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Abstract—This paper illustrates our recent advances in terms
of supervised classification of different acoustics signatures em-

ployed for fish monitoring by the ACOUEAU active ultrasound
system. The obtained results are analyzed, both qualitatively and
quantitatively, by taking into consideration five target types.

Index Terms—underwater acoustics, fish classification, ma-
chine learning

I. INTRODUCTION

Fish counting facilities play an important role in river

system biodiversity monitoring. The ability of current hydro-

power plants to allow unobstructed passage for migrating fish

species is a common requirement. The European Commission

has published a set of recommendations for the use of ded-

icated passage channels (or fish passes) to by-pass the fish

migration paths and to allow the up/down stream migration of

fish species [1].

Monitoring fish passages is currently preformed using dif-

ferent technologies, like camera filming, infrared systems,

passive sonars, active acoustic tagging or RFID tagging [2]–

[5]. Spampinato et al. introduced in [6] an underwater imaging

system for detecting fishes in Ken-Ding, Taiwan. The proposed

imaging systems has three subcomponents: texture analysis,

fish detection and fish tracking. The main inconvenient of such

a system is the fact that it can operate during the day or with

artificial illumination, only.

A second method for fish counting is based on resistive mea-

surements [7]. Using two electrodes, this monitoring system

is measuring the conductivity fluctuations (slight decrease in

amplitude) when a fish is passing through. Such techniques are

well suited for calm underwater environments such as the fish

elevators where no considerable turbulent follow is present.

An et al. introduced ultrasound for fish monitoring [8]:

by using an ultrasound emitter, the acoustic signal scattered

by the fish is analyzed using three underwater cameras. In

this context, an active ultrasound fish monitoring system can

efficiently contribute to detect, quantify and identify in the

water column the fish species continuously.

In this paper, we present our recent advances in the field

of active ultrasound fish detection capabilities developed in

the framework of the FEDER ACOUEAU1 European Project

funded through the PACA county, France. The main goal

of this project is to develop multiple acoustic barriers for

reliable fish counting in downstream fish passes. In [9], [10],

we introduced an Internet of Things (IoT) cost effective 500

kHz acoustic system for counting fishes in passage channels,

which operates on the principle of multi-static acoustic antenna

[11]–[13]. It was composed of several acoustic barriers: each

fish passage will obstruct the acoustic propagation channel

between the emitter and the receiver, which makes possible

fish monitoring. The acoustic barrier can act as an independent

conventional immersed wideband ultrasound system in bistatic

configuration.

Because the passage channel is a noisy and a relatively

fast changing environment, our motivation for designing the

1http://www.osean.fr/fr/feder-acou-eau.php



proposed IoT system is to increase the quality of signals and to

simplify the computational load of the processing algorithms

for the detection of events. The proper use of this technique

relies on two main hypotheses.

The first one concerns the Signal-To-Noise (SNR) ratio,

namely any fish passage will decrease the received SNR by

a significant amount. This has been insured by employing

adaptive acoustic channel equalization [14] coupled with the

use of wide-band transmission waveforms [15].

The second hypothesis relies on the ability to recognize the

external perturbation on the acoustic path [10], [16].

This paper is structured as follows. Section II presents a new

method to isolate the acoustic background from the passages

of interest, while Section III introduces the proposed fish

recognition algorithm. Section IV illustrates both qualitative

and quantitative performance assessment. Section V concludes

the paper.

II. ACOUSTIC BACKGROUND STATISTICAL DETECTION

Before further processing, one important step consists in

distinguishing between the unperturbed reference signal (back-

ground) and the received acoustic signal affected by any fish

passage. By considering the fish passages as sparse events,

we propose to take advantage of the asymptotic Probability

Density Function (PDF) of the Sum-of-Squares (SS) estimate:

XSS =

L∑

i=1

|Xi|
2, (1)

where X is the complex spectrum of the signal contained in

each burst and L is the burst number of samples.

Under the hypothesis that X follows the complex circular

normal distribution, the XSS will asymptotically converge

to a Gamma distribution with parameters X̄SS (mean) and

L (degrees of freedom). Given the fact that L is large, we

consider that X̄SS is a deterministic quantity and thus it is

approximated by its median value X̂SS .

For a background signal, the PDF of the ratio XSS

X̂SS

is:

pXSS

X̂SS

(x) =
LLxL−1

Γ(L)
e−Lx. (2)

The length of the 95% confidence interval (centered around 1)

is expressed in terms of the coefficient of variation CV = 1√
L

as 2CV [17], [18].

In the proposed model, the occurring fish passages are

considered as outliers of this PDF: if the ratio XSS

X̂SS

exceeds

2CV , the received acoustic signal is considered as a fish

passage.

III. FISH RECOGNITION BY MACHINE LEARNING

Several experimental observations [10], [16], have led us to

the machine learning algorithm proposed in this paper for fish

recognition. It is composed of two stages:

• the training step - a training database is used to extract

the information required for the acoustic signature char-

acterization;

• the recognition step - using the previously derived target

descriptors, the final decision criterion is computed.

Before applying the machine learning stage, a preprocessing

step is required in order to cancel the propagation effects of

the bistatic system and its environment, namely background

deconvolution. The background is thus removed using the

Tikhonov deconvolution [19]:

xnorm = iFFT
[
(X ⊗B∗)(B ⊗B∗ +R)−1

]
, (3)

where X and B are the complex spectra of the input and

background signals after applying Hanning weighting. The

background acoustic signature B is obtained in the spectral

domain by the trimmed mean estimator and the regularization

constant R is set according to 5% of the dynamic range of the

input signal.

Finally, in order to remove the main lobe of xnorm, the

Hanning weighting is applied before shifting.

A. Training

This step requires a training database [X ]train arranged as

a 3D tensor of size N × n × m, where N is the number of

samples and n is the number of signals available for each of

the m targets. It can be summarized as:

1) compute the Hilbert transform of each signal [X ]trainHilbert

along the dimension N ;

2) evaluate the Fast Fourier Transform (FFT) [X ]trainFFT

along the same dimension;

3) take the mean over the dimension n to derive [X ]trainmean;

4) perform the inverse FFT (iFFT) along N to derive

[X ]trainreference.

The derived matrix [X ]trainreference of size N ×m is completely

characterizing each of the m targets of interest.

B. Recognition

Using the previously derived reference functions, each

recorded signal under test xtest, of size N , is processed

according to the following steps:

1) compute the Hilbert transform xtest
Hilbert ;

2) for each i ∈ {1..m} target types, compute the corre-

sponding match filter xtest
MFi

;

3) the received signal is assign to the dominant target type

k according to the criterion

k = argmaxi∈{1..m}{MAXN |xtest
MFi

|}. (4)

The final classification label is set according to the criterion

from Eq. 4, which is maximized when the acoustic signature

is identical to the class reference function.

IV. RESULTS AND DISCUSSION

In order to validate the proposed algorithm, an experimental

campaign has been realized in controlled environment (EDF

Chatou Lab) in February 2020. During this experimentation,

the nominal bandwidth has been selected between 300 KHz

and 600 KHz, at 0.6 m/s flow, with m = 5 representative

target types: trout (C50m6), small leaves (C50m6PF), large



Fig. 1. Example of one signals after band pass filtering: time domain (up)
and spectral domain (down).

Fig. 2. Example of one normalized signals after background deconvolution:
time domain (up) and spectral domain (down).

leaves (C50m6GF), small wood branches (C50m6PFG) and

large wood branches (C50m6GFG).

Fig. 1 illustrates an example of received signals after band

pass filtering, spanning one buffer, while Fig. 2 shows the same

signals after background deconvolution. One can notice that

only 6 channels contain useful information. All other channels

were not submerged due to the reduced section of the testing

facility.

The results obtained by the proposed background statistical

detector are shown in Figs. 3 and 4. They correspond to

the trout passages within the selected six acoustic barriers.

While the results obtained using the last five barriers (CH2

to CH6) are consistent, the first acoustic barrier (CH1) is

exhibiting a considerably lower performance. This is due to

the fact that CH1 is placed at the top of the section and thus

the occurrence of waves is violating the passage sparsenesses

condition detailed in Sect. II.

In order to validate the proposed acoustic target classifica-

tion algorithm, the histograms of the criterion from Eq. 4 for

all five classes are presented in Fig. 5. The dataset corresponds

to the trout passages, only. It can be seen that the proposed

criterion achieves the required separation between the true and

Fig. 3. Active ultrasound fish / background selection: SS time series, 6
channels.

Fig. 4. Active ultrasound fish / background selection: histogram of the SS
time series with the corresponding background confidence interval.

the false classes.

Quantitative performance analysis is shown in Table I for

the trout passages, also. More than 99% of the recorded signals

were correctly classified.

“Temperature/K”.

V. CONCLUSION

This paper proposed a method to classify acoustic signatures

provided by different acoustic barriers in order to be able

to perform fish counting in a time varying shallow water

environment. It was shown that the obtained results present

a high degree of accuracy with respect to the ground truth.

Future studies include the inclusion of time adaptive estimation

for continuous unsupervised monitoring.
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Fig. 5. Active ultrasound fish recognition, separability between classes: histograms of the the criterion from Eq. 4.

TABLE I
QUANTITATIVE PERFORMANCE ASSESSMENT (PERCENTAGE) FOR THE TARGET CLASSIFICATION ALGORITHM FOR THE TROUT PASSAGES: C50M6 IS THE

TRUE CLASS, WHILE C50M6PF, C50M6GF, C50M6PFG AND C50M6GFG ARE THE FALSE CLASSES.

C50m6 C50m6PF C50m6GF C50m6PFG C50m6GFG

CH2 99.50 0.11 0.17 0.09 0.13

CH3 99.98 0 0.02 0 0

CH4 99.63 0 0.37 0 0

CH5 100.0 0 0 0 0

CH6 99.81 0.15 0.02 0 0.02
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