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Abstract 19 

Plastic is one of the major sources of pollution in modern oceans. When in seawater, toxic plasticizers 20 

(the additives incorporated in plastic polymers during manufacturing processes) typically diffuse and 21 

accumulate in sediments and in benthic and pelagic organisms’ tissues. These plastic leachates affect 22 

survival, behavior and metabolism of various marine metazoans, but little effort was placed in studying 23 

their effect on protists. In this contribution we monitored the short-term effect of polypropylene (PP) 24 

leachates at both environmentally realistic and chronic concentrations on Haynesina germanica 25 

locomotion and metabolism. We found that PP leachates has no lethal nor effects on this species activity. 26 

Taken together, these results suggest that benthic foraminifera may be more resistant than marine 27 

metazoans to plasticizers pollutants.  28 

 29 

Keywords: Benthic foraminifera, Plastic leachates, Polypropylene, Survival, Behavior, Respiration 30 

  31 



3 
 

1 Introduction 32 

Plastics are acknowledged as one of the most ubiquitous and conspicuous sources of pollution of the 33 

Anthropocene, especially in the marine environment (W. C. Li et al., 2016). Microplastics (MP) can 34 

either be small plastic particles (smaller than 5mm) released in the environment or result from the 35 

breakage and aging of macroplastics. They are now considered the most numerically abundant form of 36 

solid waste on the planet (Eriksen et al., 2014) and a potential threat to marine ecosystems globally 37 

(Galloway et al., 2017). Hence, they are widely observed from coastal waters to the deep-ocean floor 38 

and from tropical to polar regions (Barnes, 2005; Chiba et al., 2018). 39 

Microplastics are also responsible for a range of sub-lethal effects related to their pernicious role as a 40 

vector of chemical pollutants. These pollutants leaching from MP to the marine environments originate 41 

from the additives compounds (e.g. plasticizers, flame retardant, UV stabilizers, antioxidant, and 42 

antistatic molecule) incorporated in plastics during the manufacturing process to modify the plastic 43 

polymers physical properties and durability, but also from the chemical compounds already present in 44 

the water (i.e. coming from another source of pollution) which are adsorbed at the MP’s surface when 45 

aging in the environments. Plastic additives such as phthalates, bisphenol A, nonyphenols and 46 

brominated flame retardants can reach high concentrations in coastal waters (Hermabessiere et al., 2017; 47 

Sánchez-Avila et al., 2012) and accumulate in marine organisms tissues (Vered et al., 2019). This work 48 

specifically focuses on the toxicity of virgin MP leachates since they have recently been identified as 49 

one of the most critical threat related to the presence of plastics in the ocean (Hahladakis et al., 2018; 50 

Paluselli et al., 2019). The toxic effects of virgin microplastic leachates have been reported in various 51 

marine faunal taxa, such as barnacles (H.-X. Li et al., 2016), crustacean larvae (Lithner et al., 2009), 52 

gastropods (Seuront, 2018), bivalves (Ke et al., 2019) and sea urchins (Oliviero et al., 2019). Desorption 53 

of these chemicals in the surrounding environment causes a range of harmful effects on embryo 54 

development, reproduction, behavior or induce genetic aberrations (see Oehlmann et al. (2009) for a 55 

review).  56 

To date and to the best of our knowledge, there is still a critical lack of information available on effect 57 

of microplastic on protists, despite a recent urge to fill this knowledge gap (Rillig and Bonkowski, 2018). 58 

However, MP ingestion is likely to be common in protists (Setälä et al., 2014), including foraminifera 59 

(Ciacci et al., 2019), and subsequently negatively impact their metabolic activity (Ciacci et al., 2019; Su 60 

et al., 2020). Benthic foraminifera were targeted in this work due to their importance in the structure and 61 

function of benthic ecosystems (Geslin et al., 2011; Gooday et al., 1992), their ability to respond to 62 

various types of pollutant both under laboratory conditions (Denoyelle et al., 2012; Ernst et al., 2006; 63 

Nigam et al., 2009) and in situ (see Alve, 1995 for a review). Like any benthic organisms, they are 64 

directly exposed to the range of pollutants, including microplastics (Schwarz et al., 2019) which cannot 65 

be degraded by bacteria (Nauendorf et al., 2016) and therefore accumulate in coastal sediments (Galgani 66 

et al., 1996). In this context, the present study assessed the potential short-term effects of the leachates 67 

from virgin polypropylene pellets considered at both environmentally realistic and chronic 68 
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concentrations on the stress level of the benthic foraminifera Haynesina germanica. Specifically, 69 

movement behavior (Seuront, 2018) and respiration rate (Su et al., 2020) were considered as proxies of 70 

the stress level of H. germanica following an exposure to polypropylene leachates. This foraminiferal 71 

species and this plastic polymer were specifically chosen for their high abundances along the French 72 

coast of the eastern English Channel (Armynot du Châtelet et al., 2018; Francescangeli et al., 2017; 73 

Hermabessiere et al., 2019). 74 

2 Material and methods 75 

2.1 Haynesina germanica collection 76 

Surface sediment (0-1cm) from Boulogne-sur-Mer harbor mudflat (eastern English Channel, 77 

50°43'06.4"N 1°34'22.0"E) was sampled in June 2019 and stored in 100 ml polypropylene containers. 78 

Sediment was kept at ambient temperature during transportation and placed within one hour in English 79 

Channel seawater aquarium (12°C and 35 PSU) under a natural day-light cycle conditions until the 80 

experiment took place. Sediment was sieved over a 125 µm stainless-steel mesh and colored-cytoplasm 81 

Haynesina germanica were subsequently sorted. Only the active specimens (i.e. leaving a displacement 82 

track on a thin layer of sediment) were considered as living and selected for the experiment. Living 83 

individuals were transferred in artificial seawater (ASW) prepared with 35 grams of sea salt (RedSea 84 

Fish Farm, Israel) per liter of Milli-Q water (Merck Millipore, Germany) and gently cleaned with a 85 

brush to remove any surrounding particles.  86 

 87 

2.2 Experimental conditions 88 

Both behavioral experiments and metabolic measurements were conducted exposing H. germanica to 89 

artificial seawater as control and to microplastic leachates seawater. Microplastic leachates seawater 90 

was prepared from commercially available virgin polypropylene pellets (typically 3.3 to 4.7 mm in 91 

diameter; Pemmiproducts, Germany) mixed with artificial seawater at a concentration of 20 ml and 200 92 

ml of pellets per liter (hereafter respectively referred to as PP20 and PP200) and aerated for 24 h before 93 

the beginning of the experiments following the protocol developed in Seuront (2018) to monitor the 94 

effect of plastic leachates on a marine gastropod. Although not quantified in this experiment, 95 

polypropylene leachates typically contain bisphenol A, octylphenol and nonylphenol (Hermabessiere et 96 

al., 2017). 97 

 98 

2.3 Behavioral experiment 99 

For each experimental condition (i.e. control seawater and the two leachate treatments PP20 and PP200), 100 

15 living Haynesina germanica (maximum diameter range: 300-440 µm) were spread randomly on the 101 

bottom of 15-cm wide glass-Petri dishes filled with ASW, PP20 or PP200 (Figure 1). Petri dishes were 102 

placed in a light and temperature-controlled incubator (MIR-154, Panasonic, Japan) set at 12°C. The 103 

movements of H. germanica were recorded every 10 minutes using a digital camera (V1 with a 10-30 104 
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mm lens, Nikon, Japan) under homogenous dim light conditions (photosynthetically active radiation 105 

<100 µmol photon m-² s-1; SA-190 quantum sensor, LI-COR, USA) provided by a horizontal array of 106 

LEDs (YN-160 III, Yongnuo, China). Each experiment lasted 10 hours.  107 

Images were compiled in the open-source image analysis software Fiji (Schindelin et al., 2012) and (x,y) 108 

coordinates were measured for each individual H. germanica using the Manual Tracking plugin (Figure 109 

1). The distance travelled (Dt) by each individual between two images was calculated as: Dt = √ [(xt - 110 

xt+1)2 + (yt - yt+10)2] where (xt, yt) and (xt+10, yt+10) are the coordinates between two successive images 111 

taken at 10-minute intervals. The total distance travelled in 10 hours was calculated from the sum of all 112 

Dt and subsequently converted to locomotion speed (mm h-1). These behavioral parameters were 113 

measured using trajr package (McLean and Skowron Volponi, 2018) in R v.3.5.3 (R Core Team, 2019). 114 

Trajectories complexity was assessed using fractal analysis. The fractal dimensions of foraminifera 115 

trajectories were estimated following the box dimension method (Seuront, 2015, 2010).  116 

 117 

2.4 Respiration measurements 118 

Five H. germanica specimens were randomly selected from the individuals used in behavioral 119 

experiments and transferred from the Petri dish to a 1-mm wide glass microtube containing the three 120 

tested seawater (ASW for control and PP20 and PP200 to test the effect of polypropylene leachates). 121 

Steady-state oxygen consumption gradient (dC/dz, in pmol cm-4) in the millimeter above the organisms 122 

were measured using a 50-µm Clark-type oxygen microelectrode (Unisense, Denmark). Oxygen fluxes 123 

(J, pmol cm-1 s-1) in the microtube were calculated using Fick’s first law of free diffusion as J = D´dC/dz 124 

(Li and Gregory, 1974) with D being the free diffusion coefficient for oxygen (D = 1.6 10-5 cm2 s-1 at 125 

12°C and 35PSU). Individual respiration rate (R, pmol ind-1 day-1) was then calculated as R = J´S/n 126 

(considering the microtube inner section S = 7.9 10-3 cm2 and the number of individuals n = 5). Note 127 

that our measurements were conducted on groups of 5 individuals both to take into account the low 128 

individual respiration rate of benthic foraminifera and to overpass the sensor detection limit (Geslin et 129 

al., 2011). Respiration rate measurements were replicated 6 times in control seawater and triplicated in 130 

both P20 and PP200 leachate treatments. Since respiration is influenced by individual size, specimens 131 

were measured to normalize the respiration rates by the foraminiferal biovolume (8.106 µm3 in average; 132 

estimated following Geslin et al., 2011). All respiration measurements were carried out in the dark in a 133 

12°C temperature-controlled water bath (Huber CC-K12, Germany).  134 

 135 

2.5 Data analysis 136 

Due to our small size samples, the effect of the 3 experimental conditions on movement speed, fractal 137 

dimension and foraminiferal respiration rate was tested using Kruskal-Wallis test (Hollander and Wolfe, 138 

1999) in R v.3.5.3 (R Core Team, 2019). 139 

 140 
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3 Results 141 

Image analysis show that 100% of the individuals tested were moving throughout the experiments and 142 

were still alive after being exposed to PP20 and PP200 for 10 hours. Haynesina germanica moved over 143 

distances ranging from 7 to 32 mm, at locomotion speed ranging from 0.7 to 3.2 mm h-1, 1.6 to 2.8 mm 144 

h-1 and 1.1 to 3.1 mm h-1 for ASW, PP20 and PP200 respectively (Figure 1A). All the trajectories 145 

considered in this work were significantly described in terms of fractal dimensions that ranged between 146 

1.02 and 1.13 with average values of 1.07, 1.06 and 1.06 in ASW, PP20 and PP200 respectively (Figure 147 

1B). Finally, respiration rate ranged from 41 to 114 10-6 pmol µm-3 day-1 in the ASW control, from 66 148 

to 164 10-6 pmol µm-3 day-1 in PP20 and from 84 to 98 10-6 pmol µm-3 day-1 in PP200 (Figure 1C). 149 

Neither locomotion speed, fractal dimensions nor respiration rates exhibited any significant differences 150 

between the three experimental conditions (Kruskall-Wallis-test: p>0.05; Table 1). 151 

 152 

4 Discussion 153 

The additives leaching from polypropylene (i.e. essentially antioxidant additives such as bisphenol A, 154 

octylphenol and nonylphenol; Hermabessiere et al., 2017) have lethal effects on mollusks (Oehlmann et 155 

al., 2000), barnacle larvae (H.-X. Li et al., 2016), amphibians (Hogan et al., 2006), annelids and 156 

crustaceans (Staples et al., 2016). In contrast, the present work showed a lack of any lethal effect on 157 

Haynesina germanica of PP leachates. 158 

Similarly, no sublethal effect were perceptible through H. germanica locomotion and metabolism. 159 

Specifically, locomotion speed was nearly 2-fold lower than those reported previously on the same 160 

species (here ~2 mm h-1 vs. ~4 mm h-1 in Seuront and Bouchet, 2015) probably due to the lower 161 

experimental temperature (12°C here vs. 22°C in Seuront and Bouchet, 2015) since decreasing 162 

temperature is known to reduce foraminiferal activity (Bradshaw, 1961). Our results nevertheless clearly 163 

indicated that PP leachates did not affect foraminiferal behavior (Figure 1A, B). This is consistent with 164 

the observed lack of behavioral impairment in the intertidal gastropod Littorina littorea; as PP20 165 

leachates impaired their chemosensory ability without impacting their neuromuscular abilities (Seuront, 166 

2018). In turn, our results contrast with previous evidence that PP-plasticizers reduce fish larvae velocity 167 

in the first days after hatching (Inagaki et al., 2016; Wang et al., 2013) and negatively impact adult-fish 168 

locomotion and reproductive behavior after at least 2 months of exposure (Gray et al., 1999; Xia et al., 169 

2010). Note that the apparent discrepancy observed between the aforementioned studies and our 170 

experiment might be due to differences in exposure duration as reported in Table 2.  171 

Plasticizers have previously been reported to lead to an immediate increase followed by a decrease in 172 

respiration rates with rising phenols concentration in mollusks (Levine and Cheney, 2000). They can 173 

also induce energetical impairments in crustaceans anaerobic metabolism in less than 2 days (Nagato et 174 

al., 2016). In contrast, we did not find any significant effects of PP leachates on foraminiferal respiration, 175 

even under very high leachates concentrations, i.e. PP200 (Figure 1C). To the best of our knowledge, 176 

the only other study that investigated the effect of PP leachates on a unicellular organism found a 177 
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decrease in dinoflagellate photosynthesis (M’Rabet et al., 2018) after 1 day of exposure, in accordance 178 

with the reduced growth and oxygen production observed in the marine cyanobacteria Prochlorococcus 179 

following a 24h-long exposure to leachates of common plastic items (i.e. HDPE shopping bags and PVC 180 

matting; Tetu et al., 2019). Note that, conversely to M’Rabet et al. (2018) who specifically worked with 181 

bisphenol A (Table 2), we did not have any control on the composition of the PP leachates. This is a 182 

clear limitation of our study that will need to be improved in future works. 183 

Overall, both the behavioral and metabolic activity data gathered in this preliminary study indicate that 184 

the benthic foraminifera Haynesina germanica do not respond to MP unlike other unicellular and 185 

metazoan organisms. Though this is highly speculative, this observation may suggest that their 186 

resistance to leachates from virgin PP might induce a competitive advantage for benthic foraminifera. 187 

Such a competitive advantage for foraminifera has previously been observed in relation to some 188 

anthropo-natural phenomena such as organic-matter enrichment and anoxia (Langlet et al., 2013; 189 

Stachowitsch, 2014). Note, however, that the observed lack of effect of MP on foraminiferal activity 190 

may also be due to the relatively short-term exposure used in our experiments. More fundamentally, the 191 

diversity of methods reported in the literature related to the type of polymer considered, the use of 192 

unidentified leachates or a specific plasticizer, the pollutant concentrations, the duration of exposure as 193 

well as the biology of the organisms considered (Table 2) dramatically prevent to reach a general 194 

consensus when comparing the effect of MP on foraminifera with other organisms in our study. In this 195 

context, future experiments aiming to assess the effects of MP leachates on benthic foraminifera should 196 

benefit from (i) being more specific about the acute or chronic nature of their exposure, and (ii) 197 

identifying and quantifying the plasticizers used or present in the leachates. Finally, further work is also 198 

needed to assess the potential effects of leachates from (i) weathered PP in particular as they have shown 199 

to have significantly stronger effects that virgin plastics (Bejgarn et al., 2015; Gandara e Silva et al., 200 

2016; Kedzierski et al., 2018; Nobre et al., 2015; Seuront, 2018), (ii) different plastic polymers (H.-X. 201 

Li et al., 2016; Lithner et al., 2012, 2009; Tetu et al., 2019) and (iii) ingested plastic particles (Ciacci et 202 

al., 2019).  203 

 204 
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 394 

 395 

Figure 1 caption: A and B: schematic representation of the experimental setup with lateral view 396 
(A) and top view (B) of the position of the foraminifera (black ovoid shape) placed on the petri-397 
dish. C: photograph of the initial position of the 15 individuals used in ASW control conditions. 398 
D: example of 3 extracted trajectories for ASW (full black line), PP20 (full grey line) and PP200 399 
(dotted grey line). 400 
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Figure 2: Locomotion speed (A), fractal dimension (B) and respiration rate (C) of Haynesina germanica 402 
under the three experimental conditions (ASW: artificial seawater, i.e. control conditions; PP20 and 403 
PP200: seawater prepared with 20 and 200 ml l-1 polypropylene pellets, respectively). The box 404 
represents the first, second and third quartiles and the whiskers extend to 1.5 times the interquartile 405 
range. Values outside of this range are represented by open circles. 406 

 407 

 408 

 409 

Table 1 caption: results of the Kruskal-Wallis statistical analyses testing the effect of the 410 
experimental conditions (ASW as a control, PP20 and PP200) on the three measured response 411 
variables. 412 

 413 

Response variable Kruskal-Wallis Χ² degrees of freedom p-value
Locomotion speed 1.6 2 0.44
Fractal dimension 3.9 2 0.14
Respiration rate 1.3 2 0.52
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Table 2 caption: organisms, response observed, type of pollutant, concentration, equivalent concentration in the present study and exposure duration 414 
tested in the literature cited in this article’s discussion. 415 

 416 

 417 

 418 

Reference Organisms Response observed Pollutant type Pollutant concentration This study's equivalent Exposure duration
Oehlmann et al. 2000 Mollusks Mortality Bisphenol A 1µg/L 5 months

Mortality Octylphenol 1µg/L 5 months
Li et al. 2016 Barnacle larvae 10% mortality PP leachate 0.1 m²/L PP200 ~ 0.17m²/L 1 day
Hogan et al. 2006 Amphibians 50% mortality Octylphenol 1.4 µmol/L 2 weeks
Staples et al. 2016 Crustaceans Mortality Bisphenol A 78 mg/kg sedim dry weight 1 month

Annelids Mortality Bisphenol A 60 mg/kg sedim dry weight 1 month
Seuront 2018 Gastropods Behavior PP leachate 20mL/L PP20 = 20mL/L 3 hours
Inagaki et al. 2016 Fish larvae Locomotion Bisphenol A 200ng/mL 20 days
Wang et al. 2013 Fish larvae Locomotion Bisphenol A 15µmol/L 2 days
Gray et al. 1999 Adult fish Reproductive behavior Octylphenol 25µg/L 3 months
Xia et al. 2010 Adult fish Locomotion Nonylphenol 100µg/L 2 months
Levine and Cheney 2000 Mollusks Respiration Nonylphenol 10µmol/L 1 hour
Nagato et al. 2016 Crustaceans Anaerobic metabolism Bisphenol A 0.1mg/L 2 days
M'Rabet et al. 2018 Dinoflagellate Respiration and photosynthesis Bisphenol A 2µg/L 1 day
Tetu et al. 2019 Cyanobacteria Photosynthesis PVC leachate 1g/L PP20 ~ 10g/L 3 hours


