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Introduction

Fracture is one of the most feared failure modes in engineering as it manifests almost immediately and has devastating consequences. Cracks can appear at several spatial and temporal scales and in a variety of materials. The principals are similar in electronic, mechanical, or structural engineering problems as well as in seismology or biomechanics. Therefore, fracture is a common issue. However, a universal approach is still missing.

Phase-field fracture models have become more and more popular in recent years due to their adaptability and ease of use. These models can initiate, propagate, arrest, or even branch cracks with a unique formulation without any particular criterion. The principal idea for all diffuse models is that they approximate the discontinuity by a smeared damage field. In most of the models, a single length scale (l c ) is introduced, which controls the magnitude of the damage penetration into the solid. When l c is reduced to 0, the original Griffith theory is recovered. Therefore, in most of the literature, the length scale parameter is considered a sacrifice, distorting the mechanical behavior but making fracture problems accessible to variational approaches.

The first theory to describe fracture propagation was proposed by [START_REF] Griffith | The theory of rupture[END_REF][START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF]. He assumed that an already existing crack could grow if the released potential energy was sufficient to create the necessary fracture surfaces. According to this description, the toughness of the material can be described by a critical surface energy. This early work is based on the description of the elastic stress field around the crack tip that assumes traction free boundaries along the crack surfaces, resulting in a stress singularity at the crack tip. In reality, no material can support a singular stress field. Therefore, the concept of the process zone (PZ) was introduced in the late 1950s. This regularization alters both the stress field and the global energy release upon crack propagation. Various numerical methods take the fracture process zone into account in different ways.

Preprint submitted to Theoretical and Applied Fracture Mechanics August 4, 2020 compared the two methods, a universal explanation for the size effect introduced by the regularization length is still missing in phase-field methods. We aim to deepen the comparison and to assess the similarities in the phase-field method between the critical loads, crack topology, and arrest length in unstable-stable crack initiation cases. This analysis will provide an insight to explain the effect of the length scale parameter on the mechanical behavior of the materials.

The present paper is structured as follows. Section 2 introduces the two principal methods -the phase-field damage model and the coupled criterion -used to study brittle fracture. After a summary of the theoretical background, a failure envelope based on the homogeneous phase-field solution is introduced, and the main results are outlined in section 3. In each case, the obtained correlation between the tensile strength and the length scale parameter is highlighted. Section 4 is dedicated to assessing the differences between the coupled criterion and the diffuse damage models. Finally, section 5 concludes the paper.

Methods

This section introduces the two methods used to model brittle fracture in the present work. First, the phase-field approach is outlined after which the foundations of the coupled criterion are presented. Thanks to the rich literature on both methods, we here only give a short overview, which is essential in order to understand their comparison, but we will not enter into details.

Phase-field approach for brittle fracture

The phase-field approach utilized to model a fracture is based on the diffuse representation of the localized discontinuity. The crack surface is approximated with a damage variable (d) ranging from 0 to 1. If the phase-field is 0, the domain is undamaged, while if its value reaches 1, the crack is emerged, and the material lost all of its resistance and stiffness. Various phase-field models can be found in literature (Ambati et al., 2015b;Wu, 2018b). The principal differences lay in the so-called geometric crack function and the elastic energy degradation function. One of the earliest and most widely used approach assumes that the damage enters the equation of the crack surface density in a quadratic manner (Bourdin et al., 2000b;Miehe et al., 2010a):

W (d) = g c Γ (d) = Ω g c γ (d, ∇d) dΩ = Ω g c 2l c d 2 + l 2 c |∇d| 2 dΩ (1)
where Γ is the overall crack surface, and g c is the critical energy release rate defined by Griffith. The sharp discontinuity is replaced by a smeared representation of the surfaces by the integration of γ, the crack surface density, which is calculated using the length scale parameter l c , which eventually controls the size of the regularization zone.

This representation has many advantages, therefore it is possibly one of the most commonly used. The solution algorithm can be coded in a standard finite element solver, when l c goes to 0, the fracture surface converges to the theoretical Griffith limit, and the natural bonds of the damage (0 ≤ d < 1) is automatically satisfied. One of its major flaws is that due to the quadratic setting it does not have an initial elastic threshold. Some authors tried to correct this flaw by adding an initial elastic threshold [START_REF] Miehe | Phase field modeling of ductile fracture at finite strains: A variational gradientextended plasticity-damage theory[END_REF][START_REF] Molnár | An open-source abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF][START_REF] Wu | Comprehensive implementations of phase-field damage models in abaqus[END_REF], however in all of the cases the crack surface calculated from the damage topology overestimates the theoretical value by more than 20%, which makes this method somewhat unreliable. On the other hand [START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF] proposed a description with the damage variable entering the surface only with a linear term. With this crack function the stress remains elastic until fracture, however without special treatment the natural lower bond of the damage variable is violated (d < 0). Thus, the solution of the problem requires a bonded non-linear optimization algorithm, which is hardly implemented in most of the commercial finite element codes, such as Abaqus. Wu (2018b) proposed a mixture of the two worlds, which renders a CZM like representation, however in their case, the strength is an explicit material parameter, thus independent of the length scale. Therefore, this formulation is inappropriate for this study. As a conclusion, even if the quantitative comparison would change with the chosen phase-field formulation, the main findings of this paper would remain qualitatively the same. For a general overview of the available phase-field formulations we refer to the work of Ambati et al. (2015b).

The damage variable and the strain energy density (ψ) are connected through the degradation function:

ψ (ε, d) = g (d) ψ + 0 (ε) + ψ - 0 (ε) . (2) 
The elastic strain energy (ψ 0 ) is split into positive (extension) and negative (compression) components based on the principal strains (ε i ) and the trace of the strain tensor:

ψ +,- 0 (ε) = i µ ε i 2 +,-+ λ 2 tr (ε) 2 +,-, (3) 
where λ and µ are the Lamé parameters. To distinguish between compression and extension, positive and negative part functions are used. Equation (2) indicates that if the material is in tension, the tensile stiffness and the elastic stress are reduced with the damage variable. Present implementation uses the well-known quadratic degradation function:

g (d) = (1 -d)
2 . The solution for the displacements (u) and the phase-field (d) problem is obtained by minimizing the following energy functional in a staggered manner:

L = Π int (u, d) + W (d) + T (d) -Π ext , (4) 
with the internal and external strain energies defined as follows:

Π int (u, d) = Ω g (d) ψ + 0 (ε (u)) + ψ - 0 (ε (u)) dΩ, Π ext = Ω γ • udV + ∂Ω t • udA.
(5) where γ and t are external volumetric and boundary forces. The monolithic solution of the fully coupled problem suffers from convergence issues, therefore Miehe et al. (2010b) decoupled the two solutions by introducing a history field (H). In one iteration step, the damage and H are kept constant for the mechanical and the phase-field problem, respectively:

u n+1 = Arg inf u Ω [ψ (u, d) -γ • u] dV - ∂Ω t • udA , (6) 
d n+1 = Arg inf d Ω g c γ (d, ∇d) + (1 -d) 2 H dV , (7) 
with the history variable chosen as:

H 0 = 0, H n+1 = max ψ + 0 H n . ( 8 
)
This formation satisfies the Karush-Kuhn-Tucker conditions [START_REF] Singh | A fracture-controlled path-following technique for phase-field modeling of brittle fracture[END_REF].

Unfortunately, there is no detailed mathematical proof that the introduction of the history variable enforces damage irreversibly, therefore we explicitly enforced ḋ ≥ 0 in the displacement element. However, we have not observed that this criterion was violated more than the numerical precision during our simulations. Though there are other methods to obtain a positive damage rate (e.g., bound constrained non-linear optimization techniques [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF][START_REF] Farrell | Linear and nonlinear solvers for variational phase-field models of brittle fracture[END_REF]Wu, 2018b), augmented Lagrangian [START_REF] Lorentz | Gradient damage models: Toward full-scale computations[END_REF][START_REF] Wheeler | An augmented-lagrangian method for the phase-field approach for pressurized fractures[END_REF] or penalization methods [START_REF] Gerasimov | On penalization in variational phase-field models of brittle fracture[END_REF]), due to its simplicity the history field of Miehe et al. (2010b) is the most frequently used [START_REF] Wu | Comprehensive implementations of phase-field damage models in abaqus[END_REF]. More details about the Abaqus implementation can be found in our previous papers [START_REF] Molnár | 2d and 3d abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[END_REF][START_REF] Molnár | An open-source abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF].

To demonstrate how the damage variable affects the stress response, the homogeneous solution is calculated by neglecting the gradient of the damage variable (∇d). The maximum tensile stress is plotted in Fig. 1(a) as a function of the applied tensile strain for a unidirectional extension case. The horizontal displacement is fixed, and the top side is moved upwards. Fig. 1(b) shows the evolution of the damage as a function of the applied deformation.

The tensile strength (σ c ) of a material is defined as the maximum amount of tensile stress (σ max ) that it can withstand before failure. When the gradient is neglected the homogeneous solution for the tensile strength can be obtained from the material parameters by the following equations:

σ c = 27Cgc 256lc in unidirectional extension, where C = E(1-ν) (1+ν)(1-2ν)
in which E is Young's modulus and ν is Poisson's ratio. The relationship can be generalized:

σ c . = σ max = η ν, σ 2 σ 1 • Eg c l c , (9) 
where the function η takes the effect of the stress state and the effect of Poisson's ratio into account. Fig. 1(c) shows the evolution of the maximum stress in the space of the principal stresses for the 2D case. Details of the homogeneous solution are given in Appendix A with a MATLAB algorithm in the Supplementary Materials to calculate the tensile strength for a given material. When E, ν, g c and l c are known, the strength can be determined. In the opposite case, when searching for an applicable l c , σ c can be measured experimentally, and the algorithm can be used to determine a regularization length for the phase-field simulation.

One of the earliest attempt to quantify a length scale in fracture was proposed by [START_REF] Irwin | Fracture[END_REF]. We call l mat the materials intrinsic length1 :

l mat = Eg c σ 2 c . ( 10 
)
The correlation between the length scale used in phase-field fracture and l mat is given by the function η:

l c = η 2 • l mat . ( 11 
)
This relationship was shown for unidirectional tension by [START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF], however no correlation was given between these internal lengths and the actual size of the process zone. Therefore, the question remains open still today if there is a general correlation between these intrinsic quantities -deduced based on the strength and the toughness -and the length of the crack upon initiation.

Coupled stress and energy criterion

The coupled criterion is an elegant tool used in finite fracture mechanics. This approach combines an energy condition with a stress-based comparison. For a crack to propagate, both criteria have to be satisfied at the same increment length. The energy release rate (G) is determined through a balance between the states before and after the crack jump. In most cases, the phononic dissipation is neglected, and quasi-static conditions are assumed. In order to calculate the energy release rate, two options are thus presented.

The first is called the incremental value, where G is considered constant during the initiation and propagation:

G inc (a 0 + ∆a, P ) = - Π int (a 0 + ∆a, P ) -Π int (a 0 , P ) + ∆Π ext (F, u) ∆a ≥ g c , (12) 
where G inc is the incremental energy release rate, Π is the elastic strain energy, and P represents the applied displacements (u) or external forces (F ) on the boundaries. It reverts to the Griffith definition of the energy release rate when the incremental crack length tends towards ∆a → 0. Here, a 0 is the initial crack length, and ∆a is the unknown crack increment.

The second approach assumes that the energy release rate varies during the propagation. Consequently, G can be derived as:

G(a 0 + ∆a/2, P ) = - ∂Π (a 0 + ∆a/2, P ) ∂a ≈ - Π int (a 0 + ∆a, P ) -Π int (a 0 , P ) + ∆Π ext (F, u) ∆a ≥ g c . (13) 
In practice, the incremental approach is used when there is no initial crack (e.g., only a V-notch exists), and the initiation is considered instantaneous [START_REF] Leguillon | Strength or toughness? a criterion for crack onset at a notch[END_REF]. The second, on the other hand, is more suitable if there is already a sharp crack present. Usually, the second criterion gives a lower propagation length and initiates at a smaller loading. However, when ∆a → 0, the incremental value converges to the differential G. In this paper, we present an analysis of the results from both descriptions.

The second requirement of the propagation is given by the stress criterion. We assume that the elastic stress around the crack tip along the expected crack path (described by its curvilinear abscissa s) is higher than the material's tensile strength:

σ t (a + s, P ) ≥ σ c , ∀ 0 ≤ s ≤ ∆a, (14) 
Here, σ t is the stress perpendicular to the crack's opening direction (tangential). Usually, for a tensile case, in homogeneous and isotropic materials, this is equivalent to the first principal stress.

Interestingly for the stable initiation, both energy and stress functions decrease monotonously with the advancement of the crack. Therefore, the energy release rate determines the initiation state. For an unstable initiation, on the other hand, the energy criterion is defined by an increasing function, and the stress criterion by a decreasing one.

As a result, the energy criterion provides a minimum crack length, and thus a lower bond, from which the condition is satisfied. However, due to the singularity at the tip, the stress criterion will provide a maximum distance, thus an upper bond for the admissible initiation crack length.

In order to satisfy both criteria simultaneously, the load is increased so that the initiation length provided by the energy criterion decreases until it matches its value given by the distance along the crack path on which the stress criterion is satisfied. A main conclusion of the coupled criterion is thus that a finite crack length ∆a is abruptly created at initiation so as to satisfy both the strength and energy requirements. Consequently, the coupled criterion allows us to determine the loading P c when the crack initiates:

P c = min P, ∃∆a, min G(a 0 + ∆a, P ) g c , σ(a 0 + ∆a, P ) σ c ≥ 1 , (15) 
as well as the admissible initiation lengths ∆a c :

∆a c = {∆a, min G(a 0 + ∆a, P c ) g c , σ(a 0 + ∆a, P c ) σ c ≥ 1}. ( 16 
)
In practice, the energy release rate and the stress fields can both be obtained analytically or by using the finite element method. Under the assumption of small deformations and in a linear elastic framework, only one linear elastic calculation is needed to compute the stress condition, whereas computing the energy criterion requires some linear elastic calculations with varying crack length.

Results

Progressively, through benchmark examples, the similarities, the differences, and the correlation between tensile strength and length scale are highlighted. In the case of the simple extension (mode I) discussed in Section 3.1, the energy release rate, the stress fields, and the crack path are all available analytically. For a shear fracture presented in Section 3.2, on the other hand, only parts of the necessary fields are known. To determine the initiation angle, we mapped the region around the crack tip to determine the energy release rate using the finite element method. Finally, in our last example shown in Section 3.3, a finite-size specimen was studied with particular attention to the initiation and arrest lengths.

In all cases, the material was considered isotropic and homogeneous with the material constants shown in Tab. 1. The tensile strength (σ c ) and length scale (l c ) parameters were varied.

Material constant Young's modulus (E)

3 GPa Poisson's ratio (ν) 0.37 Critical energy release rate (g c ) 300 J/m 2 Table 1: Material constants used in the calculations. The cracks were represented both physically and with prescribed phase-field values. In case of the examples presented in Section 3.1 and 3.3, due to the symmetry, only one quarter and one half of the geometry was modeled respectively. Thus, the connecting symmetry line was constrained in the parallel direction, while the crack faces were left free to displace. In case of the shear example (presented in Section 3.2) the nodes were doubled to physically represent the initial fracture. This was reported [START_REF] Strobl | Phase field modeling of hertzian indentation fracture[END_REF] to be essential because of the energy decomposition applied (see eq. 2). In both cases Dirichlet boundary conditions were prescribed on the crack faces in the phase-field (d = 1) which represented an already nucleated crack [START_REF] Klinsmann | An assessment of the phase field formulation for crack growth[END_REF][START_REF] Sargado | High-accuracy phase-field models for brittle fracture based on a new family of degradation functions[END_REF][START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF].

Mode I tensile opening in an infinite plane

Coupled criterion. [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] first proposed the energy-based criterion to study a single straight crack in an infinite homogeneous plane subjected to uniform tensile stress applied in the plane at the outer edge. To compare analytical results with the phase-field solution, we chose a "thick" plate, that is to say plane strain conditions.

The schematic illustration of the problem is depicted in Fig. 2(a). For the coupled criterion the stress can be calculated on the (Ox) axis (y = 0) measured from the crack tip with the following equation [START_REF] Sun | The elastic stress field around a crack tip[END_REF]:

σ y (x) = σ 0 y (x + a 0 ) x (x + 2a 0 ) , ( 17 
)
where a 0 is the initial crack length and σ 0 y is the tensile stress acting on the solid body at infinity. From this equation, we can measure the distance from the crack tip, where the stress exceeds the tensile strength:

∆a σ = a 0   1 1 -σ 0 y σ c 2 -1   . ( 18 
)
Using similar algebraic manipulations, the admissible crack increment defined by Griffith's energy criterion [START_REF] Griffith | The theory of rupture[END_REF]) can be expressed. The criterion is written as a stability condition:

d da (S -Π) = 0, ( 19 
)
where Π is the additional elastic strain energy induced by the crack:

Π = π(a 0 + ∆a) 2 8µ (κ + 1) (σ 0 y ) 2 , ( 20 
)
and S is the fracture energy consumed by the creation of the crack:

S = 2g c (a 0 + ∆a) . (21) 
In eq. ( 20), µ is the shear modulus and κ = 3 -4ν for the plane strain case. Eq. ( 19) can be rewritten as:

G = π (a 0 + ∆a) 8µ (κ + 1) (σ 0 y ) 2 = g c , (22) 
from which criterion the critical crack increment can be expressed as:

∆a G = 8g c µ (κ + 1) π σ 0 y 2 -a 0 . (23) 
The obtained result can be reformulated to determine the maximum loading stress as a function of an already existing crack (a 0 ):

σ 0,G y = 8g c µ (κ + 1) a 0 π (24) 
This stress value can be considered as an upper bond for the critical loading.

If we assume that the crack can propagate only until the point where the stress exceeds the strength, and can only be opened if there is enough potential energy released, the critical applied stress can be defined (∆a σ = ∆a G ) as follows:

σ 0,c y = σ c 2 1 + 1 + σ 4 c π 2 a 2 0 (1+κ) 2 16g 2 c µ 2 = σ c 1 1 2 + 1 4 + σc σ 0,G y 4 , (25) 
It is worth noting that the critical load is a function of not only the strength and the fracture toughness but the geometry (initial crack length) as well. Thus, with the above equation, a size effect can also be captured, which will be discussed later.

To demonstrate the evolution of the two criteria, the normalized values are depicted in Fig. 3. It can be seen that initially, at low loading values, ∆a σ (crosses) is much smaller than ∆a G (circles). However, the gradual increment of σ 0 y brings the two values closer until they match. This length (∆a) is considered the initiation of the crack.

G g c = σ y σ c ≥ 1.0. ( 26 
)
In our case, this only happens if σ 0 y ≥ σ 0,c y . Equation ( 25) is the analytical solution for the maximum homogeneous stress, which can be applied based on the coupled criterion. The instantaneous initiation length (∆a c ) can be determined by substituting the critical stress in eq. ( 25) into either eq. ( 18) or ( 23). Fig. 6(b) shows ∆a c as a function of the initial crack length.

Phase-field. To model the same problem using the phase-field approach, a geometry shown in Fig. 2(b) was used. Only one quarter of the space was taken into account with symmetric boundary conditions on the middle lines. The overall length of the sample (L) was taken larger than 100a, otherwise the finite size had a marked effect on our results. Dirichlet boundary conditions were prescribed on the edges as displacements and a d = 1 phase-field value on the crack surface. The prescribed phase-field value was shown to be necessary as the creation of the crack required more energy than the propagation of an already existing damage field [START_REF] Klinsmann | An assessment of the phase field formulation for crack growth[END_REF][START_REF] Sargado | High-accuracy phase-field models for brittle fracture based on a new family of degradation functions[END_REF][START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF]. Recently Kumar et al. (2020) proposed an additional crack driving force attributed to microscopic damage to account for the correct nucleation phenomenon.

The material properties were set according to Tab. 1. The results obtained using the finite element, and thus, the phase-field method, were affected by both the spatial and temporal discretization. Therefore, a convergence study was carried out to minimize the error induced by the numerical approach.

The time step was controlled automatically. The local potential energy increment was constrained based on the following condition:

dH ≤ η • g c 2l c , ( 27 
)
where H is the elastic (undamaged) strain energy history used in the staggered schemes (Miehe et al., 2010b;[START_REF] Molnár | 2d and 3d abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[END_REF][START_REF] Molnár | An open-source abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation[END_REF] and η is a scalar multiplier. There are other methods to determine an optimal time step size. We chose to constrain the elastic energy because Abaqus solves the displacement and fracture problems simultaneously. Therefore, the control of the fracture energy is not tractable. For a general overview, we refer to the work of [START_REF] Gupta | An auto-adaptive sub-stepping algorithm for phasefield modeling of brittle fracture[END_REF].

In Fig. 4(a), the normalized critical stress values are shown as a function of η for different finite element mesh densities. It can be seen that by constraining the local elastic energy increment, the critical load decreased, and the precision of the simulations improved. If an η ≤ 50% was chosen, the critical stress changed by less than 0.1%.

Similarly to the temporal discretization, the spatial mesh also had a significant effect on the results. Miehe et al. (2010a) proposed a ratio of l c /h = 2 value based on the crack surface. However, as shown in Fig. 4(b), the mechanical effect changed notably until l c /h = 10.

Finally, to find out if the phase-field solution converged to the theoretical Griffith value, l c was reduced. The other two numerical parameters were kept at η = 50% and l c /h = 10. It can be seen in Fig. 4(c), that the solution converged to a value ≈ 10% higher than σ 0,G y , which could supposedly be reduced by increasing the finite element density and reducing the time step.

Thus, if not otherwise stated, the simulations are performed using η = 50% and l c /h = 10 with varying l c . In Fig. 5 the variation of the time step is shown for l c = 0.1 mm with η = 0.5. After an increment the algorithm gradually decreased the critical time step size to ≈ 10 -6 until the loading reached the unstable initiation stage. The fluctuations show that the time integration algorithm of Abaqus continuously tried to increase the time step to accelerate the calculation. At the moment of an unstable initiation the time is reduced close to zero (≈ 10 -9 ). With the adaptive time integration algorithm we were able to detect unstable initiation and avoid the error described by Ambati et al. (2015b).

One of the main advantages of the coupled criterion is that it can capture an experimentally well-observed size effect. [START_REF] Bažant | Size effect on structural strength: a review[END_REF] showed that the fracture resistance of several materials (even glasses [START_REF] Kimoto | Flaw size dependence in fracture stress of glass and polycrystalline ceramics[END_REF]) deviated from the power-law described by linear elastic fracture mechanics (LEFM). This was particularly true if the initial flaw size was smaller than a critical value. In this case, the verification should be carried out based on a stress comparison. Since [START_REF] Bažant | Size effect on structural strength: a review[END_REF], multiple authors proposed a unified description applying the coupled criterion for ceramics [START_REF] Leguillon | What is the tensile strength of a ceramic to be used in numerical models for predicting crack initiation?[END_REF][START_REF] Martin | Understanding the tensile strength of ceramics in the presence of small critical flaws[END_REF], PMMA and GPPS [START_REF] Doitrand | Nonlinear implementation of Finite Fracture Mecahnics: A case study on notched Brazilian disk samples[END_REF][START_REF] Sapora | Finite fracture mechanics crack initiation from a circular hole[END_REF], which follows the experimentally observed size effect.

Fig. 6 presents a plot of a similar size effect as a function of the initial crack length. Critical stresses are shown as a function of the initial crack length using the coupled criterion (see eq. 25) with red curves, the original Griffith solution (see eq. 24) with a blue dashed line and phase-field simulations with black symbols. The tensile strength used in the coupled criterion was taken according to the critical stress value obtained at a very small crack length (a = 10 -4 mm) in the phase-field simulations.

It can be seen that the phase-field results were capable of reproducing the same size effect as was theorized and experimentally measured before. Furthermore, the deviation from LEFM started when the initial crack size approached and became smaller than l c . In Fig. 6(b) the initiation length (∆a c ) varies between l c and 2l c with an inflection point at a 0 = l c . This result indicates that the correlation between l c and the size of the process zone is not unique because, depending on the initial crack length, its value varies. Nevertheless, the two quantities are on the same scale. Later in Section 4 the correlation between l c and ∆a c will further be discussed.

Additionally, it can be seen that the phase-field results were closer to the instantaneous description of G since the deformation field was allowed to evolve and change with the advancement of the crack during the simulation. Nevertheless, there was a small difference between the critical stress results, which might be due to the fact that the coupled criterion uses an infinite stress field, while the singularity in the phase-field model is regularized. This discrepancy is discussed in section 4.

The results presented in Fig. 6 are critical as they show that the introduction of the crack diffusion, and thus the length scale, does not spoil the original description of Griffith but adds a unique tool to capture the real-life physical phenomenon. Even if the choice of the phase-field description affects the behavior of the models, it is essential to consider that l c possesses a real mechanical meaning.

Multiple computations were carried out with a = 0 in the phase-field calculation to determine a correlation between tensile strength and the length scale. This way, the initial damage field was prescribed only on a single node. As explained previously, in this case, the critical initiation stress corresponded to the material's strength, hence allowing for a direct comparison for several length scales in the phase-field method. The critical stress results were recorded as a function of the l c used. In Fig. 7, the obtained σ c -l c pairs are shown with the homogeneous solution from eq. ( 9) for uniaxial tension (with the principal stress ratio of σ 2 /σ 1 = 0).

There is a clear correlation between the two quantities. By decreasing l c , the tensile strength is raised and tends to infinity. This result is in agreement with the original solution by Griffith, since when a → 0, σ 0,G tends to infinity.

Mode II shear fracture

After assessing the critical stress for the two methods as a function of the initial crack length, this section focuses on the crack's topology. For mode II shear fracture, the prediction of the initiation angle is still an unsolved question. Many theories have been proposed, based on the maximum tangential stress [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF], the strain energy density [START_REF] Sih | Strain-energy-density factor applied to mixed mode crack problems[END_REF], the energy release rate [START_REF] Hayashi | Energy-Release Rate and Crack Kinking Under Combined Loading[END_REF][START_REF] Wu | Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion[END_REF], or even the stress intensity factors [START_REF] Amestoy | Crack paths in plane situations-II. detailed form of the expansion of the stress intensity factors[END_REF][START_REF] Leblond | Crack paths in plane situations-I. general form of the expansion of the stress intensity factors[END_REF]. Some of them reproduce specific experiments [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF], but none of them can describe a universal law that is valid for all materials [START_REF] Ayatollahi | Analysis of a new specimen for mixed mode fracture tests on brittle materials[END_REF][START_REF] Richard | Cracks on mixed mode loading-theories, experiments, simulations[END_REF].

We assume that the variation in initiation comes from the difference in regularization length, thus the ratio of strength and toughness. Therefore, we set out to analyze the initiation using both the coupled criterion and the phase-field method and establish a correlation based on the quantity above.

Fig. 8(a) shows the theoretical problem of mode II shear fracture. The applied shear stresses acted on the sides at infinity. The initiation angle θ was measured from the horizontal axis.

Experimentally, [START_REF] Ayatollahi | Analysis of a new specimen for mixed mode fracture tests on brittle materials[END_REF] tried to model pure shear on a finite-size specimen by maintaining an angle between the pulling forces and the initial crack, as shown in Fig. 8(b). However, we show later on using a phase-field model that their geometry has a significant effect on the initiation angle, and that the two cases are not equivalent.

Coupled criterion. Unfortunately, no analytical solutions were available to test the coupled criterion on a mode II fracture. Only certain aspects of the stress and energy field were known. The elastic stress field around the initial crack tip is described in various textbooks [START_REF] Broek | Elementary engineering fracture mechanics[END_REF][START_REF] Sun | The elastic stress field around a crack tip[END_REF], whereas the energy release rate is given only for the case when θ = 0 [START_REF] Broek | Elementary engineering fracture mechanics[END_REF]: (28)

G (∆a, θ = 0) = lim ∆a→0 ∆Π (∆a, τ xy ) 2∆a = lim ∆a→0 Π a 0 + ∆a, τ 0 xy -Π a 0 , τ 0 xy 2∆a = π (κ + 1) τ 0 xy 2 8µ lim ∆a→0 a 2 0 -(a 0 + ∆a) 2 2∆a = π (κ + 1) τ 0 xy 2 8µ (a 0 + ∆a) ≥ g c ,
and for the case when ∆a = 0 by [START_REF] Wu | Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion[END_REF] and [START_REF] Hayashi | Energy-Release Rate and Crack Kinking Under Combined Loading[END_REF].

For this reason, we carried out the following modeling strategy to obtain a precise close crack tip (∆a < a/2) solution: First, finite element calculations were performed with varying crack length values in different directions (-90 • ≤ θ ≤ 0 ), after which the global energy difference was calculated between each crack increment (see eq. 13). Finally, we used empirical functions to fit the results.

The calculation of the energy release rate using finite elements is relatively straightforward. To minimize the size effect, the overall size of the plate was L = 250a 0 . As boundary conditions, we used distributed shear forces in the boundaries. G was computed between energy values calculated for the same θ value with increasing ∆a. Between each model the crack was increased by δa = 0.025a 0 . To eliminate the fluctuation caused by the mesh the so-called seam crack was utilized. Practically, the same finite element mesh was used independently of the crack size, and only the nodes were doubled on the crack lips to separate the elements. This technique makes it possible for us to use the same mesh, for a constant θ value, and to significantly reduce the fluctuation in the energy release rate. The characteristic element size around the crack was set to δa/100.

The maximum difference between finite element calculations and available analytic data was less than 1%, which means they were of the same order of the magnitude. In order to speed up the calculation, a continuous function was fitted:

G (∆a, θ) = a 0 π (κ + 1) τ 0 xy 2 8µ f ∆a a 0 , θ = G 0 • f ∆a a 0 , θ , (29) 
where G 0 is the energy release rate for a horizontal opening, and f is a dimensionless function describing the effect of the finite crack length (∆a) and its direction (θ): From the analytic solution we know that α (0) = 0, β (0) = 1 and γ (0) = 1. Additionally, the values of γ (θ) are available without a closed-form expression from the solution of [START_REF] Wu | Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion[END_REF].

f ∆a a 0 , θ = α (θ) ∆a a 0 2 + β (θ) ∆a a 0 + γ (θ) . ( 30 
)
Based on the finite element calculation, the form of functions α (θ), β (θ) and γ (θ) are given based on a semi-empirical fit:

α (θ) = -α max tanh (θ + 90 • ) α s α max 2 + α max , (31) 
β (θ) = 2 tanh (θ + 90 • ) β s 2 2 + 1, (32) 
γ (θ) = γ max + 1 2 - γ max -1 2 cos θ • 180 • θ max . ( 33 
)
Parameters α max , α s , and β s were set according to the finite element calculations, while γ max (maximum increment) and θ max (angle at maximum increment) were taken from the analytic solution of [START_REF] Hayashi | Energy-Release Rate and Crack Kinking Under Combined Loading[END_REF]:

α max = -0.014303 α s = 0.58415 β s = 0.045113 γ max = γ (θ max ) = 1.517 θ max = -75.74 • (34)
The maximum difference between the fitted function and the finite element calculation was 1.17%, the goodness of fit of γ (θ) to the analytic values was R 2 = 0.99, and the maximum difference was smaller than 1%.

The critical stress defined by the Griffith criterion for pure shear fracture is:

τ 0,c xy = 8µg c f c a 0 π (κ + 1) , (35) 
where f c = 1.504 corresponds to the local extremum (saddle point) of the increment function at ∆a/a 0 = 0.075, as seen in Fig. 9(b) and (d). For mode I, the crack path was assumed to be known, however for mode II fracture, not only the critical shear stress and the initiation length but also the propagation angle was unknown. Therefore, in contrast to Fig. 3, in the case of mode II, the spatial intersection of two curves should be determined. This is shown in Fig. 9(a) where the spatial distribution of the fracture energy ratio is depicted. The values of G/g c = 1 are highlighted with black curves for different loading states. It can be seen that in this case, the criteria was not satisfied by only one point but by a whole isocurve. The isocontours of the tangential stress to strength ratio (σ t /σ c = 1) are also displayed with red lines. Similarly to the energy criterion, for a given loading state, the stress criterion was fulfilled for an infinite number of points on the curve. Initially, for a small enough imposed loading, the domains defined by the two criteria (dashed red and black lines) did not intersect: indeed, no crack increment was observed with any angles. By increasing the load, the two criteria approached each other, and when a single shared point (hollow circle) was reached, the crack started to propagate. This point determined both the initiation length and propagation angle.

Similarly to Fig. 3 we can plot the normalized criteria along the assumed initiation path: the local maximum of the energy release rate (highlighted with a dash-dot line in Fig. 9(a) and 10(a)). This is shown in Fig. 9(b) and 10(b). Similarly to the tensile fracture when the to curves intersect at σ t /σ c = G/g c = 1, the crack will start to propagate. Interestingly we found a small decay in the maxima of G at ∆a/a 0 = 0.075, which suggests a second type of behavior.

If G decreases initially, and the tensile strength is sufficiently high, it is possible that the two criteria become satisfied at the crack tip. However, as both functions decrease, the propagation is first stable as there is a part where G/g c is not yet satisfied. The effect of this propagation is depicted in Fig. 10, which means that spatially not only one point but a surface satisfies both criteria. The coupled criterion cannot discriminate among all these configurations. Consequently, we assumed that the crack would start propagating on the local maximum of G, but displacing the crack tip and the stress singularity. This is shown in Fig. 10(a) with red circles and in Fig. 10(b) with greed dashed lines. Finally, when a common point was reached where dG/da was positive, the sample broke.

In Fig. 11(a), the critical stress is shown normalized by the Griffith solution (eq. 35) for different initial crack lengths as a function of the tensile strength. In Fig. 11(b), on the other hand, the initiation angle is depicted as a function of σ c . The solid symbols show the initially stable propagation and the hollow ones depict the unstable first jumps. For a = 2 mm, we highlighted different regions: (i) the initial white part from θ c ≈ 75 • is the region where the stable propagation took place, (ii) while the blue part represents the first unstable jump. If σ c is sufficiently low, the energy criterion is only satisfied only at distances larger than the local minimum wherefore no stable initiation was observed.

Additionally, it is interesting to see that the crack initiated not only in a single direction, but could choose its propagation according to the material and the geometry. This observation was in agreement with the experimental results of [START_REF] Richard | Cracks on mixed mode loading-theories, experiments, simulations[END_REF]. Phase-field. To test the hypothesis established using the coupled criterion, the model shown in Fig. 12 was developed using the phase-field approximation.

L was taken with a similar value as in the previous case: L = 250a 0 . The nodes on the crack lip were doubled to include an infinitesimally small slit with a prescribed Dirichlet boundary condition in the phase-field set to 1. An observation region around the crack tip was formed with a radius of h r = 10l c (see Fig. 12(a) green region), where the finite elements were refined according to l c /h = 10. The simulation was run until the crack reached the boundary of the observation region. To apply the loading, the sides of the sample were displaced according to Fig. 12(a). The material properties were set according to Tab. 1.

When the crack was diffused, it became challenging to measure its exact path. Therefore, to extract the initiation angle, the local maxima of the damage field was identified from a distance larger than l c , as shown in Fig. 12(b)with small circles. Subsequently, these positions were fitted with a third-order polynomial, which was then extrapolated to the crack lips.

This section deals with the crack topology and not the critical stress, as the loading case with a 0 = 0 was equivalent to the geometry presented in the first section, only with a different σ 2 /σ 1 ratio. Therefore, only the limit cases are compared in Tab. 2. It is shown that for a small crack, the homogeneous solutions were in good correspondence with the critical values obtained with the phase-field model. In the case of a large a 0 , the results were much closer to the solution of Initial crack length (a 0 ) Griffith's solution (τ Griffith (eq. 35).

Compared with the tensile strength, the advantage of the length scale parameters is that it introduces an internal size. Therefore, Fig. 13 shows the initiation angle as a function of a dimensionless regularization length, l c /a 0 , which indicates that the propagation and initiation depend only on the ratio of the original crack length and l c , this is in good correspondence with the results of the energy landscape defined for the coupled criterion, as the local minimum is found at 0.075a. As can be seen in Fig. 13, the initial crack length had no effect on the results, thus a master curve could be defined.

With small l c the crack initiates at an angle around ∼ -73 • , which is in good correspondence with the values obtained using the coupled criterion (θ c ∈ [-75 • , -69 • ]). The only difference is that due to the regularization, the stable-unstable transition is very hard to identify. In the phase-field simulations, we almost always observed a small initial stable region where the reaction force continues to increase. On the other hand, with a large l c value, the crack inclination is -45 • , which is in agreement with both a theoretical and coupled criterion point of view.

As shown in Fig. 11(b), for a given initial crack length, the inclination angle is sensitive only to a range of chosen σ c values. Therefore, to establish the correlation between l c and σ c based on the initiation angle, a 0 was varied. First, a range of a 0 was determined for a given σ c , where the initiation angle lay between -61 • and -46 • . Then we subdivided the obtained a 0 interval and calculated θ c . Each initiation angle was then interpolated between the phase-field results to obtain a normalized length scale. Finally, the value was multiplied with the initial crack length to determine l c as a function of σ c and θ c . Fig. 14 shows the correlation between l c and σ c . The blue area depicts the variation induced by the chosen θ c value. It is visible that there was a small variation, but results quickly converged from -55 • . Using higher inclination angles may introduce a numerical error due to the difficulty in the angle measurement in phase-field calculations. The topological correlation is in agreement with the homogeneous solution (established based on critical stress).

To test if finite-size has an effect on the initiation angle the specimen proposed by [START_REF] Ayatollahi | Analysis of a new specimen for mixed mode fracture tests on brittle materials[END_REF] was tested, as shown in Fig. 8(b). We used l c = 0.3 mm. The initial crack length was 22.5 mm, thus l c /a 0 = 0.0133, which indicated a Griffith-like brittle response according to Fig. 13. Therefore, no further impact was expected from the additional reduction of l c . The thickness of the plate was assumed to be 5 mm. Fig. 15 shows both qualitative and quantitative comparisons between the experimental measurement [START_REF] Ayatollahi | Analysis of a new specimen for mixed mode fracture tests on brittle materials[END_REF] and the phase-field simulation.

The initiation angle in the simulation (77.8 • ) corresponded well to the experimental measurements (78 • ). While the distance between the arrival of the crack and the corner of the specimen differed only by 1.15 mm. In conclusion, the topological correlation was in correlation with the homogeneous solution for the standard solution, while the elastic threshold introduced a higher resistance but left the crack topology relatively unchanged.

Stable propagation in the TDCB specimen

The final comparison is focused on the tapered double cantilever beam (TDCB) [START_REF] Grabois | On the validation of integrated dic with tapered double cantilever beam tests[END_REF]. This geometry is particular due to the crack initiating in an unstable way, but after a well-defined distance, it stops. This section aims to test whether the phase-field method can follow an unstable-stable transition, and if the arrest length can give an additional correlation between l c and σ c .

Coupled criterion. The geometry of the TDCB sample is depicted in Fig. 16. As can be seen, the initial crack length varies, and in the case of the TDCB geometry, neither the tensile stress nor the energy release rate is available analytically. For this reason, the finite element method was used to determine the two functions. For the coupled criterion the stress function was calculated using a mesh densified around the crack tip. The smallest element size was chosen to be 0.5 µm. The energy release rate was calculated similarly to the shear problem: a seam crack was defined, and the opposite nodes were gradually separated. Finally, the derivative of the global potential energy was taken in respect to the crack length, using the finite difference method as shown in eq. ( 12) and ( 13). Essential to note, that to obtain smooth results, the energy difference has to be calculated on the same mesh. The material properties were set according to Tab. 1. The normalized criteria are presented in Fig. 17. The inset illustrates the smallest length where both stress and energy criteria are satisfied (hollow circle), while the global figure shows the evolution of the energy release rate as a function of the crack length.

The crack propagated as long as the energy criterion was fulfilled. Therefore, we plotted both instantaneous and incremental G, which defined a lower (hollow square) and an upper limit (solid square) for the arrest length. The energy release rate was not monotonous. In the case of a 0 = 0, the energy release rate at ∆a = 0 was zero, since the Griffith criterion cannot be used if there is no sharp crack at the beginning. After this, G first increased according to a power law. At ∆a = 1.17 mm, we found a global maximum, after which the function decreased monotonously. For ∆a = L, G became zero as there was no longer any stored energy in the sample. After the first unstable jump, the energy release rate decreased monotonously wherefore the propagation became stable.

Fig. 18(a) shows the critical reaction force where the first crack initiated. It can be seen that if a 0 = 0, the result diverged as a function of σ c . Due to the fact that lim a→0 G (a) = 0, there was no critical solution for the energy criterion by itself. Therefore, the theoretical resistance went to infinity. As a result, when no sharp crack is present, it is crucial to use the coupled criterion. However, when a small initial crack was present, G started from a finite value, and quick convergence was thus shown as a function of σ c . In the third stage, when a 0 ≥ 1.17 mm, the initiation became stable, and the resistance depended only on the Griffith criterion, while the first initial plateau up to σ c = 15 MPa indicated that the stress criterion was satisfied beyond the local maximum.

Similarly to the reaction force, without an initial crack, the predicted arrest lengths shown in Fig. 18(b) diverged as a function of σ c , whereas they became convergent with small a 0 . The upper limit of the arrest length could not be interpreted in case of low strength values as the crack started to propagate before than G inc /g c ≥ 1 was satisfied.

Phase-field. The corresponding phase-field model was developed similarly to the previous examples. The initial crack was defined using the Dirichlet boundary condition in the damage field. When a 0 = 0, the phase-field value on only one node was predefined. The loading was applied to the hole using a rotating pin to avoid nonphysical constraints. To determine the crack length, the fracture surface energy was normalized by g c and the thickness: ∆a = W gcw . The comparison between l c and σ c was made based on three quantities: (i) reaction force, (ii) arrest length based on G and (iii) G inc . The obtained results are shown in Fig. 19. It can be seen that the correlation established using the instantaneous energy release rate and the reaction force were close to each other as well as to the mode I homogeneous solution. Therefore, the incremental energy release rate underestimated the tensile strength. Consequently, its use should be limited for this comparison. These results reinforce that the finite element phase-field calculation recalculated the energy state of the system step by step and reordered the elastic stresses during the propagation. Even if the unstable initiation can be considered very fast, it was not instantaneous, not even when using a quasi-static approach.

In Fig. 19, the result obtained using the phase-field simulation is plotted. While, Tab. 3 contains critical loading values with a 0 = 0 and a 0 = 5 mm. The instances with a 0 = 0 show that, similarly to the coupled criterion, the results diverged. These results were slightly different from that obtained for the simple tension case shown in Fig. 4(c). However, the convergence became better if an initial crack was prescribed, but the results still depended on l c , which is in conflict with the outcomes when using the coupled criterion and are analyzed in section 4

Discussion

This section is dedicated to exploring the differences between the coupled criterion and the phase-field simulations. In certain instances as shown in Fig. 6 and 19 the critical reaction force values did not exactly match the transition described using one or the other description. The major difference probably came from the fact, that while the coupled criterion assumed a singular stress field, the phase-field model was regularized. This dissimilarity could also cause deviations in the potential energy.

Generally, the correlation was clear: With a lower l c , the strength (σ c ) increased. The correlation, however, could not be described by a single master curve. Based on the failure envelope shown in Fig. 1(b) it could vary in the range shown in Fig. 20.

In phase-field simulations, l c is the width of the exponential function, which is the solution for the crack topology problem described by eq. ( 6) (Miehe et al., 2010a;[START_REF] Molnár | 2d and 3d abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[END_REF]: from the crack tip, where d = 1, the damage field reduces exponentially to zero at infinity. Therefore, the actual distance where the material is damaged cannot be explicitly determined, l c provides only an estimate of the area where the material is significantly damaged. This obstacle could be tackled by changing the phase-field representation to the description of [START_REF] Bourdin | Morphogenesis and propagation of complex cracks induced by thermal shocks[END_REF], where damage is already zero at 2l c .

Distance, as a material parameter, does not appear explicitly in the coupled criterion either. However, the abrupt initiation length is essential to determine where both criteria are satisfied at the same time, as shown in Section 3.1. We can then substitute the critical loading back into eq. ( 23) to calculate the initiation length, thus the assumed process zone size. This value, as was shown in Fig. 6(b) varies with the geometry. Therefore, only the tendencies will be analyzed here. To calculate ∆a c for each l c value the following procedure was used: (i) first the correlation between l c and σ c was established as shown in Fig. 20; (ii) then we used the identified σ c in the coupled criterion to calculate ∆a c . For example Fig. 6(b) shows ∆a c for σ c = 29.1 MPa (l c = 0.2 mm) as a function of the initial crack length. It can be seen that the values vary between 0.2 mm (for large cracks) and 0.4 mm (for small initial defects). If we generalize this relationship the correlation between l c and ∆a c can be plotted in Fig. 21. Black solid and dashed lines show the correlation between the two quantities for the tensile opening mode based on the homogeneous solution, while the hollow and solid circles represent the actual phase-field simulations.

Similarly to mode I, both shear (mode II) and TDCB results can be obtained with red triangles and blue squares, respectively. Stunningly all correlations are perfectly linear (R 2 = 1.0). Although the geometry itself affects the quantitative values, we assume that the actual initiation length (thus, the assumed process zone size and shape) is geometry dependent. This signifies that l c can be considered an intermediate quantity between Irwin's intrinsic length and the size of the actual PZ. l c already takes into account the local stress state, but cannot account for the macroscopic geometry. The correlation shown in Fig. 22 demonstrates that if the initiation length could be measured, it might be possible to deduce l c and l mat .

The energy release rate and the local stress maxima were determined for the phase-field model upon propagation to obtain more local details. However, calculating the energy release rate without an elastic threshold can be difficult as the crack advancement and the crack surface are not interchangeable. Due to the intrinsic nature of the damage models, a small amount of damage appears in most of them. Therefore, the global fracture surface is always going to be larger than the localized extent of the crack. However, it is difficult to measure the crack length based on the topology. As a consensus, a threshold of d = 0.9 is used. Employing the fracture topology to define crack advancement is especially difficult at the initiation stage, as energy can be lost without a topological change, since the phase-field value can increase without its propagation. The difference between topological and global crack length vanishes as l c tends to 0. This description could be improved with the fracture surface proposed by [START_REF] Bourdin | Morphogenesis and propagation of complex cracks induced by thermal shocks[END_REF], however the implementation of such approach is difficult in a commercial finite element code like Abaqus.

Fig. 23(a) shows the energy release rate calculated for the TDCB sample with different l c values using both global and topological approaches. It can be seen that the global approach gave a much lower value than the theoretical curve. The global criterion better described the initiation, however, it ran 5% below g c at the arrest stage. Independently of l c , at initiation, all simulations satisfied the energy release rate criterion. This was expected as the simulations are based on the energy equilibrium of the regularized elastic fields. The topological description is much closer to the theoretical energy release rate; however, it overestimates the initiation but remains higher when the crack stops. Presumably, the physics is better described by a mix of the two.

The discrepancy between theory and phase-fields can be explained by the difference in the stress regularization at the crack tip, as shown in Fig. 23(b). For the coupled criterion, we assumed a singular stress solution, while in the phase-field method, the stress was damaged. That is the reason why simulations with a lower l c gradually converged to the theoretical curve.

To understand why the crack arrested before reaching its theoretical limit, in Fig. 23(c), we plotted the maximum tensile stress (σ max y ) taken from the horizontal axis during the loading period until the crack arrested. It can be seen that before the initiation, the stress was much higher than the assumed limit. However, the crack started to propagate when the global energy release rate became 1.0. The crack did not start to propagate until both criteria were unsatisfied and only propagated to the point when the two criteria were still satisfied. It seemed that when the stress criterion was no longer satisfied, the propagation came to a halt. The limit stress -as long as the crack propagated -was in agreement with the mode I value obtained in section 3.1. Interestingly, even if the phase-field was not based on the two criteria (stress and energy), due to the length scale parameter, it followed their principles.

The phase-field model was created to satisfy the energy-based criterion only. More precisely, if the rate of elastic strain energy released from the sample was higher than g c , the fracture would advance. However, we showed that there existed a correlation between the maximum tensile stress and the parameter l c . Therefore, the phase-field method itself was sensitive to a stress-based criterion, even if this correlation was indirect. This dependence is explained in Fig. 24. On the left side, the basic idea of the coupled criterion is depicted. When the tensile strength was reduced, the regularization length, thus the allowed crack increment was larger. Consequently, the Griffith criterion became satisfied earlier and a smaller applied force/stress was sufficient to induce fracture.

Using the same logic, the phase-field approach can be understood as follows. If l c is increased, the regularization/process zone becomes larger. This causes the maximum stress to be reduced (as seen in the left inset) and also causes more damage to the elastic strain energy. A simple test was conducted: the strain energy difference was calculated between two crack lengths using predefined phase-field boundary conditions. The effect of the loading was emitted from the phase-field calculation; only the energy degradation was taken into account on a mode I tensile problem. We found that the energy released by a unit increment increased as a function of l c . Essentially, the integrated crack surface remained constant, because the normalization in Γ included l c , see eq. ( 1). In conclusion, if l c increased the elastic energy release rate, Griffith's criterion would be satisfied earlier, causing a reduction in the critical stress/force. Thus, the combination of the smaller reaction force for a given gc and the larger regularization would result in a smaller maximum tensile stress. This correlation might be interpreted as a smaller tensile strength as a function of a higher l c .

Conclusion

This article presents a comprehensive study focusing on the effect of the length scale parameter in phase-field fracture. The smeared damage approach was compared to the coupled stress-and energy-based criterion. Several elaborate benchmark examples were shown, and results based on the critical loading, crack topology, and crack arrest length were discussed. In each case, the relationship between tensile strength and the internal length scale was established.

First, a convergence study demonstrated that the standard phase-field approach converged to Griffith's solution. Otherwise, a gradual decrease was found in the critical stress if the finite element density was increased, or the elastic strain energy increment was constrained.

Generally, we found similar quantitative and qualitative results for both the phase-field approach and the coupled criterion. In mode I tensile fracture, both methods demonstrated the experimentally observed size effect. For the mode II shear case, on the other hand, a transition in the initiation angle between 74-73 • to 45 • was found based on the chosen strength and length scale. Finally, the two methods were equally capable of describing the transformation from unstable to stable propagation, or in other words the crack arrest phenomenon.

Throughout our paper, we highlighted the difficulties faced when the theoretical description with a sharp discontinuity is compared with a smeared damage approach. For instance, we proposed viable solutions to measure the crack length and the initiation angle for quadratic phase-field variation. All macroscopic models demonstrated good correspondence with experimental measurements and the homogeneous solution of the phase-field method.

However, one of the most relevant results of the present paper is the unique correlation between the internal length scale, maximum tensile strength and the initiation length. We showed that this relationship could be described with a surface rather than a single curve as the stress state has a significant effect on the results. We showed that the instantaneous initiation length increases linearly with l c , confirming that l c controls explicitly the size of the first crack advancement. We theorized that l c can be considered an intermediate quantity between Irwin's intrinsic length and the size of the actual process zone. We are convinced that the addition of the gradient term, i.e., the diffuse representation, helps us capture more about the physics of fracture than the original Griffith method. We thus consider it essential to find a deeper microscopic explanation for the local regularization.

Our study demonstrated that energy-and stress-based criteria together are required to determine the resistance of a sample. The importance of this phenomenon is increasingly paramount when considering real-life examples where crack sizes are usually at the micrometer scale. Interestingly, we observed that even if the phase-field solution was formulated based on energy principles, it satisfied the stress criterion as well at the initiation. The difference between the coupled criterion and the phase-field solution was explained by the added regularization around the crack tip. The coupled criterion kept the infinite stress peak, while the phase-field regularized the singularity. Therefore, for the same global reaction force value, the stress and energy distributions were generally different, for which reason the global energy of the samples differed.

It should be noted that the correlation established here only relates the strength and the internal length scale based on one surface potential and one degradation function. To generalize the relationship, this should be extended to a variation of phase-field formulations. After laying down the foundation stones of the theory, the experimental observation of the stress regularization would be essential [START_REF] Réthoré | Identification of a cohesive zone model from digital images at the micron-scale[END_REF].
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 1 Figure 1: Homogeneous solution of the phase-field problem in unidirectional tension: (a) stress-strain curve; (b) damage as a function of the applied deformation; (c) failure envelope (maximum stress states) in the space of principal stresses. The stress path in the case of part (a) is depicted using a dashed line. The results were obtained with E = 3 GPa, ν = 0.37, gc = 300 J/m 2 and lc = 0.2 mm.
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 2 Figure 2: Mode I tensile opening: (a) schematic problem; (b) finite element model with double symmetry . L = max (10a, 20mm). For the phase-field calculation, only the intact horizontal part was constrained against uy, the crack faces were left free to move.
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 3 Figure 3: Coupled stress and energy criteria for tensile (mode I) fracture. Black crosses represent the length where the stress criterion is just satisfied, while hollow circles show the same for the energy release rate. By increasing the external load, the two positions approach each other until both are satisfied.

Figure 4 :

 4 Figure 4: Convergence analysis of the phase-field simulation for tensile (mode I) fracture with an initial crack length of a = 2 mm. The applied critical stress (σ 0,c y ) is shown normalized by Griffith's solution (σ 0,G y ). (a) Results as a function of the maximal energy increment (η) and the finite element sizes with constant lc = 0.2 mm. The dashed curves are guides for the eye. (b) Critical stress as a function of the finite element size for different models with lc = 0.2 mm. A hyperbolic curve (ζ ∞ + ξ h lc ) with a convergence to ζ ∞ (at lc/h → ∞) is fitted to the data. (c) Critical stress as a function of lc with an inverse square root function (ζ ∞ + ξ √ lc), where lc → 0 the value converges to ζ ∞ . The goodness-of-fit of all functions was greater than R 2 > 0.99.
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 5 Figure 5: Chosen time step during the simulation with η = 0.5 and lc = 0.1 mm.
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 6 Figure 6: (a) Critical stress obtained by phase-field simulations (symbols) and the coupled criterion (red curves) as a function of the initial crack length in mode I fracture. With blue dashed line the solution of Griffith is plotted. The length scale parameter used in the phase-field simulations are highlighted at a = lc = 0.2 mm. (b) Initiation length as a function of the initial crack length calculated using the coupled criterion and eq. (13).

Figure 7 :

 7 Figure7: Critical stress as a function of lc with different models for mode I tensile opening for a = 0 obtained using phase-field simulations and the homogeneous solution for unidirectional tension (based on eq. 9).

Figure 8 :

 8 Figure 8: Mode II shear test: (a) schematic illustration of the problem in an infinite domain; (b) diagonally loaded square plate (with finite-size) for experimental comparison: L = 150 mm, 2a 0 = 45 mm.
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 9 Figure 9: Coupled stress and energy criteria in the case of shear (mode II) fracture with low tensile strength (unstable initiation). (a) The colored plot shows the normalized energy criterion. With black the isocurve is shown where G/gc = 1. While with red curves the stress criterion is highlighted as a function of the increasing load (σt/σc = 1). Hollow circles show the position and the initiation length where both criteria are just satisfied, and the crack can propagate. (b) Both normalized criteria are shown on the path of the local maximum energy release rate as a function of the distance from the crack tip. Hollow circle shows the distance of the first unstable jump.

Figure 10 :

 10 Figure 10: Coupled stress and energy criteria in the case of shear (mode II) fracture with high tensile strength (stable initiation). (a) Red curves represent the state of the stress (σt/σc = 1), black curves with the colored plot show the state of the energy criterion (G/gc). (b) Similarly to Fig. 9, the two criteria are shown along the assumed propagation path. Hollow circles show the position and the initiation length where both criteria are just satisfied, and the crack can propagate. Due to the stable initiation, the original crack front advanced, and the crack tip became displaced. This phenomenon is shown with red crosses in part (a) and green lines in part (b).

Figure 11 :

 11 Figure 11: (a) Critical load normalized by the Griffith criterion (see eq. 35) as a function of tensile strength. (b)The angle at which the unstable crack propagation starts as a function of tensile strength. The solid symbols show cases where the crack initiation is stable; hollow symbols represent unstable ones. In the stable cases, the initiation followed the local maximum path of G until the first unstable jump.

Figure 12 :

 12 Figure 12: (a) Finite element model for mode II shear fracture. (b) Interpretation of the phase-field results and the calculation of the critical initiation angle (θc).

Figure 13 :

 13 Figure 13: Critical fracture angle (θc) as a function of the length scale parameter (lc) for different models.

Figure 14 :

 14 Figure 14: Critical tensile strength (σc) as a function of of lc with different critical fracture angles (θc) for mode II shear fracture. The inset shows the convergence of lc as a function of θc.

Figure 15 :

 15 Figure 15: Phase-field results compared to experiments for the diagonally loaded square plate specimen.

Figure 16 :

 16 Figure 16: Tapered double cantilever beam (TDCB) geometry: L = 100 mm, h 1 = 45 mm, h 2 = 30 mm, lx = 12.8 mm, ly = 14 mm, c 0 = 36.5 mm, hc = 5 mm. Due to symmetry, only the upper part was modeled.

Figure 17 :

 17 Figure 17: Coupled stress and energy criteria for the TDCB specimen.

Figure 18 :

 18 Figure 18: (a) Normalized reaction force at initiation as a function of tensile strength (σc) and initial crack length (a 0 ). (b) Crack arrest length for a 0 = 0.0 mm and 0.1 mm initial crack length.

Figure 19 :

 19 Figure 19: Correlation between the tensile strength (σc) and the internal length scale lc for the TDCB specimen.

Figure 20 :

 20 Figure 20: Summarized correlations between the tensile strength (σc) and the internal length scale (lc).

Figure 21 :

 21 Figure 21: Summarized correlations between the initiation length (∆ac) and the internal length scale (lc).

Figure 22 :

 22 Figure22: Correlation between the materials intrinsic length, the phase-field length scale and the initiation distance identified using the coupled criterion.

Figure 23 :

 23 Figure 23: (a) The normalized energy release rate as a function of crack advancement. With red dashed lines, G is plotted from the coupled criterion, assuming identical reaction forces at fracture as the phase-field calculation. The hollow symbols represent phase-field results based on the global fracture surface; whereas filled symbols show the frack front position, where d > 0.9. (b) Tensile stress for different regularization length compared to the singular solutions for the same reaction force. (c) Maximum tensile stress (σ max y ) close to the crack tip along the horizontal axis as a function of the topological crack advancement. σc is shown with red dashed lines for different lc values based on Fig. 7.

Figure 24 :

 24 Figure 24: Schematic illustration of the workflow of the coupled criterion and the phase-field approach.

Table 2 :

 2 Critical shear stress (τ 0,c xy ) calculated with different approaches and two initial crack lengths (a 0 ) with lc = 0.35 mm.

	0,G xy ) Phase-field Homogeneous solution

  Length-scale (lc) Maximum reaction force -P max [N/mm]

	0][mm]	a0 = 0	a0 = 5 mm
	0.05	59.41	no data
	0.1	57.45	46.39
	0.2	55.48	45.96
	0.3	54.28	45.53
	0.5	52.74	45.03
	1.0	50.47	43.87

Table 3 :

 3 Maximum reaction force for the phase-field simulation at fracture as a function of lc and the chosen model.

E is usually replaced by an equivalent stiffness to account for different loading cases. In this paper we consider that lmat is only the ratio of the three material constants above and the stress state is accounted for via η. This allows us to precisely distinguish between lc and lmat.
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Appendix A. Homogeneous phase-field solution

The homogeneous phase-field solution is obtained by neglecting the effect of the damage gradient. Therefore, eq. ( 4) can be simplified, and the minimization problem can be solved without spatial discretization. Based on the principal strain state, the damage variable is obtained by substituting the elastic strain energy into eq. ( 7):

In section 2, the material strength is given based on the maximum tensile stress (σ 1 ) value obtained during the deformation. The failure envelope is then plotted in the space of principal stresses. Therefore, to assess the maximum value, a solution is needed, which provides a straight stress path in the space of the principal stresses.

The principal stresses are calculated by differentiation of eq. ( 2) with respect to the principal strains:

where α and α 1,2 represent the derivatives of the part functions:

In this paper, the effect of the third principal direction is neglected. The failure envelope, shown in Fig. 1c, is calculated for various η = σ 2 /σ 1 ratios. To obtain the desired η value 1 is gradually increased while searching for a corresponding 2 value based on the following relationship, which was derived from eq. (A.3):

Even if a direct relationship can be established between principal strains, the solution is more complicated, as d depends on the exact value of each positive principal strain. Therefore, an internal iteration is used to search for the precise value by recalculating d for each predicted ε2 .

Finally, the maximum stress is obtained as follows:

The MATLAB algorithm, which calculates the concerning η value can be found in Supplementary Materials.