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Pd-Catalyzed Directed Thiocyanation Reaction by C@H Bond
Activation

M8lissa Gao+, Mu-Yi Chen+, Xavier Pannecoucke, Philippe Jubault, and Tatiana Besset*[a]

Abstract: The Pd-catalyzed directed thiocyanation reac-

tion of arenes and heteroarenes by C@H bond activation
was achieved. In the presence of an electrophilic SCN

source, this original methodology offered an efficient tool
to access a panel of functionalized thiocyanated com-

pounds (21 examples, up to 78% yield). Post-functionaliza-

tion reactions further demonstrated the synthetic utility of
the approach by converting the SCN-containing molecules

into value-added scaffolds.

Over the years, the direct functionalization of a simple C@H
bond by transition metal catalysis became an efficient and piv-
otal tool in organic chemistry, answering to the increasing

demand for more sustainable chemical transformations.[1]

Indeed, an array of methodologies was developed to build up

a C@N, C@O, C@X or C@C bond. However, less attention was
paid to the formation of the C@S bond by transition metal cat-
alyzed C@H bond activation[2] as sulfur poisoning of the transi-

tion metal might be a problem to circumvent.[3] Nevertheless,
key advances were made by several research groups using
Pd-, Rh-, Ru-, Cu-, Co-, and Ni-catalysts, among others
(Scheme 1).[2, 4] These major contributions brought synthetic

solutions for making C@S bonds generally using di(hetero)aryl
disulfides as coupling partners. In sharp contrast, the directed

thiocyanation reaction by transition metal catalysis is still elu-

sive, and the existing methods are based on the functionaliza-
tion of innate positions. Convinced about the key role of orga-

nothiocyanate compounds,[5a,b] for agrochemicals and medici-
nal chemistry along with the synthetic utility of the SCN resi-

due as a linchpin[6] to access a large variety of sulfur-containing

molecules,[5] we thought that the development of a new tool

for the direct introduction of a SCN moiety by transition metal
catalyzed C@H bond activation is of prime importance and

constitutes today a challenge.
To this end, in course of our research program dedicated to

the development of new methodologies to build up C@S
bonds by transition metal catalyzed C@H bond activation,[7] we

report herein an unprecedented directed Pd-catalyzed thiocya-

nation reaction by C@H bond activation.
At the outset of this study, the 2-phenylpyridine was select-

ed as the model substrate (Table 1). Pleasingly, in the presence
of N-(thiocyanato)phthalimide as the electrophilic SCN source

and using a catalytic amount of PdCl2, the mono-thiocyanation
of 1a occurred, affording the product 2a in 67% yield (Table 1,

entry 1). Then, several parameters were investigated to further
improve the efficiency of the transformation. First, different
catalysts were tested (Table 1, entries 2–5) and PdCl2 turned

out to be the best one. It must be noted that when the cata-
lyst loading was decreased (Table 1, entry 6), a significant drop

of the yield was observed (37% vs. 67%). The replacement of
DMF by other solvents did not improve the reactivity (Table 1,

entries 7–10) and the temperature as well as the time turned

out to be key parameters in this transformation (Table 1, en-
tries 11–14). When other electrophilic SCN sources (II–IV) were
evaluated, no better result was obtained (Table 1, entries 15–
17). Finally, the presence of additives (AcOH or CsOPiv) was

not beneficial to the outcome of the reaction (Table 1, en-
tries 18 and 19). Importantly, a control experiment was per-

Scheme 1. State of the art on transition metal catalyzed directed C@S bond
formation by C(sp2)@H bond activation and the present work.
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formed without catalyst (Table 1, entry 20) and no product was
observed, which confirmed the importance of the PdII catalyst

in that transformation.
With the optimized reaction conditions in hand, a series of

2-phenylpyridine derivatives was evaluated (Scheme 2). The
thiocyanation of the 2-phenylpyridine 1a provided selectively

an access to the mono-functionalized product 2a in 63% yield
and the reaction was easily scaled up on a gram scale, afford-
ing 2a in 40% yield. When the naphthalene derivative 1b was

used, the expected product 2b was obtained in 53% yield
and its structure was further confirmed by X-ray analysis

(CCDC 1993683).[8]

2-Aryl-pyridines with various electron-donating and electron-

withdrawing substituents at the para position were thiocyanat-

ed (2c–2 j). When arenes bearing a substituent at the meta po-
sition (2k–2n) were tested, the selective functionalization oc-

curred at the less sterically hindered position.[9] In the case of
1n, we were able to decrease the catalyst loading to 15 mol%

without alteration of the efficiency of the catalytic system as
the product 2n was obtained in a similar yield (43% yield).

Even ortho- (1o) and ortho, meta-disubstituted (1p) derivatives
were suitable substrates. It must be noted that the transforma-
tion was tolerant to halogens (2 f–2h, 2p) and fluorinated

groups (2h–2 j), although no reaction was observed with com-
pounds bearing more sensitive functional groups such as alco-

hol, amine, nitrile.[9] Pleasingly, when an heteroaromatic sub-
strate namely the 2-(2-thienyl)pyridine was reacted, the meth-
odology furnished the corresponding product 2q in 41% yield.

A control experiment was conducted in the absence of Pd-cat-
alyst using 1p and 1q as starting materials and no product

was observed, which allowed us to rule out a Friedel–Crafts
type reaction. Finally, when substrates bearing a pyrimidine or

a pyrazole as directing groups were used, the expected pro-

ducts 2r and 2s were obtained in lower yields (44% and 28%
yields, respectively).[10]

We were pleased to see that our methodology was also ap-
plied to the thiocyanation of the N-pyrimidine carbazole 3 and

the benzo[h]quinoline 5, offering an access to the correspond-
ing products 4 and 6 in 33% and 78% yields, respectively

Table 1. Optimization studies for the thiocyanation of the 2-phenylpyridine
1a.[a]

Entry Catalyst Solvent SCN source Yield [%]

1 PdCl2 DMF I 67
2 PdBr2 DMF I 18
3 Pd(OAc)2 DMF I 21
4 Pd(MeCN)2Cl2 DMF I 36
5 Pd(PPh3)4 DMF I NR
6 [b] PdCl2 DMF I 37
7 PdCl2 DMSO I NR
8 PdCl2 DCE I 46
9 PdCl2 toluene I 27
10 PdCl2 1,4-dioxane I 28
11 [c] PdCl2 DMF I 28
12 [d] PdCl2 DMF I 20
13 [e] PdCl2 DMF I 49
14 [f] PdCl2 DMF I 32
15 PdCl2 DMF II NR
16 PdCl2 DMF III traces
17 PdCl2 DMF IV NR
18[g] PdCl2 DMF I 57
19[h] PdCl2 DMF I NR
20 – DMF I NR

[a] Reaction conditions: 1a (0.2 mmol, 1 equiv), reagent I (2 equiv), catalyst
(20 mol%), in solvent (0.1m) at 100 8C for 16 h under argon. Isolated yields
were given. [b] PdCl2 (10 mol%). [c] 120 8C. [d] 80 8C. [e] 8 h. [f] 24 h.
[g] AcOH (1 equiv) was used. [h] CsOPiv (1 equiv) was used. NR=No Reac-
tion.

Scheme 2. Scope of the Pd-catalyzed thiocyanation reaction of 2-phenylpyri-
dine derivatives. Reaction conditions: 1 (0.3 mmol), I (2 equiv), PdCl2
(20 mol%), DMF (0.1m), 100 8C, 16 h, Ar. Isolated yields were provided.
[a] Reaction was run on 0.2 mmol scale. [b] Reaction was run on a gram
scale. [c] The product was obtained with an inseparable impurity. [d] PdCl2
(15 mol%), I (1.55 equiv). [e] No reaction occurred in the absence of PdCl2.
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(Scheme 3). To further demonstrate the synthetic utility of the
organothiocyanate compounds,[5] the SCN residue was easily

converted into high value-added groups (Scheme 4).[9] The tet-
razole 7 was synthesized by reacting 2a with NaN3 via a [3++2]-

cycloaddition reaction.[11] Then, the trifluoromethylthiolation of
the derivative 2c was carried out using the conditions de-

scribed by Gooben,[12] leading to the corresponding product 8
in 43% yield.

Based on the literature data,[4d] the following mechanism
was suggested (Scheme 5). The metallacycle formation (inter-
mediate A) followed by an oxidative addition with the reagent
I, would provide the PdIV intermediate B. Finally, a final reduc-

tive elimination would afford the expected product 2a and re-
generate the catalyst.

In summary, the regioselective Pd-catalyzed directed mono-
thiocyanation of 2-phenylpyridine and heteroarene derivatives

by C@H bond activation was developed. With this innovative
methodology, a panel of aromatic derivatives was functional-

ized in moderate to good yields (21 examples, up to 78%
yield). Finally, the introduction of the thiocyanate group as a

“synthetic transformable handle” reinforced the synthetic utility

of the depicted method as it opened several possibilities to-
wards a large variety of high value-added compounds. To this

end, post-functionalization reactions were smoothly achieved.
We believe that this original approach to build up C@SCN
bond by C@H bond activation will be useful for the organic
chemistry community and will open new avenues towards fur-
ther investigations regarding the potential of the SCN group.
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