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Abstract: This paper proposes a novel data processing framework dedicated to bedload monitoring
in underwater environments. After calibration, by integration the of total energy in the nominal
bandwidth, the proposed experimental set-up is able to accurately measure the mass of individual
sediments hitting the steel plate. This requires a priori knowledge of the vibration transients in order
to match a predefined dictionary. Based on unsupervised hierarchical agglomeration of complex
vibration spectra, the proposed algorithms allow accurate localization of the transients corresponding
to the shocks created by sediment impacts on a steel plate.

Keywords: hierarchical agglomeration; complex vibration spectra; bedload monitoring;
underwater acoustics

1. Introduction

Underwater bedload transport surveys are important for assessing stability issues such as
reservoir silting or channel self-cleaning. To this purpose, sediment traps are currently used to
derive the sediment balances.

Monitoring of the bedload transport in underwater environments is crucial for understanding
stability issues. The Birkbeck sampler has become one of the preferred methods for in situ bedload
measurements [1]. Being an integral measure of the transported sediment volume in a certain time
interval, this direct method suffers from one main drawback: it has a finite capacity. Without the use of
devices such as a sludge pump to empty the accumulating sediment, the sampler fills and eventually
ceases to yield data. Furthermore, bedload transport in rivers can be extrapolated using empirical
models such as the one used by Radecki-Pawlik et al. [2] for the Mlynne and Lososina Streams (Polish
Carpathians). An extensive review on water-worked gravel bed natural evolution can be found in [3].

An alternative nonintrusive bedload monitoring instrument is the buried geophone station [4–6].
Under protection of steel plates, several geophones can provide continuous and automatic
measurements, even during large floods. Every stone passing the steel geophone-equipped plate
generates an impulse recorded by the signal acquisition board. Using a calibrated voltage thresholding
scheme, the grain impacts are recorded and counted. One can notice that this instrument is highly
sensitive to the environmental noise, as it operates at low frequencies (<1 KHz).

In [7], Bogen and Moen used piezoelectric acoustic transducers for bedload monitoring stations in
Norway. The reported results present a clear correspondence with the sediment flow, but no estimation
scheme is proposed.

Very recently, Antoniazza et al. proposed an extensive study on the variability of bedload transport
monitoring by the Swiss plate geophone system [8]. One of the conclusions was that, after calibration,
sediment grain-size identification can be achieved by matching particle size classes [9].
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In this paper, the potential of ultrasound (US) transducers coupled with piezoelectric
accelerometers for bedload monitoring stations is further explored in a controlled laboratory
environment. The obtained results provide interesting sensitivity capabilities, in accordance with the
ground truth. The main objectives are to validate the operating frequency of the transducers, to provide
consistent calibration and processing, and to evaluate the uncertainty of the derived measurements.
To pursue these objectives, an experimental platform, illustrated in Figure 1a, has been developed and
tested in the GIPSA-Lab controlled tank system.

(a)

(b)

Figure 1. Multisensor bedload transport monitoring platform: (a) general view and (b) set-up of the
acoustic sensors on the top steel plate (units expressed in cm).

The following sensors have been employed.

• Four ultrasound contact transducers PAC R50 (EM, R2, R3, and R4).
• Two calibrated piezoelectric accelerometers Endevco 233E (A1 and A1).
• One geophone R.T. Clark (G).

The EM US transducer has been excited using the ENI 2100L power amplifier and the Picotest
G5100A arbitrary signal generator. The received signals from A1, A2, R3, and R4 have been conditioned
using the Nexus low noise amplifier and recorded using the PXIe-1082 NI system.

After calibration, by integrating the total energy in the nominal bandwidth, the proposed
experimental setup is able to accurately measure the mass of individual sediments hitting the steel plate.
This requires a priori knowledge of the vibration transients in order to match a predefined dictionary.
We propose a novel framework for detecting and localizing the transients (in the passive configuration)
corresponding to the shocks created by sediment impacts on the steel plate. The proposed algorithm is
based on a hierarchical agglomeration of complex vibration spectra. The multivariate segmentation
algorithm proposed in [10] is selected: the multimodal signals are analyzed by exploiting the
asymptotic distribution of the covariance matrix of the complex spectra.

Within this context, this manuscript synthesizes the results presented in [11,12] in order to propose
a unified acoustic data processing and analysis framework for the monitoring of the bedload transport
in underwater environments. The paper is structured as follows. Section 2 introduces the measurement
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methodology, Section 3 describes the proposed data processing framework, and Section 4 presents
some qualitative and quantitative performance assessment. Section 5 concludes the paper.

2. Calibration and Measurement

For the proposed bedload monitoring system, the static calibration is a direct relationship between
the output and the input of the system determined experimentally.

Static calibration requires a reference standard, to which the output is reported. For our system of
sensors, the calibration process determines a relationship between the input voltage controlling the EM
US transducer and the output characteristic, called static characteristic curve or calibration. Figure 2
shows the static characteristic in water, measured by transmitting a sinusoidal signal and looking at
the reception of the peak value of the Fourier transform. The value obtained supports the idea that
our system is linear in all cases. In circumstances where the assumption of stationary is unsustainable,
linear dynamic models need to be replaced by more sophisticated models.

Figure 2. Multisensor bedload monitoring platform: static characteristics.

The dynamic characteristic of each sensor is related to the performance when the input EM
voltage signal is a function of time. The speed of response of a system refers to the ability to respond
to sudden changes in the amplitude of the input signal. Thus, the response rate is calculated based
on the parameters describing the system performance under the transition: constant measuring of
the time delay (latency measurement), set up time (settling time), the dead time, and range dynamics.
The obtained dynamic characteristics are illustrated in Figure 3 and match the previously derived
static characteristics.

Figure 3. Multisensor bedload monitoring platform: dynamic characteristics: received signal (mV) vs.
time (ms).

The transfer function of an acoustic transducer can be computed by positioning two transducer
elements in transmission configuration:

• by continuous excitation of one transducer with wideband white Gaussian noise the other
responds in its nominal frequency band;

• by considering the performance parameters from the dynamic characteristic, one can define
an impulsive excitation for estimating the system transfer function. Accordingly, by taking
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the impulse duration (short sine waveform) to be smaller than the system stabilization time,
the transducer is sensing this calibration signal as an impulse and not as a step function.

In this manuscript, the second method for estimating the transfer function is employed and the
results are illustrated in Figure 4.

(a)

(b)

Figure 4. Transducer transfer function: (a) accelerometer and (b) ultrasound transducer.

After using controlled steel balls for calibration, two types of sediments were investigated and
confidence intervals for the mass measurements have been obtained. Notice that the maximum speed
in water has been reached before hitting the multisensor bedload monitoring platform. Figure 5 shows
the obtained bedload mass measurements in a passive configuration in the nominal bandwidth
of the impact (<14 KHz). One can observe that the bedload monitoring platform can provide
competitive results, both in terms of measurement error and confidence intervals in controlled noise
free environment.

(a)

Figure 5. Cont.
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(b)

Figure 5. Bedload mass measurements with passive configuration in the nominal bandwidth of the
impact (<14 KHz): (a) for each transducer type and (b) aggregated; B—steel balls in yellow, P1—3 g
rock in green, P2—8 g rock in red, C—2nd-order polynomial fitting in blue.

3. Hierarchical Agglomeration of Complex Vibration Spectra

In order to correctly employ the measurement system presented in Section 2, reliable a priori
knowledge of the vibration transients is required in order to match the predefined calibration dictionary.
Thus, a preliminary transient segmentation step is required for the recorded acoustic data.

The first stage of the proposed segmentation scheme is preprocessing. As each acquisition is
triggered on the amplitude level of the sensor exhibiting the fastest response time (the accelerometers
in our case), the obtained transient signal is not symmetric. In order to improve the spectral
representation, each received signal is circularly shifted to the right and filtered in the common
bandwidth. The complex spectrum is obtained by applying the fast Fourier transform (FFT) on each
signal. One advantage of this representation resides in the fact that it is independent of the time of
arrival of each transient.

3.1. SIRV Spectral Estimation

In the next step, a multivariate random vector is obtained by concatenating all the complex spectra
of the available signals. For each sensor, let k be the m× 1 complex target vector corresponding to
the same frequency range. One way to model the statistical properties of this multivariate random
vector leads to Spherically Invariant Random Vectors (SIRV) [13]. SIRV are defined as the product
of a square root of a positive random variable τ (variations in power) with an independent circular
complex Gaussian vector z with zero mean and covariance matrix [M] = E{zzH} (Gaussian kernel):

k =
√

τ z, (1)

where the superscript H denotes the complex conjugate transposition and E{·} is the mathematical
expectation. SIRV representation is not unique, so a normalization condition is necessary. Indeed,
if [M1] and [M2] are two covariances matrices such that [M1] = α[M2], then {τ1, [M1]} and
{τ2 = τ1/α, [M2]} describe the same SIRV. In this manuscript, the trace of the covariance matrix
is normalized to p the dimension of target complex vector [13].

For N independent and identically distributed (i.i.d.) data, the likelihood function to maximize
with respect to [M] and τi, is given by

Lk(k1, . . . , kN ; [M], τ1, . . . , τN) =
1

πmNdet{[M]}N ×
N

∏
i=1

1
τm

i
exp

(
−

k†
i [M]−1ki

τi

)
. (2)
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For a given [M], maximizing Lk(k1, . . . , kN ; [M], τ1, . . . , τN) with respect to τi yields the texture
ML estimator

τ̂i =
k†

i [M]−1ki

m
. (3)

Replacing τi in the SIRV likelihood function by their ML estimates, the generalized likelihood is
obtained as

L′k(k1, ..., kN ; [M]) =
1

πmNdet{[M]}N ×
N

∏
i=1

mmexp(−m)

(k†
i [M]−1ki)m

. (4)

The ML estimator of the normalized covariance matrix in the deterministic texture case is obtained
by canceling the gradient of L′k with respect to [M] as the solution of the following recursive equation,

[M̂]FP = f ([M̂]FP) =
m
N

N

∑
i=1

kik†
i

k†
i [M̂]−1

FP ki
=

m
N

N

∑
i=1

ziz†
i

z†
i [M̂]−1

FP zi
. (5)

This approach has been used in [14] by Conte et al. to derive a recursive algorithm for estimating
the matrix [M]. This algorithm consists in computing the fixed point of f using the sequence ([M]i)i≥0
defined by

[M]i+1 = f ([M]i). (6)

Its asymptotic distribution can be assimilated to the Wishart Probability Density Function
(PDF) [13].

This study has been completed by the work of Pascal et al. [15,16], which established the existence
and the uniqueness, up to a scalar factor, of the Fixed Point estimator of the normalized covariance
matrix, as well as the convergence of the recursive algorithm whatever the initialization. The algorithm
can therefore be initialized with the identity matrix [M]0 = [Im]. One way to analyze the convergence
of the Fixed Point estimator consists in evaluating the following criterion,

C(i) =
‖[M̂](i + 1)− [M̂](i)‖F

‖[M̂](i)‖F
, (7)

where ‖...‖F represents the Frobenius norm. When computing the FP estimator, Equation (6) is iterated
until C becomes smaller than a predefined lower limit. Note that only few iterations suffice to reach an
error less than 10−15 [15].

In this way, each random vector is described by its normalized covariance matrix, which is
independent on the total power at the reception. This will form the feature space for the transient
segmentation algorithm.

3.2. Hierarchical Segmentation

The hierarchical segmentation algorithm from [10] is adapted to the vector of complex spectra.
The segmentation strategy is a classical iterative merge algorithm. At each iteration, the two segments
which minimize the Stepwise Criterion (SC) are merged. Illustrated in Figure 6, the basic principle of
the proposed hierarchical segmentation can be divided into three steps :

1. Definition of an initial partition (which is formed by the acquired buffers, in our case).
2. For each segments pair, SC is computed (see Section 3.3). Then, the two segments which minimize

the criterion are found and merged.
3. Stop if the maximum number of merges is reached, otherwise go to step 2. The stop criterion is

discussed in Section 3.4.
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Figure 6. Flowchart of the proposed hierarchical segmentation algorithm.

3.3. Similarity Measure

At each iteration, merging two segments yields a decrease in the log-likelihood function.
The stepwise criterion is based on this consideration. The hierarchical segmentation algorithm merges
the two segments Si and Sj, which minimizes the loss of likelihood of the partition (which is defined
as the sum of likelihoods of partition’s segments). The stepwise criterion (SCi,j) can be expressed as

SCi,j = MLL(Si) + MLL(Sj)−MLL(Si ∪ Sj), (8)

where MLL(·) denotes the segment maximum log-likelihood function; it is the log-likelihood of
the segment (samples in each segment are considered independent realizations) with respect to the
assumed probability density function (the Wishart distribution in our case) whose parameters are
estimated in the maximum likelihood (thus, the name) sense. Its expression is given by

MLL(S) = ∑
i∈S

ln
(

pk(ki|θS)
)

, (9)

θS represents the set of distribution parameters (normalized covariance matrix in our case).

Generalized Maximum Log-Likelihood (GMLL)

In general, the normalized covariance matrix is unknown. One solution consists in replacing the
SIRV parameters by their estimates. After replacing the covariance matrix [M] by its respective ML
estimators, the stepwise criterion becomes

SCi,j = GMLL(Si) + GMLL(Sj)−GMLL(Si ∪ Sj), (10)

where GMLL(S) is the generalized maximum log-likelihood function for segment S.
For the Wishart PDF, the generalized maximum log-likelihood function for segment S is

GMLL(S) = − pN ln(π)− N ln
{
|[M̂ML]|

}
(11)

where [M̂ML] is the ML estimator of [MML] for segment S (5).

3.4. Stop Criterion

The use of the L-method [17] has been considered in this paper. This method employs the
very same error (quality) function that is used to perform cluster merging during the hierarchical
segmentation algorithm, specifically the Log-Likelihood Function (LLF) of the partition (i.e., the sum of
the MLL values for all the segments of the partition). As this is readily computed during the proposed
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method, no further computational effort is required. The knee of this error function is identified and
the optimal number of clusters is chosen at that point. The knee of a curve is somewhat similar to the
point of maximum curvature.

As detailed in [10], the hierarchical segmentation algorithm is generally suboptimal as neither the
initial partition nor the iterative merging of the segments is guaranteed to be optimal in the general
sense, although the iterative merging is still the optimal processing for the imposed initial partitioning
and a segment neighboring condition. The L-method divides the graph of the error function into two
parts and approximates each part with a straight line. The pair of lines that most closely fit the error
function curve is retained, and their junction point is the knee. The best pair of lines is that which
minimizes the weighted sum of approximation errors for the two parts of the error function graph.
One can refer to the work in [10] for a more in-depth analysis.

4. Results and Discussion

The proposed experimentations were carried in the GIPSA-Lab controlled tank system. Figures 7
and 8 illustrate the transient signals obtained from the four sensors (accelerometers and ultrasound) in
passive configuration, after right circular shift and common bandpass filtering.

In order to build the testing database, five steel balls with different diameters have been selected
for the experiments. For each ball, 25 independent impacts have been recorded using the bedload
transport monitoring platform from Figure 1. The balls have been manually released form the surface
of the water at approximately the same position on the steel plate. An independent buffer has been
recorded for each impact with the four sensors simultaneously and coherently.

After concatenating the 25× 5 buffers, Figure 9 shows the derived signals used to test the proposed
hierarchical agglomeration algorithm.

The obtained results are presented in the confusion matrix from Table 1. There are at least two facts
to be noticed. First, the diagonal structure of the confusion matrix reveals a rather good classification
accuracy. Second, the L-method stopped the segment merging at eight classes. This is explained by the
fact that the impacts of the ball B4 have been split in two classes, while some impacts from B1 and B3
generated two additional classes. This is in agreement with the subjective visual assessment of the
signals from Figure 9.

For comparison purposes, the conventional K-means classifier has been applied on the same
dataset with the number of classes equal to 8 (as before). The input feature vector is formed by taking
the trace of the sample covariance matrix estimated using the complex spectra within each buffer.
The resulting confusion matrix is presented in Table 2. One can observe that class TC4 cannot be
retrieved in this case.

Finally, an overall quantitative indicator of the performance of the proposed algorithm is the
classification accuracy A, defined as

A =
∑5

i=0 TPBi + ∑5
i=0 TNBi

5T
× 100, (12)

with TPBi the true positive for the steel ball Bi, TNBi the true negative, and T = 125 the total population.
After fusing the classes SC 5 and SC 6, SC 2 and SC 8, and SC 4 and SC 7, we can compute the total
classification accuracy according to Equation (12).

The obtained value is AH = 90.9% for the proposed hierarchical agglomeration algorithm,
while AK = 71.9% for the conventional K-means classifier.
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Table 1. Quantitative performance assessment for the proposed hierarchical agglomeration algorithm:
confusion matrix. Stepwise criterion (SC) 1–8 are the obtained classes, while TC 1–5 are the ground
truth-based classes.

TC 1 TC 2 TC 3 TC 4 TC 5

SC 1 25 8 0 0 0

SC 2 0 15 6 0 0

SC 3 0 0 19 8 0

SC 4 0 0 3 13 5

SC 5 0 0 0 0 11

SC 6 0 0 0 0 9

SC 7 0 0 0 4 0

SC 8 0 2 0 0 0

Table 2. Quantitative performance assessment for the K-means algorithm: confusion matrix. SC 1–8
are the obtained classes, while TC 1–5 are the ground truth-based classes.

TC 1 TC 2 TC 3 TC 4 TC 5

SC 1 5 0 0 0 0

SC 2 3 0 0 0 0

SC 3 11 0 0 0 0

SC 4 6 7 0 0 0

SC 5 0 12 1 0 0

SC 6 0 6 11 0 0

SC 7 0 0 13 4 0

SC 8 0 0 0 21 25

Time [ms]
0 1 2 3 4 5 6 7

[V
]

-0.5

0

0.5

Accelerometer A1

Time [ms]
0 1 2 3 4 5 6 7

[V
]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Accelerometer A2

(a)

Figure 7. Cont.
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Time [ms]
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(b)

Figure 7. Sensors recordings in passive configuration, 1 buffer triggered by A1: (a) accelerometers and
(b) ultrasound transducers.
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Figure 8. Sensors recordings spectra in passive configuration, 1 buffer triggered by A1: accelerometer
A1 (up) and ultrasound transducer R2 (down).
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Figure 9. Sensors recordings in passive configuration, 1 buffer triggered by A1: (a) accelerometers and
(b) ultrasound transducers.
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5. Conclusions

This paper proposed a new framework for detecting and localizing the transients corresponding to
the shocks created by sediment impacts on the steel plate. The proposed classification strategy is based
on hierarchical agglomeration of complex vibration spectra: the multimodal signals were analyzed by
exploiting the asymptotic distribution (SIRV) of the normalized covariance matrix. Qualitative and
quantitative performance assessment has been carried out using vibration signals recorded by the
multisensor bedload transport monitoring platform form the GIPSA-Lab.

One limitation of the current classification scheme is the case of multiple sediments hitting the
steel plate in the same time. In this scenario, the proposed algorithm will provide an estimation of an
equivalent larger impact, only.

Future work will enroll in two main directions. First, we will try to explore as much as possible
all the benefits of the proposed classification algorithm in real life scenarios. Second, we will continue
with improving the description of transient vibration signals by using non-stationary time-frequency
representations instead of the Fourier transform.
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The following abbreviations are used in this manuscript.

US Ultrasound
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FFT Fast Fourier Transform
SIRV Spherically Invariant Random Vectors
SC Stepwise Criterion
ML Maximum Likelihood
PDF Probability Density Function
LLF Log-Likelihood Function
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