, more conceptual, is pro-
vided in Appendix A.

3. Covariant reconstruction of 2D orthotropic elas-
ticity tensors

Bi-dimensional elasticity tensors C ∈ 𝔼la(ℝ2) have
Kelvin matrix representation

[C] =

⎡⎣ 𝐶1111 𝐶1122

√
2𝐶1112

𝐶1122 𝐶2222

√
2𝐶1222√

2𝐶1112

√
2𝐶1222 2𝐶1212

⎤⎦ .
Bi-dimensional harmonic fourth order tensors H ∈ ℍ4(ℝ2)
have Kelvin representation

[H] =

⎡⎣ 𝐻1111 −𝐻1111

√
2𝐻1112

−𝐻1111 𝐻1111 −
√
2𝐻1112√

2𝐻1112 −
√
2𝐻1112 −2𝐻1111

⎤⎦ . (3.1)

The normal form of an orthotropic elasticity tensor cor-
responds to 𝐶1112 = 𝐶1222 = 0. If C = H is moreover
harmonic, we get 𝐻1112 = 0.

A bi-dimensional harmonic fourth order tensor H can-
not be strictly orthotropic (i.e. with exact symme-
try group 𝔻2, the symmetry group of a rectangle). A
non-vanishing harmonic fourth-order tensor H has al-
ways the symmetry group 𝔻4 (the symmetry group of a
square) (Vannucci and Verchery, 2001; Vannucci, 2005).
The covariants of H inherit its symmetry (Olive et al.,
2018a,b): this implies that all the second order covariants
of H have at least the square symmetry, they are there-
fore isotropic (and all the deviatoric second order covari-
ants of H vanish). Combined with the fact that the har-
monic product * is itself covariant, this geometrical prop-
erty implies that the harmonic square root h (i.e. such as
H = h * h) is not a covariant of H.
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3.1. Square symmetry case

If an elasticity tensor itself has the (exact) square sym-
metry, then d′ = 0 and H ̸= 0 (Verchery, 1982; Vianello,
1997; Vannucci, 2005), and C has no better reconstruc-
tion formula by means of its covariants than its harmonic
decomposition,

C = 2𝜇J+ 𝜅1⊗ 1+H.

3.2. Orthotropic case

When an elasticity tensor C is orthotropic, its second
order covariant d′ is an eigentensor of its harmonic part
H = H(C) (given by (2.1)), i.e.

H : d′ = Λd′, (3.2)

but where Λ = ±Λ+ is a non-vanishing eigenvalue. To
check this, just consider its Kelvin normal form

[C] =

⎡⎣ 𝐶1111 𝐶1122 0
𝐶1122 𝐶2222 0
0 0 2𝐶1212

⎤⎦ , (3.3)

which leads to

d′ = (tr12 C)′ =
𝐶1111 − 𝐶2222

2

(︂
1 0
0 −1

)︂
̸= 0,

and, using (2.1), we get

[H] = 𝐻1111

⎡⎣ 1 −1 0
−1 1 0
0 0 −2

⎤⎦ .
Contracting (3.2) with d′, altogether with the relations

H : 1 = 1 : H = 0, d′ : H : d′ = 𝐾3,

we obtain finally

Λ =
𝐾3

𝐼2
,

where the invariants 𝐼2 and 𝐾3 are defined by (2.3). This
means by (2.4) that

H =
2Λ

‖d′‖2
d′ * d′.

Hence, we have the following result.

Theorem 3.1. Any bi-dimensional orthotropic elasticity
tensor C = (𝜇, 𝜅,d′,H) ∈ 𝔼la(ℝ2) can be reconstructed by
means of its 4 invariants 𝜇, 𝜅, 𝐼2, 𝐾3, and of its (devia-
toric) second order covariant d′, as

C =2𝜇J+ 𝜅1⊗ 1+
1

2
(1⊗ d′ + d′ ⊗ 1) +H,

H =
2𝐾3

𝐼 2
2

d′ * d′,
(3.4)

where d′ * d′ = d′ ⊗ d′ − 1

2
(d′ : d′)J.

From theorem 3.1, one can derive an upper bound Δ for
the distance to orthotropy of a bi-dimensional elasticity
tensor as defined below.

Corollary 3.2. Let C = (𝜇, 𝜅,d′,H) ∈ 𝔼la(ℝ2) be a bi-
dimensional elasticity tensor with no material symmetry,
let 𝐼2 = ‖d′‖2, 𝐽2 = ‖H‖2 and 𝐾3 = d : H : d. Then, the
positive invariant

Δ=
⃦⃦⃦
𝐂−2𝜇𝐉−𝜅𝟏⊗𝟏− 1

2
(𝟏⊗ 𝐝′ +𝐝′⊗𝟏)− 2𝐾3

𝐼 2
2

𝐝′ * 𝐝′
⃦⃦⃦

=

√︀
𝐽2𝐼22 − 2𝐾2

3

𝐼2
.

is an upper bound of the distance of C to the orthotropic
symmetry class.

In corollary 3.2, the fact that C has no material sym-
metry implies that ‖d′‖2 = 𝐼2 ̸= 0. The first equality
corresponds to the norm of the difference between the elas-
ticity tensor and its orthotropic reconstruction formula (in
which necessarily d′ ̸= 0). The harmonic decomposition
formula (2.1) gives indeed

Δ =

⃦⃦⃦⃦
H− 2𝐾3

𝐼 2
2

d′ * d′
⃦⃦⃦⃦
.

The second equality in corollary 3.2 is obtained by ex-
panding the square norm, using (1.1) and the facts that
J :: J = 2 and H :: J = 0, see (Desmorat and Desmorat,
2015).

4. Discrete elements representative volumes

4.1. Beam-particle model

The discrete method used here to perform the virtual
testing of a quasi-brittle heterogeneous material is a beam-
particle approach detailed in (Vassaux et al., 2016) and
summarized in figure 1.

The representative volume is divided into an assembly
of rigid particles. The particle mesh is generated from a
Voronoi tesselation of a set of randomly generated points
within a grid. This operation generates polygonal parti-
cles.

Dual of the Voronoi tesselation, the Delaunay triangu-
lation associates a segment with each pair of neighbouring
particles. This segment is used as a geometric support for
an elastic Euler-Bernoulli beam modelling the cohesion of
the material. Each beam 𝑏 is parameterized by its length
𝑙𝑏, its section 𝐴𝑏, the Young modulus 𝐸 and the coefficient
of inertia 𝛼 = 64𝐼𝑏𝜋/𝐴

2
𝑏 . The first two coefficients 𝑙𝑏 and

𝐴𝑏 are different for each beam and imposed by the geom-
etry of the mesh. The next two, 𝐸 and 𝛼, are identical
for all the beams and identified in order to reproduce the
macroscopic elastic behaviour.

In order to reproduce the fracture behaviour, a failure
criterion 𝑃𝑝𝑞 is associated with each beam connecting two
particles 𝑝 and 𝑞:
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𝑃𝑝𝑞 =
𝜀𝑝𝑞
𝜀𝑐𝑟𝑝𝑞

+
|𝜃𝑝 − 𝜃𝑞|
𝜃𝑐𝑟𝑝𝑞

> 1 (4.1)

where the breaking threshold in extension 𝜀𝑐𝑟𝑝𝑞 and the
breaking threshold in rotation 𝜃𝑐𝑟𝑝𝑞 are generated for each
beam according to a Weibull distribution. The Weibull
probability density function adopted in this study is :

𝑓(𝑥) =
𝑘

𝜆

(︁𝑥
𝜆

)︁𝑘−1

𝑒−(𝑥/𝜆)𝑘 (4.2)

with the scale factor 𝜆 and the shape factor 𝑘. In fact,
the spatial variability for the two breaking thresholds 𝜀𝑐𝑟𝑝𝑞,
𝜃𝑐𝑟𝑝𝑞, is supposed to be identical. Therefore, three parame-
ters control the fracture behaviour: a shape factor 𝑘 (com-
mon to both distributions), a scale factor in extension 𝜆𝜖𝑐𝑟
and a scale factor in rotation 𝜆𝜃𝑐𝑟. The combination of
this failure criterion and of a random generation of fail-
ure thresholds makes it possible to model a quasi-brittle
behaviour in tension and compression (as proposed and
shown in Vassaux et al. (2016)). These three failure pa-
rameters are identified in such a way as to reproduce the
non-linear behaviour of the material.

Finally, in order to be able to capture the mechanisms
of crack closure and of crack sliding, frictional contact is
introduced between the particles if they overlap while they
are not connected by a beam. The detection of the soft
contact between two polygonal particles, the calculation
of the normal contact force as well as that of tangential
contact via Coulomb’s law of friction follows the proposal
of Tillemans and Herrmann (1995). A rewriting is however
proposed in order to use relative displacements rather than
relative velocities (Vassaux et al., 2015b) (figure 1e), the
former being more suitable in the quasi-static framework
in which we place ourselves. To parametrize the friction,
an angle of friction 𝜑 is introduced resulting in a coefficient
of friction tan𝜑 for Coulomb’s law.
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q

q

nc

tc

Sr

uq
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tpq

a)

b)

c)

d)

e)
p

Figure 1: Description of the main ingredients in the beam-particle
model (from Oliver-Leblond (2019)).

4.2. Failure analysis of quasi-brittle materials

The model presented previously is part of a family of
discrete models allowing for the modelling of the fracture
behaviour of brittle and quasi-brittle materials through
a combination of particle and lattice approaches. These
models are nowadays recognized for their ability to ex-
plicitly represent the formation of multiple cracks under
various complex loadings and their impact on the over-
all non-linear behaviour. These approaches have been
validated for many materials: concrete (Schlangen and
Van Mier, 1992; D’Addetta et al., 2002; Cusatis et al.,
2003; Nitka and Tejchman, 2015), ceramics (Huang et al.,
2014; Ghasemi and Falahatgar, 2020), cemented sands
(Obermayr et al., 2013), glass (André et al., 2013), ice
(Riikilä et al., 2015; Ji et al., 2017; Lilja et al., 2019),
rocks (Potyondy and Cundall, 2004; Ergenzinger et al.,
2011)... They thus seem adequate to serve as reference
to formulate and cross-identify a macroscopic non-linear
model based here on continuum damage mechanics.

The discrete model used next as a virtual testing tool
was initially developed to cover many cases of cement-
based material failure, in two as well as in three dimen-
sions, both for quasi-static and dynamic cases (Delaplace,
2008). In its current version, the beam-particle model pre-
sented above has been validated, by comparison with ex-
periments, on numerous quasi-static test cases in two di-
mensions. In addition to standard tension and compres-
sion tests, it reproduces the bending behaviour (including
scale and shape effects) as well as shear tests (Vassaux
et al., 2016). It has also been benchmarked against the
mixed-mode fracture tests of the Carpiuc et al. (2018)
benchmark, which are of particular interest due to the
advanced use of digital image correlation to apply accu-
rate boundary conditions and to experimentally monitor
the evolution of cracking. It has been observed that the
discrete model used here is capable of reproducing com-
plex cracking patterns exhibiting initiation, propagation,
reorientation, branching and coalescence (Oliver-Leblond,
2019).

4.3. Extraction of the effective elasticity tensor

The definition of homogenized quantities on the dis-
crete volume, such as stress and strain, is necessary to
link the discrete description, providing detailed informa-
tion on particle movements and interaction forces, to the
continuous description.

The average Cauchy stress tensor is computed from the
symmetrization of the definition proposed by Bagi (1996):

𝜎𝜎𝜎 =
1

𝑆

𝑁∑︁
𝑝=1

f (𝑝) ⊙ x(𝑝) (4.3)

where 𝑆 is the area of the discrete representative volume
(the so-called Representative Volume Element or RVE in
3D, the Representative Area Element or RAE in 2D), f (𝑝)

is the resulting force on the particle 𝑝 and x(𝑝) is the vector
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position of the center of the particle 𝑝. The summation is
made on the 𝑁 particles constituting the boundary of the
RAE.

The macroscopic strain tensor is defined as the following
mean value:

𝜖𝜖𝜖 =
1

𝑆

𝑁∑︁
𝑝=1

(︂
u(𝑝) + u(𝑝+1)

2
⊙𝑛𝑛𝑛(𝑝,𝑝+1)

)︂
𝑙(𝑝,𝑝+1) (4.4)

where u(𝑝) is the displacement vector of the particle 𝑝,
𝑙(𝑝,𝑝+1) is the length of the segment linking the particles 𝑝
and 𝑝+1 and 𝑛𝑛𝑛(𝑝,𝑝+1) the outward pointing normal vector
of this same segment.

In order to obtain the effective elasticity tensor, three
measurement loadings are performed and the correspond-
ing average stress and strain vectors are extracted. For
each loading 𝑖, the effective elasticity tensor links the stress
to the strain in the following way:

�̂�(𝑖) = [C] 𝜖(𝑖) (4.5)

where [C] is Kelvin matrix representation of macroscopic
elasticity tensor C and

�̂�(𝑖) =

⎛⎜⎝ 𝜎
(𝑖)
11

𝜎
(𝑖)
22√
2𝜎

(𝑖)
12

⎞⎟⎠ , 𝜖(𝑖) =

⎛⎜⎝ 𝜖
(𝑖)
11

𝜖
(𝑖)
22√
2𝜖

(𝑖)
12

⎞⎟⎠ .

Therefore, if the measurement loadings are chosen to
ensure that the strain vectors are linearly independent,
their determinant is non-zero and the symmetric effective
elasticity tensor can be computed from

[C] =

(︂(︁
�̂�(1) �̂�(2) �̂�(3)

)︁(︁
𝜖(1) 𝜖(2) 𝜖(3)

)︁−1
)︂𝑠

. (4.6)

4.4. Definition of possible measurement loadings

Two requirements must be met to define the measure-
ment loadings: ensuring the linear independence of the
strain vectors and maintaining the cracks open during
measurement. Several sets of measurement loadings are
used and compared:

• DEF WoC : Elementary strain loading without con-
tact

𝜖(1) =

⎛⎝𝜖0
0

⎞⎠ , 𝜖(2) =

⎛⎝0
𝜖
0

⎞⎠ , 𝜖(3) =

⎛⎝ 0
0√
2𝜖

⎞⎠ ,

where 𝜖 is the applied strain that must be sufficiently
small for the (possibly cracked) RAE to remain in the
elasticity domain. The following displacement fields
are thus applied on the boundaries of the specimen:

u(1) =

(︂
𝜖𝑥
0

)︂
, u(2) =

(︂
0
𝜖𝑦

)︂
, u(3) =

(︂
𝜖𝑦
𝜖𝑥

)︂
,

with 𝑥 and 𝑦 the positions of the center of the particles
on the boundaries.

• DEF BT C : Bi-tension strain loading with contact

𝜖(1) =

⎛⎝𝜖𝑏𝑡 + 𝜖
𝜖𝑏𝑡
0

⎞⎠ , 𝜖(2) =

⎛⎝ 𝜖𝑏𝑡
𝜖𝑏𝑡 + 𝜖

0

⎞⎠ , 𝜖(3) =

⎛⎝ 𝜖𝑏𝑡
𝜖𝑏𝑡√
2𝜖

⎞⎠ ,

where 𝜖𝑏𝑡 is introduced to create a bi-tension loading
keeping the cracks open. The following displacement
fields are thus applied on the boundaries of the spec-
imen:

u(1) =

(︂
(𝜖𝑏𝑡 + 𝜖)𝑥
𝜖𝑏𝑡𝑦

)︂
, u(2) =

(︂
𝜖𝑏𝑡𝑥

(𝜖𝑏𝑡 + 𝜖)𝑦

)︂
, u(3) =

(︂
𝜖𝑏𝑡𝑥+ 𝜖𝑦
𝜖𝑥+ 𝜖𝑏𝑡𝑦

)︂
,

• SIG F WoC : Elementary stress loading with applied
forces without contact

�̂�(1) =

⎛⎝𝜎0
0

⎞⎠ , �̂�(2) =

⎛⎝0
𝜎
0

⎞⎠ , �̂�(3) =

⎛⎝ 0
0√
2𝜎

⎞⎠ ,

where 𝜎 is the applied stress that must be sufficiently
small to remain in the elasticity domain. The trac-
tion vectors t = 𝜎𝜎𝜎n are then applied on the bound-
aries (n: outer unit normal) and the central particle
is completely blocked to avoid rigid motions:

t
(1)
𝑥𝑚𝑖𝑛 =

(︂
−𝜎
0

)︂
, t(1)𝑥𝑚𝑎𝑥 =

(︂
𝜎
0

)︂
,

t
(2)
𝑦𝑚𝑖𝑛 =

(︂
0
−𝜎

)︂
, t(2)𝑦𝑚𝑎𝑥 =

(︂
0
𝜎

)︂
,

t
(3)
𝑥𝑚𝑖𝑛 =

(︂
0
−𝜎

)︂
, t(3)𝑥𝑚𝑎𝑥 =

(︂
0
𝜎

)︂
, t

(3)
𝑦𝑚𝑖𝑛 =

(︂
−𝜎
0

)︂
, t(3)𝑦𝑚𝑎𝑥 =

(︂
𝜎
0

)︂
.

• SIG D WoC : Elementary stress loading with applied
displacements without contact.

The objective is to obtain the three stress states of
the previous measurement loading by applying only
kinematic conditions.

u
(1)
𝑥𝑚𝑖𝑛 · 𝑒𝑒𝑒𝑥 = 0, u(1)

𝑥𝑚𝑎𝑥 · 𝑒𝑒𝑒𝑥 = 𝑢, u
(1)
𝑦𝑚𝑖𝑛 · 𝑒𝑒𝑒𝑦 = 0,

u
(2)
𝑦𝑚𝑖𝑛 · 𝑒𝑒𝑒𝑦 = 0, u(2)

𝑦𝑚𝑎𝑥 · 𝑒𝑒𝑒𝑦 = 𝑢, u
(2)
𝑥𝑚𝑖𝑛 · 𝑒𝑒𝑒𝑥 = 0,

u
(3)
𝑥𝑚𝑖𝑛 · 𝑒𝑒𝑒𝑦 = 0, u(3)

𝑥𝑚𝑎𝑥 · 𝑒𝑒𝑒𝑦 =
√
2𝑢, u

(3)
𝑦𝑚𝑖𝑛 · 𝑒𝑒𝑒𝑥 = 0, u(3)

𝑦𝑚𝑎𝑥 · 𝑒𝑒𝑒𝑥 =
√
2𝑢.

where u is the applied displacement that must be suf-
ficiently small for the RAE to remain in the elasticity
domain.
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Crack patterns DEF WoC DEF BT C SIG F WoC SIG D WoC

Initial state
No damage [︂

38.3 8.1 0.1
8.1 38.4 −0.3
0.1 −0.3 29.2

]︂ [︂
38.4 8.0 −0.3
8.0 38.6 −0.1
−0.3 −0.1 29.4

]︂ [︂
38.0 8.1 0.1
8.1 38.6 0.0
0.1 0.0 29.4

]︂ [︂
38.3 8.1 0.1
8.1 38.4 −0.1
0.1 −0.1 29.2

]︂

Localized cracking
Low level of damage [︂

38.1 7.4 0.0
7.4 34.6 −0.4
0.0 −0.4 28.6

]︂ [︂
38.2 7.3 −0.3
7.3 34.7 −0.4
−0.3 −0.4 28.6

]︂ [︂
37.7 7.4 0.0
7.4 34.4 −0.3
0.0 −0.3 28.6

]︂ [︂
38.0 7.3 0.0
7.3 34.1 −0.4
0.0 −0.4 28.2

]︂

Localized cracking
Mid level of damage [︂

37.6 5.6 0.4
5.6 25.6 1.1
0.4 1.1 27.2

]︂ [︂
37.7 5.5 0.0
5.5 25.8 1.3
0.0 1.3 27.2

]︂ [︂
37.2 5.0 0.4
5.0 23.0 1.6
0.4 1.6 26.6

]︂ [︂
37.5 5.0 0.4
5.0 22.7 1.6
0.4 1.6 26.4

]︂

Localized cracking
High level of damage [︂

37.2 3.7 −0.3
3.7 17.0 −1.6
−0.3 −1.6 24.0

]︂ [︂
37.3 3.6 −0.7
3.6 17.1 −1.4
−0.7 −1.4 24.2

]︂ [︂
36.6 2.6 −0.7
2.6 12.0 −2.1
−0.7 −2.1 21.4

]︂ [︂
36.9 2.5 −0.4
2.5 11.9 −2.1
−0.4 −2.1 21.4

]︂

Diffused cracking
Low level of damage [︂

38.2 8.0 0.1
8.0 34.4 −0.3
0.1 −0.3 28.4

]︂ [︂
38.3 7.9 −0.3
7.9 34.5 −0.1
−0.3 −0.1 28.6

]︂ [︂
37.8 8.0 0.1
8.0 34.2 0.0
0.1 0.0 28.4

]︂ [︂
38.1 8.0 0.1
8.0 34.1 −0.3
0.1 −0.3 28.2

]︂

Diffused cracking
Mid level of damage [︂

37.7 7.4 0.1
7.4 23.5 −0.3
0.1 −0.3 24.6

]︂ [︂
37.8 7.3 −0.3
7.3 23.6 −0.1
−0.3 −0.1 24.8

]︂ [︂
37.2 7.3 0.1
7.3 23.0 −0.1
0.1 −0.1 24.6

]︂ [︂
37.6 7.3 0.1
7.3 23.0 −0.1
0.1 −0.1 24.4

]︂

Diffused cracking
High level of damage [︂

36.2 6.3 0.1
6.3 12.5 0.1
0.1 0.1 18.6

]︂
not converged

[︂
35.6 5.8 0.1
5.8 11.7 0.1
0.1 0.1 18.2

]︂ [︂
36.2 6.1 0.3
6.1 12.0 0.1
0.3 0.1 18.2

]︂

Table 1: Comparison of the measurement loadings used to extract the effective elasticity tensor [𝐂] (in GPa, Kelvin representation).
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4.5. Comparison of the different measurement loadings

We first compare the four measurement loadings de-
scribed previously on an uncracked square specimen of
100 × 100 particles (see first line of table 1). We observe
that they give very close results. The dispersion can be
attributed to the measurement noise. This result was ex-
pected because there are enough particles in the specimen
to make it a Representative Area Element. Thus, the type
of boundary conditions does not influence the result, as in
an infinite medium.

Measurements of the effective elasticity tensors of
cracked specimens are a more important feature of the
present study. For this purpose, two cracking tests are
carried out: a localized cracking test and a diffuse crack-
ing test. In both cases, the orientation of the loads is
such that the micro-cracks are globally perpendicular to
the 𝑦 direction. For each type of cracking, we extract the
crack patterns and the associated effective elasticity ten-
sors for three levels of damage 𝐷 (computed as a relative
loss of stiffness in the 𝑦 direction, Lemaitre and Chaboche
(1985)): a low level of damage (𝐷 ≈ 0.1), a mid level of
damage (𝐷 ≈ 0.4) and a high level of damage (𝐷 ≈ 0.7) as
presented in table 1. The goal here is then to compare the
four measurement loadings in order to select one of them
for the rest of the study.

Regardless of the type or amount of cracking, the two
strain loads (DEF WoC and DEF BT C) give similar re-
sults. This is expected and confirms that it is sufficient to
deactivate the contact within the discrete model in order
to obtain a measurement loading equivalent to a loading
keeping the cracks open. Since the strain loading with
additional bi-tension (DEF BT C) can cause convergence
problems, it is important to be able to validate this equiva-
lence with the elementary strain loading where the contact
is deactivated (DEF WoC).

In the same way, we can observe that the two elementary
stress loadings (SIG F WoC and SIG D WoC) give iden-
tical results, up to the measurement noise, whether forces
or displacements are applied on the boundaries. Although
this was not the case here, stress loading with applied
forces may prove to be less robust because the blocking
of the central particle, to prevent rigid body movements,
can lead to convergence problems if this particle is in an
area of significant cracking.

Finally, strain and stress loadings give identical results
in the case of diffuse cracking even for a significant level
of damage. On the other hand, the results diverge for the
case of localized cracking (see figure 2). Indeed, if we pur-
sue the simulation until the complete failure of the speci-
men in the localized case, we notice that the 𝐶2222 modulus
approaches 0 for the measurement loading in stress, which
is not the case for the measurement loading in strain. Here,
we encounter a limitation in the use of damage models for
quasi-brittle materials such as concrete. Indeed, the dam-
age is intended to represent diffuse cracking and is thus
not appropriate for cases of localized cracking. However,
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Figure 2: Evolution of the components of the effective elasticity
tensor for the localized cracking test according to the elementary
strain loading measurement (DEF WoC in dashed lines) and the
elementary stress loading measurement with applied displacements
(SIG D WoC in plain lines)

damage models are commonly used up to high levels of
degradation, where the cracks are almost necessarily lo-
calized in a quasi-brittle material. In order to correctly
represent the loss of stiffness due to this localized cracking
while keeping the simplicity of a kinematic loading, we de-
cide to choose thereafter the elementary stress loading with
applied displacements without contact (SIG D WoC).

5. Deviation from isotropy of the initial tensor

5.1. Geometrical isotropy

The isotropy of discrete media is generally studied from
a geometric point of view (André et al., 2012). Indeed,
the geometrical isotropy of the mesh is considered as a
good criterion to approach the mechanical isotropy of the
material if the elasticity parameters are homogeneous over
the domain. This geometric isotropy can be visualized
simply by plotting the polar histogram associated with the
orientation of the beams. The figure 3 presents those polar
histograms for three meshes of different densities. One
can see that the polar histogram tends towards a circle
as the density increases, which shows geometrical isotropy
convergence.

5.2. Mechanical isotropy

Through the harmonic decomposition of the elasticity
tensors of each material samples, it is possible to quantify
their deviation from isotropy. The evaluation of the rela-
tive distance of the elasticity tensors to the isotropic class
thus provides a criterion for quantifying the validity of the
mechanical isotropy hypothesis.

Figure 4 presents the evolution with the mesh size of the
relative distance to isotropy Δ𝑖𝑠𝑜 defined as :

Δ𝑖𝑠𝑜 =
‖C−C𝑖𝑠𝑜‖

‖C‖
(5.1)
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[C] =

⎡⎣43.13 8.42 −0.81
8.42 42.65 0.48
−0.81 0.48 30.62

⎤⎦

[C𝑖𝑠𝑜] =

⎡⎣41.92 9.39 0.00
9.39 41.92 0.00
0.00 0.00 32.54

⎤⎦
𝜅 = 25.65 GPa, 𝜇 = 16.27 Gpa
𝐸 = 38.82 GPa, 𝜈 = 0.22

(a) 10 × 10

[C] =

⎡⎣38.72 7.90 −0.24
7.90 38.44 −0.10
−0.24 −0.10 29.00

⎤⎦

[C𝑖𝑠𝑜] =

⎡⎣38.16 8.32 0.00
8.32 38.16 0.00
0.00 0.00 29.84

⎤⎦
𝜅 = 23.24 GPa, 𝜇 = 14.92 Gpa
𝐸 = 36.35 GPa, 𝜈 = 0.22

(b) 100 × 100

[C] =

⎡⎣38.06 8.09 0.00
8.09 38.07 −0.03
0.00 −0.03 29.00

⎤⎦

[C𝑖𝑠𝑜] =

⎡⎣37.82 8.34 0.00
8.34 37.82 0.00
0.00 0.00 29.48

⎤⎦
𝜅 = 23.08 GPa, 𝜇 = 14.74 Gpa
𝐸 = 35.98 GPa, 𝜈 = 0.22

(c) 300 × 300

Figure 3: Polar histograms of the beams orientation for different mesh densities, elasticity tensors and associated isotropic tensors (in GPa,
Kelvin representation).
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Figure 4: Evolution of the relative distance to isotropy (5.1) with
the mesh density.

with C𝑖𝑠𝑜 = 2𝜇J + 𝜅1 ⊗ 1 the isotropic projection of C.
The elasticity parameters 𝜇 and 𝜅 are determined by Eq.
(2.2).

For each mesh density, several simulations have been
performed (from 200 simulations for the 10× 10 particles
mesh to 50 simulations for a 300×300 particles mesh). As
expected, the assumption of an initial isotropic medium
is correct if the number of particles is sufficient. In Fig-
ure 3, the elasticity tensors obtained for three simulations
are given along with the associated isotropic tensors and
elasticity coefficients.

Given the above results, it seems safe to adopt a mesh
density of 100 × 100 particles to ensure the mechanical
isotropy of the initial, uncracked, state.

6. Multiaxial analyses of effective elasticity tensors
up to high level of damage

In this part, a 20cm×20cm specimen representative of
mortar is subjected to various loads. As mentioned before,
the simulation is done with 100× 100 particles, which re-
sults in an average beam size 𝑙𝑏 of 2 mm.

The parameters of the discrete model, given in the ta-
ble 2, are chosen so as to reproduce macroscopically the
behaviour of a mortar of Young’s modulus 𝐸 = 36.35 GPa
and Poisson ratio 𝜈 = 0.22 (corresponding to 𝜅 = 23.24
GPa and 𝜇 = 14.92 GPa), of tensile strength 𝑓𝑡 = 3 MPa
and of compressive strength 𝑓𝑐 = 40 Mpa.
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Symbol Values Unit

𝑙𝑏 2 mm

𝐸𝑏 46 GPa

𝛼 0.83 -

𝜆𝜖𝑐𝑟 2.4 10−4 -

𝜆𝜃𝑐𝑟 3.3 10−3 -

𝑘 2.8 -

tan𝜑 0.7 -

Table 2: Numerical parameters for the beam-particle model.

6.1. Studied loadings

The loadings are chosen so as to obtain different cracking
paths:

• Tension along the 𝑦-axis (see figure 5);

• Compression along the 𝑦-axis with unrestrained
boundary conditions along the 𝑥-axis (see figure 6);

• Bi-tension along the 𝑥-axis and 𝑦-axis (see figure 7);

• Simple shear (see figure 8);

• Willam loading (Willam et al., 1989) consisting on a
simple tension along the 𝑦-axis pursued up to the ten-
sile stress followed by a combination of bi-tension and
shear with an increase of the strain components 𝜖𝑥𝑥,
𝜖𝑦𝑦 and 𝜖𝑥𝑦 in the proportions 1.5/1.0/0.5 (see fig-
ure 9). This numerical test was proposed to induce a
rotation of the principal stress/strain directions lead-
ing to a misalignment with the material axes of or-
thotropy associated with the initial crack direction.

For each of them, we first observe a development of dif-
fuse micro-cracks and then a localization of these micro-
cracks leading to the propagation of the macro-crack.

In order to follow the breakage of the specimen, the evo-
lution of the ratio of broken beams is plotted in compari-
son with the macroscopic response. This ratio is initially
worth 0, when the specimen is intact, and reaches 1 at the
end of loading when the specimen can no longer sustain
any effort. The total number of broken beams is usually
far from the number of beams in the specimen.

We can notice snap-back phenomena in the evolution
curves of the ratio of broken beams. These snap-backs
are related to avalanche breakage phenomena (Rinaldi and
Lai, 2007), classical for lattice simulations of quasi-brittle
materials, and are visible in the complete macroscopic re-
sponses (see figure 5). These macroscopic responses are
smoothed on the figures 5 to 9 to get closer to the type
of data observed experimentally. However, the extraction
of the effective elasticity tensors is not impacted by this
post-treatment of the curves.

These loadings allow us to quantify the impact on the
effective (damaged) elasticity tensor of the presence of

micro-cracks in different directions, which may nucleate
or rotate.

6.2. Orthotropy of the effective stiffness tensors

For the previously defined loadings, the stiffness and
compliance tensors were extracted at different ratio of bro-
ken beams. The evolution of Δ, which is an upper bound
of the distance to the orthotropic class for an elasticity ten-
sor as defined in corollary 3.2, is plotted in the figures 10
and 11. It should be noted that it is not always possi-
ble to extract the elasticity tensors for very high levels of
damage.

Even at high levels of damage, the elasticity tensors re-
main close to the orthotropic symmetry class. This is even
truer in the case of the compliance tensors. It is inter-
esting to note that in the case of Willam loading, which
results in a non-orthotropic cracking pattern, the devia-
tions from orthotropy remain small. The largest deviation
observed corresponds to the case of the stiffness tensor for
bi-tension loading. This may be related to the coalescence
of the main two orthogonal cracks.

One should note that the orthotropy of the effective elas-
ticity tensor C̃ = S̃−1 is a sufficient condition to define an
orthotropic damage tensor (see next), since the initial elas-
ticity tensor C = S−1 is isotropic.

6.3. Comparison with micromechanics of cracked solids

In the bi-dimensional micromechanical approach sum-
marized by Kachanov (1992), the material is considered
to be initially isotropic with an initial (undamaged) com-
pliance tensor,

S =
1

2𝜇
J+

1

4𝜅
1⊗ 1. (6.1)

Damage is introduced using several networks of cracks
with no interactions between each other. A family of
cracks 𝑝 is characterized by its orientation 𝑛𝑛𝑛(𝑝), which is
the normal to all the cracks in this family, a length 2𝑙(𝑝)

and a density of micro-cracks 𝜔(𝑝) = 𝜋𝑙(𝑝)/𝐴 with 𝐴 the
area of the RAE.

A crack density tensor is then introduced for the network
of all the families of cracks:

𝜔𝜔𝜔 =
∑︁
𝑝

𝜔(𝑝)𝑛𝑛𝑛(𝑝) ⊗𝑛𝑛𝑛(𝑝) (6.2)

Gibbs free enthalpy density of the cracked solid writes,
in case of open cracks (Kachanov, 1992):

𝜌𝜓⋆ =
1

2
𝜎𝜎𝜎 : S̃ : 𝜎𝜎𝜎

=
1

2
𝜎𝜎𝜎 : S : 𝜎𝜎𝜎 +

1

𝐸
tr (𝜎𝜎𝜎 ·𝜔𝜔𝜔 · 𝜎𝜎𝜎)

=
1

2
𝜎𝜎𝜎 : S : 𝜎𝜎𝜎 +

1

2𝐸
𝜎𝜎𝜎 : (1 ⊗ 𝜔𝜔𝜔 +𝜔𝜔𝜔 ⊗ 1) : 𝜎𝜎𝜎

(6.3)

with S the initial (isotropic) compliance tensor (𝐸 being
the Young modulus of the isotropic uncracked solid) and
where S̃ is the effective compliance tensor.
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Figure 5: Tensile loading: final crack pattern, macroscopic responses (complete and smoothed) and evolution of the ratio of broken beams
(dashed line).
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Figure 6: Compressive loading: final crack pattern, macroscopic response and evolution of the ratio of broken beams (dashed line).
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Figure 7: Bi-Tensile loading: final crack pattern, macroscopic response and evolution of the ratio of broken beams (dashed line).
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Figure 8: Simple shear loading: final crack pattern, macroscopic response and evolution of the ratio of broken beams (dashed line).
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Figure 9: Willam loading: final crack pattern, macroscopic response and evolution of the ratio of broken beams (dashed line).
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Figure 10: Upper-bound of distance to orthotropy for the effective
stiffness tensors
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Figure 11: Upper-bound of distance to orthotropy for the effective
compliance tensors

We recall here the harmonic decomposition of the com-
pliance tensor (see remark 2.1):

S̃ = S̃𝑖𝑠𝑜 +
1

2

(︁
1⊗ d′(S̃) + d′(S̃)⊗ 1

)︁
+H(S̃)

= S̃𝑖𝑠𝑜 +
1

2

(︁
1 ⊗ d′(S̃) + d′(S̃) ⊗ 1

)︁
+H(S̃)

(6.4)

with d(S̃) = tr12 S̃ (in the same way v(S̃) = tr13 S̃) and
where (see Eq. (2.2))

S̃𝑖𝑠𝑜 =
1

2�̃�
J+

1

4�̃�
1⊗ 1,

{︃
1
2�̃� = 1

4 (2 trv(S̃)− trd(S̃)),
1
4�̃� = 1

4 trd(S̃).

By comparing equations (6.3) and (6.4), it can be con-
cluded that in the case of Kachanov micro-cracking the-
ory (representing networks of non interacting open micro-
cracks), one has S̃𝑖𝑠𝑜 = S + 1

2𝐸 tr𝜔𝜔𝜔 1 ⊗ 1 (with 1 ⊗ 1 =
I = J+ 1

21⊗ 1), d′(S) = 2𝜔𝜔𝜔′/𝐸 and the harmonic part of

the compliance tensor H(S̃) vanishes.

In order to test the validity of the property H(S̃) = 0,
eventually when cracks interaction takes place, we plot in
figures 12 to 16 the evolution of the three parts of the effec-
tive compliance tensor S̃ (computed thanks to the beam-
particle method):

• the isotropic part S̃𝑖𝑠𝑜,

• the deviatoric dilatation part 1
2 (1⊗d′(S̃)+d′(S̃)⊗1),

• and the harmonic part H(S̃),

according to the ratio of broken beams. One should re-
member that the deviatoric dilatation part is always or-
thotropic while the harmonic part can have the square
symmetry or be zero.

With these curves, we can distinguish four stages of
cracking:

𝑖) Initially, the medium is non-cracked and therefore
isotropic, which implies that the parts related to d′

and H are null.
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Figure 12: Tensile loading: Evolution of the relative parts of the
effective compliance tensor with the ratio of broken beams.
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Figure 13: Compressive loading: Evolution of the relative parts of
the effective compliance tensor with the ratio of broken beams.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Isotropic part
Deviatoric dilation part
Harmonic part

Figure 14: Bi-Tensile loading: Evolution of the relative parts of the
effective compliance tensor with the ratio of broken beams.
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Figure 15: Simple shear loading: Evolution of the relative parts of
the effective compliance tensor with the ratio of broken beams.
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Figure 16: Willam loading: Evolution of the relative parts of the
effective compliance tensor with the ratio of broken beams.
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𝑖𝑖) At the beginning of loading, only the weakest beams
break without influence of the loading direction. The
orientation of the cracks therefore remains isotropic
and here again the parts linked to d′ and H are zero.

𝑖𝑖𝑖) After a certain level, the beams failure will be related
to the direction of loading and the microcracks begin
to orient themselves while remaining diffuse. The loss
of isotropy implies that the d′-related part becomes
non-zero. On the other hand, the harmonic part re-
mains null. This is a case of crack-induced orthotropy.

𝑖𝑣) Eventually, the cracks will start to interact or coa-
lesce and the harmonic part becomes non-zero. So
we deviate from the framework of Kachanov’s theory.
Depending on the symmetry class of the harmonic
tensor, it can be induced orthotropy or no-symmetry
induced anisotropy.

Those stages can be observed on the computed cracking
patterns of figures 17 to 21.

We note that the results are very dependent on the load-
ing studied. However, we can draw a general conclusion
from the curves presented above: the effective compliance
tensor is close to remain orthotropic even at very high
levels of cracking. Indeed, the harmonic part of the effec-
tive compliance tensor remains negligible in most loading
cases. This last observation is consistent with Kachanov
dilute (non interacting) micro-cracking theory, for which
the harmonic part of the compliance tensor remains zero
for any network of diffuse and open micro-cracks. Fur-
thermore, it is most often satisfied here even in cases of
localizing and interacting cracks.

When this harmonic part is not negligible, as in the cases
of compression (see figure 13) or shear (see figure 15), the
effective compliance tensor does not necessarily becomes
anisotropic without symmetry. Indeed, as it is observed
in figure 11, S̃ remains close to belong to the orthotropic
symmetry class (Δ < 15%), and this up to quite high
values of damage.

7. Extraction of damage tensors

A natural definition of the damage variable from the
effective elasticity tensor leads to a fourth-order tensor
(Chaboche, 1979; Leckie and Onat, 1980). However, the
use of a symmetric second-order tensor is common due to
the simplicity of its interpretation (Cordebois and Sidoroff,
1982; Murakami, 1988).

The definition of a second-order damage variable is jus-
tified here since we have checked that the elasticity tensors,
and thus the fourth-order damage tensors, remain close to
the orthotropic symmetric class – the symmetry class of
a generic second-order tensor– even at high levels of dam-
age. Nonetheless, the definition of such a damage variable
is not straightforward. After choosing between a definition
based on the compliance tensor or the stiffness tensor, one

must select the degradations rendered by this damage vari-
able, which can be related either to the bulk modulus, to
the shear modulus or possibly to a combination of both.

To validate the definition of a symmetric second-order
tensor as damage variable, it must be checked that it is
positive definite, that its eigenvalue are bounded by one
and that its time derivative is positive definite, the later
property being related to the second principle of thermo-
dynamics (Desmorat, 2006). One should note that those
properties are verified by the fourth-order tensor per def-
inition. This is on the other hand the modelling choices
that will ensure, or not, those properties for the second-
order tensor.

7.1. From compliance tensor

Following M. Kachanov, a natural definition for an
anisotropic damage variable is related to the compliance
tensor. More precisely, we propose here to define it from
the difference between the invert of the effective bulk mod-
ulus, very sensitivitive to damage, and the invert of the
initial bulk modulus,

1

�̃�
− 1

𝜅
= trd(S̃− S) = tr tr12

(︁
S̃− S

)︁
.

We first define a dimensionless symmetric second-order
tensor,

ΩΩΩ := 𝜅
(︁
d(S̃)− d(S)

)︁
= 𝜅 tr12

(︁
S̃− S

)︁
,

whose trace is 𝜅/�̃�− 1 ≥ 0, and of eigenvalues expected to
be positive but unbounded (0 ≤ Ω𝑖 <∞). A dimensionless
symmetric second-order damage variable is obtained as

̂︀D := ΩΩΩ (1+ΩΩΩ)
−1

= (1+ΩΩΩ)
−1

ΩΩΩ.

One should note that the eigenvalues of ̂︀D remain positive
and bounded by 1 provided those of ΩΩΩ are positive.
The figures 22 to 26 show the evolutions of the com-

ponents of the damage tensor ̂︀D with the ratio of broken
beams for the studied loadings. One can see that the val-
ues of the components of ̂︀D are not bounded by 0 and
1. In view of the values obtained, this is in a non sur-
prising manner also the case for the eigenvalues. There-
fore, this definition based solely on the invert of the initial
bulk modulus is is not compatible with a thermodynamics
framework. Indeed, it does not ensure the positivity of ΩΩΩ.
The most problematic cases are the compressive loading
(Fig. 23) and the simple shear loading (Fig. 25), for which
the evolution of the shear modulus might certainly not be
easily linked to the evolution of the bulk modulus. A so-
lution would be to introduce this shear modulus in the
definition of the damage variable itself. However, this so-
lution would be difficult to implement because one would
need to introduce some parameters to combine both the
bulk modulus part and the shear modulus part, parame-
ters that will have to be identified later.
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(a) 60 % (b) 70 % (c) 80 % (d) 90 % (e) 100 %

Figure 17: Tensile loading: evolution of the crack pattern with the ratio of broken beams.

(a) 20 % (b) 40 % (c) 60 % (d) 80 %

Figure 18: Compressive loading: evolution of the crack pattern with the ratio of broken beams.

(a) 45 % (b) 55 % (c) 65 % (d) 75 % (e) 85 %

Figure 19: Bi-Tensile loading: evolution of the crack pattern with the ratio of broken beams.

(a) 20 % (b) 40 % (c) 60 % (d) 80 %

Figure 20: Simple shear loading: evolution of the crack pattern with the ratio of broken beams.

(a) 10 % (b) 30 % (c) 50 % (d) 70 %

Figure 21: Willam loading: evolution of the crack pattern with the ratio of broken beams.
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Figure 22: Tensile loading: Evolution of the components of the dam-
age tensor ̂︀𝐃 with the ratio of broken beams.
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Figure 23: Compressive loading: Evolution of the components of the
damage tensor ̂︀𝐃 with the ratio of broken beams.
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Figure 24: Bi-Tensile loading: Evolution of the components of the
damage tensor ̂︀𝐃 with the ratio of broken beams.
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Figure 25: Simple shear loading: Evolution of the components of the
damage tensor ̂︀𝐃 with the ratio of broken beams.
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Figure 26: Willam loading: Evolution of the components of the dam-
age tensor ̂︀𝐃 with the ratio of broken beams.
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7.2. From stiffness tensor

A second – alternative and, one will see, preferred –
anisotropic damage variable can be defined as related to
the effective bulk modulus instead of its inverse, more pre-
cisely as related to the difference

𝜅− �̃� =
1

4
trd(C− C̃) =

1

4
tr tr12

(︁
C− C̃

)︁
We propose to define the damage variable as the dimen-
sionless symmetric second order tensor:

D := d(C)−1
(︁
d(C)− d(C̃)

)︁
=

(︁
d(C)− d(C̃)

)︁
d(C)−1

as d(C) = tr12 C = 2𝜅1 is spherical due to initial isotropy,
so that the previous commutativity property holds, with

D =
1

2𝜅

(︁
d(C)− d(C̃)

)︁
=

1

2𝜅
tr12

(︁
C− C̃

)︁
(7.1)

One must check that the damage tensor D thus defined
has positive eigenvalues bounded by 1 (0 ≤ 𝐷𝑖 ≤ 1). The
figures 27 to 31 show the evolutions of the components of
the damage tensor D with the ratio of broken beams for
the studied loadings.
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Figure 27: Tensile loading: Evolution of the components of the dam-
age tensor 𝐃 with the ratio of broken beams.

We can observe that, this time, the components of the
second-order tensorial damage variable remain postive and
bounded by 1. In most cases, a maximum damage close
to 1 is reached on at least one of the tensor components
before the end of the loading. This may explain why it is
no longer possible to extract the effective elasticity tensors
even though the ratio of broken beams has not yet reached
1.

In pure proportional loading we expect a strict increase
in the components of the tensor damage variable. This
is not always the case. Indeed, in the case of bi-tension
(Fig. 29) and simple shear (Fig. 30), the slight decreases
of the shear component 𝐷12 is mainly related to local non
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Figure 28: Compressive loading: Evolution of the components of the
damage tensor 𝐃 with the ratio of broken beams.
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Figure 29: Bi-Tensile loading: Evolution of the components of the
damage tensor 𝐃 with the ratio of broken beams.
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Figure 30: Simple shear loading: Evolution of the components of the
damage tensor 𝐃 with the ratio of broken beams.
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Figure 31: Willam loading: Evolution of the components of the dam-
age tensor 𝐃 with the ratio of broken beams.

proportionality (and rotation of the principal axes of ten-
sor D). The drop is clear in the Willam loading case (see
figure 31). However, the damage eigenvalues 𝐷1, 𝐷2 of D
always increase for this loading as illustrated in figure 32.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

D
1

D
2

Figure 32: Willam loading: Evolution of the eigenvalues of the dam-
age tensor 𝐃 with the ratio of broken beams.

8. Conclusion

An upper bound to the distance to orthotropy has been
obtained for bi-dimensional elasticity tensors. It natu-
rally introduces a second –instead of fourth– order tensor
which models the medium orthotropy. This has allowed us
to propose and measure second order tensorial damages
variables fully representative of the effective anisotropic
degradation due to complex cracking patterns. We have
performed 2D discrete simulations with a beam-particle
model of initially isotropic Representative Area Elements,
allowing for strong interactions between cracks (up to their
coalescence and complete failure). We have analyzed these
simulations in a systematic manner.

The results associated with the discrete computations
confirm the accuracy of the orthotropic approximation of

the elasticity tensor for a 2D cracked medium, under both
proportional or non-proportional loading cases. They fully
justify the use of a single second order damage tensor vari-
able, instead of a fourth order one (Chaboche, 1979; Leckie
and Onat, 1980) or of two second order damage variables
(Desmorat and Desmorat, 2016), even in the strong crack
interaction case.

Two definitions, in stiffness and in compliance, for a
symmetric second-order damage tensor have been pro-
posed and studied in this paper. They are both based
on the evolution of the bulk modulus (or of its inverse).
It has been observed that the damage variable derived
from the stiffness tensor has the necessary properties to
be a suitable candidate for the formulation of a continuous
anisotropic damage model in 2D from discrete simulations.

The methodology followed does not fix a priori a par-
ticular working basis, it makes accessible all the tensorial
(multiaxial) components measurement of the damage vari-
able are any time step, therefore of its evolution.

Appendix A. Harmonic square roots of bi-
dimensional harmonic tensors

The goal of this appendix is to provide a simple proof
of the following theorem, using results in (Desmorat et al.,
2020b).

Theorem Appendix A.1. Any fourth-order harmonic
bi-dimensional tensor H can be written either as an har-
monic product h * h (an harmonic square), or as −k * k
(the opposite of an harmonic square), where h and k are
second-order bi-dimensional harmonic tensors.

To prove this result, we will recall first that there is an
isomorphism H ∼= h between bi-dimensional harmonic ten-
sors H of order 𝑛 and homogeneous harmonic polynomials
h of degree 𝑛 in two variables 𝑥 and 𝑦. Rather than 𝑥
and 𝑦, one can use the complex variables 𝑧 = 𝑥 + 𝑖𝑦 and
𝑧 = 𝑥 − 𝑖𝑦. Then, any homogeneous harmonic polyno-
mial of degree 𝑛 writes as h1 = ℜ(𝑧1𝑧𝑛), where 𝑧1 ∈ ℂ
and the harmonic product between two homogeneous har-
monic polynomials h1 and h2, of respective degree 𝑛1 and
𝑛1 translates into

h1 * h2 =
1

2
ℜ(𝑧1𝑧2𝑧𝑛1+𝑛2).

For instance, the deviatoric second order tensors

h =

(︂
𝑎1 𝑏1
𝑏1 −𝑎1

)︂
and k =

(︂
𝑎2 𝑏2
𝑏2 −𝑎2

)︂
are represented respectively by the harmonic polynomials

h1 = ℜ(𝑧1𝑧2), and h2 = ℜ(𝑧2𝑧2),

where 𝑧1 = 𝑎1 + 𝑖𝑏1 and 𝑧2 = 𝑎2 + 𝑖𝑏2, and an har-
monic fourth order tensor H (represented by its Kelvin
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matrix (3.1)) corresponds to the homogeneous harmonic
polynomial h3 = ℜ(𝑧3𝑧4), where

𝑧3 = 𝐻1111 + 𝑖𝐻1112.

Thus, the harmonic square tensorial equations

H = h * h = −k * k

translate, in terms of harmonic homogeneous polynomials,
as

h3 = ℜ(𝑧3𝑧4) = ℜ(𝑧21𝑧4) = −ℜ(𝑧22𝑧4).

and the solutions are provided by roots of the algebraic
equations

𝑧21 = −𝑧22 = 𝑧3. (A.1)

Remark Appendix A.2. Note that both equations H =
h*h and H = −k *k have exactly two opposite solutions,
when H ̸= 0.
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benchmark overview: crack advance, reorientation, propagation
and initiation under complex loadings. Advanced Modeling and
Simulation in Engineering Sciences 5, 1–15.

Chaboche, J.L., 1978. Description thermodynamique et
phénoménologique de la viscoplasticité cyclique avec endommage-
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diriger des recherches de l’Ecole Normale Supérieure de Cachan .

Delaplace, A., Desmorat, R., 2007. Discrete 3d model as complimen-
tary numerical testing for anisotropic damage. Int J Fract 148,
115–128.

Desmorat, B., Desmorat, R., 2015. Tensorial polar decomposition of
2d fourth-order tensors. Comptes Rendus Mécanique 343, 471–
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ture. Ph.D. thesis. Université Pierre et Marie Curie - Paris 6.

Mazars, J., Berthaud, Y., Ramtani, S., 1990. The unilateral be-
haviour of damaged concrete. Engineering Fracture Mechanics
35, 629–635.

Meguro, K., Hakuno, M., 1989. Fracture analyses of concrete struc-
tures by the modified distinct element method. Doboku Gakkai
Ronbunshu 1989, 113–124.

Menzel, A., Ekh, M., Steinmann, P., Runesson, K., 2002. Anisotropic
damage coupled to plasticity: Modelling based on the effective
configuration concept. Int. J. Numer. Meth. Eng. 54, 1409–1430.
doi:10.1002/nme.470.

Murakami, S., 1988. Mechanical modeling of material damage.
ASME J. Appl. Mech. 55, 280–286. doi:10.1115/1.3173673.

Nitka, M., Tejchman, J., 2015. Modelling of concrete behaviour in
uniaxial compression and tension with dem. Granular Matter 17,
145–164.

Obermayr, M., Dressler, K., Vrettos, C., Eberhard, P., 2013.
A bonded-particle model for cemented sand. Computers and
Geotechnics 49, 299–313.

Olive, M., Kolev, B., Desmorat, B., Desmorat, R., 2018a. Harmonic
factorization and reconstruction of the elasticity tensor. Journal
of Elasticity 132, 67–101.

Olive, M., Kolev, B., Desmorat, R., Desmorat, B., 2018b. Char-
acterization of the symmetry class of an elasticity tensor using
polynomial covariants. arXiv:1807.08996 [math.RT] .

Oliver-Leblond, C., 2019. Discontinuous crack growth and tough-
ening mechanisms in concrete: A numerical study based on the
beam-particle approach. Engineering Fracture Mechanics 207, 1–
22.

Papa, E., Talierco, A., 1996. Anisotropic damage model for the multi-
axial static and fatigue behaviour of plain concrete. Engineering
Fracture Mechanics 55, 163–179.
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solids/comportment Méchanique des Solides Anisotropes.
Springer, pp. 93–104.

Vianello, M., 1997. An integrity basis for plane elasticity tensors.
Archives of Mechanics 49, 197–208.

Voyiadjis, G.Z., Kattan, P.I., 2006. Damage mechanics with fabric
tensors. Mechanics of Advanced Materials and Structures 13, 285–
301. doi:10.1080/15376490600582784.

Willam, K., Pramono, E., Sture, S., 1989. Fundamental issues of
smeared crack models, in: Fracture of concrete and rock. Springer,
pp. 142–157.

Wulfinghoff, S., Fassin, M., Reese, S., 2017. Damage growth criterion
for anisotropic damage models motivated from micromechanics.
International Journal of Solids and Structures 121, 21–32.

21

http://dx.doi.org/10.1016/0020-7683(89)90015-2
http://dx.doi.org/10.1016/s0997-7538(00)00161-3
http://dx.doi.org/10.1016/s0997-7538(00)00161-3
http://dx.doi.org/10.1002/nme.470
http://dx.doi.org/10.1115/1.3173673
http://dx.doi.org/10.1016/S0020-7683(01)00177-9
http://dx.doi.org/10.1080/15376490600582784

	1 Definitions
	1.1 Symmetric tensor product
	1.2 Traces – Harmonic tensors
	1.3 Harmonic product
	1.4 Covariants of a tensor T (for the rotation group)

	2 Harmonic fourth order part H of the 2D elasticity tensor as an harmonic square
	2.1 Harmonic decomposition
	2.2 The harmonic part HH4(R2) as an harmonic square

	3 Covariant reconstruction of 2D orthotropic elasticity tensors
	3.1 Square symmetry case
	3.2 Orthotropic case

	4 Discrete elements representative volumes
	4.1 Beam-particle model
	4.2 Failure analysis of quasi-brittle materials
	4.3 Extraction of the effective elasticity tensor
	4.4 Definition of possible measurement loadings
	4.5 Comparison of the different measurement loadings

	5 Deviation from isotropy of the initial tensor
	5.1 Geometrical isotropy
	5.2 Mechanical isotropy

	6 Multiaxial analyses of effective elasticity tensors up to high level of damage
	6.1 Studied loadings
	6.2 Orthotropy of the effective stiffness tensors
	6.3 Comparison with micromechanics of cracked solids

	7 Extraction of damage tensors
	7.1 From compliance tensor
	7.2 From stiffness tensor

	8 Conclusion
	Appendix  A Harmonic square roots of bi-dimensional harmonic tensors

