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Abstract 

The present study deals with a new micromechanical modeling of the thermal conductivity of multi-

coated inclusion-reinforced composites. The proposed approach has been developed in the general 

frame of anisotropic thermal behavior per phase and arbitrary ellipsoidal inclusions. Based on the 

Green’s function technique, a new formulation of the problem of multi-coated inclusion is 

proposed. This formulation consists in constructing a system of integral equations, each associated 

to the thermal conductivity of each coating and the reference medium. Thanks to the concept of 

interior- and exterior-point Eshelby’s conduction tensors, the exact solution of the problem of 

multicoated inclusion is obtained. Analytical expressions of the intensity in each phase and the 

effective thermal conductivity of the composite, through homogenizations schemes such as 

Generalized self-consistent and Mori-Tanaka models are provided. Results of the present model are 

successfully compared with those issued from both analytical models and finite elements methods 

for composites with doubly coated inclusions. Moreover, the developed micromechanical model has 

been applied to a three phase composite materials in order to analyze combined effects of the aspect 

ratio and the volume fraction of the ellipsoidal inclusions, the anisotropy of the thermal 

conductivity of interphase, the thermal conductivity contrast between local phases on the predicted 

effective thermal conductivity. 

                                                 
* Corresponding author. 

E-mail address: napo.bonfoh@univ-lorraine.fr (N. Bonfoh) 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0307904X20302717
Manuscript_fe4295f464c4822a576a449f06f50aaa

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0307904X20302717
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0307904X20302717


  2 

Keywords: Composite materials; Anisotropic thermal conductivity; Multi-coated ellipsoidal 

inclusion; Generalized Self-Consistent scheme, Generalized Mori Tanaka model. 

1. Introduction 

In the last decades, composite materials have been undergoing continual technological evolutions 

and developments which have spread their use to many industry sectors. These composite materials 

are designed through a smart combination of inclusions embedded in a matrix in order to enhance 

some specific properties. Thermal conductivity appears as key property for many industrial 

applications such as electronics, thermal insulation, automotive and aeronautics. Recent 

developments of electronics devices have led to the optimization of heat dissipation. For this 

purpose, some composite materials may be tailored as a combination of highly conducting 

inclusions embedded in soft matrix to favor their manufacturing. During these processes, a thin 

interphase layer can appear between matrix and inclusions resulting from sizing, chemical reactions 

or low wettability. Furthermore, to improve the interfacial bonding between inclusions and matrix, a 

third constituent may be introduced between inclusions and matrix [1–3]. This interphase layer 

significantly affects local thermal fields and has to be taken into account for a rigorous prediction of 

effective properties that reveals to be a key step in the design and the manufacture of composite 

materials. Numerous theoretical studies have been devoted to the prediction of these effective 

properties, based on topological and morphological textures of the composite material. 

Homogenization methods based on multi-scale transitions methods provide a valuable tool for the 

design of new composite materials; they also allow to characterize the interphase through an inverse 

method. For particles reinforced composite materials, reported homogenization approaches are 

mainly based on Eshelby’s inclusion model [4]. The topology of this model assumes that an 

ellipsoidal inclusion subjected to a uniform eigenstrain is embedded in a uniform infinite matrix. 

The solution of such a heterogeneous problem as provided by Eshelby’s model established that 

strain field inside the ellipsoidal inclusion is uniform when the infinite matrix undergoes to uniform 
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remote strain. This pioneering Eshelby’s model has been successfully applied for some 

homogenization schemes for heterogeneous materials (Dilute medium, Mori-Tanaka, Self-

consistent, etc.) However, results issued from Eshelby’s model are not relevant for moderate or 

high-volume fractions of inclusions, for rigids inclusions or voids [5], and also for heterogeneous 

materials with interphase. 

In order to address these shortcomings, Eshelby’s model has been extended to the case of coated 

inclusion in a matrix. Thus, the obtained model of coated inclusion gave rise to some more relevant 

homogenization schemes, able to deal with materials with complex microstructure. Among these, is 

generalized self-consistent (GSC) scheme that derived from the solution of the coated inclusion 

problem appears as a sophisticated homogenization method, combining both mathematical rigor and 

physical realism. In elasticity, GSC model promoted by Christensen [6], Christensen and Lo [7] 

provides satisfactory results, in agreement with experimental data, even for high volume fractions 

of inclusions, for voids or rigid inclusions. 

However, the problem of coated inclusion in a general framework of arbitrary morphology and 

anisotropic behavior of the phases is a very complicated micromechanical problem. In addition, due 

to the complex interactions between the inclusion, the interphase and the matrix, local intensity 

fields are not uniform. Nevertheless, many studies have been devoted to the problem of coated 

inclusion in order to capture the effect of interphase on the effective thermal conductivity of 

composite materials. Depending on the considered approach, these investigations can be gathered 

into two categories: 

• The first class originates from well-known works of Maxwell [8] and Rayleigh [9] that 

proposed the solution of Laplace’s equation in terms of spherical harmonic function, for a two-

phase material with isotropic thermal conductivity. From this fundamental result, Hashin and 

Shtrikman [10] derived the famous lower and upper bounds of the thermal conductivity in a 

macroscopically isotropic two-phase material. In this context, Hashin [11] determined the thermal 
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conductivity of an isotropic two-phase material in the framework of the generalized self-consistent 

(GSC) scheme. In isotropic conductivity, Herve [12] also obtained the effective thermal 

conductivity of multiply coated spherical inclusion-reinforced composites in the so-called ‘(N+1)-

phase’ GSC scheme. Yang [13] extended this approach to cylindrical inclusions. In the case of 

arbitrary ellipsoidal inclusions, the solution of Laplace’s equation is obtained thanks to ellipsoidal 

harmonic functions and potential theory developed by Kellogg [14]. Based on this approach due to 

Kellogg [14], Stepin [15] obtained the solution of the problem of coated ellipsoidal inclusion 

imbedded in an infinite matrix, for isotropic thermal conductivity. Hatta and Taya [16], by using 

spheroidal harmonic functions, expressed the effective thermal conductivity for coated spheroidal 

inclusions by solving the fundamental Laplace’s equation governing heat transfer. Then, Giordano 

[17] extended the solution due to Stepin [15] to an inclusion with anisotropic thermal conductivity. 

Benveniste et al. [18] proposed a model to predict the effective thermal conductivity of composite 

materials containing long fibers with transverse isotropic thermal conductivity. 

Recently, Kolesnikov et al. [18], Lavrov and Yakovlev [19] extended the solution of coated 

inclusion problem as proposed by Giordano [17] and Stepin [15], to the case of anisotropic thermal 

conductivity. All above-mentioned models assume a uniform intensity field inside inclusion. The 

obtained solutions for an arbitrary morphology of ellipsoid inclusion (sphere, cylinder and ellipsoid) 

are analytical and compact. In the cases of spherical or cylindrical inclusion and isotropic thermal 

conductivity per phase, these expressions are exact since the intensity field remains uniform inside 

the inclusion. In contrast, for ellipsoidal inclusion and an anisotropic thermal conductivity per 

phase, the intensity field inside the inclusion is strongly disturbed by the presence of the coating and 

therefore this basic assumption appears uncertain. 

• The second class of models deals with the Green’s function technique and integral equation 

for the problem of heterogeneous thermal conductivity. For the coated inclusion problem, the 

integral equation exhibits a volume integral due to the presence of interphase. This volume integral 
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is difficult to compute, since both Eshelby’s tensors and intensity fields are not uniform inside the 

interphase. Hori and Nemat-Nasser [21] proposed analytical expressions of local fields and 

effective properties of heterogeneous materials with the multi-coated inclusion. For an easy 

evaluation of the above-mentioned volume integral, this model assumes uniform elastic fields in the 

interphase. Then, the model was adapted to the prediction of effective thermal conductivity [22-24]. 

However, the model of Hori and Nemat-Nasser [21] is not exact and does not recover the solution 

of particular spherical and cylindrical morphologies of inclusions. Aboutajeddine and Neale [25] 

suggested an improvement of Hori and Nemat-Nasser’s model [21] by confining interactions 

between the phases to direct interaction between the inclusion and its immediate environment. This 

assumption led to the cancellation of the integral term due to the presence of the interphase. This 

improved model was then extended to the problem of multi-coated inclusion in elasticity by Dinzart 

et al. [26] and in thermal conductivity by Dinzart et al. [27]. 

Up to now, the exact solution of coated ellipsoidal inclusions and anisotropic thermal conductivity 

per phase is not reported in the literature and therefore remains a challenge.  

The present study therefore proposes a new micromechanical approach to deal with multi-coated 

ellipsoidal inclusion and anisotropic thermal conductivity per phase. The considered method is 

based on the Green’s function technique and the integral equation of the problem of thermal 

conduction in heterogeneous mediums. New integral equations are formulated by introducing a 

Green’s tensor for each anisotropic coating, in addition to the classical Green’s tensor associated to 

the reference medium. The resolution of the corresponding system of integral equations is 

completed thanks to the concept of interior- and exterior-point Eshelby’s conduction tensors. 

Moreover, the obtained solution provides exact analytical expressions of intensity inside inclusion 

and each coating, for composite material with multi-coated confocal ellipsoidal inclusions. The 

present model is applied for simply-coated and doubly-coated and obtained expressions are 

compared with those available in the literature. Then, GSC scheme and Generalized Mori-Tanaka 
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model are implemented to predict the effective thermal conductivity of composite materials 

containing multi-coated inclusions. The ability of the model to describe the thermal behavior of 

composite materials, for moderate or high-volume fractions of inclusions is discussed through some 

comparisons with numerical results issued from finite elements methods. Finally, some parametric 

analyses of the effects of the morphology and volume fraction of inclusions, the thickness of 

coatings and the contrast between local thermal conductivities on the predictions of the model are 

conducted and discussed. 

2. Micromechanical model 

2.1. Local constitutive laws and integral equation 

The considered representative volume element (RVE) of the composite is a heterogeneous medium 

with linear thermal behavior described by the tensor ���� at an arbitrary point � of Cartesian 

coordinates ���, ��, �	�. The composite material is made of ellipsoidal inclusions surrounded by 

coatings, embedded in a matrix material. The inclusion, coatings and matrix are homogeneous and 

have a linear thermal behavior. The RVE is subjected to a uniform intensity 
� at its boundary. The 

interfaces between the constituents of the composite are assumed perfect. The present section aims 

at determining the temperature ����, intensity 
��� and heat flux ��� fields in each phase and the 

effective thermal conductivity of the composite material. The fields equations of such a 

heterogeneous thermal conductivity problem are: 

• intensity field related to the temperature field: 


��� = −����� (1) 

• linear thermal behavior described by Fourier’s law: 

��� = ����. 
��� (2) 

• energy conservation equation in steady state without thermal energy generation: 

������ = 0 (3) 
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• boundary conditions 

����� = −
�. �   on   ∂� (4) 

The notation � stands for the gradient and the symbol ‘.’ for the product of tensors and/or vectors. 

The local thermal conductivity ���� is then split into a uniform part �� of a Homogeneous 

Reference Medium (HRM) and a fluctuating one ��� : 

���� = �� + �����. (5) 

Thanks to Eq.(5), the local thermal behavior Eq.(2) becomes :  

��� = ��. 
��� + �����. 
���. (6) 

In the present study, within the framework of thermal conductivity we develop the concept of 

projection operators initially promoted in elasticity by Kunin [24]. The projection operator 

�� associated to the HRM with thermal conductivity �� is defined by: 

�� = ��. �� (7) 

�� is the modified Green’s conduction tensor defined by: 

�� = −����. (8) 

The Green’s conduction function �� associated to HRM results from:  

� !� "�� ��� − �′�"�  "�! + ��� − �′� = 0   and   lim|�+�,|→. ���� − �′� = 0  (9) 

��� − �′� is the Dirac delta function. The projection operator �� exhibits some properties that 

allow to rewrite Eqs. (1) and (3) as (see Appendix A): 


 = −�� and � = −
�. �   on   ∂� ⇔ �� ∗ 
 = 
 − 
�; (10) 

��� = 0 ⇔ �� ∗ 3�.  = 0   with   3� = ��+�. (11) 

Symbol ‘*’ stands for the space convolution defined by: 

�4 ∗ 5��6� = 7 4�6 − 6,�5�6,� 
89 ��,. 
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By applying operator �� to Eq.(6), we obtain: 

�� ∗ 3�.  = �� ∗ 
 + �� ∗ 3�. ��. 
. (12) 

Using Eqs.(10) and (11), we obtain: 


 = 
� − �� ∗ 3�. ��. 
. (13) 

Eq. (13) may be expressed in the integral form as: 


��� = 
� − 7 ���� − 
8 9 �′�. 3�. ����,�. 
��,��� , (14) 

This integral equation provides the local intensity field for an arbitrary applied homogeneous 

intensity 
� and local anisotropic thermal conductivity. To solve this equation, the multi-coated 

inclusion model is then applied in the general case of arbitrary ellipsoidal morphology.  

2.2. Multi-coated ellipsoidal inclusion 

We consider a composite ellipsoidal inclusion that consists of a core with volume ��, surrounded by 

N-1 coatings. This composite inclusion is embedded in an HRM denoted ‘0’ as matrix. The thermal 

conductivity is assumed anisotropic inside each phase and is described by second-order tensors �:, 

; ∈ =1,2, … , AB and ��
 for HRM. According to the topology of the multi-coated inclusion problem 

as depicted by Fig.1, the fluctuating part ����� of the local thermal conductivity ���� is written as: 

����� = C ΔE
:F� �:/� H:���   with   Δ�:/� = �: − �� (15) 

where characteristic function H:��� related to volume �: of each phase ‘P’ reads: 

H:��� = L10     if    � ∈ �:� ∉ �:. 

In the following, the composite inclusion with volume ΩE consists of the inclusion ῾1᾿ and the A −
1 coatings. For P ∈ =1,2, … , AB, ΩQ denotes the volume of the composite inclusion that is made with 

the inclusion ῾1᾿ and the first P − 1 coatings: ΩE = ∑ �:E:F�  , ΩQ = ∑ �:Q:F�  and �: = Ω: − Ω:+�. 

By substituting Eq.(15) in Eq.(14), we obtain: 
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��� = 
� − C 7 ���� − �,�. 3�. ∆�:/�. 
��,� 
8T9 ��:,E

:F� . (16) 

Some volume averages of field U���, respectively inside the inclusion “1”, a coating “;" and a 

composite inclusion ΩQ are then defined by: 

UW� = 1�� 7 U�� 
8X ���� , UW: = 1�: 7 U�� 

8T ����      and    UWYZ = 1ΩQ 7 U�� 
YZ ��Ω�. (17) 

These averages are related by UWY[ = Y\YZ  ∑ ]: UW:Q:F�  where ]: is the volume fraction of the phase 

“P” with volume �: in the composite inclusion: ]: = �:/ΩE with ; ∈ =1,2, … , AB. Thanks to 

Eq.(17), average of intensity inside composite inclusions ΩE and ΩQ respectively results from: 


Y\ = C ]: 
:   and   E
:F� 
YZ = ΩEΩQ  C ]: 
:Q

:F�  


:
 and 
YT are then related by: 

]:
: = Ω:ΩE  
YT − Ω:+�ΩE  
YT^X . (18) 

From Eq.(16), the average intensity inside the composite inclusion ΩE reads: 


Y_ = 
� − 1Ω` C 7 7 ���� − �,�. 3�. ∆�:/�. 
��,� 
8T9 ��:, 

Y_
E

:F� �Ω`. (19) 

The volume integral over the composite inclusion Ω` is uniform since �, ∈ Ω` [16]. Thus, the 

interior-point Eshelby’s conduction tensor a�Y_ associated to �� and the ellipsoidal volume Ω` 
 
is 

introduced as∶ 
a�Y_ = 7 ���� − �,�. 3� �Ω` 

Y_    for   �, ∈ Ω`. (20) 

Eq.(19) becomes:  


Y_ = 
� − a�Y_ . C ]:
E

:F� d�:/�. 
: . (21) 
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Eq.(21) is exact, but for the expression of unknown intensities 
:
 (; = 1, 2, … , A), A − 1 

complementary equations have to be formulated. By proceeding similarly as previously, average 

intensity 
Y[ inside composite inclusion Ωe may be expressed from Eq.(14) as:  


Y[ = 
� − 1ΩQ C 7 7 ���� − �,�. 3�. ∆�:/�. 
��,� 
8T9 ��:, 

YZ
Q

:F� �ΩQ

− 1Ωe C 7 7 ���� − �,�. 3�. ∆�:/�. 
��,� 
8T9 ��:, 

YZ
E

:Fef� �ΩQ. 
(22) 

That is rewritten as:  


Y[ = 
� − 1Ωe C 7 g 7 ���� − �,�. 3� �Ωe
 

Y[
h . ∆�: �⁄ . 
��,���:, 

8T9
Q

:F�
− 1Ωe C 7 g 7 ���� − �,�. 3� �Ωe

 
Y[

h . ∆�: �⁄ . 
��,���:, 
8T9

E
:FQf� . 

(23) 

In Eq.(23), the first double integral over Ωe is uniform since �, ∈ �:, as �, lies inside Ωe [16].The 

uniform interior-point Eshelby’s conduction tensor a�Y[
 associated to �� and the ellipsoidal volume 

Ωe is therefore introduced as∶ 
a�Y[ = 7 ���� − �,�. 3� �Ωe

 
Y[

   for   �, ∈ Ωe. (24) 

For the second double integral of Eq.(23), in absence of singularity one can permute the volume 

integrals over �:, and Ωe as: 


Y[ = 
� − ΩEΩe a�Y[ . C ]: ∆�: �⁄ . 
jQ
:F�

− 1Ωe C 7 g 7 ���� − �,�. 3� �Ωe
 

Y[
h . ∆�: �⁄ . 
��,���:, 

8T9
E

:FQf� . 
(25) 
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The integral over the volume Ωe in Eq.(25) is not uniform since �, is located outside the volume Ωe. 
Furthermore, the intensity field 
��,� is also not uniform inside �:, due to strong interactions 

between local phases of the heterogeneous material. As a consequence, the exact expression of the 

integral term in Eq.(23) is difficult to obtain. Very few studies deal with this problem of multi-

coated inclusions in a composite material. In elasticity, Hori and Nemat-Nasser [21] proposed a 

solution of the integral equation based on the assumption of the uniformity of strain field inside the 

coating. These authors therefore obtained simple but non-exact expressions of strain localization 

tensors. However, this model was extended to thermal conduction in heterogeneous materials [22-

24]. 

Hereby, we propose a new formulation dealing with the exact solution of the multi-coated inclusion 

problem for anisotropic behavior per phase and ellipsoidal morphology. 

2.3. New solution of the multi-coated inclusion problem 

Classically, the integral formulation of heterogeneous problem is based on the Green’s function 

technique associated to an arbitrary infinite HRM. In this section, we introduce an integral equation 

to complete Eq.(14). From Eq.(5), the local thermal conductivity ���� is decomposed into a 

uniform part �Qf� of the coating ‘J+1’ and fluctuating parts as: 

���� = �Qf� + C��: − �Qf��H:���Q
:F� + C ��: − �Qf��H:���E

:FQf� − ��Qf� − ���H����. (26) 

The characteristic function H���� of the volume �� = � − ΩE is defined by: 

H���� = 1 − ∑ H:���E:F�  with � ∈ ��. 

Thanks to Eq.(26), Eq.(6) becomes: 

k��� = �Qf�. 
��� + C Δ�:/�Qf��. 
��� H:���Q
:F� + C Δ�:/�Qf��. 
��� H:���E

:FQf�
− Δ�Qf�/�. 
���H����. 

(27) 
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In light of the decomposition Eq.(26), we introduce a Green’s function �Qf� associated to thermal 

conductivity �Qf� that vanishes at infinity but still finite at boundaries of the volume �Qf�  as: 

� !Qf� "�� Qf��� − �′�"�  "�! + ��� − �′� = 0   and   lim|�+�,|→. �Qf��� − �′� = 0. (28) 

A projection operator �Qf� associated to �lfm is then defined by: 

�Qf� = �Qf�. �Qf� (29) 

and related to modified Green’s tensor �Qf� as: 

�Qf� = −���Qf�. (30) 

�Qf� has same properties as ��: 


 = −�� and � = −
�. �     on   ∂� ⇔ �Qf� ∗ 
 = 
 − 
�; (31) 

��� = 0 ⇔ �Qf� ∗ 3Qf�.  = 0   with   3Qf� = �Qf�+�. (32) 

Using Eqs.(31) and (32), we obtain a new integral equation as: 


��� = 
� − C 7 �Qf��� − �,�. 3Qf�. ∆�: Q⁄ f�. 
��,� 
8T9 ��:,Q

:F�
− C 7 �Qf��� − �,�. 3Qf�. ∆�: Q⁄ f�. 
��,� 

8T9 ��:,E
:FQf�

+ 7 �Qf��� − �′�. 3Qf�. ∆�Qf�/�. 
��,� 
8n9 ���,. 

(33) 

From Eq.(33), the volume average 
Y[ inside the composite inclusion Ωe reads: 
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Y[ = 
� − 1Ωe C 7 g 7 �Qf��� − �,�. 3Qf� �Ωe
 

Y[
h . ∆�: Q⁄ f�. 
��,���:, 

8T9
Q

:F�
− 1Ωe C 7 g 7 �Qf��� − �,�. 3Qf� �Ωe

 
Y[

h . ∆�: Q⁄ f�. 
��,���:, 
8T9

E
:FQf�

+ 1Ωe 7 g 7 �Qf��� − �,�. 3Qf� �Ωe
 

Y[
h . ∆�Qf�/�. 
��,����,  

8n9 . 
(34) 

In Eq.(34), the volume integral over Ωe is uniform if �, ∈ Ωe and a interior-point Eshelby’s 

conduction tensor aQf�Y[
 associated to �Qf� and the ellipsoidal volume Ωe is introduced as: 

aQf�Y[ = 7 �Qf��� − �,�. 3Qf� �Ωe
 

Y[
   for   �, ∈ Ωe. (35) 

But for �, ∉ Ωe, the volume integral over Ωe is not uniform. In this case, an exterior-point Eshelby’s 

conduction tensor aQf�opq/Y[��′� is considered:  

rQf�opq/Y[��′� = 7 �Qf��� − �,�. 3Qf� �Ωe
 

Y[
   for   �, ∉ Ωe. (36) 

Using Eqs.(35) and (36), Eq.(34) is rewritten as: 


Y[ = 
� − ΩῺe  aQf�Y[ . C ]: ∆�: Q⁄ f�. 
:Q
:F�

− 1Ωe C 7 aQf�opq Y[⁄ ��′�. ∆�: Q⁄ f�. 
��,� 
8T9 ��:,E

:FQf�
+ 1Ωe 7 aQf�opq Y[⁄ ��′�. ∆�Qf�/�. 
��,� 

8n9 ���,. 
(37) 

Similarly, 
Y[sX  reads: 
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Y[sX = 
� − Ω`Ωef� aQf�Y[sX . C ]: ∆�: Q⁄ f�. 
:Q
:F�

− 1Ωef� C 7 aQf�opq Y[sX⁄ ��′�. ∆�: Q⁄ f�. 
��,� 
8T9 ��:,E

:FQf�
+ 1Ωef� 7 aQf�opq Y[sX⁄ ��′�. ∆�Qf�/�. 
��,� 

8n9 ���,. 
(38) 

Then, the difference between 
tZand 
tZsX  is obtained as: 


Y[sX − 
Y[ = �Qf�ΩQ
ΩEΩQf� aQf�Qf�. C ]: ∆�: Q⁄ f�. 
:Q

:F�
− 1Ωe C 7 uQf�opq/Y[sX+Y[��,�. ∆�: Q⁄ f�. 
��,� 

8T9 ��:,E
:FQf�

+ 1Ωe 7 uQf�opq/Y[sX+Y[��′�. ∆�Qf� �⁄ . 
��,� 
8n9 ���,. 

(39) 

where 

rQf�Qf� = aQf�Y[sX − Ωef��Qf� vaQf�Y[sX − aQf�Y[ w ; (40) 

uQf�opq/Y[sX+Y[��′� = aQf�opq/Y[��′�− ΩeΩef� aQf�opq/Y[sX��′�. (41) 

Integral terms in Eq.(39) are difficult to evaluate since the tensor uQf�opq/Y[sX+Y[��′� are not uniform 

in volume ��, exterior to Ωe and Ωef�. Moreover, local intensity field 
��′� is also not uniform in the 

volume ��,. Since aQf�opq/Y[��′� and aQf�opq/Y[sX��′� depend on the morphology of ellipsoids Ωe and 

Ωef� respectively and Green’s function �Qf� associated to �Qf�, we propose hereafter to express 

tensor uQf�opq/Y[sX+Y[��′�. 
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2.4. Expressions of tensors aQf�opq/Y[��′� and aQf�opq/Y[sX��′� for anisotropic thermal conductivity 

Using Eqs.(29) and(30), exterior-point Eshelby’s conduction tensor aQf�opq/Yx��′� as defined by 

Eq.(36) may be expressed in terms of Green’s conduction function �Qf� : 

rQf�yzopq/Y{��,� = − 7 "�� Qf��� − �,�"�  "�| �Ω}
 

Y{
   for   �,  ∉ Ω} and ; ∈ =P, P + 1B . (42) 

When the tensor �Qf� is anisotropic, the computation of Eq.(39) is difficult to achieve. By assuming 

the thermal conductivity to orthotropic, �Qf� is written as: 

�Qf� = ~��Qf� 0 00 ��Qf� 00 0 �	Qf�� ,   P = 1,2, … , A − 1. 
Green function �Qf� arises from the solution of the differential equation Eq.(28). Following an 

approach proposed by Giordano [28], the tensor �Qf� is rendered isotropic through a linear 

transformation of Cartesian coordinates. The following linear transformation of Cartesian 

coordinates transforms the vector position ���� , �� , �	 � into the vector ����, ��, �	� through: 

� = � � Qf�    and   � Qf� "  "� = "  "�    with   � Qf� = �� Qf���Qf� . (43) 

Eq.(28) may then be rewritten as: 

��Qf� ��Qf� �	Qf� ��Qf�  "��� Qf��� − �′�"�� "�� + ���� − �′� = 0   and   lim|�+�,|→. ��Qf��� − �′� = 0 . (44) 

where �Qf���� is the transformed into ��Qf����. Eq.(44) may be solved to provide the transformed 

Green’s conduction function ��Qf�: 

��Qf��� − �,� = 14 � ��Qf� ��Qf� �	Qf� ��Qf� 1|� − �,|. (45) 
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Ellipsoids Ωe and Ωef� with semi-axes � Q and � Qf�
 (� = 1, 2, 3) are then transformed into the 

ellipsoids Ω�e and Ω�ef� with semi-axes �� Q and �� Qf�
 through : �� Q = � Q � Qf��  and �� Qf� =

� Qf� � Qf�� . 

The ellipsoidal volume ΩQ and surface �Q is surrounded by a coating �Qf�. The corresponding 

composite inclusion has the volume Ωef� and external surface �Qf�. 

C � ���� Q��
	

 F� = 1   for   � ∈ �Q ;    C � ���� Qf���
	

 F� = 1   for   � ∈ �Qf�.  (46) 

Similarly, external surfaces �Q and �Qf� are also transformed into ��Q and ��Qf� respectively defined 

by: 

C � ���� Q��
	

 F� = 1   for   � ∈ ��Q ;     C � ���� Qf���
	

 F� = 1   for   � ∈ ��Qf�.  (47) 

aQf�opq/Yx��,� as defined by Eq.(36) becomes: 

rQf�yzopq/YT��,� = − 14 � ��|Qf� � Qf� ��Qf� "�"� , "��, 7 1|� − �,| �Ω�: 
Y�T    for   �, ∉ Ω�: . (48) 

Let us introduce harmonic functions ��opq/Y[  for P ∈ =1,2, … , AB as defined in [29]: 

��opq/YT��,� = 7 1|� − �,| �Ω�:
 

Y�Z
   for   �, ∉ Ω�: . (49) 

Then, Eq.(48) read as: 

rQf�yzopq/YT��,� = −14 � ��|Qf� � Qf� ��Qf� "���opq/YT��,�"� , "��, . (50) 

Expressions of harmonic functions ��opq/Y[ and ��opq/Y[sX  are provided in [29]: 

��opq/Y[��,� = 12 v����� Q, ���� − ��,  ��,  ������ Q, ����w ; 
��opq/YZsX��,� = 12 v����� Qf�, ���� − ��,  ��,  ������ Qf�, ����w 

(51) 

where �� and ��� are I-elliptic integrals defined by:  
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����� Q, ��Q� = 2 � ���Q ���Q ��	Q 7 ��d����
.

��Z
;  

������ Q, ��Q� = 2 � ���Q ���Q ��	Q 7 ��v����Q �� + �w d����
.

��Z
; 

����� Qf�, ��Qf�� = 2 � ���Qf� ���Qf� ��	Qf� 7 ��d����
.

��ZsX
; 

������ Qf�, ��Qf�� = 2 � ���Qf� ���Qf� ��	Qf� 7 ��v����Qf��� + �w d����
.

��ZsX
 

with 

(52) 

d���� = �v����Q�� + �w v����Q�� + �w v���	Q�� + �w��/�
; 

d���� = �v����Qf��� + �w v����Qf��� + �w v���	Qf��� + �w��/�
. 

The variables ��Q and ��Qf� are defined by: 

C �′ ���� Q�� + ��Q
	

 F� = 1   and   C �, ���� Qf��� + ��Qf�
	

 F� = 1. (53) 

Since ellipsoids Ω�e and Ω�ef� are assumed confocal, following relations hold true:  

���	Qf��� − ����Qf��� = ���	Q�� − ����Q��
   and   ���	Qf��� − ����Qf��� = ���	Q�� − ����Q��

  

that may be rewritten thanks to Eq.(53) as: 

��� Qf��� + ��Qf� = ��� Q�� + ��Q for � ∈ =1,2,3B.  
I-elliptic integrals in Eq.(52) are then related by: 

�Y�[ ����� Q, ��e� = �Y�[sX ����� Qf�, ��ef�� and 
�Y�[ ������ Q, ��e� = �Y�[sX ������ Qf�, ��ef��.  

In light of Eq.(51), one obtains: 

�Y�[ ��opq/Y[��,� = �Y�[sX ��opq/Y[sX��,�.  
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and finally: 

rQf���opq/YT��,� = 14 � ���Qf� ������ : , ��:�,   ; = P, P + 1. (54) 

The interior-point Eshelby’s conduction tensor (��: = 0� reads: 

rQf���YT = 14 � ���Qf� ������ : , 0�,     ; = P, P + 1. (55) 

and: 

r���Y\ = 14 � ���� ������ E , 0�. (56) 

Moreover, since  Ω�e Ω�ef�� = Ωe Ωef�⁄ , aQf�opq/Y[��,� and aQf�opq/Y[sX��,� are related by: 

1ΩQ aQf�opq/YZ��,� = 1ΩQf� aQf�opq/YZsX��,�. (57) 

Consequently, from Eq.(57) we obtain: 

uQf�opq/YZsX+YZ��′� = 0. (58) 

Eq.(39) is then reduced to: 


Y[sX − 
Y[ = �Qf�ΩQ
ΩEΩQf� aQf�Qf�. C ]: ∆�: Q⁄ f�. 
: .Q

:F�  (59) 

Local intensity 
Qf�
 is obtained through a recursive procedure: 


Qf� = 1∑ ]:Q:F�  C ]:�� + aQf�Qf�. ∆�: Q⁄ f��. 
:Q
:F� , for   P ∈ =1,2, … , A − 1B (60) 

Furthermore, Eq.(21) is recasted as: 

C ]:
E

:F� �� + a�Y_ . ∆�:/��. 
: = 
� (61) 

The system of Eqs.(60) and (61) provide the solution in terms of volume average intensity inside 

each phase of the composite inclusion as function of the imposed intensity 
�. The resolution of this 



  19 

system of equations constitutes the solution of the problem of multicoated inclusion without any 

assumption. 

The effective thermal conductivity of heterogeneous material can then be predicted through 

classical homogenization schemes such as Generalized Mori Tanaka or Generalized Self-Consistent 

(GSC).  

3. Effective thermal conductivity  

We consider a N-phase composite made of multi-coated ellipsoidal inclusions embedded in a 

matrix. All the interfaces between the phases are considered perfect. 

Macroscopic heat flux � and intensity � of the composite read:  

� = − 1� 7 ���� � 
�8 �� = 1� 7 
��� 

8 ��; 
� = 1� 7 ���. � 

�8 ��� = 1� 7 ��� 
8 ��. (62) 

� is the outward unit vector normal to the boundary ∂� of the volume � of RVE. 

Macroscopic fields � and � are related by the effective thermal conductivity ��  : 

� = ��  . � (63) 

The solution of the system of Eqs.(60) and (70) gives the localizationof the average intensity inside 

each phase : 


: = ¡ : . �   with   ∑ 4: ¡ : = �.E:F�  (64) 

¡ : is the intensity localizationtensor inside the phase ‘P’ and � the second-order identity tensor. 

The effective thermal conductivity is expressed as: 

��   = C 4: �: . ¡ :
E

:F�  (65) 
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where the volume fraction of the phase ‘P’ is defined by 4: = �:/�. Analytical expressions of 

localization tensors ¡ : and effective thermal conductivity tensors ��   are therefore deduced 

through two homogenization schemes. 

 

3.1. Generalized Mori Tanaka scheme 

Mori-Tanaka model has been formulated by Mori-Tanaka [30] for the prediction of effective 

properties of two-phase composite materials. This model is based on the concept of Eshelby's 

inclusion [4], assuming that an ellipsoidal inclusion is embedded inside a matrix. The topology of 

Mori-Tanaka model assumes that the HRM introduced for the integral equation is subjected at its 

boundary to the same strain field as the matrix. Mori-Tanaka model provides simple analytical 

solution and is easy to implement. This model is generalized here to the case multi-coated 

inclusions in heterogeneous materials. In Eq.(60) by putting �� = �¢ and 
� = 
¢, we obtain: 


Qf� = 1∑ ]:Q:F�  C ]:�� + aQf�Qf�. ∆�: Q⁄ f��. 
:Q
:F� , for   P ∈ =1,2, … , A − 1B 

C ]:
E

:F� �� + a¢Y_ . ∆�:/¢�. 
: = 
¢ 

(66) 

Mean fields of local intensity inside each phase of the VER are then expressed as : 
: = ¡ :/¢. 
¢
. 

Then thanks to Eq.(62) we obtain: 


£ = ¡ ¢. �,    where   ¡ ¢ = �4¢ + ∑ 4: ¡ :/¢E+�:F� �+�
 (67) 

so that: 


j = ¡ : . �   with   ¡ : = ¡ :/¢. ¡ ¢    for   ; = 1, 2, … . , A − 1 (68) 

The effective thermal conductivity is then deduced from Eq.(65). 

3.2. Generalized Self-Consistent scheme 
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GSC scheme was first introduced by Hashin [11] for a two-phase material from the solution of a 

coated spherical inclusion embedded in an HEM by considering an isotropic thermal conductivity 

per phase. This model was extended to multi-coated spherical inclusion [12]. In the present section, 

the GSC scheme is developed in the general case of multi-coated ellipsoidal inclusion and 

anisotropic thermal conductivity per phase. Within the framework of GSC scheme, the composite 

inclusion Ω` is assumed embedded in HEM. The solution of the multi-coated problem is acquired 

through Eqs.(60) and (61) by replacing the reference medium denoted ‘0’ by the HEM denoted by 

‘eff’: 


� = �   and   �� = ��  . (69) 

Thanks to Eq.(69), Eq.(21) is reduced to: 


Y_ = �. (70) 

The solution of the system of Eqs.(60) and (70) gives the localizationof the average intensity inside 

each phase as : 


: = ¡ : . �   with   ∑ 4: ¡ : = �.E:F�  (71) 

The effective thermal conductivity is then provided by Eq.(65). 

It’s worth mentioning that, contrary to classical GSC scheme that provides the effective properties 

through an iterative process, the present formulation leads to explicit analytical expression of 

�� = ��   (without iteration), even for ellipsoidal inclusions and anisotropic thermal conductivity 

per phase. 

4. Applications  

4.1. Simply coated inclusion (A = 2) 

Let us consider an ellipsoidal inclusion with semi-axis �� , ��  and �	 , of volume �� surrounded by 

the interphase of volume �� (Fig.2). The corresponding composite ellipsoidal inclusion with volume 

Ω� = �� + �� and semi-axis ¤� , ¤� , ¤	  is embedded in an infinite HRM denoted ‘0’. The anisotropic 
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thermal conductivity of each phase is described by tensor ��, �� and ��
 for the inclusion, the 

interphase and the HRM, respectively. By solving the system of Eqs.(60) and (70), localization of 

intensity inside the inclusion and the interphase are given by: 


� = ¡ �/�. 
�     and.   
� = ¡ �/�. 
�   (72) 

with 

¡ �/� = ¥� + a�Y¦ . �]� Δ��/� + ]� Δ��/�� + ]��� + a�Y¦ . Δ��/��. a��. Δ��/�§+�
  

¡ �/� = �� + a��. Δ� �/��. ¡ �/� 

(73) 

By assuming orthotropic thermal conductivity per phase, localization tensors ¡ �/� and ¡ �/� appear 

also orthotropic [31] and the ith component, for � ∈ =1,2,3B reads: 

¨ �/� = ©1 + r�Y¦   �]� Δ� �/� + ]� Δ� �/�� + ]�v� + r�Y¦   Δ� �/�w r��   Δ� �/�ª+�
 

¨ �/� = v1 + r��  Δ�  �/�w ¨ �/�. (74) 

The components of tensors a��, a��, a�Y¦ and a�Y¦ are deduced from Eq.(52) by putting ��� = ��� = 0: 

r�yY¦ = �� �¤� �, 0�4� � � ;    r�y� = �� ��� �, 0�4 � � � ;    r�yY¦ = �� �¤� �, 0�4 � � �    and  a�� = a�Y¦ − Ω��� �a�Y¦ − a�YX� (75) 

with  

¤� � = ¤  � � , �� � = �   � � , ¤� � = ¤   � � ;     � ∗ = «� ∗ ��∗⁄     for  ∗= 0, 2 and � = 1, 2, 3. 
Transformed ellipsoids Ω�� and Ω�� are assumed confocal so that (see Appendix B): 

�¤���� − ������ = �¤���� − ������ = �¤�	�� − ���	�� 

In the particular case of isotropic thermal conductivity per phase, Eqs.(74) are the same as results of 

Stepin [15]. In the particular case of isotropic thermal conductivity of phase ‘2’ and HRM (� � =
� ��, � � = � �� ), we retrieve the localization relationships obtained by Giordano [17]. Moreover, for 

anisotropic thermal conductivity per local phase, localization expressions Eqs. (74) coincide with 

those suggested by Lavrov and Yakovlev [20]. 
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4.2. Doubly coated inclusion (A = 3) 

We consider an ellipsoidal inclusion with volume �� and semi-axis �� , �� , �	 , surrounded by an 

interphase with volume �� and the matrix with volume �	. ¤� , ¤�  and ¤	  (respectively ¬� , ¬�  and ¬	 ) 

are the semi-axis of ellipsoidal composite inclusion Ω� = �� + �� (respectively Ω	 = Ω� + �	) as 

depicted by Fig.3. Composite inclusion Ω	 is assumed embedded in an HRM denoted ‘0’. Let ��, 

��, �	 and �� represent the thermal conductivity respectively of inclusion, interphase, matrix and 

HRM. 

From Eq.(21), the averaged intensity over the composite-inclusion Ω	 is expressed as: 


Y = 
� − ]� a�Y . Δ��/�. 
� − ]� a�Y . Δ��/�. 
� − ]	 a�Y . Δ�	/�. 
	. (76) 

where a�Y is the interior-point Eshelby’s conduction tensor associated to �� and to ellipsoidal 

volume Ω	 defined by Eq.(20). Eq.(59) provides two complementary relations as:  


Y¦ = 
� + ]�]� + ]� a����. Δ��/�. 
�
 (77) 


Y = 
Y¦ + ]	]� + ]�  a	�	�. �]� Δ��/	. 
� + ]� Δ��/	. 
��. (78) 

Eshelby’s tensors a	Y and a	Y¦ are defined by Eq.(35). The system of Eqs.(76) to (78) is then solved 

to express of 
�
, 
�

 and 
	
 as: 


: = ¡ :/�. 
�   for   ; ∈ =1,2,3B 

with: 

¡ �/� = ®]��� + a�Y . ¯�m/�� + ]��� + a�Y . ¯�°/��. v� + a����. Δ��/�w
+ ]	�� + a�Y . ¯�±/��. ² ]�]� + ]� v� + a	�	�. Δ��/	w
+ ]�]� + ]� v� + a	�	�. Δ��/	w³ . v� + a����. Δ��/�w´+m 

(79) 
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¡ �/� = v� + a����. Δ��/�w. ¡ �/� (80) 

and 

¡ 	/� = ]�]� + ]� v� + a	�	�. Δ��/	w + ]�]� + ]� v� + a	�	�. Δ��/	w. ¡ �/�. (81) 

Transformed ellipsoids Ω��, Ω�� and Ω�	 are assumed confocal (see Appendix B): 

�¤���� − ������ = �¤���� − ������ = �¤�	�� − ���	�� and �¬̃��� − �¤���� = �¬̃��� − �¤���� = �¬̃	�� −
�¤�	��

 

In the following, we apply the present model to a three-phase composite that consists of inclusions 

denoted "�" of volume fraction 4¶  surrounded by a coating denoted "¬" of volume fraction 4·, both 

embedded in the matrix denoted "¸". Thermal conductivity of local phases is described by � ¶, � · 

and � ¢. By putting:  


¶ = ¡ ¶ . �   and     
· = ¡ · . �  (82) 

Effective thermal conductivity ��   reads: 

��   = �¢ + 4¶  ��¶ − �¢�. ¡ ¶ + 4·  ��· − �¢�. ¡ · . (83) 

Through the GSC scheme, the corresponding three-phase composite inclusion is assumed 

surrounded by a HEM with thermal conductivity ��  . In this case, intensity localization tensors in 

the inclusion and the coating are obtained by solving the system of Eqs. (60) and (70): 

¡ ¶/�   = ¹� + 14¶ + 4· v4·  a·º . Δ�¶/· + 4¢ a¢» �4¶ Δ�¶/¢ + 4· Δ�·/¢ + 4·  Δ�·/¢. a·º . Δ�¶/·�w¼+�
 

¡ ·/�   = �� + a·º . Δ�¶/·�. ¡ ¶/�  . (84) 

For spherical inclusions and isotropic thermal conductivity per phase, obtained expressions of the 

effective thermal conductivity are the same as those provided by Hervé [17]. 

5. Effective thermal conductivity of a three-phase composite material  
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We consider a three-phase composite made of inclusions (� ¶) surrounded by a coating (� ·) and 

embedded in a matrix with thermal conductivity (� ¢). Let 4¶, 4· and 4� = 4¶ + 4· represent the 

volume fraction of inclusions, coating and the composite inclusion (inclusion+coating), 

respectively.  

Within GMT scheme, the three-phase composite is represented by a simply coated inclusion 

embedded in the matrix. Thus, from Eq.(73) and by putting � � = � ¢, we obtain: 

¡ ¶/¢ = ¥� + a¢Y¦ . �]� Δ�¶/¢ + ]� Δ�·/¢� + ]��� + a¢Y¦ . Δ�·/¢�. a·· . Δ�¶/·§+�
  

¡ ·/¢ = �� + a·· . Δ� ¶/·�. ¡ ¶/¢ 

(85) 

Localization of intensity are then deduced from Eqs.(67): 

¡ ¢ = ¥� + 4� ¡¶/¢ + 4·  ¡·/¢§+�
,   ¡ ¶ = ¡ ¶/¢. ¡ ¢   and   ¡ · = ¡ ·/¢. ¡ ¢ (86) 

5.1. Composite materials with spheroidal inclusions 

Inclusions are assumed spheroidal of semi-axis �� ≠ �� = �	  with aspect ratio ¾ = �	/��. Aspect 

ratios ¿ and � of composite inclusions Ω� and Ω	 are defined by ¿ = ¤	/¤� = ¤	/¤� and � =
¬	/¬� = ¬	/¬� are evaluated by solving equation (B-9) given in Appendix B. 

The thermal conductivity of local phases is assumed isotropic. The present section aims to compare 

the effective thermal conductivity as predicted by both GMT and GSC schemes. For numerical 

applications, we considered � ¶/� ¢ = 100 and � ·/� ¢ = 10. Figs 4a and 4b compare longitudinal 

and transversal effective thermal conductivity as a function of the volume fraction of inclusions, for 

¾ = 5.  

For GMT scheme, aspect ratio ¿ of the composite inclusion (simply coated inclusion) is deduced as 

detailed in Appendix B: 

�¾� − 1� �4¶4�  ¿¾��	 = ¿� − 1 (87) 
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Within GSC formulation, a doubly coated inclusion embedded in a HME is considered. In this case, 

aspect ratios ¿ and � result from following system of two equations: 

�¾� − 1� v4¶  �¾w�	 = �¿� − 1� �4�  �¿��	 ,    �¿� − 1� �4�  �¿��	 = ��� − 1� (88) 

Obtained curves as predicted by both schemes show the same trend. As expected, since � ¶/� ¢ =
100, the effective conductivity increases with the volume fraction of inclusions, whatever the ratio 

4·/4¶. Up to 4¶ = 10%, GMT and GSC schemes both predict the similar effective conductivity. But 

beyond this value of volume fraction of inclusions, the deviations between predictions of both 

models increase with 4¶. Theses deviations are more significant in the longitudinal direction than in 

transversal one. GSC model predicts higher values of effective thermal conductivity than GMT 

model.  

Comparisons of GMT and GSC predictions have been also performed in terms of the effects of the 

aspect ratio ¾ of the core (Fig. 5). For the considered prolate spheroid inclusion, the highest 

component of the effective thermal conductivity is noticed in the direction corresponding to the 

major semi-axis of the ellipsoidal inclusion. In the longitudinal direction ����  /� ¢ increases with 

the aspect ratio ¾ = �� �	⁄ . On contrary, in transverse directions, ����  /� ¢ or �		�  /� ¢ decreases 

with ¾. As expected, GMT and GSC schemes predict the same value for spherical inclusions. For 

non-spherical inclusions, as previously some deviations between GMT and GSC predictions are 

observed for both components of the effective conductivity. Effective properties as predicted by 

GSC remain superior to those issued from GMT model. It should be noted that the relevance of 

GMT predictions is limited to materials with small volume fractions of inclusions. 

5.2. Comparison with Finite Elements Methods  

For a three-phase composite material, the effective conductivity as predicted by the present model 

through a ‘3+1-phase’ model is compared with some numerical provided by finite elements 

methods (FEM) due to Ahmadi et al. [32]. Fig.6 depicts the effective thermal conductivity of a 
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three-phase material that consists of uniaxially oriented coated carbon fiber embedded in cement 

matrix. As in [32], the isotropic thermal conductivities of the fiber, interphase and cement matrix 

are taken as �¶ = 222 Ã. Ä+�. Å+�, �· = 5.3 Ã. Ä+�. Å+� and �¢ = 0.53 Ã. Ä+�. Å+�, 

respectively. The carbon fiber diameter is taken as 10 ÆÄ and the interphase thickness is equal to 

1 ÆÄ. 

Fig.6a shows that the longitudinal ETC linearly increases with the fiber volume fraction. Indeed, for 

this case of uniaxially oriented fibers, the longitudinal ETC is mainly dominated by fiber 

conductivity. In Fig.6b, transverse ETC also increases with fiber volume fraction. The slop is at first 

soft up to 30% of fiber volume fraction and gets steeper and steeper beyond this value. 

For both longitudinal and transverse ETC, the present model and FEM [32] predict similar results, 

whatever the fiber volume fraction. 

The present model’s predictions were also compared with interphase model with the FE 

homogenization method proposed by Tian et al. [33]. The considered RVE consists of aligned 

ellipsoidal inclusions, each surrounded by an interphase, both embedded in a matrix. The inclusion 

major length is 20 ÆÄ, the inclusion minor length 10 ÆÄ, the interphase thickness 50 ÇÄ. Fig.7 

presents the longitudinal and transverse ETCs of the composites with the weakly conducting (WC) 

and highly conducting (HC) interfaces, as predicted by using the interphase model with the FE 

homogenization method [33] and results of present model. For ellipsoidal inclusions with a volume 

fraction 4 = 0.3, the thermal conductivity of inclusions is transversely isotropic: �¶È =
393 Ã. Ä+�. Å+�, �¶Ê = 50 Ã. Ä+�. Å+� while the thermal conductivities of the matrix and 

interphase are isotropic: �¢ = 173 Ã. Ä+�. Å+�. For an WC interphase �· = 5 Ã. Ä+�. Å+� 

(Figs.7a and 7b) and �¢ = 2 × 10Í Ã. Ä+�. Å+� for HC interphase. Although some small 

deviations, the FEM [33] predicts similar results as the present model. These deviations are 

coherent with those as initially pointed out in [33], by comparing FEM predictions with some 

micromechanical models of imperfect interfaces. 
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5.3. Analysis of some model’s parameters 

This section aims to analysis the effects of some parameters such as the thermal conductivity of the 

interphase and its anisotropy on the predicted effective thermal conductivity. 

 

5.3.1. Influence of the thermal conductivity of the coating 

By assuming isotropic thermal conductivity per local phase, we have also analyzed the effect of the 

ratio � ·/� ¢ on the normalized effective conductivity components ����  /� ¢ and �		�  /� ¢ for three 

selected values of aspect ratio ¾ of a prolate spheroidal inclusion. Corresponding results, as 

predicted by GSC model for a three-phase composite material are depicted in Figs.8a and 8b. 

As Benveniste [34], we noticed two steps in the sigmoid curves : limiting values are obtained for 

weakly and highly conducting interphase, the plateau enclosed between these limits corresponds to 

peculiar contrast � ·/� ¢ that depends on the aspect ratio ¾. 

In the longitudinal direction, when � ·/� ¢ ≪ 1, the effect of the aspect ratio � ·/� ¢ of the inclusion 

on ����  /� ¢ is hardly noticeable. On contrary, as stated previously for � ·/� ¢ ≫ 1, the effective 

conductivity ����  /� ¢ increases with the aspect ratio ¾, from the spherical to the spheroidal shape. 

In the transverse direction, �		�  /� ¢ = ����  /� ¢, whatever � ·/� ¢ the effective conductivity 

decreases with the aspect ratio ¾. 

5.3.2. Anisotropy of thermal conductivity of the coating 

Since the developed approach is able to deal with anisotropic thermal conductivity per phase, in the 

following we analyze the effect the anisotropy of the thermal conductivity of the coating phase on 

the effective conductivity. For this purpose, we considered transverse isotropic behavior for the 

coating defined by ���· = Ð ���· = Ð �		· . Aspect ratios ¿ and � of composite inclusions Ω� and Ω	 

are evaluated from equations (B-9) in Appendix B with 4¶ = 0.3, 4· = 0.14¶ and ¾ = 5, as function 
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of the anisotropic coefficient Ð. Fig.9 depicts the longitudinal effective thermal conductivity as a 

function of the ratio �		· �¢⁄  for three values of Ð. 

We retrieve the typical sigmoid curves (Fig. 9) observed by Benveniste [34]. The anisotropy of the 

thermal behavior of the coating induces a shift of the plateau enclosing the limits of the effective 

conductivities obtained for weakly and highly conducting interphase. The plateau breadth decreases 

when the conductivity in the principal axes of the prolate increases. This phenomenon is coherent 

with the better heat transfer induced by higher conductivity. 

5.4. Composite materials with ellipsoidal mutli-coated inclusions 

The proposed model deals with arbitrary ellipsoidal morphology of multi-coated inclusions. In the 

present section, we analyze the predictions of the developed model for a three-phase composite 

material with ellipsoidal inclusions. Inclusions, composite inclusions Ω� and Ω	 have therefore 

ellipsoidal shapes. Let (¾� = ��/�	, ¾� = ��/�	), (¿� = ¤�/¤	, ¿� = ¤�/¤	 ) and (�� = ¬�/¬	, 

�� = ¬�/¬	) denote aspect ratios respectively of inclusion, Ω� and Ω	. By assuming isotropic 

thermal conductivity per local phase, confocally conditions lead to: 

�¾�� − 1� �4¶  �� ��¾� ¾���	 = �¿�� − 1� �4� �� ��¿� ¿���	 ,
�¾�� − 1� �4¶  �� �� ¾� ¾���	 = �¿�� − 1� �4�  �� ��¿� ¿���	 ,
�¿�� − 1� �4�  �� ��¿� ¿���	 = ���� − 1�, �¿�� − 1� �4�  �� ��¿� ¿���	 = ���� − 1� 

(89) 

By defining aspect ratios (¾�, ¾�), of inclusions, relations of Eq.(89) provide those of ellipsoids Ω� 

and Ω	. For numerical results, we consider: ¾� = 5, ¾� = 3, � ¶/� ¢ = 100, � ·/� ¢ = 10, 4· =
0.3 and 4· = 0.1 4¶. Fig.10 presents the evolution of the three components of the effective thermal 

conductivity as a function of � ·/� ¢, as predicted by a (3+1)-phase GSC model. 
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The effective thermal conductivity is anisotropic, mainly due to the ellipsoidal morphology of 

inclusions and composite inclusions. The highest value of effective thermal conductivity is noticed 

in the direction parallel to the major semi-axis of ellipsoids, whatever the thermal contrast � ·/� ¢ 

is. 

 

 

6. Conclusions 

The exact solution of the problem of multi-coated inclusion is obtained within the framework of 

heat transfer phenomena in the general case of anisotropic conductivity per phase and ellipsoidal 

inclusions.  

The approach is based on the Green’s function technique and leads to integral equations of the 

problem of heterogeneous material. Moreover, concepts of interior- and exterior-point Eshelby’s 

conduction tensors are introduced to express analytically average intensity in each phase of the 

composite material. Effective conductivity tensors are explicitly obtained through a Generalized 

Self-Consistent and Mori-Tanaka schemes sustaining anisotropic behavior and coated confocal 

ellipsoidal inclusions. When the thermal conductivity of each local phase is assumed isotropic, 

obtained expressions of local intensities and effective thermal conductivity are the same as exact 

results for simply or doubly coated inclusions (sphere, cylinder and ellipsoid). Moreover, for 

anisotropic thermal conductivity per phase and simply coated inclusions, local intensities as 

predicted by the present model agree with those provided by Lavrov and Yakovlev [20]. 

Furthermore, the predicted effective thermal conductivity is in accordance with results provided by 

finite elements methods, even for high volume fractions of inclusions and high contrast of thermal 

behavior between local phases. Strong influences of the aspect ratio of inclusions and interphase 

parameters (volume fraction, thermal conductivity) on the model predictions are pointed out. 
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Effects of weakly and highly conducting interphases on the effective thermal conductivity of the 

composite are also analyzed. Furthermore, obtained results bring out the significant impact of the 

anisotropy of the thermal conductivity of the interphase on the thermal transfer between phases of 

the composite. 

The present model may be applied to some transfer phenomena such as magnetic permeability, 

electrical conductivity, dielectric permittivity and diffusion.  
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Appendix A: Properties of projection operators Ñ 

The projection operator � is related to � by: 

� = �. � (A-1) 

where � is the modified Green’s tensor associated to the thermal conductivity �. Operator � is 

endowed with the following properties : 

��� = 0 ⇔ � ∗ 3.  = 0 with 3 = �+�. (A-2) 


 = −�� and � = −
�. � on ∂� ⇔ � ∗ 
 = 
 − 
�. (A-3) 

We propose to demonstrate properties (A-2) and (A-3) in the Fourier space. 

The Fourier transform ���Ò� of the Green’s function ���� is defined by: 

���Ò� = 7 ����Ó+  Ò.� 
8 ��   and   ���� = 18�	 7 ����Ó  Ò.� 

8Õ ��Ö (A.4) 

where �� = −1. Following relations hold true: 

��,|�Ò� = −� ×| ���Ò� and ��,|��Ò� = −×| ×� ���Ò�. 

In the Fourier space, (A-2) becomes: 

k�� ×� = 0 ⇔  Ñ��!ℎ!|k�| = 0 (A.5) 

• Ñ��! = Ù��Ú �Ú! = �� ×� ×Ú �Ú!  

k�� ×� = 0 ⟹ Ñ��! ℎ!|  k�| = �� ×� ×� ��!  ℎ!|  k�| = �� ×� ×� k�� = 0 

• Ñ��! ℎ!|  k�| = 0 ⟹ ��×� ×� k�� = 0 ⟹ ×� k�� = 0 

As a consequence, ��� = 0 ⇔ � ∗ 3.  = 0 

Eq.(A-3) becomes in the Fourier space: 

Ó̃| = � ×| �� and Ó̃|� = � ×| �� �    ⇔ Ñ�|� Ó̃� = Ó̃| − Ó̃|� (A.6) 

• Ó̃| = � ×| �� and Ó̃|� = � ×| �� �  ⟹  Ó̃| − Ó̃|� = �� ��!  ×� ×! �Ó̃| − Ó̃|�� = 

�� ��!  ×� ×!�� ×|���� − �� �� = �� ×| ×!  ��! �� ×����� − �� �� = Ù�|!  �!� �� ×����� − �� ��
= Ñ�|��Ó̃� − Ó̃��� 
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• Ñ�|!  Ó̃!� = 0 ⟹ Ñ�|!  Ó̃! = Ñ�|!�Ó̃! − Ó̃!�� = �� ×| ×� ��!  �� ×!���� − �� �� =
�� ��!  ×| ×��� ×!���� − �� �� = � ×|��� − �� �� = Ó̃| − Ó̃|� 

As a consequence, 
 = −�� and � = −
�. � on ∂� ⇔ � ∗ 
 = 
 − 
�. 
Appendix B: Confocal conditions for the coated ellipsoidal inclusions  

The methodology developed hereafter aims to determine the aspect ratio of the transformed 

composite inclusion Ω�Ü as function of the inclusion morphology ��  and the volume fractions 4: of 

the phase ‘P’ with thermal conductivity �:: 

4: = �:ΩE    and   Ω: = C � 
:

 F�    for.  ; ∈ =1, … , AB. (B-1) 

The volume of ellipsoidal composite inclusion Ω: is expressed as function of its semi-axes 

���: , ��: , �	:� as: 

Ω: = 4�3 ��: ��: �	: (B-2) 

Consequently, the volume of the transformed ellipsoidal composite inclusions Ω�: reads: 

Ω�: = 4�3 ���: ���: ��	: (B-2) 

Let us define the aspect ratios ¿�: and ¿�: as: 

¿�: = ��	:���:    and   ¿�: = ��	:���:    for   ; ∈ =1, … , AB. (B-3) 

The confocally conditions between the composite inclusions Ω�:+� and Ω�: are formulated as: 

���	:: �� − ����:: �� = ���	::+��� − ����::+��� 

���	:: �� − ����:: �� = ���	::+��� − ����::+��� 

with �� :: = ÝyTÞyT  and � : = «ßyTßXT . 
(B-4) 

By replacing Eqs. (B.2) and (B.3) in (B.1), the following relationships may be written: 
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Ω:+�Ω: = ∑ 4 :+� F�∑ 4 : F� = à¿�:+�¿�: á� ¿�:¿�:+� à��:+���: á	 (B-5) 

The confocally condition Eq. (B-4) between Ω:+� and Ω: becomes: 

à���::+����:: á� = ���	::���:: �� − 1
���	::+����::+��� − 1    and   à���::+����:: á� = ���	::���:: �� − 1

���	::+����::+��� − 1 (B-6) 

By replacing Eq. (B.6) into Eq. (B.5), the volume fractions 4: for for ; ∈ =1, … , AB satisfy the 

following system of non-linear equations: 

∑ 4 :+� F�∑ 4 : F� = à¿�:+�¿�: á� ¿�:¿�:+� âã
ä ���	::���:: �� − 1

���	::+����::+��� − 1åæ
ç	/�

 

∑ 4 :+� F�∑ 4 : F� = à¿�:+�¿�: á� ¿�:¿�:+� âã
ä ���	::���:: �� − 1

���	::+����::+��� − 1åæ
ç	/�

 
(B-7) 

The aspect ratio of the composite inclusion Ω:+� and the thermal behavior of the phase ‘P’ provide 

the parameters ¿�:+�, ¿�:+�. From the volume fractions 4:, one can express the aspect ratios ¿�: and 

¿�: for ; ∈ =1, … , AB as function of the ratio ∑ 4 :+� F� / ∑ 4 : F� . 
• In the case of a simply coated spheroidal inclusion (��, Ω�� defined by semi-axes ��� = �� ≠

�	 , ¤� = ¤� ≠ ¤	 ), aspect ratios are defined as ¾ = �	/�� = �	/�� and ¿ = ¤	/¤� = ¤	/¤�. ¾ 

and ¿ can be linked to the volume fraction 4�  of inclusion through the following non-linear 

equation: 

¿�è − 3 ¿�Í + à3 + �1 − ¾���	¾�Í 4��á ¿�� − 1 = 0   with   ¾� = Ð¾   and   ¿� = Ð¿. (B-8) 

where Ð = �	�/��� = �	�/���. 
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• In the case of a doubly coated spheroidal inclusion (��, Ω�, Ω	� defined by their semi-axes 

��� = �� ≠ �	 , ¤� = ¤� ≠ ¤	 ,  ¬� = ¬� ≠ ¬	 ), aspect ratios are defined as ¾ = �	/�� =
�	/��,¿ = ¤	/¤� = ¤	/¤� and � = ¬	/¬� = ¬	/¬�. Aspect ratios ¾, ¿ and � are related to 

volume fractions 4�· = 4�/�4� + 4·� and 4·¢ = 4� + 4·  = � ¤�	 ¿ ¬�	⁄  through following non-

linear equations :  

¿��è − 3 ¿��Í + à3 + �1 − ¾���	¾�Í 4�·�á ¿��� − 1 = 0   with   ¾� = Ð�¾.  and   ¿�� = Ð�¿ 

��è − 3 ��Í + ²3 + �1 − ¿�	��	
¿�	Í 4·¢�³ ��� − 1 = 0   with   �� = Ð	�   and   ¿�	 = Ð	¿ 

(B-9) 

Ð� = �	�/��� = �	�/���   and   Ð	 = �		/��	 = �		/��	.   
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Figure captions 

Fig. 1 Topology of the multi-coated inclusion. 

Fig. 2 Topology of the simply coated inclusion. 

Fig. 3 Topology of the doubly coated inclusion. 

Fig.4 Normalized effective conductivity versus volume fraction of prolate inclusions as predicted 

by GSC and GMT schemes as a function of inclusions’ volume fraction: ¾ = 5, � ¶/� ¢ = 100, 

� ·/� ¢ = 10; a-longitudinal direction (����  /� ¢), b-transverse direction (�		�  /� ¢) 

Fig. 5 Normalized effective conductivity versus volume fraction of prolate inclusions as predicted 

by GSC and GMT schemes as a function of inclusions’ aspect ratio ¾: � ¶/� ¢ = 100, � ·/� ¢ = 10, 

4¶ = 0.3 and 4· = 0.1 4¶. 
Fig. 6 Effective thermal conductivity (ETC) versus volume fractions of inclusions: (a) longitudinal 

ETC and (b) transverse ETC 

Fig. 7 Effective thermal conductivity (ETC) versus interphase’s thermal conductivity: (a) and (b) 

longitudinal and transverse ETCs of WC interphase; (c) and (d) longitudinal and transverse ETCs of 

WC interphase. 

Fig. 8: Normalized effective conductivity (GSC scheme) as a function of ratio � �/� ¢ for 3 aspect 

ratios ¾ of prolate inclusions: � ¶/� ¢ = 100, 4¶ = 0.3 and 4· = 0.1 4¶. 
Fig. 9: Normalized effective conductivity ����  /� ¢ as a function of contrast ratio �		· /� ¢ for 

prolate spheroidal inclusion: effect of anisotropy of thermal conductivity of interphase ���· /
�		· : ¾ = 5, 4¶ = 0.3, 4· = 0.1 4¶ and � ¶/� ¢ = 10 

Fig. 10: Components of normalized effective conductivity as function of ratio � ·/� ¢ for an 

ellipsoidal inclusion with aspects ratios ¾� = 5, ¾� = 3, � ¶/� ¢ = 100, 4¶ = 0.3 and 4· = 0.1 4¶. 
 




































