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Abstract (300 mots-max)

Most grain size monitoring is still being conducted by manual sampling in the field,

which is time consuming and has low spatial  representation.  Due to  new remote

sensing methods, some limitations have been partly overcome, but methodological

progress is still needed for large rivers as well as in underwater conditions. In this

paper,  we  tested  the  reliability  of  two  methods  along  the  Old  Rhine  River

(France/Germany)  to  estimate  the  grain  size  distribution  (GSD)  in  above-water

conditions:  (i)  a  low-cost  terrestrial  photosieving  method  based  on  an  automatic

procedure using Digital Grain Size (DGS) software and (ii) an airborne LiDAR topo-

bathymetric survey. We also tested the ability of terrestrial photosieving to estimate

the GSD in underwater conditions. Field pebble counts were performed to compare

and calibrate both methods.  The results  showed that  the automatic  procedure of
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terrestrial photosieving is a reliable method to estimate the GSD of sediment patches

in  both  above-water  and  underwater  conditions  with  clean  substrates.  Sensitivity

analyses showed that environmental  conditions,  including solar lighting conditions

and  petrographic  variability,  significantly  influence  the  GSD  from  the  automatic

procedure  in  above-water  conditions.  The  presence  of  biofilm  in  underwater

conditions significantly altered the GSD estimation using the automatic procedure,

but  the proposed manual  procedure overcame this  problem. The airborne LiDAR

topographic  survey  is  an  accurate  method  to  estimate  the  GSD of  above-water

bedforms and is able to generate grain size maps. The combination of terrestrial

photosieving  and  airborne  topographic  LiDAR methods  is  adapted to  assess the

GSD along large rivers in entire sections that are several kilometers long.

Key  words:  Grain  size,  Large  rivers,  above-water  and  underwater  conditions,

Methodological study, Terrestrial photosieving, Airborne topographic LiDAR.

1. Introduction  

Quantification of the GSD of a riverbed surface is important for assessing sediment

transport and for geomorphological and ecological studies, notably regarding river

restoration (Graham, Rice, and Reid, 2005b; MacKenzie, Eaton, and Church, 2018).

Many studies have been carried out during recent decades to characterize the GSD,

but  its  assessment  remains  difficult  because  the  grain  size  variability  depends

notably on the study scale (Church, Mclean, & Wolcott  J.F, 1987; Graham et al.,

2005b). GSD assessment of a sediment patch requires a large set of particles whose

number depends on the shape of the distribution (Rice & Church, 1996). Most grain

size monitoring was performed by using the classic “pebble count” manual procedure

(Wolman, 1954). These different procedures are all time consuming and show low

spatial representation, especially for large rivers (Warrick et al. 2009).

2

5
6

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

7
8



3

From the beginning of the 1970s, terrestrial photosieving methods were carried out to

estimate  the  GSD  in  above-water  conditions  to  reduce  field  time,  increase  the

sampling density and limit bed disturbance (Butler, Lane, and Chandler 2001). Data

processing requires manually digitizing the B-axis of each visible particle, increasing

the  time  and  lab  effort  (Kellerhals  &  Bray,  1971;  Ibbeken  &  Schleyer,  1986).

Thereafter,  semiautomatic or automatic procedures were developed to reduce the

processing time. They were based either on oriented-object approaches (McEwan et

al., 2000; Sime & Ferguson, 2003; Graham, Reid, and Rice, 2005a; Lucas & Strom,

1987;  Detert  & Weitbrecht,  2012;  Strom, Kuhns,  & Lucas,  2010;  Sulaiman et  al.,

2014) or  on  statistical  approaches  (Buscombe,  2010,  Buscombe,  2013;  Sime  &

Ferguson, 2003; Warrick et al., 2009). However, this kind of method is suitable only

for studies where prompt GSD data are needed.

Over the last two decades, new methods of remote sensing have been developed to

estimate  the  GSD  at  larger  spatial  scales  in  above-water  conditions  (Dugdale,

Carbonneau & Campbell, 2010). Some studies tested the reliability of airborne digital

imagery processing, such as airborne multispectral (Rainey et al., 2003; Black et al.,

2014) or color photography, by performing textural analyses to estimate the GSD

over scales from several hundred meters to several dozen kilometers (Carbonneau,

Lane, & Bergeron, 2004; Carbonneau, Bergeron, & Lane, 2005; Verdú, Batalla, &

Martínez-Casasnovas, 2005; Lejot et al., 2011; Carbonnneau, Bizzi, & Marchetti,

2018; Woodget, Fyffe, & Carbonneau, 2018).  The accuracy of these methods to

predict  the  GSD  is  dependent  on  the  resolution  of  the  images,  which  must  be

commensurate  with  the  particle  size  (Lejot  et  al.,  2011).  Three-dimensional  data

acquired by terrestrial LiDAR or UAV photogrammetry were also used to predict the

GSD by  using  the  bed  surface  roughness  as  a  proxy  (Heritage  &  Milan,  2009;
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Brasington, Vericat,  & Rychkov, 2012; Storz-Peretz & Laronne, 2013; Woodget &

Austrums, 2017; Vázquez-Tarrío et al., 2017). The first empirical relation between the

roughness height metric (rh) and the median grain size was found by Gomez (1993)

from the  bed  surface  profile  and  vertical  photographs.  These  methods  have  the

advantage that they simultaneously provide various information, such as roughness

maps, channel morphological dynamics, and grain size maps (Marteau et al., 2017;

Vázquez-Tarrío et al., 2017). However, the application of terrestrial LiDAR and UAV

photogrammetry techniques is  not applicable  in large study reaches in underwater

conditions.

During  the  last  decade,  airborne  topographic  LiDAR  techniques  have  been

increasingly  employed,  notably  in  fluvial  geomorphological  and hydrologic  studies

(Charlton, Large, & Fuller, 2003; Demarchi, Bizzi, & Piégay, 2016; Bizzi et al., 2019;

Shaker, Yan, & LaRocque, 2019). Dataset collection is performed by using the near-

infrared wavelength (Mandlburger et al., 2015). The data collection is fast and may

cover  large areas.  This  method provides not  only  accurate  point  clouds in  three

dimensions but also intensity values that correspond to the amplitude of the return

signal (Kashani et al., 2015). Kukko, Kaasalainen, & Litkey, (2008) showed that this

metric is impacted partly by surface roughness, suggesting a probable link between

the intensity values and the bed grain size. 

Some studies have been carried out to qualitatively estimate the GSD in underwater

conditions,  but  they  are  rare  due  to  technical  limitations  in  constraining  field

conditions.

Qualitative underwater substrate mapping was produced by using side-scan sonar

imagery (Buscombe, Grams, & Kaplinski, 2017, Buscombe, Grams, & Smith, 2015;

Hamill,  Buscombe,  &  Wheaton,  2018).  Rüther  (2013) used  the  terrestrial
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photosieving method in underwater conditions along the Surna River to estimate the

bed  GSD  following  an  automatic  procedure  but  without  a  control  dataset  and

calibration with field GSD.

This paper addresses the inference of the GSD in large rivers from remote sensing in

both  above-water  and underwater  conditions.  Two methods are  tested in  above-

water conditions: (i) terrestrial photosieving, a low-cost technique to rapidly estimate

the  bed  GSD,  and  (ii)  airborne  topographic  LiDAR  data  analysis  using  a  laser

wavelength  λ=1064  nm.  For  underwater  conditions,  we  tested  the  terrestrial

photosieving method. This paper follows three objectives: (i) compare the reliability

between the terrestrial  photosieving technique and the airborne LiDAR topometric

survey in above-water conditions, (ii) test the reliability of the terrestrial photosieving

technique  to  estimate  the  GSD  in  underwater  conditions  and  (iii)  determine  the

parameters that can influence the accuracy of both techniques in both environmental

conditions.
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6

2. Materials   and methods  

2.1 Study area  

The Rhine is the third largest river in Europe with a drainage basin of approximately

185,000 km² and a length of 1250 km. The Upper Rhine runs from Basel to Bingen-

am-Rhein (300 km long) into the Upper Rhine graben, where the hydrological regime

is  nivo-glacial  (Figure  1.a).  The  mean  annual  discharge  is  1059  m3/s  at  Basel

(Uehlinger  &  Wantzen,  2009).  After  two  engineering  phases  of  correcting  and

regulating the flow (Arnaud, 2012; Schmitt, Morris, & Kondolf, 2018), the Old Rhine

River was bypassed by the French Grand Canal d’Alsace (GCA) along 50 km from

Kembs to Breisach. Most of the flow of the Rhine River into the GCA is regulated by

the Kembs derivation dam. The GCA has four power plants.  An instream flow is

maintained in the Old Rhine between 52 and 115 m3/s, which is the monthly variation

corresponding to the natural hydrological discharge of the Rhine River (Figure 1.b).

Spillovers occur into the Old Rhine River when the Rhine discharge exceeds 1400

m3/s at Basel, which corresponds to the maximum discharge of the GCA capacity.

The channel bottom of the Old Rhine River is composed of gravels to cobbles. The

mean slope and mean width are equal to 0.09% and 100 m, respectively (Figure 1.b).
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Figure 1: (a) The Rhine Basin and the location of the study reach, (b) the Old Rhine

River and the GCA, (c) the range of digital images collected in this study, and (d) and

(e) maps of the intensity values and the Rh roughness metric of  an above-water

deposit along the study reach. In (a), the black rectangle indicates the location of the

Old  Rhine  River.  In  (b),  the  black  arrows,  the  black  cross  and  the  gray  circles
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represent the study reach, the Rheinweiler gauging station and the power plants,

respectively.

2.2 Data collection  

2.2.1 Collection of digital images  

Between winter and autumn 2017, terrestrial photosieving surveys were carried out

on  both  above-water  and  underwater  patches  by  using  a  12-MP Olympus  TG-4

waterproof camera. The camera was placed in a plan view by using a telescopic rod.

The recorded elevation ranged from 0.6 m to 1.0 m, and the pixel size ranged from

0.18 mm to 0.30 mm in above-water conditions and from 0.24 mm to 0.40 mm in

underwater conditions. A square gabarit  with an area of 1 m² placed on the bed

surface  and  a  rigid  rule  were  used  for  scale  in  above-water  and  underwater

conditions,  respectively.  All  the digital  images recorded in above-water conditions

were characterized as clean substrate (n=10), while the digital images collected in

underwater conditions were composed of both clean substrate (n=4) and substrate

with biofilm (n=6).

Figure  2. (a) Framework of the study and maximum daily flow at the Rheinweiler

gauging station during 2017 and (b) the GSD of the field pebble counts (truncated at

3  psi).  *  indicates  the  collection  period  of  the  field  pebble  counts  used  for  the
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9

calibration of the airborne topo-bathymetric LiDAR survey. The value of the critical

discharge was extracted from (El Kadi Abderrezzak, 2009). 

2.2.2 Airborne   topographic   LiDAR survey  

In March 2017,  airborne  LiDAR data were acquired by using a Teledyne Optech

Titan DW sensor. The flight was carried out at an altitude of 400 m along a reach of

35  km  between  KP  174,00  and  KP  209.00.  The  Titan  DW  sensor  is  a  topo-

bathymetric  sensor  operating  a  near-infrared  (NIR)  laser  (λ=1064  nm)  typical  of

airborne  topographic  LiDAR  and  a  green  laser  (λ=532  nm)  with  shallow-water

bathymetry mapping capability  (Fernandez-Diaz et al. 2016) In this study, only the

NIR laser data were used on above-water bars.

The divergence angle of the NIR laser is 0.3 mrad, resulting in a laser spot size of

approximately 0.12 m at nadir. The range density points and range mean distance

between  points,  38  to  49  points/m2 and  0.08  m  to  0.09  m,  respectively,  were

calculated on three-point clouds located on three above-water deposits. To estimate

the range noise of the flight, we estimated the variability of the z-values and intensity

values  on  three  ground  control  areas  (sections  of  roads)  by  assuming  that  the

difference in the point values should be equal to 0 on planar control areas (Lague,

Brodu, & Leroux, 2013). The uncertainties of the survey along the z-axis were less

than 2 cm and equal to 2.10 cm for the intensity values (Table 1).
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10

Standard deviation of z

values deviation

(cm)

Standard deviation of Rh

metric deviation (cm)
Standard deviation of

intensity values deviation

Standard deviation of

intensity metric deviation

1.00 0.18 2.10 6.51

2.00 0.17 1.90 3.65

0.90 0.15 2.10 1.50

Table 1: Precision of the LiDAR topographic survey along three ground control areas.

LiDAR metrics were computed for a kernel size equal to 0.4 m.

2.2.3 Collection of field pebble counts  

The collection of field pebble counts was based on the random surface sampling of

100  particles  for  each  sediment  patch  during  February  2017  and  October  2017

(Wolman, 1954). A sampling of 21 pebble counts was collected in both above-water

(n=18) and underwater conditions (n=3) in a large range of sediment patches (Figure

2). The low number of field samplings in underwater conditions resulted from adverse

survey conditions due to bed imbrication, high water depth and flow velocity and the

locally important thickness of fine sediments (greater than 0.1 m). On above-water

surfaces,  each  particle  was  collected  at  every  2*Dmax (Dmax=maximum B-Axis)

spacing along a decameter.  In underwater conditions, the particles were sampled

following the random step-toe procedure (Bunte & Abt, 2001). A caliper was used to

measure the B-axis of each particle. The distribution was truncated at 3 psi according

to the results of  Rice & Church, (1996), who demonstrated an underestimation for

these  particles  during  pebble  count  sampling.  Each  pebble  count  area  was

georeferenced  by  using  a  global  positioning  system  (centimetric  planimetric

precision).  For  calibration  purposes,  ten  field  pebble  counts  in  above-water
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conditions and three field pebble counts in underwater conditions were compared to

the terrestrial photosieving results. On the other hand, 18 field pebble counts were

used to calibrate the LiDAR metrics. The ranges of the 50 th and 84th percentiles of the

sampled sediment patches were between 4.75 psi and 7.02 psi and between 5.04 psi

and 7.49 psi, respectively.

2.3 Data processing  

2.3.1 Automated processing of digital images  

Digital  Grain  Size  (DGS)  software  developed  by  Buscombe  (2013) was  used  to

automatically estimate the GSD of the apparent particle B-axis. This software, which

is  based  on  the  wavelet  statistical  approach,  provided  the  distribution  in  grid  by

number form. From the recommendations of  Barnard et al., (2007) and Buscombe

(2010), a control dataset composed of twenty digital images was used to evaluate the

accuracy of the software. The control dataset was performed by using the grid tool

implemented in ImageJ software.

2.3.2 Manual processing of digital images  

A manual method was also tested to process the digital images to compare with the

automatic procedure. The B-axis of particles was manually digitalized following a grid

in which nodes were spaced by one Dmax to avoid sampling the same particle twice.

This was made by the same operator to minimize the subjective bias during the B-

axis choice. This procedure was performed by using the grid tool implemented on

ImageJ software. Sampling areas were equal to 100 times the area of the largest

particle following Petrie & Diplas (2000) recommendation.
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12

2.3.3 Processing   the airborne   topographic   LiDAR survey  

2.3.3.1 Computation of the Rh metric  

First, all vegetation areas were excluded from the point cloud to avoid computation

errors by empirically filtering the intensity values because it can be a more accurate

method than geometric classification approaches  (Reymann & Lacroix, 2015). The

Rh metric was computed by using the roughness tool implemented in CloudCompare

v.2.9.1 software (EDF R&D). For each point,  the computation of the Rh metric is

given by the distance between the point  elevation and the ordinary least-squares

best fitting plane computed on its nearest neighbors (Woodget, 2015; Woodget et al.,

2017;  Vázquez-Tarrío  et  al.,  2017).  The nearest  neighbors  are  selected within  a

specified kernel size from the selected point. Third, according to the methodology of

Vázquez-Tarrío et al., (2017), the point cloud was clipped by a buffer with a radius of

five meters, and the center corresponded to the location of the field pebble counts to

compare the Rh metric distribution with the field GSD. This step was performed by

using ArcGIS software.

2.3.3.2 Computation of the standard deviation of the intensity values  

The intensity values of the return pulses of the NIR wavelength are influenced by

several parameters, including internal instrument amplification, environmental effects

(wetness  and  atmospheric  transmittance),  data  acquisition  geometry  (range  and

incidence angle) and surface characteristics (reflectance and roughness)  (Li et al.,

2014;  Kashani  et  al.,  2015).  In  our  case  study,  instrumental  and  environmental

parameters had a limited impact on intensity values because the same instrument

was used, and environmental conditions, including the flight elevation, were relatively

constant  during  flight.  Considering  the  data  acquisition  geometry,  Kukko,

Kaasalainen, & Litkey (2008) and  Kaasalainen et al., (2011) showed that intensity
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values are significantly sensitive to the incidence angle when the latter is greater than

20°. In our case, the incidence angle did not exceed 16°, and we assumed that the

data acquisition geometry had no influence. Hence, we tested the standard deviation

of the raw values of intensity as a proxy for the surface GSD. The first step consisted

of calculating the standard deviation of the raw intensity values for each point of the

point  cloud  for  a  given  area  by  computing  a  buffer  with  a  specific  radius.  We

performed this step by using ArcGIS software. The second step was identical to the

third step of the computation of the Rh metric (see section 2.3.4).

2.4 Sensitivity analyses  

2.4.1 Effect of environmental conditions on GSD estimation by   the   DGS software  

Sensitivity analyses were performed on three parameters:

1. The  influence  of  the  textural  variation  of  the  digital  image  induced  by

petrographic variability. This study was performed by using a median filter that

homogenized the textural differences within individual particles and reduced

the oversegmentation (Strom, Kuhns, & Lucas, 2010). The kernel size of the

median filter was increased progressively to 1%, 2.5%, and 5% for underwater

conditions (n=6) and increased progressively to 1%, 2.5%, 5%, 10% and 15%

of the maximal B-axis of the largest particle observed on each digital image for

above-water  conditions with controlled solar  lighting conditions (n=10).  The

GSDs estimated by the software were compared to the control dataset.

2. The  light  conditions  during  digital  image  acquisition.  We  recorded  two

photographs for each sampling patch (n=10) with and without sun exposure by

using an umbrella on the above-water clean substrate. The time recording was

extracted from the raw data digital image to calculate the influence of the solar

angle on the GSD estimation.
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3. The quality of the substrate on the DGS error estimations as clean substrate

or substrate with the presence of biofilm.

2.4.2 Selection of minimal sampling area in   the DGS software  

To evaluate the effect of the minimal sampling area on the estimation fluctuations of

the DGS software, for each sediment patch in above-water conditions (n=10),  we

increased the minimal sampling area progressively from 10 to 100 times the area of

the largest particle by steps of 10 by using a montage of digital images performed

with  GIMP software.  We calculated  a  mobile  slope coefficient  to  determine from

which sampling area the fluctuation estimations were low as follows:

Slopecoefficient=¿¿

2.4.3 Airborne topographic LiDAR  

The accuracy of the GSD predicted by the Rh metric can be influenced by the kernel

size computation of the metric  (Vázquez-Tarrío et al., 2017; Woodget & Austrums,

2017). A sensitivity analysis was performed by computing the Rh metric for kernel

sizes ranging between 0.4 m and 2.0 m, by steps of 0.1 m from 0.4 m to 1.0 m, and

by  steps  of  0.2  m  from  1.0  m  to  2.0  m.  This  procedure  was  performed  using

CloudCompare  v.2.9.1  software.  The  same  procedure  was  performed  for  the

standard  deviation  of  the  intensity  values  using  ArcMap  v10.3  software  by

progressively increasing the size of the radius of the computed buffer.

We computed linear regressions between the two proxies with the field GSD for each

kernel  size  to  define  the  best  relationship  between  the  two  variables  and

consequently to identify the best kernel size.
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3. Results  

3.1 Accuracy  of  the  GSD  estimation  in  above-water  conditions  using  

terrestrial photosieving

3.1.1 Accuracy of the DGS software  

Figure 3 shows that the percentiles estimated by the DGS software in clean above-

water conditions with clean substrate and controlled solar lighting conditions were

systematically  underestimated compared with  the  percentile  values of  the  control

dataset. For the 50th percentile, the values of the NRMSE were equal to 72% for the

digital  images  with  clean  substrate  in  above-water  conditions  (Table  2).  Error

estimations decrease as the percentiles increase for these two types of ground digital

images. The NRMSE values were 88% and 32% for the 5th percentile and the 95th

percentile, respectively.
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Figure 3: Estimated percentiles by the DGS software as a function of the percentile 

values of the control dataset. The dashed lines correspond to the 1:1 line. The digital 

images were taken with controlled solar lighting conditions in above-water conditions.

Above-water condition Underwater condition

Decile Clean substrate with Clean substrate with Clean substrate Biofilm Biofilm with median
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controlled solar lighting

condition

(n=10)

median filter (5%)

(n=10)
(n=4) (n=6)

filter (2.5%)

(n=6)

D5 88 22 42 92 27

D10 84 21 28 83 21

D16 83 25 23 77 20

D25 80 25 20 72 23

D50 72 29 12 70 45

D75 58 23 9 56 40

D84 51 18 10 60 40

D90 43 16 12 56 39

D95 32 15 8 47 31

Table 2: Values of the normalized root mean square error (NRMSE) in percentage for

each type of data. The RMSE values were normalized by the mean particle size of

the corresponding percentile of the control dataset and multiplied by 100.

3.1.2 Effects of environmental conditions  

3.1.2.1 Effects of solar lighting   conditions  

Figure  4 compares the percentiles estimated by  the  DGS software for  the  same

digital  image in sunny and shadow conditions. An overprediction below 10% was

observed  before  10:00  am  for  sunny  conditions  by  comparison  with  shadow

conditions. In contrast, underprediction was observed in sunny conditions with a peak

of 20% for 2:00 pm. In any light condition, coarse percentiles are less impacted than

small percentiles.
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Figure  4:  Impact  of  the  solar  lighting  conditions  on  the  GSD estimated by  DGS

software.

3.1.2.2 Effects of the particle petrography  

Figure 5.a-c shows the influence of the application of a median filter on a digital

image recorded in above-water conditions for a clean substrate. The filter produced

both a smoothing and a reduction in intravariability of the gray values of the pixels

that composed the particles, thus limiting intra-particle noise (Figure 5.b). Applying

the median filter reduced the NRMSE value of the estimated percentiles by the DGS

software up to a certain threshold.  Figure 6.a shows that 5% of the B-axis of the

largest particle was the best compromise to minimize the estimated errors for all

percentiles.  The  application  of  this  filter  on  the  raw-clean  substrate  reduced  the

estimated error percentiles by twice to four times (Table 2) and significantly reduced

the over-segmentation by the software (Figure 3). The NRMSE values decreased

from 83% to 25%, from 72% to 29% and from 51% to 18% for the 16 th, 50th and 84th

percentiles, respectively. 
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The use of a median filter increased the data processing time. As shown in  Figure

6.b,  the  computation  of  the  median  filter  increased  with  increasing  kernel  size

following a power function. For example, the computation time of a digital image with

a size equal to 2748*2808 pixels was processed from 7 to 95 seconds for a kernel

size equal to 1% and 5% of the B-axis of the largest particle.

Figure 5: Effect of applying a median filter on gray values of digital images in different

conditions: (a) and (d) correspond to a digital image of clean substrate in controlled

solar lighting conditions in above-water conditions with and without the application of

a  median  filter,  respectively;  (b)  and  (e)  correspond  to  a  digital  image  of  clean

substrate in underwater conditions with and without the application of a median filter,

respectively; (c) and (f) correspond to a digital image of substrate with the presence

of biofilm in underwater conditions with and without the application of a median filter,

respectively. The gray line in (g), (h) and (i) corresponds to the gray values of pixels
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extracted from the raw image, and the red line corresponds to the  gray values of

pixels extracted after the application of the median filter.

Figure  6:  (a)  Effect  of  applying the median filter  to  the model  deviation for  each

percentile  as a function of  the  kernel  size.  Percentage values correspond to  the

kernel size of the median filter divided by the B-axis of the largest particle, multiplied

by 100.

3.1.3 Effect   of sampling area  

For all  percentiles, a significant negative exponential relationship (95% confidence

level) was found between the slope coefficient and the dimensionless sampling area

(sampling area divided by the largest particle area; Figure 7.a). A stabilization of the

values of the slope coefficient was observed from a sampling area equal to 80 times

the area of the largest particle (Figure 7.b). The mean values of the slope decreased

from 2.41  to  0.17  for  dimensionless  sampling  areas  from 20  to  80.  It  has  been

observed  that  the  slope  coefficients  were  higher  for  the  sediment  patches

characterized by a high sediment sorting index than for sediment patches with low

sediment sorting for the same sampling area (Figure 7.a).
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Figure  7:  (a) Evolution of the slope coefficient as a function of the dimensionless

sampling  area  and  the  sorting  index,  where  black  lines  correspond  to  the

relationship, and (b) boxplots  of  the slope values according to  the dimensionless

sampling area. Intervals correspond to the 25th and 75th percentiles, and the lower

and upper  whiskers correspond to 1.5 times the interval quartile range. Black lines

correspond to the median values, and the red points correspond to the mean values.
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3.1.4 Comparison of the   estimated   GSD with   field pebble counts  

Figure  8.a  compares  the  percentiles  estimated  by  field  pebble  counts  with  the

percentiles estimated by the automatic procedure of the digital images in controlled

environmental  conditions  (controlled  solar  lighting  condition,  application  of  the

median filter at 5%, and sampling area greater than 80 times the largest particle).

The  terrestrial  photosieving  method  quasi-systematically  underestimated  the  field

pebble-count percentiles. The bias of the terrestrial photosieving method has been

corrected by linear regression (Figure 8.b). The RMSE values decreased from 0.55

psi to 0.29 psi by applying the correction. The comparison of our results with other

studies using automatic procedures shows the same range of errors (Table 3).

Study
Approach

Form

distribution

Lighting

conditions

Range of grain

size (psi)
Truncations

Irreducible

error (e) (psi)

This study
Statistical

approach

Pebble

counts
Controlled 3.00 – 8.13  3 psi 0.29

This study
Manual

approach

Pebble

counts
Not controlled 3.00 – 8.13  3 psi 0.29

Sime  &

Ferguson,

(2003)

Object-oriented

approach

Pebble

counts
Not specified Not specified 3 psi 0.27

Graham et  al.,

(2005.b)

Object-oriented

approach

Pebble

counts
Controlled 0.10 – 7.64  3 psi 0.18 

(a)

Strom  et  al.,

(2010)

Object-oriented

approach

Pebble

counts
Not specified 2.32 – 7.60  2.32 psi 0.26

Table  3: Comparison of  the  performance of the  procedures  used in this study  with

those used in other published studies. All values are in psi. The irreducible error (e)

of Graham et al. (2005b) was transformed to grid by number distribution.  (a)  Mean

irreducible error calculated on three rivers.
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Figure  8:  Percentiles  estimated  by  field  pebble  counts  according  to  percentiles

estimated by the automatic procedure of digital images (a) before the bias correction

and (b) after the bias correction. RMSE and MAE values are in psi. The distributions

were truncated at 3 psi.

3.2 Accuracy  of  the  GSD  estimation  in  above-water  conditions  by  using  

airborne topographic LiDAR data

3.2.1 Rh   metric   and standard deviation of intensity values as proxies of the GSD  

The percentiles  calculated  using  the  distribution  of  the  standard  deviation  of  the

intensity  values  were  higher  than  the  threshold  uncertainties  for  all  percentiles

(Figure 9.a). For the Rh metric, only the percentiles equal to or greater than the 25 th

were greater than the threshold uncertainties.

23

89
90

406

407

408

409

410

411

412

413

414

415

416

417

91
92



24

Figure  9:  Values  of  percentiles  estimated  by  (a)  the  standard  deviation  of  the

intensity values and (b) the Rh metric extracted from the airborne topographic LiDAR

survey. The black line corresponds to the threshold uncertainties of the two metrics

estimated on the three control areas (see section 2.2.2).

Significant power law correlations at the 95% confidence level were found between

the percentiles of the Rh metric distribution and the GSD of the field pebble counts in

a range of  grain  sizes equal  to  or  higher  than the 25 th  percentile  (Table 4).  The

strongest correlation was found for the 84 th percentile with an R2 coefficient equal to

0.85 (p-value4.9e-08).  Significant power law correlations at the 95% confidence

level  were  also found between the percentiles  of  the distribution of  the  standard

deviation of the intensity values and the GSD of the field pebble counts (Table 4).

The strongest correlation is also found for the 84th percentile with an R2 coefficient

equal to 0.85 (p-value9.6e-07) (Table 4). Figure 10.a-b shows that the relationship
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between the predicted percentiles by both metrics and the estimated percentiles by

the field pebble counts are close to the 1:1 line. The mean values of the RMSE and

MAE of the predicted GSD were equal to 0.34 psi and 0.29 psi for the Rh metric for

the  16th and  95th percentile,  respectively,  while  for  the  standard  deviation  of  the

intensity values, the mean values of the RMSE and MAE were equal to 0.38 psi and

0.30 psi for the 5th and 95th percentile, respectively (Figure 10.a-b).

Rh metric

(n=18)

Standard deviation of intensity values

(n=18)

Percentile Equation R2 p-value RMSE MAE Equation R2 p-value RMSE MAE

D5 NE NE NE NE NE y2.528x0.154 0.32 0.013 0.40 0.31

D10 NE NE NE NE NE y2.41x0.180 0.41 0.0048 0.39 0.31

D16 NE NE NE NE NE y12.138x0.219 0.61 0.00035 0.32 0.28

D25 y30.280x0.345 0.62 9.4e-05 0.36 0.30 y1.800x0.264 0.67 0.00015 0.34 0.30

D50 y23.994x0.319 0.69 2.2e-05 0.38 0.31 y1.450x0.318 0.78 3.2e-05 0.32 0.26

D75 y23.654x0.341 0.79 8.8e-07 0.34 0.28 y1.110x0.387 0.82 2.2e-06 0.33 0.25

D84 y29.015x0.410 0.85 4.9e-08 0.29 0.26 y1.103x0.386 0.85 9.6e-07 0.31 0.24

D90 y28.590x0.422 0.81 3.5e-07 0.33 0.32 y1.096x0.386 0.83 1.9e-06 0.33 0.23

D95 y24.781x0.398 0.84 8.0e-08 0.29 0.26 y1.35x0.338 0.76 8.9e-06 0.36 0.28

Table 4: Statistical relationships between the percentiles of the distributions of the Rh

metric and the standard deviation of the intensity values and the GSD of the field

pebble  counts.  The  RMSE  and  MAE  metrics  are  in  psi.  NE  corresponds  to  no

estimation.
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Figure 10: Predicted percentiles by (a) the Rh metric and (b) the standard deviation

of the intensity values for different percentiles.

3.2.2 Effects of   the kernel size computation  

Figure 11.a shows the evolution of the R2 coefficient  of  the relation between the

percentiles of the distribution of the Rh metric and the GSD of the field pebble counts

as a function of the kernel size computation of the metric. The relations were strong

with a mean R2 coefficient ranging from 0.64 to 0.77 in a range of kernel sizes from

0.4 m to 1.2 m and decreased for a kernel size equal to 1.4 m (Figure 11.a). The best

correlation was found for a kernel size equal to 1.0 m, which corresponds to three to

four times the B-axis of the largest particle. Figure 11.b shows the evolution of the R2

coefficient of the relation between the percentiles of the distribution of the standard

deviation of the intensity values and the GSD of the field pebble counts as a function

of  the  kernel  size  computation  of  the  metric.  A  small  decrease  in  the  mean  R2

coefficient from 0.72 to 0.62 was observed for a kernel size increasing from 0.1 to 2.0

m. The highest R2 was found for a kernel size equal to 0.4 m (grain size ranging

between the 25th and 95th percentiles). For the percentiles ranging between the 5th

and 95th percentiles, R2 decreases from 0.62 to 0.58 when the kernel size increases
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from  0.1  to  2.0  m.  No  clear  threshold  of  kernel  size  appears  for  the  standard

deviation of the intensity, contrary to the Rh metric.

Figure 11: Impact of the kernel size used for the computation of the two proxies for

(a)  the  Rh  metric  and  (b)  the  standard  deviation of  the  intensity  values  on  the

statistical relationships between the distribution of the metrics and the GSD of the

field pebble count. Black points correspond to the mean values of R2 from the 25th to

the 95th percentiles; the gray points correspond to the mean values of R2 for the 5th to

the 95th percentiles. Error bars correspond to +/- one standard deviation.

3.2.3 Effect of sediment characteristics  

Figure 12 compares the relation between the 84th percentile of the GSD of the field

pebble counts and the 84th percentile of the Rh metric distribution found in this study

with  that  found  in  the  literature.  The  equation  slopes  show  a  large  variability,

indicating that multiple values of the Rh metric can be found in the same grain size

range. Vázquez-Tarrío et al., (2017) found a relation close to the 1:1 line with a slope

value equal to 0.79, while  Woodget et al., (2017) found a very high slope equal to
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12.35. Our empirical relation is enclosed between these two relations with a slope

value equal to 6.46.

Figure 12:  Relation between the 84th percentile of the field pebble-count distribution

according to the 84th percentile of the distribution of the Rh metric compared with the

literature results. The calibration of Woodget et al., (2017) was based on a grid count

on ground digital images (0.4 m x 0.4 m), whereas Vázquez-Tarrío et al., (2017) used

field pebble counts. Values of correspond to the slope of the linear relations found

between the two variables.

3.2.4 Computation of the predicted grain size maps  

Figure 13 shows the predicted maps of the median grain size at the cell scale (1 m x

1 m) from the standard deviation of the intensity values (Figure 14.a) and Rh metric

(Figure 14.b). The maps show similar spatial predictions of the grain size patterns

with bed refinement in the downstream direction and from the thalweg to the bank

direction, which are generally observed on above-water bars and in accordance with

our qualitative field observations. However, the relationship obtained by the standard

deviation of the intensity values shows a lower spatial variability than that obtained
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with  the  Rh  metric.  Significant  differences  exist  in  the  predicted  84 th percentile

between the two proxies with a standard deviation of the difference equal to 0.78 psi

(Figure 13.c).

Figure 13: Predicted maps of the median grain size on an above-water bar by using

(a) the standard deviation of the intensity values and (b) the Rh metric as a proxy.

The differences in the predictions between the two proxies are given in (c). The blue

and red dashed lines correspond to the mean and +/- 1 standard deviation of the

differences between the two metrics, respectively.
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3.3 Accuracy of the GSD estimation in underwater conditions by terrestrial  

photosieving

3.3.1 The automatic procedure  

The results showed that the accuracy of the GSD estimated by DGS software was

dependent on the type of substrate. Low values of the NRMSE were obtained for

clean  substrate,  while  the  NRMSE  values  exceeded  40%  for  all  percentiles  for

substrate with the presence of biofilm (Table 2).  For both types of  substrate,  the

NRMSE decreased when the percentiles increased. Low values of the NRMSE for

clean  substrate  are  explained  by  low  particle  intravariability  and  high  particle

intervariability,  whereas  high  NRMSE  values  for  substrate  with  the  presence  of

biofilm and/or presence of deposition are due to both low particle intravariability and

intervariability of gray values (Figure 5). Considering sensitivity analyses, the best

kernel size for digital image computation with the presence of biofilm to significantly

reduce error estimations by the DGS software is equal to 2.5% of Dmax (Figure 14,

Table 2).  In  this  case,  the median filter  increases the intervariability  between the

particles  (Figure  5).  However,  the  NRMSE values  are  still  too  high  to  use DGS

software to estimate the GSD for substrate with biofilms (Table 2).
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Figure 14: Effect of the application of the median filter on the NRMSE values for each

percentile according to the kernel size computation. Percentages correspond to the

kernel size of the median filter divided by the B-axis of the largest particle multiplied

by 100.

3.3.2 Exploring manual processing of ground digital images to process all contexts   

Manual processing was tested because the majority of the digital images collected in

underwater  conditions  were  impacted  by  the  presence  of  biofilm,  notably  due  to

relatively low bedload mobility along the study reach. The manual method offers the

advantage of being less influenced by environmental conditions than the automatic

procedure  (see  section  3.1.2).  Similar  to  the  automatic  procedure,  an

underestimation of the field pebble count was observed with the manual procedure in

both above-water and underwater conditions (Figure 15.a). The bias was corrected

by a linear regression (Figure 15.c), inducing a significant reduction in the RMSE in

both  conditions  that  was  equivalent  for  both  environmental  recording  conditions

(Figure 15.b-d).
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Figure 15: (a) Manual procedure before the bias correction, (b) boxplots of the RMSE

values before  the  bias correction  for  each  environmental  recording  condition,  (c)

manual procedure after the bias correction and (d) boxplots of the RMSE values after

bias correction for each environmental recording condition. Black lines correspond to

the linear regression, and dashed lines  correspond  to  the  1:1 relation. The RMSE

and MAE values are in psi, and n corresponds to the number of field pebble counts.
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4. Discussion  

4.1 Above-water conditions  

4.1.1 Accuracy   of terrestrial photosieving   and airborne topographic LiDAR to   

estimate the GSD in above-water conditions

Our results demonstrate that both terrestrial photosieving and proxies extracted from

the airborne topographic LiDAR are reliable for estimating the GSD in above-water

conditions once calibrated. Differences between the results of the two procedures

suggest  that  terrestrial  photosieving  is  more  accurate  than  the  Rh  metric  and

standard deviation of intensity values extracted from the airborne topographic LiDAR

data (Table 3, Table 4). This can be explained by the fact that photosieving estimates

grain size in the plan view, which is less affected by sediment patch imbrication than

three-dimensional views (Carbonneau et al., 2005; Woodget et al., 2018).

The automatic  procedure  of  the  digital  images systematically  underestimated the

GSD of the field pebble counts, as also reported by Sime & Ferguson, (2003), Strom

et al.,  (2010) and Warrick et  al.,  (2009),  but  it  can be corrected by simple linear

regressions (Figure 8). This underestimation by photosieving is explained by burial,

overlapping, foreshortening and the C-axis not being oriented perpendicularly to the

plane of some particles  (Graham et al., 2010). The irreducible errors found in this

study are in the same range as those in other studies (Table 3).

Comparison between the two proxies extracted from the airborne topographic LiDAR

survey shows that the standard deviation of intensity seems to predict the GSD with

higher  accuracy  than  does  the  Rh  metric  and  allows  an  estimation  of  the  low

percentiles of the distribution, contrary to the Rh metric. We explain this by the fact

that the intensity values are less affected by recording uncertainties (Table 1). The

comparison  of  our  results  with  previous  studies  shows  a  large  variability  in  the
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empirical  relationships between the Rh metric  (D84)  and GSD (D84)  for  the same

range  of  grain  sizes  (Figure  12).  Our  empirical  relation  is  located  between  the

relations of Woodget & Austrums, (2017) and Vázquez-Tarrío et al., (2017). Pearson

et  al.,  (2017) showed  that  bed  roughness  is  influenced  by  several  parameters,

including  the  shape  of  particles,  packing  and  bed  imbrication  of  particles,  and

distribution  shape  and  survey  errors,  and  can  explain  differences  in  roughness

values for the same range of grain sizes. Vázquez-Tarrío et al., (2017) reported that

their  sediment  patches were composed of well-rounded and subspherical  granitic

and metamorphic gravels and cobbles. In our case, particles were mostly flat and

imbricated,  generating  lower  roughness  values  for  a  given  GSD.  Woodget  &

Austrums, (2017) also reported that their sediment patches were mostly composed of

packed  and  imbricated  particles.  As  intensity  values  are  dependent  on  the  bed

surface roughness,  it  is  very likely that  various relationships could also be found

between the standard deviation of the intensity values and the bed grain size for the

same range of GSD. The approach of Pearson et al., (2017) in laboratory conditions

with the objective of assessing the influence of the sedimentary characteristics on the

roughness - grain size relationship could also be performed in the field to try to build

an abacus and derive from it several universal calibration laws usable for the two

methods based on LiDAR data. It should be noted that this technique is limited only

to  sections  of  rivers  where  the  roughness  is  relatively  high  and  higher  than  the

georeferenced error of the survey along the z-dimension.

Both methods have their own advantages: terrestrial photosieving allows the GSD to

be followed at a high temporal  frequency with rapid grain size information and is

cheaper, whereas airborne topographic LiDAR can predict the GSD in large above-
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water areas and produce grain size maps, which is crucial to surveying the grain size

evolution, notably for restorations along large rivers (Figure 13).

4.1.2 Toward an optimization of the two methods  

Our study reveals that the accuracy of the automatic procedure of digital images to

estimate  the  GSD  is  dependent  on  both  the  environmental  conditions  and  the

sampling area. The higher NRMSE values in our study compared to those published

by Buscombe (2013) may be explained by the petrographic variability of the particles,

which induces oversegmentation due to  high intravariability  of  the gray values of

pixels (Figure 5). However, the use of a median filter can significantly reduce the

oversegmentation  with  a  decrease  in  the  NRMSE value,  close  to  the  results  of

Buscombe (2013). Moreover, our study shows that DGS estimations were influenced

by solar lighting in the majority of the cases with an underestimation using sunny

photographs by comparison with photographs with shadow conditions. Changes in

underestimation values are explained by the changes in the solar angle during a day.

These  observations  are  in  accordance  with  Warrick  et  al.,  (2009)  and  may  be

explained by the fact that bed roughness generated by the coarser particles induced

large shadow areas in low sun angles Warrick et al., (2009) and explain why low

percentiles were more impacted by solar conditions than were coarse percentiles.

Thus, the variation in solar lighting conditions can alter the calibration step between

the GSD estimated by digital images and the field pebble counts. In addition, our

study  reveals  that  sensitivity  analyses  must  be  conducted  to  define  the  minimal

sampling  area  from  which  the  fluctuation  of  the  DGS software  becomes  low  to

minimize variability during the calibration step with the field pebble counts. For our

sediment patches, our study reveals that fluctuations were significantly reduced for a

sampling area 80 times larger than the largest particle area. This sampling area is
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dependent on the sorting index of the sampling sediment patches (Figure 7),  but

other  parameters  of  the  distribution  shape  (e.g.,  skewness,  bimodality)  can  also

influence the accuracy for a given surface sampling (Rice & Church, 1996).

For the airborne topographic LiDAR, our study highlights that the accuracy of the Rh

metric to predict the GSD can be dependent on the kernel size computation, contrary

to the  standard  deviation  of  the intensity  values,  which  requires  no presensitivity

analysis and significantly reduces the processing time (Figure 11).

The best kernel size to compute the Rh metric is four times larger than Dmax, which

is twice the values found by Vázquez-Tarrío et al., (2017). We hypothesize that this

difference is the consequence of a lower point  density in our study (38 to 49/m2)

compared to that of Vázquez-Tarrío et al., (2017; 36 to 1052/m2).

Supplementary research is needed to evaluate the impact of the density of the point

cloud on the reliability of the bed GSD estimation by the intensity metric. Vázquez-

Tarrío et al., (2017) showed that 10 pts/m2 is the minimal threshold to estimate the

bed GSD by the Rh metric with accuracy for their range of sediment sizes. Research

must also be conducted to evaluate the influence of the spot size of the beam, which

depends both on the flight elevation and on the open angle of the captor.

4.2 Underwater conditions: accuracy of digital images  

Our results show that the automatic procedure is a reliable method to estimate the

GSD for clean substrate.  Contrary to above-water conditions, there is no need to

apply  a  median  filter  to  reduce  estimation  errors  by  the  DGS  software.  This  is

explained by the absorption of solar light by the water column, which significantly

reduces the variability of the gray values on the digital images, thus minimizing the

oversegmentation  by  the  DGS  software.  However,  this  method  does  not  allow

substrate with biofilms to be processed even with the application of a median filter for
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percentiles equal  to and greater than the 50 th percentile.  An alternative approach

must be conducted to process this kind of data, as this situation is very frequent for

rivers  with  weak  bedload  dynamics  and/or  with  high  wash  loads.  The  manual

approach  proposed  in  this  paper  is  a  reliable  method  to  estimate  the  GSD  of

substrate with biofilms and has the advantages of requiring no preprocessing step

and is independent of environmental conditions (Figure 15). This approach can also

be  applied  in  above-water  conditions  if  photosieving  was  conducted  in  limiting

environmental conditions (e.g., solar light for calibration purposes with field pebble

counts,  local  growth  of  small  pioneer  vegetation).  Unfortunately,  it  presents  a

nonnegligible operator-introduced bias during the manual B-axis determination.

4.3 Methodological recommendations 

To perform data calibration from terrestrial photosieving with field pebble counts in

above-water conditions, we recommend the following:

(i) Collect the dataset during cloudy days as proposed by (Warrick et al., 2009;

Buscombe et  al.,  2010)  and when the  vegetation  is  not  yet  developed

(Graham et al., 2005b).

(ii) Use a median filter in case of large variability in particle petrography to reduce

the oversegmentation by the DGS software. The best kernel size for the

median filter computation found in this study can vary as a function of the

petrographic  characteristics of  the  sediment  patches studied;  thus,  new

sensitivity  analyses  must  be  conducted  for  studies  performed on  other

rivers.

(iii) Perform sensitivity analyses to evaluate the minimal sampling area from which

the estimation fluctuations of the DGS software are judged to be low in

relation to the characteristics of sediment patches studied.
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To  perform  data  calibration  from  the  two  metrics  extracted  from  the  airborne

topographic LiDAR survey with  the field  pebble counts in  above-water  areas,  we

recommend the following:

(i) Prioritize the dataset collection in winter due to the absence of vegetation to

limit  estimation  errors  during  the  computation  of  the  two  metrics  and

evaluate  the  GSD  on  the  largest  possible  area.  Preferentially  use  the

standard  deviation  of  the  intensity  values  rather  than  the  Rh  metric

because the accuracy prediction of the metric is weakly dependent on the

kernel size computation of the metric and reduces processing time.

(ii) In the case when intensity values are not available, the Rh metric can be a

useful proxy, but sensitivity analyses must be performed to find the best

size of the kernel computation of the metric.

The relationships found in this study have been performed for a maximum beam size

equal  to  12  cm  and  a  minimal  density  of  points  greater  than  30  pts/m2.

Supplementary  research  should  be  conducted  to  evaluate  the  influence of  these

parameters on the relation between the two proxies tested in this study and the bed

GSD.

For digital image collection in underwater conditions, we recommend the following:

(i) Perform  a  survey  once  the  water  turbidity  is  low  and  biofilm  is  not  yet

developed  as  during  low  water  temperature  or  just  after  critical  flood

events.

(ii) Collect  the  data  by  using  the  video  option  of  the  camera  rather  than  the

photographs option to limit  blurred images due to the movement of  the

boat, which does not allow the captor to make the adjustment and requires

less time in the field.
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We used between ten and twenty field data calibrations for the two methods used in

this study deployed along several kilometers of river reach. However, the number of

these  survey  calibrations  may  be  higher  for  studies  covering  several  tens  of

kilometers because the heterogeneity of the GSD may be relatively important due to

various sedimentary contexts (e.g., influence of tributaries, bedload inputs, contacts

with  lateral  hillslope),  which  can  generate  various  sediment  patch  characteristics

(Vázquez-Tarrío et al., 2017).

5. Conclusion

This study highlights the ability of terrestrial photosieving and, for the first time, the

capacity of airborne topographic LiDAR  surveys based on the computation of two

metrics, the Rh metric and the standard deviation of the intensity values, to estimate

the GSD of above-water deposits.  The errors of  both methods are similar with a

range of MAE values from 0.23 to 0.31 psi. Airborne topographic LiDAR allows the

production of maps of the GSD, while rapid GSD estimations can be produced only

by terrestrial  photosieving.  The results also show that  the  accuracy of  automatic

processing of terrestrial photosieving  depends on the environmental conditions and

areal  sampling.  For  both  proxies  derived  from  airborne  topographic  LiDAR,  the

accuracy of the predicted GSD for the Rh metric is dependent  on the size of the

kernel computation, contrary to the standard deviation of the intensity values. The

latter allows the estimation of all grain size percentiles, whereas the Rh metric allows

the estimation of only the grain size percentiles coarser than the 25th due to  the

larger uncertainties of recording. The automatic procedure of terrestrial photosieving

is also a reliable method to estimate the GSD in underwater conditions for clean

substrates,  but  it  cannot  be  adapted  in  the  presence  of  biofilm.  The  manual

procedure  can  be  a  relevant  alternative  to  overcome  these  constraints.  Thus,
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combining  terrestrial  photosieving  with  airborne  topographic  LiDAR  appears  a

relevant compromise for surveying the GSD in large rivers, along reaches of several

kilometers  and  over  the  whole  channel  cross  section  with  rapid  GSD  data  in

underwater conditions and continuous GSD data in above-water conditions. In the

future, one important challenge is to develop universal laws according to sediment

patch characteristics for both terrestrial photosieving and airborne topographic LiDAR

surveys.
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