
HAL Id: hal-03004548
https://hal.science/hal-03004548v1

Submitted on 5 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hedgehog: Understandable Scheduler-Free
Heterogeneous Asynchronous Multithreaded Data-Flow

Graphs
Alexandre Bardakoff, Bruno Bachelet, Timothy Blattner, Walid Keyrouz,

Gerson C. Kroiz, Loïc Yon

To cite this version:
Alexandre Bardakoff, Bruno Bachelet, Timothy Blattner, Walid Keyrouz, Gerson C. Kroiz, et al..
Hedgehog: Understandable Scheduler-Free Heterogeneous Asynchronous Multithreaded Data-Flow
Graphs. IEEE/ACM 3rd Annual Parallel Applications Workshop: Alternatives To MPI+X (PAW-
ATM), Nov 2020, Atlanta, United States. pp.1-15, �10.1109/PAWATM51920.2020.00006�. �hal-
03004548�

https://hal.science/hal-03004548v1
https://hal.archives-ouvertes.fr


Hedgehog: Understandable Scheduler-Free Heterogeneous

Asynchronous Multithreaded Data-Flow Graphs

Alexandre Bardakoff1,2, Bruno Bachelet2, Timothy Blattner1, Walid Keyrouz1,
Gerson C. Kroiz4, and Löıc Yon3

1National Institute of Standards & Technology, Gaithersburg, MD 20899-8970,
email: first.last@nist.gov

2Université Clermont Auvergne, CNRS, LIMOS, F-63000 Clermont-Ferrand,
France, email: first.last@uca.fr

3ISIMA, CNRS, LIMOS, F-63000 Clermont-Ferrand, France, email:
first.last@isima.fr

4Department of Mathematics and Statistics, University of Maryland, Baltimore
County, Baltimore, MD 21250, USA

Abstract

Getting performance on high-end heterogeneous nodes is challenging. This is due to the
large semantic gap between a computation’s specification—possibly mathematical formulas
or an abstract sequential algorithm—and its parallel implementation; this gap obscures the
program’s parallel structures and how it gains or loses performance. We present Hedgehog, a
library aimed at coarse-grain parallelism. It explicitly embeds a data-flow graph in a program
and uses this graph at runtime to drive the program’s execution so it takes advantage of hard-
ware parallelism (multicore CPUs and multiple accelerators). Hedgehog has asynchronicity
built in. It statically binds individual threads to graph nodes, which are ready to fire when
any of their inputs are available. This allows Hedgehog to avoid using a global scheduler
and the loss of performance associated with global synchronizations and managing of thread
pools. Hedgehog provides a separation of concerns and distinguishes between compute and
state maintenance tasks. Its API reflects this separation and allows a developer to gain a
better understanding of performance when executing the graph. Hedgehog is implemented as
a C++ 17 headers-only library. One feature of the framework is its low overhead; it transfers
control of data between two nodes in ≈ 1 µs. This low overhead combines with Hedgehog’s
API to provide essentially cost-free profiling of the graph, thereby enabling experimentation
for performance, which enhances a developer’s insight into a program’s performance.

Hedgehog’s asynchronous data-flow graph supports a data streaming programming model
both within and between graphs. We demonstrate the effectiveness of this approach by high-
lighting the performance of streaming implementations of two numerical linear algebra rou-
tines, which are comparable to existing libraries: matrix multiplication achieves >95% of the
theoretical peak of 4 GPUs; LU decomposition with partial pivoting starts streaming partial
final result blocks 40× earlier than waiting for the full result. The relative ease and under-
standability of obtaining performance with Hedgehog promises to enable non-specialists to
target performance on high-end single nodes.

1 Introduction

Parallel programs are increasing in complexity as they target massively parallel platforms (e.g.,
2 × 64 or more CPU cores and multiple GPUs). Obtaining performance on such platforms is
challenging because of the large semantic gap between a computation’s specification and its imple-
mentation. The specification is often as simple as a set of mathematical formulas or an abstract
sequential algorithm. By contrast, a parallel implementation must address several coupled issues
beyond what a sequential implementation addresses: concurrent computations, multiple memory

1



resources, race conditions and deadlocks, and data motion costs. One approach to bridge this
gap is to use a framework that simplifies application development and, equally important, exposes
abstractions that address parallelism and performance as first-class concerns. Furthermore, these
abstractions should represent parallel constructs and make it easier to instrument and reason about
an application’s performance thereby allowing developers to gain deeper insight.

This paper presents Hedgehog, a general-purpose performance-oriented library aimed at coarse-
grain parallelism on single high-end heterogeneous compute nodes. A Hedgehog program contains
an explicit representation of a static data-flow graph. The graph executes in a pure asynchronous
data-driven mode without a global scheduler and statically binds threads to persistent tasks in
the graph. Hedgehog provides a separation of concerns and distinguishes between compute tasks
(i.e., compute-bound kernels) and state manager tasks. State managers represent and manage
local states between the compute tasks that they connect to. Hedgehog also provides a memory
manager tool to control the use of memory resources within a task.

Hedgehog transfers control of data efficiently between two tasks (≈ 1 µs). Its explicit data-flow
representation and the graph’s cost-free profiling allow the developer to quickly identify how the
overall computation is carried out. In addition, it encourages a developer to experiment with the
data-flow graph itself and with how to customize the degree of parallelism of compute tasks.

The rest of this paper is organized as follows. Section 2 presents solution requirements. Sec-
tion 3 reviews existing approaches and frameworks. Section 4 discusses Hedgehog and provides
a high-level view of its implementation. Section 5 examines two linear algebra examples using
Hedgehog and highlights obtained performances. Section 6 concludes and Section 7 outlines future
work.

2 Solution Approach

Developing an application to scale on a high-end heterogeneous node is challenging. These nodes
have a high degree of hardware parallelism with high core-count CPUs (currently 2× 64-core CPUs,
128-core CPUs soon), multiple accelerators and GPUs (up to 4 or 8 per node), and multi-instance
GPUs (7× per Nvidia A100 GPU). Furthermore, these nodes have become commodity and, as
such, are now accessible to a broad community that is much disconnected from the traditional
HPC community and lacks its deep knowledge, which is needed to take advantage of these nodes.
An enabling solution for this nascent HPC community should compose optimized compute kernels
and efficient data transfers between memory domains (CPU and GPU), express the locality of data,
overlap data motion and computations, and fully utilize available hardware. Equally important,
this solution should have an explicit and understandable program and execution model that is
accessible to both expert and non-expert developers so they can improve their code’s performance.
This model will allow developers to operate at higher levels of abstractions and will also make it
easier for them to adapt their software designs to future architectures as hardware evolves.

Existing approaches can exploit the compute power available in high-end nodes, but do so with
an implicit execution model that requires the use of external profiling tools to reveal the impact
of software design decisions on performance. This makes it challenging for developers to reason
about optimization strategies. Furthermore, these external tools may have substantial overhead;
this may make it even more challenging for developers to pinpoint performance bottlenecks.

Our solution, Hedgehog, is based on a static and explicit data-flow graph that operates without a
global scheduler and is aimed at coarse-grain parallelism. The execution model obtains performance
via data pipelining strategies, which works best with streaming data. Using this approach, the
developer can effectively overlap data motion and computations to keep the hardware busy. The
model is accompanied by tools that assist with memory management to express data locality
in multiple memory domains (CPU and GPUs), thereby addressing memory constraints on a
heterogeneous node. We use the explicit representation throughout the execution and profiling
of the program; this leads to cost-free visual feedback. The representation and feedback make it
easier to reason about the graph’s execution and encourage the developer to experiment with the
graph so as to optimize its performance. This experimentation can lead to quickly identifying the

2



performance critical path in an implementation’s graph. We designate this approach as portable
designs for performance because the underlying data-flow graph can be easily tuned to different
high-end nodes. These decisions can be analyzed in conjunction with the graph profiling to identify
optimal configurations. This iterative optimization approach also applies to improving tasks to
take better advantage of hardware, also called experimentation for performance.

3 Background/State of the Art

Multiple models exist for developing parallel applications that maximize the utilization of available
hardware and can target future heterogeneous nodes. The three most commonly used approaches
are parallel libraries, language extensions, and task-based libraries.

Parallelized libraries, such as OpenBLAS [22], OpenCV [6], or FFTW [8], implement parallelism
within each function call and effectively establish a synchronization barrier at the end of each
function invocation in the parallelized library. Hedgehog encourages the use of parallelized libraries
in single-threaded mode within its tasks for their optimized implementations that use hardware
vector instructions for example.

Directive-based approaches, such as OpenMP [18], OpenACC [10], and OmpSs-2 [16] use mostly
pragmas or codelets. These approaches focus on using loop parallelism to obtain performance.
They offer many options to customize the pragmas, which can become very complex when handling
loops with multiple dependencies and synchronization points. Therefore, to be used correctly, they
often require power users with a deep understanding of the hardware and have knowledge about
such parallel programming techniques. The data-flow model is capable of fully utilizing a high-end
node by orchestrating coarse-grain task parallelism. It also allows an end-user to invoke parallel
directive-based kernels from existing libraries in a task.

Task-based approaches exist under numerous forms with different properties. The majority of
task-based libraries operate with two prevalent traits: (1) the graph’s representation as a DAG
(Directed Acyclic Graph) and (2) the usage of a pool of threads. The programmer describes the
DAG by specifying dependencies between tasks, which task is applicable to either a processor,
co-processor, or both. Efficiently binding these tasks to threads in the thread pool, which also
selects either the processor or co-processor as the compute resource, is non-trivial. There is no
perfect dynamic matching algorithm, which is considered a NP-complete problem, but optimizers
can be used to improve the matching. Furthermore, to speed up the overall computation, many
task-based approaches add work-stealing or work-balancing techniques at the cost of increasing
overhead. These steps define how the library intrinsically works, and are hidden from the algorithm
developer in the interest of simplifying parallel programming.

Existing task-based libraries, such as HPX [11], Legion [2], StarPU [1] or Charm++ [12], target
performance at any scale from fine-grained parallelism to distributed parallel computing. HPX
uses an API compatible with the C++ 14 standard and is based on message-driven computations
and asynchronous calls. Legion bases its computation representation on the decomposition of its
data. The logical regions express locality and dependence of program data and tasks that act on
the logical regions. StarPU uses a codelet approach. Charm++ is a message-driven library that
depends on asynchronous calls. Hedgehog focuses on maximizing hardware utilization on a single
node, while maintaining low latency, from 1 µs to 10 µs for a large variety of tasks. Tasks are
represented as C++ classes that embed useful information for the computation (class attributes,
static variables, usage of input/output streams) as opposed to using codelets.

Specialized libraries, such as Uintah [15], Kokkos [4], or Halide [19], have been developed with key
design decisions for specific application classes. Uintah is based on adaptive mesh refinement with
a runtime system aimed at solving partial differential equations in large scale simulations. Kokkos,
a library used for manycore parallelism on clusters with MPI, targets HPC applications. It also
comes with a co-library, kokkos-kernel, specialized for linear algebra. Halide, a language embedded
in C++, targets image processing algorithms. Hedgehog has no specialization, but benefits most
from an effective coarse-grained data decomposition that feeds sufficient data into the data-flow
graph.

3



Intel Threading Building Blocks [14] is a template library for parallel programming. It proposes an
algorithm as skeletons along with parallel containers to achieve performance on general algorithms.
An algorithm is automatically represented internally as a graph with the library in charge of
managing the algorithm’s graph from creation to tear-down with work stealing for load-balancing
on the node. Hedgehog uses an explicit graph to construct the algorithm and maintains it during
execution. No scheduling or balancing are used because Hedgehog relies only on its data-flow
representation.

Hedgehog evolved from HTGS [3]; they are a part of task-based approach with some major dif-
ferences explained in Section 4. Hedgehog is at least as efficient as HTGS, according to a study
conducted in Section 5.1. There is no loss of features; instead some features have been added such
as multiple inputs, broadcast, and an internal re-architecture transforming the HTGS Bookkeeper
into the State Manager.

4 Hedgehog

Hedgehog is a software infrastructure that presents an algorithm at a high level of abstraction
and helps developers reason about their applications. The library is header-only and implemented
using the C++ 17 standard, and requires no other external dependencies.

Algorithms are formulated into a data-flow graph using the Hedgehog library. Nodes in the graph
are persistent entities that accept and produce data. Edges connect nodes using queues that store
data.

Nodes in Hedgehog have been designed for non-overlapping usage to achieve a separation of con-
cerns. A task is a node that carries out computations, where each task is statically bound to a
thread. The state manager is a specialized task that embeds a shareable thread-safe state object
to locally manage and do synchronization on the computation flow. This separation of concerns is
a cornerstone of Hedgehog’s design and facilitates the programmability of the library. The nodes
and edges operate without any added scheduler and, alongside the threads attached to each task,
formulate an asynchronous data pipeline, which allows Hedgehog to overlap computation, data mo-
tion, and I/O. It leverages streaming execution using data decomposition to maximize the system
utilization.

The graph is also a node and can be embedded in another graph; this structure enables composition
and code sharing. The Hedgehog graph is static so there is no back-end reorganization or expansion
of the graph.

To present Hedgehog and its model, we first present the data-flow model in Section 4.1, with the
different kinds of nodes in Section 4.2 and their interfaces in Section 4.3. Section 4.4 uncovers
our threading model and how the computation is conducted without a scheduler. Section 4.5
and Section 4.6 reveal tools embedded in Hedgehog such as the memory manager, and our cost-
free visual feedback. Section 4.7 exposes how Hedgehog enforces type compatibility with C++

metaprogramming techniques.

To illustrate the various components of the Hedgehog library, we present a CPU-based implementa-
tion of matrix multiplication. In Section 5, we present the results of a variant of this implementation
that targets multi-GPU nodes to showcase the performance and low overhead of Hedgehog’s oper-
ation. To be clear, Hedgehog is a general purpose library; its programming model has been used
in a variety of applications such as image processing and signal processing.

In this example of matrix multiplication, we will create a BLAS-like routine, similar to GEneral
Matrix Multiplication (GEMM ), C = A × B + C with matrices An×m, Bm×p, and Cn×p. These
matrices are decomposed into blocks: C is decomposed into N × P blocks along the rows and
columns of the matrix, respectively. In order to access a block at row r and column c we use the
notation Cr,c. The computation is achieved by iterating for each block in C, Cr,c =

∑M
i=1(Ar,i ×

Bi,c), where M is the number of blocks along the shared dimension. This example as well as others
are available on github [9]. These tutorials demonstrate the API.

4



4.1 Structural model: data-flow graph

The first step to programming with Hedgehog is to understand how data flows within an algorithm.
The best way to approach this step is to formulate the algorithm as a data-flow graph, which is
a representation for computation using a directed graph. The graph’s nodes are the computation
actors and the graph’s edges are the directed information flow. The graph has one entry point and
one exit point.

Every task executes based on the presence of data in its input queues, which results in a pipe-
line that executes concurrently. This threading model is described with more detail in Sec-
tion 4.4.

Source

(a)

StateAB

(b)

MatMul
A × B = P

(c)

StatePC

(d)

Acc

(e)

StateC

(f)BlkA

BlkB

BlkC

PairAB BlkP
PairPC

BlkC

BlkC BlkC

Figure 1: Matrix multiplication data-flow graph

Figure 1 shows the structure for the matrix multiplication data-flow graph, where circles are
the tasks and diamonds are the state managers, can be split into the following computational
steps:

1. The source (a) of the graph dispatches blocks of matrices A, B, and C to the input nodes.
2. The StateAB (b) accepts blocks of A and B, groups them into compatible pairs of blocks,

and emits pairs of compatible blocks.
3. The MatMul (c) task accepts pairs of A and B blocks, applies matrix multiplication on

them, and produces partial results P .
4. The StatePC (d) produces a PairPC output when it receives one BlkC and one BlkP that

need to be accumulated.
5. The Acc (e) task accumulates the appropriate C blocks with the P blocks.
6. The StateC (f) produces an output when BlkC is fully accumulated.

using MatrixType = float;// Type of Matrix elements

Order Ord = Order::Column;// Matrix orientation

// Tasks

auto matMulTask =

std::make_shared<MatMul<MatrixType, Ord>>(numberThreadProduct, p);

auto accTask =

std::make_shared<AccTask<MatrixType, Ord>>(numberThreadAddition);

//[...]

// Build the graph

matMulGraph.input(stateAB);

matMulGraph.input(statePC);

matMulGraph.addEdge(stateAB,matMulTask);

matMulGraph.addEdge(matMulTask,statePC);

matMulGraph.addEdge(StatePC,accTask);

matMulGraph.addEdge(accTask,statePC);

matMulGraph.addEdge(accTask,stateC);

matMulGraph.output(stateC);

Listing 1: Simplified MatMul main

The Hedgehog Graph adds these tasks by establishing an edge between them with the method
graph.addEdge(SenderNode, ReceiverNode), which will automatically generate FIFO (First In
First Out) data queues. Methods from the graph connect tasks to the inputs using graph.input

(InputNode) and outputs using graph.output(OutputNode) as shown in Listing 1.

5



4.2 Hedgehog nodes

Hedgehog provides several distinct types of nodes that are used to develop data-flow graphs. The
nodes are designed to provide specific functionality in order to achieve a separation of concerns
approach; i.e., nodes that specifically target state maintenance, computation, composition, or
scalability. Each node type is restricted to consuming multiple input types and producing a single
output type, as described in Section 4.3. The node classes form a hierarchy to enable expanding
upon the Hedgehog library, as shown in Figure 2. The available Hedgehog node types are (1)
Graph, (2) AbstractTask, (3) StateManager, (4) CUDATask, and (5) ExecutionPipeline.

Node

Receives different types
of input data, sends one
type of output data.

Graph

Organized struc-
ture of nodes.

AbstractTask

Processes received data.
Can be multi-threaded.

CUDATask

Specialized Task
for CUDA GPU,
bound to a GPU.

StateManager

Interacts with locked State.
Restricted to one thread.

ExecutionPipeline

Duplicates a Graph.
Customizes routing
data to the graphs.

State

Shareable thread-safe object.
Useful to express local state.

Figure 2: UML simplified class hierarchy of Hedgehog

Node is the pure abstract class at the root of the class hierarchy; it is the base class for all Hedgehog
node objects. The Graph object represents a computation, it connects a set of consistent nodes
and edges to carry out the computation. In Hedgehog, a node must be associated with a parent
graph, which binds its constituent nodes to the same device to improve data locality.

The AbstractTask node operates on data; it is abstract as it does not have an implementation for
the execute methods of all input types. execute method is called with data that is taken from
the task’s input queue(s). It executes a computational kernel on the data it receives as shown in
Figure 3. This figure shows the execution logic of an AbstractTask, and displays the customization
points. The canTerminate function identifies when to stop a task; by default, this is when there
are no input nodes connected and nothing in the input queues. This behavior can be modified
to break cycles in the graph. The initialize and shutdown functions are called once to carry out
pre- or post- computation. Listing 2 for a simplified MatMul task, which implements the execute
method to carry out the matrix multiplication operation.

6



class MatMul :

public AbstractTask<BlkP, pair<BlkA, BlkB>>{

private:

size_t count_ = 0;

public:

MatMul(size_t nbThreads, size_t count)

: AbstractTask<BlkP, pair<BlkA, BlkB>(

"Product Task", nbThreads), count_(count){}

void execute(pair<BlkA,BlkB> ptr){

auto matA = ptr.first;

auto matB = ptr.second;

BlkP res {};

// res <- matA*matB

cblas_sgemm(matA, matB, res);

this->addResult(res);

}

};

Listing 2: Simplified version of MatMul task

initializestart

can
terminate?

shutdown

notify
all

terminated

wait

can
terminate?

or
data

available

can
terminate?

lock
queue

get data
from queue

unlock
queue

execute (data)

[True]

[False]

notification

[True]

[False]

[True]

[False]

Conditional Step

Customizable conditional Customizable step

Figure 3: Task’s main runtime steps

7



The first specialized AbstractTask is the StateManager. The StateManager holds a State instance.
The State expresses a localized state between two or more nodes. Once an input data is available,
the StateManager locks the State it owns and transfers the data to the State. Once the State
computation is done, its output data are gathered by the StateManager, the State is unlocked and
the gathered data are sent to its connected nodes.

The shareable State object contains a mutual exclusion context to ensure it is only accessed by one
thread at a time. Both the StateManager and State are fully customizable, but operate with the
distinct requirement that StateManager is the only type of task in the graph that should express
the state of a computation.

The second specialized AbstractTask is the CUDATask. It binds the task’s thread to a CUDA-
enabled GPU, which is done automatically by Hedgehog through a customization of the initialize
function. This is used to streamline executing a CUDA kernel, such as by automatically enabling
CUDA peer-to-peer access and creating a cudaStream for each instance of the CUDATask.

The last specialized task in Hedgehog is the ExecutionPipeline which is used to simplify multi-
GPU programming or other execution contexts. This task creates mirror copies of a graph and
distributes data between graph copies according to a developer-specified strategy. Each graph
copy is bound to a separate GPU; the graph’s data will be local to its tasks and, as such, to the
GPU that it binds to. When a StateManager is copied, its State instance is shared across all
StateManager instances. This is often used to share data across multiple graphs, and potentially
between GPUs. For example, data that is stored within the State can be retrieved and used by
another graph from its StateManager. This data may reside in another GPU’s memory. It is up
to the developer to initiate GPU-to-GPU copying or direct peer access.

Hedgehog is extensible; a specialized task can inherit from AbstractTask to create tasks, for example
specialized for AMD GPUs using OpenCL or other libraries.

4.3 Nodes input and output data types

Nodes define their input and output types explicitly as template parameters (bound at compile-
time) to ensure consistency. The input and output types of two nodes must match in order to
connect them by an edge in the Hedgehog graph. Establishing this edge connection will automat-
ically create the queues that are used to store data between the two nodes. A node is restricted
to a single output type and can have multiple input types. The input and output types can be
anything including types created by a user. For example, if a graph’s node requires multiple output
types, then these types can be gathered into a single class/struct. The input data types each have
their own independent queue. The output of a task can connect to zero or more inputs of other
tasks. Data that is sent out of a task is shared with all of its successor tasks. Hedgehog uses
smart pointers to avoid the need for a deep copy. Data races that may result from multiple tasks
receiving the same pointer are not controlled by the library. It is important for end-users to be
aware of their usage patterns on received data.

For example, the accumulate (Acc) task in the matrix multiplication data-flow graph from Figure 1
contains a single input and two output edges. Instantiating this task using Hedgehog is done by
specifying PairPC as the input type and BlkC as the output type for the node. An edge is then
added from StatePC to the Acc, and from Acc to both StateC and StatePC . The edges will create
queues for each of these nodes, if they were not already created, and any data that is produced from
the Acc task will be shared with the StateC and StatePC tasks. In addition, the canTerminate
function will need to be customized for the StatePC or Acc nodes to break the cycle in the graph
as will be discussed in the next section.

4.4 Threading model

A graph begins processing data when the graph is executed, which creates a thread for each task
in the graph. If a task requests multiple threads (such as MatMul which accepts the number of
threads at construction as shown in Listing 2), then custom copies of the task are made using the
user-overloaded copy method. The original task and its copies form a task group, where each task

8



in the group is statically bound to a different thread. They share the same input and output edges
consisting of queues and synchronization contexts. This forms contention on the input queues, but
also offers higher throughput when sufficient data is waiting to be processed.

Hedgehog uses monitor synchronization to operate the edges; a consumer task holds a mutex
and will enter the wait state if its input queue is empty. The monitor is implemented with a
std::condition variable. It will suspend the execution of the thread if no input data is available.
The thread will wake up when notified by another node, this occurs when termination is requested
or input data becomes available. When the thread is waiting for data, it will not consume CPU
resources. If data is available, then the thread will remove it from its queue. A producer task sends
data and signals to its successor consumer task, which transitions the successor consumer task from
the wait state to the running state. The running and wait states of a consumer task are managed
entirely by the operating system. After a context switch, the signaled consumer task will retrieve
the data from its input queue and call its user-defined execute function on the received data. A
consumer task can avoid the wait state and potentially the context switch if data were already
available in its queue. A consumer task in Hedgehog infinitely fetches data from its input or waits
until its canTerminate function returns true; by default this happens when the input connection
is terminated and the queue is empty. When termination occurs, the terminated task will signal
to all other tasks in the same group to wake-up and terminate properly.

Selecting the degree of parallelism for a task helps improve CPU utilization when executing the
graph. For example, in matrix multiplication, the MatMul task can operate with the number
of threads equal to the physical core count, whereas the accumulation task can operate with a
fraction of the number of physical cores because it is less computationally complex. Specifying
a good balance between the number of physical cores and the number of copies of a task can
help prevent over-subscription of the CPU for compute intensive tasks, assuming there is enough
data waiting to be processed in the task’s input queue. In our experience, over-subscription rarely
occurs due to the nature of the data-flow approach and how tasks will enter a running state only
when data is present in a graph with dozens of independent tasks and edges. This behavior may
vary depending on the nature of the algorithm. Furthermore, developers find the idea of tuning
the number of threads understandable.

4.5 Memory management

Memory management is often needed when GPU computations or limitations due to hardware
are involved. Hedgehog implements a memory manager, a tool used by tasks. An instance of
a memory manager can be created with a specific data type and then attached to a task. This
memory manager instance is thread-safe and limits the amount of data being produced by the
task. If the task is copied, such as when building a task group, then all tasks in the group will
share the same memory manager.

A memory manager creates a fixed-size pool of user-specified data buffers when the task is ini-
tialized. During a task’s execute invocation, the task can fetch memory from this pool and will
block if the pool is empty. The API provides a mechanism to recycle memory back to the memory
manager, which will add memory back into the pool and signal to a task that is waiting. This
allows a waiting task to obtain the needed memory and resume execution. The recycle mechanism
provides two steps: (1) complete the allocation-deallocation cycle to eliminate memory leaks and
(2) update the state of the memory. The state is updated when memory is returned to a memory
manager. The state of memory indicates when a memory buffer is ready to be recycled. If the
memory is not ready to be recycled, then it will not be added to the memory pool. This function-
ality is useful to indirectly express memory locality, such as to keep memory resident on GPUs to
avoid unnecessary data transfers.

Two types of memory managers exist: static and dynamic. Both managers will fill the pool with
objects during task initialization. The dynamic memory manager will call the default constructor
for the data objects whereas the static one will call a specialized constructor.

9



4.6 Profiling

Hedgehog provides profiling through a printer class. It is used to represent the current state of
the graph. To measure the overhead of profiling, we compare the performance of Hedgehog’s first
tutorial, the Hadamard product [20], with and without profiling, and execute it 1000 times on
16k × 16k matrices and 2k × 2k blocks, as shown in Figure 4.

To measure the impact of the profiling, we propose the following statistical analysis.

Let X1 and X2 be the execution times with and without profiling, respectively. Given the high
number of experiments and the central limit theorem, the experimental averages, X1 and X2,

follow a normal distribution. Now define the stochastic variable X as
X1 −X2√
S2
1

N
+

S2
2

N

. X follows a

normal distribution of expectation µ1 − µ2 and variance σ2 = 1. Let S2
1 and S2

2 be estimators of
σ2
1 and σ2

2 .

For the null hypothesis to hold, we propose µ1 = µ2; there is on average no statistical difference be-
tween a computation with and without profiling. X becomes a standard normal distribution.

The size of our sample is N = 1000. For this sample, the values of X1 and X2 are respectively x1 =
1742.28ms and x2 = 1743.06ms and the estimations of the variances σ2

1 and σ2
2 are respectively

s21 = 14.03ms and s22 = 12.49ms. With this sample, the value of X is x = −1.32, whose p-value is
0.4066. These results allow us to accept the null hypothesis.

We can therefore conclude that the average execution runtimes, with or without profiling, do not
differ significantly. We believe this is because we gather performance metrics at the node level,
which is far less intensive than fine-grained profiling approaches, such as measuring all function
invocations.

1,720 1,740 1,760 1,780 1,800 1,820
0

50

100

150

200

250

Execution time bins (ms)

N
u
m
b
er

of
ex
p
er
im

en
ts

Without profiling X2

With profiling X1

Figure 4: Hedgehog Tutorial 1 execution time distribution for 1000 experiments on 16k × 16k
matrices and 2k × 2k blocks with and without profiling on a Mac Book Pro Mid 2015

The metrics gathered from the nodes are the execution time, waiting time, and queue usage.
Additionally, the graph gathers the creation and total execution times. This information can be
presented in various ways depending on options chosen by developers; for example, a task group
can be expanded to show the performance of each thread. It is also possible to bind the graph to
one or multiple POSIX signals with a graph signal handler to capture them and generate the state
of the graph at that instant, such as when a segmentation fault occurs.

10



A DOT file printer has been developed to generate Graphviz [7] DOT files. The developer can
use this visualization to understand how tasks and graphs interact with each other and using this
representation can immediately recognize the critical path of the computation. Example DOT files
can be found at the end of each of the Hedgehog tutorials [20].

4.7 Type checking

Hedgehog uses template metaprogramming to check the data-flow graph consistency at compile-
time. It achieves static checking via constructs that use C++ 17 metafunctions [21]. This static
checking will become simpler and more expressive with C++ 20 constraints and concepts.

4.7.1 Consistency of smart pointers

Hedgehog manipulates nodes by means of smart pointers based on an RAII (Resource Acquisition
Is Initialization) technique, to avoid memory errors in the library. Basically, a smart pointer is an
object wrapping a pointer of a given type. In C++, smart pointers are modeled by a generic class,
shared_ptr<T>, where T is the type of the wrapped pointer.

To accept or reject a node, Hedgehog extracts the node’s internal type from its smart pointer and
checks this internal type’s inheritance.

In Hedgehog, metafunctions have been designed to test the compatibility of two smart point-
ers.

4.7.2 Node compatibility

Hedgehog checks compatibility rules when two nodes are linked by an edge in the graph:

Output
Node

I1

I1

Output
Node

X

I1

I2

(a) Output Check

Input
Node

I1 I2 I3

I1 I4

Input
Node

X

I1 I2 I3

I4 I5

(b) Input Check

Sender

Receiver

I1 I3

I2

I2

Sender

X

Receiver

I1 I3

I2

I4

(c) Compatibility Check

Figure 5: Compile-time check using metaprogramming techniques

11



1. If a node is set as the output of a graph, the node and the graph need to share the same
output type, as shown in Figure 5a.

2. If a node is set as an input of a graph, the node and the graph need to share at least one
input type, as shown in Figure 5b.

3. The output type of the source node must be one of the input types of the target node, as
shown in Figure 5c.

Listing 3 shows the compatibility test (3), using a static_assert to perform the test and produce
a clear error message at compile-time.

static_assert(

traits::Contains_v<Output, Inputs>,

"The given io cannot be linked together"

);

Listing 3: Metafunction invocation testing nodes compatibility

5 Results

The experiments conducted on Hedgehog help understand the behavior of the library, and the
impact that having an explicit representation has on performance.

In our experiments, there are two crucial parameters, the amount of data streaming through the
graph (often determined by decomposition parameters such as the block size in a matrix) and the
number of threads for each Hedgehog node. The amount of data streaming through the graph
affects the degree of parallelism that can be achieved. Because Hedgehog targets coarse-grain
parallelism, it is important to determine an optimal decomposition size. For example, if the block
size is “too small”, then the underlying hardware may have poor utilization because each task
does not execute enough instructions compared to the system latency. If it is “too big”, then
this will reduce the parallelism in Hedgehog because fewer pieces of data feed the tasks. The
number of threads for each task will also determine how many elements a task can process in
parallel. This can be detrimental if the processor gets oversubscribed. The best methodology for
approaching computation in Hedgehog is setting good enough values for a first run. This run is
used to generate the DOT file feedback, which identifies bottlenecks, and helps determine better
parameters to improve the performance for a specific architecture. These graphs are portable, and
only require parameter tuning for new architectures. This methodology justifies experimentation
for performance, and was used to help identify the optimal parameters within our results.

5.1 Data transfer latency

One of the major costs in our approach is the data transfer latency between tasks. Two parameters
affect this latency: (1) the number of threads per task, because all threads in a task group will
share the same protected queues, which introduces access contention, and (2) the number of input
types, because a task will have one queue per input type.

Figure 6 shows the results of measuring the time to transfer one element between two tasks,
averaged over one million data transfers, on a computer with two Intel Xeon Silver 4114 CPU @
2.20 GHz processors (10 physical cores, 20 logical cores) and 192 GiB of memory. This latency
varies between ≈ 1 µs to 10 µs. It grows with the number of threads in the group of receiving
tasks and the number of input types. These measurements are low enough that the data transfer
costs can be easily hidden by concurrently executing compute kernels. Furthermore, this latency
is below that of HTGS for most common cases.

12



1 2 4 8 16 32
0

1

2

4

6

8

10

Number of threads per task

L
at
en
cy

(µ
s)

1 Input type
5 Input types
10 Input types

HTGS

Figure 6: Latency analysis for different task’s number of threads

5.2 LU decomposition with partial pivoting

One of our experiments was a CPU-based implementation of LU decomposition with partial piv-
oting [13].

The kernels used in our tasks are mainly composed of calls to the OpenBLAS [17] library in
single-threaded mode. Our baseline was the LAPACK dgetrf routine, compiled with OpenBLAS
in multi-threaded mode, used as a one-off call.

This methodology made it easier to reason about the complex dependencies and to instrument the
code in a more sophisticated way that allows the streaming of data in and out of the operation.
The stream-based design provides partial fully computed results before the computation completes.
This is used to initiate the next step of a computation sooner.

To study end-to-end runtime performance, we ran 10 trials for the Hedgehog and LAPACK (Linear
Algebra PACKage) implementations of LU decomposition with partial pivoting on two Intel Xeon
E5-2680 v4 CPUs @2.40 GHz (28 physical cores, 56 logical cores) with 512 GiB of DDR4 memory.
Figure 7 shows that Hedgehog obtains comparable overall performance to the baseline. In this
case, the optimal parameter happens to be a block size of 1024. Additionally, the streaming aspect
allows us to start getting partial results over 40 times faster than waiting for the entire matrix to
finish computing. This has potential for future research in understanding the intricacies of chaining
streaming operations together by composing graphs especially when it can be automated.

13



256 512 1,024 2,048 4,096

100

120

140

160

180

Block Size

R
u
n
ti
m
e
(s
)

Hedgehog
LAPACK

Figure 7: LU with partial pivoting performance for a matrix of 32768× 32768 elements

5.3 Matrix multiplication

Hedgehog is a library that allows computation in a heterogeneous node. We developed a BLAS-
like GEneral Matrix Multiplication routine (GEMM) and ran it on a node with two Intel Xeon
Silver 4216 CPUs @2.1 GHz (16 physical cores, 32 logical cores) with 768 GiB DDR4 memory and
four Tesla V100-PCIe with 32 GiB HBM2 GPU, using 128k × 128k single-precision matrices. As
shown in Figure 8, the Hedgehog implementation is compared to the NVIDIA counterparts from
their GPU-accelerated libraries for basic linear algebra, cuBLASMg and cuBLAS-XT [5]. With
an optimal block-size the Hedgehog implementation achieves > 95% of the theoretical peak across
4 GPUs.

1 2 3 4

10

20

30

40

50

60

Number of GPUs

T
F
L
O
P
s

Hedgehog
cuBLAS-XT
cuBLASMg

Theoretical peak

Figure 8: Matrix multiplication on a matrix of 64k × 64k elements decomposed in 8k × 8k block
elements

14



This final result required multiple iterations that were done using Hedgehog’s experimentation for
performance. This methodology starts with a simple CPU-only version which is then augmented
to use the GPU. The GPU version bundles the data transfers to and from the GPU and the actual
computation into its own graph. This was made possible by the composability of the Hedgehog
graphs. The GPU graph is further improved by inserting it into an ExecutionPipeline to scale
the computation to multiple GPUs. These graphs could be represented as a library, which would
simplify the future development of Hedgehog-based applications.

The CPU and GPU versions reused the original representation of state. The primary focus between
the versions was optimizing the transfer of data between the CPU and GPU as well as improving
the data locality to avoid unnecessary copies. For example, the memory manager was used to stay
within the GPU memory limits, and cudaEvents were applied to memory copy events to overlap
data motion, computation, and all of the state management that is done within Hedgehog.

These experiments show that the overhead incurred by our approach is not detrimental to per-
formance. It is also amenable to using libraries that target fine-grained parallelism, such as calls
to cuBLAS to maximize performance. Lastly, the explicit representation featured in Hedgehog is
manageable. The LU decomposition with partial pivoting implementation was completed in the
course of one month by a non-domain specialist without any prior knowledge of the Hedgehog
library and the intricacies of parallel programming. This experience has continued to indicate to
us that having a high-level programming abstraction that can be reasoned about and that maps
to execution is extremely valuable.

6 Conclusion

In this paper, we have presented Hedgehog, a general-purpose library allowing developers to create
a parallel computation on a heterogeneous node. It differs from other approaches as it only uses its
explicit data-flow representation to implement an algorithm, and relies on data-pipelining to get
performance without a global scheduler. This approach operates entirely based on the presence
of data and achieves an overhead of ≈ 1 µs to 10µs when transferring data between tasks in a
graph.

Hedgehog supports a separation of concerns approach by providing several distinct components,
such as computation, localized state, memory management, and scaling through execution pipe-
lines. The graph is constructed using these components, and its representation is maintained
throughout its execution. The developer can use this representation to understand the processing.
This helps developers to reason about complex operations at a higher level of abstraction. This
was demonstrated through the use of streaming data in and out of an operation to produce partial
results as early as possible. This was achieved by explicitly representing the localized states of
the computation throughout the algorithm, which aids with understanding when the results are
finalized. In addition, Hedgehog can be easily extended as it relies on class inheritance to create
new types of tasks, as we have presented for CUDA-based tasks.

Hedgehog operates effectively with heterogeneous computers as well, which is validated by our
achieved GPU utilization. This is feasible by making use of Hedgehog’s memory management tools,
to express memory locality and avoid unnecessary memory copies and keeps GPUs busy.

7 Future work

Hedgehog has an explicit and static representation of the data-flow graph. The graph structure is
known at compile-time. The latest C++ standard (C++ 20) brings more tools to perform complex
computation at compile-time, such as additions to the constexpr specifier. A compile-time tool will
be developed to analyze a Hedgehog graph structure to identify design mistakes such as data-races
or cycles that cause deadlock. Another future work will be to extend Hedgehog to operate in cluster
environments. One approach is to build one Hedgehog graph per node with direct interaction with
external cluster-based communication tools and/or libraries.

15



Disclaimer

No approval or endorsement of any commercial product by the National Institute of Standards and Technology is

intended or implied. Certain commercial software, products, and systems are identified in this report to facilitate

better understanding. Such identification does not imply recommendations or endorsement by NIST, nor does it

imply that the software and products identified are necessarily the best available for the purpose.

References
[1] Cédric Augonnet et al. “StarPU: A Unified Platform for Task Scheduling on Heterogeneous

Multicore Architectures”. In: Concurr. Comput. : Pract. Exper. 23.2 (Feb. 2011), pp. 187–
198. issn: 1532-0626. doi: 10.1002/cpe.1631.

[2] Michael Bauer et al. “Legion: Expressing Locality and Independence with Logical Regions”.
In: Proceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 2012,
66:1–66:11. isbn: 978-1-4673-0804-5. doi: 10.1109/SC.2012.71.

[3] Timothy Blattner et al. “A hybrid task graph scheduler for high performance image pro-
cessing workflows”. In: Journal of signal processing systems 89.3 (2017), pp. 457–467. doi:
10.1007/s11265-017-1262-6.

[4] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. “Kokkos”. In: J. Parallel
Distrib. Comput. 74.12 (Dec. 2014), pp. 3202–3216. issn: 0743-7315. doi: 10.1016/j.jpdc.
2014.07.003.

[5] Basic Linear Algebra on NVIDIA GPUs. https://developer.nvidia.com/cublas. Last
access: 2020-07-01.

[6] I. Culjak et al. “A brief introduction to OpenCV”. In: 2012 Proceedings of the 35th Interna-
tional Convention MIPRO. 2012, pp. 1725–1730.

[7] John Ellson et al. “Graphviz — open source graph drawing tools”. In: Lecture Notes in
Computer Science. Springer-Verlag, 2001, pp. 483–484. doi: 10.1007/3-540-45848-4_57.

[8] M. Frigo and S. G. Johnson. “The Design and Implementation of FFTW3”. In: Proceedings
of the IEEE 93.2 (2005), pp. 216–231. doi: 10.1109/JPROC.2004.840301.

[9] Alexandre Bardakoff et al. Hedgehog Tutorials. Sept. 2020. url: https://pages.nist.gov/
hedgehog-Tutorials/.

[10] J. A. Herdman et al. “Achieving Portability and Performance through OpenACC”. In: 2014
First Workshop on Accelerator Programming using Directives. 2014, pp. 19–26. doi: 10.
1109/WACCPD.2014.10.

[11] Hartmut Kaiser et al. STEllAR-GROUP/hpx: HPX V1.4.1: The C++ Standards Library for
Parallelism and Concurrency. Version 1.4.1. Feb. 2020. doi: 10.5281/zenodo.3675272.

[12] Laxmitant V. Kalé et al. The CHARM Parallel Programming Language and System: Part
I – Description of Language Features. Parallel Programming Laboratory Technical Report
95-02. Last access: 2018-01-02. Parallel Programming Laboratory Department of Computer
Science University of Illinois Urbana-Champaign, 1994. url: http://charm.cs.uiuc.edu/
papers/CharmSys1TPDS94.pdf.

[13] Gerson C. Kroiz et al. “Study of Exploiting Coarse-Grained Parallelism in Block-Oriented
Numerical Linear Algebra Routines”. In: Proceedings of the 91st Annual Meeting of the
International Association of Applied Mathematics and Mechanics. Submitted to https://

jahrestagung.gamm-ev.de/. 2020.

[14] Alexey Kukanov and Michael J. Voss. “The Foundations for Scalable Multicore Software in
Intel Threading Building Blocks”. In: Intel Technology Journal 11 (2007). issn: 1535-864X.
doi: 10.1535/itj.1104.05.

[15] Qingyu Meng and Martin Berzins. “Uintah Hybrid Task-Based Parallelism Algorithm”. In:
Proceedings of SC12. IEEE, 2012. doi: 10.1109/SC.Companion.2012.237.

[16] The OmpSs-2 Programming Model. https://pm.bsc.es/ompss-2. Last access: 2018-08-16.

16

https://doi.org/10.1002/cpe.1631
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/s11265-017-1262-6
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://developer.nvidia.com/cublas
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/JPROC.2004.840301
https://pages.nist.gov/hedgehog-Tutorials/
https://pages.nist.gov/hedgehog-Tutorials/
https://doi.org/10.1109/WACCPD.2014.10
https://doi.org/10.1109/WACCPD.2014.10
https://doi.org/10.5281/zenodo.3675272
http://charm.cs.uiuc.edu/papers/CharmSys1TPDS94.pdf
http://charm.cs.uiuc.edu/papers/CharmSys1TPDS94.pdf
https://jahrestagung.gamm-ev.de/
https://jahrestagung.gamm-ev.de/
https://doi.org/10.1535/itj.1104.05
https://doi.org/10.1109/SC.Companion.2012.237
https://pm.bsc.es/ompss-2


[17] Zhang Xianyi and Martin Kroeker. OpenBLAS: An optimized BLAS library. http://www.
openblas.net/. Last access: 2020-05-22.

[18] OpenMP API Specification: Version 5.0 November 2018. Sept. 2020. url: https://www.
openmp.org/spec-html/5.0/openmp.html.

[19] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Optimizing Parallelism,
Locality, and Recomputation in Image Processing Pipelines”. In: SIGPLAN Not. 48.6 (June
2013), pp. 519–530. issn: 0362-1340. doi: 10.1145/2499370.2462176.

[20] Tutorial 1 - Simple Hadamard Product. https://pages.nist.gov/hedgehog-Tutorials/
tutorials/tutorial1.html. Last access: 2020-07-10.

[21] David Vandevoorde, Nicolai M. Josuttis, and Douglas Gregor. C++ Templates: The Complete
Guide (2nd Edition). 2nd. Addison-Wesley Professional, 2017. isbn: 0321714121.

[22] Q. Wang et al. “AUGEM: Automatically generate high performance Dense Linear Algebra
kernels on x86 CPUs”. In: SC ’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 2013, pp. 1–12. doi: 10.1145/
2503210.2503219.

17

http://www.openblas.net/
http://www.openblas.net/
https://www.openmp.org/spec-html/5.0/openmp.html
https://www.openmp.org/spec-html/5.0/openmp.html
https://doi.org/10.1145/2499370.2462176
https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial1.html
https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial1.html
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.1145/2503210.2503219

	Introduction
	Solution Approach
	Background/State of the Art
	Hedgehog
	Structural model: data-flow graph
	Hedgehog nodes
	Nodes input and output data types
	Threading model
	Memory management
	Profiling
	Type checking
	Consistency of smart pointers
	Node compatibility


	Results
	Data transfer latency
	LU decomposition with partial pivoting
	Matrix multiplication

	Conclusion
	Future work

