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Abstract
This review aims at providing an up-to-date status and a general introduction to the
subject of the numerical study of energetic particle acceleration and transport in tur-
bulent astrophysical flows. The subject is also complemented by a short overview of
recent progresses obtained in the domain of laser plasma experiments. We review the
main physical processes at the heart of the production of a non-thermal distribution in
both Newtonian and relativistic astrophysical flows, namely the first and second order
Fermi acceleration processes. We also discuss shock drift and surfing acceleration,
two processes important in the context of particle injection in shock acceleration. We
analyze with some details the particle-in-cell (PIC) approach used to describe particle
kinetics. We review the main results obtained with PIC simulations in the recent years
concerning particle acceleration at shocks and in reconnection events. The review
discusses the solution of Fokker–Planck problems with application to the study of
particle acceleration at shocks but also in hot coronal plasmas surrounding compact
objects. We continue by considering large scale physics. We describe recent develop-
ments in magnetohydrodynamic (MHD) simulations. We give a special emphasis on
the way energetic particle dynamics can be coupled to MHD solutions either using a
multi-fluid calculation or directly coupling kinetic and fluid calculations. This aspect
is mandatory to investigate the acceleration of particles in the deep relativistic regimes
to explain the highest cosmic ray energies.

Keywords Kinetic physics · Magnetohydrodynamics · Turbulence · Particle
acceleration
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1 Introduction

Particle acceleration is a widespread process in astrophysical, space and laser plas-
mas. Acceleration results from the effect of electric fields, but supra-thermal particles
gain energy because their residence time in the acceleration zone increases due to
magnetic confinement. Hence, particle acceleration is an electromagnetic process.
Particle acceleration can be classified into three main sub-types (Blandford 1994;
Kirk 1994; Melrose 1996): acceleration at flow discontinuities among which shock
waves, stochastic acceleration, acceleration by direct electric fields. This last mech-
anism occurs in the environment of fast rotating magnetized objects like pulsars or
planetary magnetosphere. It will not be discussed in this review, interested readers
can refer to Cerutti and Beloborodov (2017) and references therein for what concerns
pulsar magnetospheric physics. Some recent discussions concerning particle acceler-
ation in Jupiter, the fastest rotator among solar system planets and other giant planet
magnetospheres can be found in Mauk et al. (2017), Delamere et al. (2015).

As stated above acceleration processes can be classified into different categories.
Let us give here a short overview of the main mechanisms.
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1. Stochastic Fermi acceleration (SFA). This is historically the first discovered accel-
eration process. SFA is at the heart of Fermi’s work on the origin of cosmic rays
(CRs) (Fermi 1949, 1954). In its original description particles with speed v gain
energy through a stochastic interaction with the convective electric field carried by
magnetic clouds moving randomly at a speedU � v in the interstellar space (see
Sect. 2.2.1). This process has somewell-known caveats: it is inefficient as themean
relative energy gain 〈ΔE/E〉 ∝ (U/v)2 (Parker 1958a), it produces non-universal
power-law solutions (see Eq. 3), which can not explain the power-law distribu-
tion of CRs observed at Earth. A modern description of SFA includes randomly
moving electromagnetic waves (Hall and Sturrock 1967), usually in the magneto-
hydrodynamic (MHD) limit if we want to consider the issue of CR acceleration
(Parker 1955; Kulsrud and Pearce 1969). For SFA by MHD waves, the relevant
speed for the scattering centers usually are proportional to the local Alfvén speed
UA.1 SFA is more efficient if the speed of the scattering center is close to the speed
of light (Marcowith et al. 1997; Gialis and Pelletier 2004) or for particles with
speeds close toUA, or other plasma characteristic wave phase speeds as it is likely
the case for low-energy CRs which propagate in the interstellar medium (ISM)
(e.g., Ptuskin et al. 2006), in the solar corona (e.g., Miller et al. 1996; Pryadko and
Petrosian 1998) or in the heliosphere (Zhang and Lee 2013). SFA is a multi-scale
process if the scattering waves are distributed over large wave-number bands as it
is the case in turbulent flows. SFA is an important process at the origin of particle
acceleration and gas heating in hot corona which develop around compact objects
(see Sect. 3.6).
To finish, we alsomention the betatron-magnetic pumping process (Parker 1958a).
In this process, particles propagate along amagnetic field slowly varyingwith time.
As the field strength increases, the particle momentum increases due to the conser-
vation of the adiabatic invariant p2⊥/B.2 If the particle suffers some scattering of
its pitch-angle or some elastic collisions, a decrease of the magnetic field strength
while keeping particle isotropization by pitch-angle scattering produces a net gain
in energy during a magnetic field variation cycle.

2. Shock or shear-flow acceleration. One way to cure the inefficiency of the SFA is to
allow scattering centers to have amean direction ofmotion (Parker 1958a;Wentzel
1963). Then the mean relative energy gain scales as 〈ΔE/E〉 ∝ (U/v). This case
occurs for a shock because of the advection of the scattering centers towards the
shock front but also in the configuration of a shearing, for instance in jets. We do
not explicitly for now discuss the case of shear-flow acceleration, the interested
reader can refer to Rieger and Duffy (2006), and we consider hereafter the case
of shock acceleration. Shear-flow acceleration will be reviewed in a forthcoming
version of the text. The acceleration process is more efficient if particles can
reside for a sufficient amount of time around the shock front (Kirk 1994). In fact,
particle acceleration at shockwaves covers three basic different processes (seeKirk
1994; Treumann and Jaroschek 2008b; Marcowith et al. 2016): diffusive shock

1 UA = B/
√
4πρi, where B, ρi are respectively the local magnetic field strength, the ion mass density.

2 p⊥ = p sin α, where p and α are the particle momentum and pitch-angle (the angle between the particle
velocity and magnetic field) respectively.
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acceleration (DSA), shock drift acceleration (SDA), shock surfing acceleration
(SSA), all described below.
Before, let us introduce some elements of vocabulary associated with different
descriptions of the shock front. First, particle acceleration requires the shock to
be collisionless, i.e., to be mediated by electromagnetic processes rather than
collisions otherwise collisions being the fastest process force the shocked particle
distribution to be Maxwellian. This condition is usually fulfilled in astrophysical
and space plasmas. At a macroscopic level a shock wave is characterized by a
discontinuity in the thermodynamical variables of the flow. A shock occurs when
the flow is supersonic, with a sonic Mach number Ms = Ush/cs > 1, where
Ush is the shock speed in the upstream medium restframe. Rankine–Hugoniot
conditions give the jump in the flow density, velocity, pressure, temperature and
entropy at the shock front (Treumann and Jaroschek 2008a). At amicroscopic level
a shock front is a complex, dynamical structure where multi-scale instabilities can
develop (Marcowith et al. 2016). The so-called supercritical magnetized shock
front is composed of three sub-structures: the foot, a bump in gas and magnetic
field pressures due to the accumulation of ions reflected at the ramp, the ramp
which marks the fast rise of the electromagnetic field potential and gas density and
finally the overshoot-undershoot produced by the gyromotion of reflected ions
moving in the post-shock gas. Shocks in astrophysics also include precursors in
the upstream gas which can have very different origins: radiation, mixture of ions
and neutrals or CRs. The size of these precursors make them usually impossible to
explore numerically with the shock front structure as a single complex dynamical
system.
As stated above particle acceleration in shocks proceeds through three different
mechanisms. In DSA particles repeatedly gain energy by crossing the shock front
back and forth (Drury 1983). SDA results from the effect of the convective electric
field E = −U/c × B upstream the shock front due to the motion of the flow at a
speed U (Kirk 1994; Decker and Vlahos 1985). The particle guiding-center drifts
due to the effect of the electric field and to the gradient of the magnetic field in
the ramp. SSA results from the trapping of the particle at the shock front because
of the combined effect of shock potential raise at the ramp and the convective
upstream electric field (Sagdeev 1966). We will come back with more details on
these mechanisms in Sects. 2.2 and 2.3.

3. Magnetic reconnection (REC). Magnetic reconnection is the process which trans-
fers magnetic field energy into kinetic energy in an explosive event by re-arranging
themagnetic field topology. Themost simple 2Dpicture is sketched in the left panel
of Fig. 1. Separatrices (green, dashed lines) divide the 2D plane into 4 different
regions: in the left region, the magnetic field connects points A and B. In the right
region, the field connects points A’ and B’ and is oriented in opposite direction
to the field in the left region. No field is present in the upper and lower region
between the separatrices. In 2D, due to Ampère’s law, a current pointing normal to
the plane is necessarily present between the oppositely oriented fields. The REC
process then leads to a re-arrangement of the field lines, lowering the magnetic
energy. The field now connects the points A and A’ (B and B’ respectively). These
field lines are highly bent and will relax, accelerating the plasma upwards and

123



A. Marcowith et al.

Fig. 1 The re-arrangement of the field topology in magnetic reconnection in a 2D model. Before the event
(Image 1), points A and B (A′ and B′ respectively) are located on the same field line. After the event (3),
field lines now are connecting points A and A′ (B and B′ respectively). Strongly accelerated outflow is
driven in the directions where the highly bent magnetic field lines are relaxing. The dashed green lines are
called separatrices, lines which separate the regions of field which are topologically not connected . Image
adapted from Melzani (2014)

downwards. The term magnetic reconnection was first coined in Dungey (1958)
and was later adopted by the community. More details about the REC process are
provided in Sect. 2.5.
REC induces a transfer of magnetic energy into: heat, plasma and particle accel-
eration and hence radiation (Gonzalez and Parker 2016; Priest 1994). Particle
acceleration in reconnection sites can either occur by a direct acceleration in elec-
tric fields in the current sheet, or because of Fermi first order acceleration in the
plasma converging towards the reconnection zone or if particles are trapped in a
contracting magnetic islands (de Gouveia Dal Pino and Kowal 2015). The physics
of particle acceleration in kinetic reconnection is discussed in Sect. 4.2.

Acceleration mechanisms, as we have seen from the above rapid descriptions,
intrinsically involve multi-scale processes which bring particles from the thermal to
supra-thermal speeds. In astrophysics these processes have to explain the CR spectrum
observed at Earth which extends at least over 15 orders of magnitude in energy (from
MeV to ZeV) and more than 30 orders of magnitude in flux (see Fig. 2). Note that in
space plasmas, maximum energies reached by the energetic particles are more modest
but still supra-thermal, and the particle distributions cover about 5 orders of magni-
tude (from keV to GeV) (see, e.g., Zharkova et al. 2011 in the context of solar flares).
The investigation of particle acceleration then requires different numerical approaches
to probe the different inter-connected scales involved in the process of acceleration.
Multiple techniques are also required as actually it is not possible to account for such
large dynamical spatial, time and energy scales even with modern computers. It is the
main object of this review to address these different techniques.

1.1 Layout

This review is organized as follows. Section 2 addresses the scientific context. It
describes the main acceleration processes at work in astrophysical plasma systems.
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Fig. 2 The cosmic ray spectrumobserved at theEarthmultiplied by E2.6. Image reproducedwith permission
from Patrignani and Particle Data Group (2016), copyright by Regents of the University of California

It also a short review on the on-going experimental efforts to reproduce collisionless
shocks, magnetic reconnection and particle acceleration in laser-plasma-based experi-
ences. The next sections treat the different numerical approaches to investigate particle
acceleration from microscopic scales to macroscopic scales. Section 3 describes the
different numerical methods adapted to the description of plasma kinetics. Section 4
discusses particle acceleration and transport at micro- and meso-plasma scales. Sec-
tion 5 describe numerical techniques developed to follow macroscale dynamics and
detail recent results on particle acceleration and transport in astrophysical flows. We
conclude in Sect. 6.

How to read this review The scientific questions and the numerical experiments
developed to investigate them are entangled. We have decided to describe this com-
plex modelling in two steps. The first step presents a general description of the main
acceleration processes in astrophysical plasmas. This presentation is the main pur-
pose of Sect. 2. Notice that we complement it by a dedicated section addressing some
recent studies of particle acceleration at collisionless shocks and magnetic reconnec-
tion in the context of laser plasmas in Sect. 2.6. The second step describes technical
numerical aspects. They are presented in Sects. 3.4 to 3.5 and in all sub-sections of
Sect. 5. Sections 3, 4, 5 then include discussions which connect the numerical work
and scientific questions exposed in Sect. 2.

1.2 List of acronyms and notations

All quantities are in cgs Gaussian units.
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Acronym name Definition

AGN Active galactic nucleus
AMR Adaptive mesh refinement
CFL Courant–Friedrichs–Lewy
CR Cosmic Ray
DCE Diffusion-convection equation
DSA Diffusive shock acceleration
EP Energetic particle
FDM Finite difference method
FVM Finite volume method
FP Fokker–Planck
GRB Gamma-ray burst
HD Hydrodynamics
ISM Interstellar medium
MFA Magnetic field amplification
MHD Magneto-hydrodynamics
NLDSA Non-linear diffusive shock acceleration
PDE Partial differential equation
PIC Particle-in-cell
PWN Pulsar wind nebula
REC Magnetic reconnection
SDA Shock drift acceleration
SFA Stochastic Fermi acceleration
SNR Supernova remnant
SSA Shock surfing acceleration

We recall here the definition of the different quantities used to construct the main
parameters involved in shock acceleration processes: B is the magnetic field strength,
ρ is the gas mass density, ρi is the ion mass density, γad is the gas adiabatic index, v
and p are the charged particle speed and momentum and Ze is the charge.

Notation Definition

θB Shock magnetic field obliquity
(Angle between field lines and shock normal)

Ush Shock velocity in the upstream (observer)frame
UA = B/

√
4πρi Local Alfvén speed

MA = Ush/UA Alfvénic Mach number
cs = √

γadP/ρ Local sound speed
Ms = Ush/cs Sonic Mach number
σ = B2/4πρc2 Local magnetization

(Ratio of the upstream magnetic pressure to the upstream gas kinetic energy) (shocks)
σ = ω2

ci/ω
2
pi Local magnetization

(Ratio of the square of cyclotron to plasma frequencies) (reconnection)
βp Plasma parameter
rL = pv/ZeB Gyro-radius (Larmor radius)

Notice of caution: There is not a unique way to define the magnetization parameter
σ . In shock studies, σ is the ratio of the magnetic pressure to the kinetic energy of the
ambient gas, all quantities being measured in the upstream rest-frame. In relativistic
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shock studies, themagnetization parameter is sometimes defined asσ = B2/4π�Uc2,
where � = √

1 +U 2 is the Lorentz factor of the shock and U is the four-velocity
of the flow (Marcowith et al. 2016). In reconnection studies, σ is the ratio of the
square of cyclotron to plasma frequencies. It is related to the the ratio rA = UA/c by
σ = r2a /(1 − r2A) (e.g., Sironi and Beloborodov 2019).

2 Astrophysical and physical contexts

Following the introductory remarks in Sect. 1, we present below an overview of the
astrophysical and physical contexts where the numerical tools discussed in this review
are actively developed. We aim here at a short description of the basic concepts neces-
sary to describe particle acceleration. In particular, we show that particle acceleration
involves a large range in scale/time/energy which justifies the use of very different
numerical techniques detailed in the next sections.

First, in Sect. 2.1 we briefly overview the mechanism of stochastic acceleration
(SA). Then the three next sections cover different aspects of the physics of parti-
cle acceleration at collisionless shocks. In Sect. 2.2 we provide a general and rather
detailed presentation of the physics of diffusive shock acceleration (DSA) which is
one of the main frameworks to study particle acceleration in astrophysical systems.
Beyond a standard description of the process itself we discuss specific issues con-
nected with the acceleration of cosmic rays (CRs) at fast astrophysical shock waves:
the injection problem and non-linear back-reaction of CRs over the flow solution.
These two difficulties require the development of specific scale-dependent numerical
techniques described in the next sections. Section 2.3 is a short presentation of the
other two shock acceleration processes, namely the shock drift acceleration (SDA)
and the shock surfing acceleration (SSA) which are especially relevant for particle
injection in the DSA process. Section 2.4 discusses the specific case of Fermi accel-
eration at relativistic shocks and the development of micro turbulence at these shock
fronts. Magnetic reconnection (REC) is discussed in some detail in Sect. 2.5, where
we present the most relevant vocabulary necessary to understand particle accelera-
tion in reconnection structures. Section 2.6 reviews the most important undergoing or
planned laser experiments to study particle acceleration. This rapidly growing field
of research starts now to investigate astrophysically relevant conditions for particle
acceleration at collisionless shocks andmagnetic reconnection. Notice that we decided
to not include any review of acceleration processes in space plasmas, this will deserve
a special section in a forthcoming version.

It should be stressed that by no means this section is intended to be exhaustive. It
has to be understood as a short introduction to the scientific cases where the different
simulation techniques discussed hereafter are developed. For each type of accelera-
tion/transport mechanism we refer the interested reader to more complete dedicated
reviews.
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2.1 Stochastic acceleration

As discussed in Sect. 2.2.1 stochastic acceleration occurs because, on average, ener-
getic particles at a speed v interact with scattering centers moving at a speed U more
often through head-on collisions than through rear-on collisions if v 	 U . This
results in a broadening of the particle distribution and an increase of the mean particle
energy (Melrose 1980). In astrophysical plasmas the scattering centers often3 can be
described as plasma waves, and when we deal with high-energy CRs these waves can
be described using the MHD approximation (Parker 1955; Sturrock 1966; Kulsrud
and Ferrari 1971). But it is necessary to go beyond MHD if we want to consider the
acceleration of non-relativistic or mildly relativistic particles (Marcowith et al. 1997;
Pryadko and Petrosian 1998).

As explained in Sect. 1, well-known caveats prevent the interpretation of the CR
spectrum observed at the Earth as resulting from stochastic acceleration by MHD
waves: (1) the non-universality of the distribution of accelerated particles, (2) a weak
relative energy gain at each wave-particle interaction scaling as (U/v)2. The second
issue can be partly overcome if we consider the case of low energy (sub-GeV) CR
propagation in the ISM, as in that case the ratio v/U drops. Still, an important problem
results in the prohibitive amount of ISM turbulence necessary to re-accelerate the low
energy end of CR spectrum (Ptuskin et al. 2006; Thornbury and Drury 2014; Drury
and Strong 2017). Nevertheless, SA has been invoked to be an important source of
turbulence damping and particle acceleration in solar flares (Petrosian 2012), in active
corona above the accretion discs around compact objects (Dermer et al. 1996; Liu et al.
2004; Belmont et al. 2008; Vurm and Poutanen 2009), in SNRs or their associated
superbubbles (Bykov and Fleishman 1992; Kirk et al. 1996; Marcowith and Casse
2010; Ferrand and Marcowith 2010), in galaxy clusters (Brunetti and Lazarian 2007),
or in the case the wave phase (Alfvén) speed gets close to the speed of light as can be
the case in AGNs (Henri et al. 1999), in GRBs (Schlickeiser and Dermer 2000), or in
pulsar winds (Bykov et al. 2012).

2.2 Diffusive shock acceleration

DSA is probably the favored productionmechanism ofCRs. It is thought to be a natural
outcomeof collisionless shocks, and so is believed to be atwork in astrophysical shocks
at all scales, active in the bowshocks in the solar system, in the blastwaves of supernova
remnants (SNRs) or in the internal shocks in the jets of gamma-ray bursts (GRBs) or
active galactic nuclei (AGNs). DSA is rooted in the early ideas of Fermi (1949, 1954);
it was developed independently in the late 1970s by Krymskii (1977), Axford et al.
(1977), Bell (1978a, b), Blandford and Ostriker (1978), see Drury (1983), Jones and
Ellison (1991), Malkov and Drury (2001) for comprehensive reviews. A key feature of
DSA is that it produces power-law distributions as a function of energy (although this

3 Note however that, similarly to Fermi’s original ideas, some models invoke finite amplitude waves or
shocks as the origin of stochastic energy exchanges with energetic particles, see in different astrophysical
contexts e.g. Bykov and Toptygin (1987), Achterberg (1990), Pelletier and Marcowith (1998), Gialis and
Pelletier (2004).
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spectrum can be altered by non-linear effects), which is similar to the CR spectrum as
observed from the Earth, modulated by CR transport and escape from the Milky Way.
DSA requires two ingredients to accelerate particles: a converging flow (the shock
wave), and scattering centers (perturbations of the magnetic field). In this mechanism
individual microscopic particles can be accelerated up to very high energies because
they are interacting a large number of times with the macroscopic shock discontinuity
before escaping the system. Again, one major difficulty in simulating this process
becomes apparent: DSA is intrinsically a multi-scale problem.

2.2.1 Fermi processes and building power-laws

In his original model, Fermi considered the interaction of charged particles with mov-
ing magnetized clouds. In the cloud frame, the particle (of velocity v) is elastically
deflected around the B field. In the Galactic frame (with respect to which the cloud is
moving at velocity U), the energy E of the particle changes according to

ΔE

E
= −2

v · U
c2

. (1)

The effect depends on the geometry of the encounter: for head-on collisions (v ·U < 0)
the particle gains energy (ΔE > 0), whereas for overtaking collisions (v · U > 0)
it loses energy (ΔE < 0). The exchange is mediated by the magnetic field, even
though B does not appear in the formula (ΔE is nothing but the work of the Lorentz
force exerted on the particle by the electric field E induced by the moving B). For a
random distribution of moving clouds, after many interactions the particle experiences
a net energy gain, because head-on collisions are more likely. This is only an average
gain, hence the name stochastic acceleration, and it scales as β2 where β = v/c,
hence the name second-order Fermi acceleration (or simply Fermi II). Fermi himself
realized that this process was probably not efficient enough to produce the bulk of
Galactic CRs. Now if somehow only face-on collisions occur, then the energy gain is
systematic, hence the name regular acceleration, and it scales as β, hence the name
first-order Fermi acceleration (or simply Fermi I).

A shock wave (the S in DSA) provides such a configuration: both the upstream
and the downstream medium see the opposite side arriving at the same speed ΔU =
r−1
r Vsh

(= 3
4 Ush if r = 4

)
where r is the compression ratio andUsh is the speed of the

shock (with respect to the unperturbed upstream medium). Let us further assume that
magnetic turbulence in the vicinity of the shock efficiently scatters off the particles
(leading to the D in DSA), so that they are effectively isotropized on each side of
the shock, meaning that their mean velocity follows the local flow velocity.4 Then,
the particles experience a regular Fermi acceleration, the clouds being replaced by a
reflecting wall moving at velocity ΔU Averaging Eq. (1) over all angles, one gets a
mean energy gain

4 More precisely, the velocity that matters for particles is that of the magnetized waves present in the flow,
the difference with respect to the fluid flow is called the Alfvén drift, in the case the main scattering waves
are Alfvén waves, see Sects. 5.3 and 5.7.2.
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〈ΔE

E
〉 = 4

3

ΔU

c
= 4

3

r − 1

r

Ush

c
(= βs if r = 4). (2)

By considering the duration of a complete reflection from the oppositemedium, and the
probability of escape from the acceleration region, one can derive the final distribution
in energy of particles. To do so, two approaches are possible: a microscopic approach,
where one considers the fate of individual particles, and a kinetic approach, where one
reasons with their distribution function as a function of energy or rather momentum
(see details of the calculations for both approaches in Drury (1983) and references
therein). This basic choice will also apply to the numerical methods presented in this
review. From a general point of view an acceleration mechanism can be characterized
by its acceleration time τacc (defined so that particles are accelerated at a rate ∂E/∂t =
E/τacc) and its escape time τesc (defined so that particles escape the accelerator at a
rate ∂N/∂t = N/τesc). If particles are injected at an energy E0 with a rate Q(E0),
after a time t a number density N (E)dE = Q(E0) exp(−t(E)/τesc)dt of particles
will have escaped. Now energy and time are linked by t(E) = τacc ln(E/E0), inserting
this time in the previous relation leads to the steady-state solution

N (E) ∝ E−s with s = 1 + τacc

τesc
. (3)

In the limit where escape never occurs (τesc = ∞), the hardest spectrum one can
obtain is N (E) ∝ E−1. In DSA the ratio τacc/τesc turns out to be independent of E ,
and so one gets a power-law distribution, of index

s = r + 2

r − 1
(= 2 if r = 4). (4)

The spectral index is controlled by the compression ratio of the shock, and so is a
universal value for strong shocks.

2.2.2 The transport equation and the diffusion coefficient

Assuming the particle distribution is isotropic (to first order) in momentum p, and
considering here for simplicity a plane-parallel shock along direction x , in the kinetic
description we may work with the quantity f = f (x, p, t), which is defined so
that the number density is n (x, t) = ∫

f (x, p, t) 4π p2 dp, and which obeys the
convection-diffusion equation (CDE)5:

∂ f

∂t
+ ∂(U f )

∂x
= ∂

∂x

(
D

∂ f

∂x

)
+ 1

3p2
∂ p3 f

∂ p

∂U

∂x
. (5)

On the right-hand side of the equation, the second term represents advection inmomen-
tum, powered by the fluid velocity divergence ∂U/∂x , while the first term models the

5 This equation is obtained by averaging the full Fokker–Plank equation (FPE) over particle pitch-angle
and azimuthal gyromotion angle (see Sect. 3.6).
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spatial diffusion of the particles, resulting from their scattering off magnetic waves,
and described by a diffusion coefficient D(x, p). This coefficient, together with the
shock speedUsh, sets the space- and time-scales of DSA. Upstream of the shock front,
particles can counter-stream the flow up to a distance

�prec(p) = D(p)

Ush
(6)

which sets the scale of what is called the CR precursor region. The acceleration
timescale, defined so that dp/dt = p/tacc, goes as

tacc(p) ∝ D(p)

U 2
sh

(7)

where the proportionality factor is of order 8–20 depending on the shock obliquity
and the Rankine–Hugoniot conditions linking up- and downstream magnetic field
strengths, see Reynolds (1998). For DSA to work requires �prec to be less than the
accelerator’s size, and tacc to be less than the accelerator’s age, which puts limits on
the maximum momentum pmax that the particles can reach (for particles that radiate
efficiently like electrons, pmax may also be limited by losses). The diffusion law is
thus a critical ingredient in DSA. This aspect will however be treated in very different
ways in different kinds of numerical simulations. In kinetic approaches, where one
solves one equation of the kind of Eq. (5), the diffusion coefficient D(x, p) or some
equivalent quantity must be specified. In microscopic approaches, where one directly
integrates the equation of motion of individual particles, the diffusion coefficient may
actually be measured from the observed paths of an ensemble of particles.

Computing the value of the diffusion coefficient from theory is a difficult problem
(see Shalchi 2009b for a review). Very generally, the diffusion coefficient can be
expressed as D = 1

3�.v where again v is the particle velocity and � its mean free path.
When charged particles are deflected by Alfvén waves, � is inversely proportional to
the energy density δB2 in waves present with the resonant wavelength λ � rg, where
rg = pc

qB is the particle gyroradius. A special case of interest is the so-called “Bohm
limit” (see e.g. Kang and Jones 1991; Berezhko and Völk 1997; Bell 2013) reached
when � � rg, that is when the particles are scattered within one gyroperiod, meaning
that the turbulence is random (δB ∼ B) on the scale rg. This constitutes a lower
limit on the value of the (parallel) diffusion coefficient, and so on the acceleration
time-scales. In that case, D ∝ pv so that

DB(p) = D0
p2

√
(1 + p2)

(8)

where one can evaluate D0 � 3× 1022/B cm2.s−1 with B in μG, and p is expressed
in mpc units.

Historically the Bohm limit has been widely favored in the literature, in its true
form in Eq. (8) or with a free normalization and only keeping the “Bohm scaling”
in p, and using the exact dependence on p, or only the relativistic scaling D(p) ∝ p,
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or a parametrized scaling of the form D(p) = D0 pα with free index α (commonly
informally called “Bohm-like” coefficients). This choice of the Bohm limit may be in
part due to the fact that it is the most favorable case, and also may just stem from habit
given the lack of clear theoretical alternatives. Analytically it has only been derived
under the assumption of strong turbulence Shalchi (2009a), and numerical studies
have found that it does not generally hold (Casse et al. 2002; Candia and Roulet 2004;
Parizot 2004). The validity of this assumption in the context of supernova remnant
studies has been regularly questioned (Kirk and Dendy 2001; Parizot et al. 2006), and
in the context of interplanetary shocks other models have been used according to the
turbulence properties and shock obliquity (Dosch and Shalchi 2010; Li et al. 2012).
In any case, when it comes to simulations, a key aspect is how strongly the diffusion
coefficient depends on the particle’s energy, given relations (6) and (7).

2.2.3 The injection problem

DSA is a bottom-up acceleration mechanism, whereby (a fraction of) the particles
from a plasma get boosted to very large energies. The particles are accelerated from
a non-thermal distribution that extends beyond the thermal distribution of the plasma
(often assumed to be aMaxwellian). The way these two populations are connected is a
delicate problem. The discussion of DSA above assumes that particles are sufficiently
energetic that they can leap over the shock wave and perceive it as a discontinuity,
meaning that their mean free path in the magnetic turbulence is already larger than
the physical width of the shock wave, which is typically of the order of a few Larmor
radii of thermal ions. The way by which particles from the background plasma enter
the acceleration process is known as the “injection” mechanism. The general idea,
referred to as “thermal leakage” is that particles heated at the shock may be able to
re-cross the shock to start the DSA cycle (Malkov and Voelk 1995; Malkov 1998).
The efficiency of the injection determines the fraction of the available shock energy
that is channeled into energetic particles. It is widely expected to vary as a function
of parameters such as the shock obliquity, although there is no firm agreement yet on
what are the most favorable configurations.

Injection is treated in much different ways according to the level of the numerical
modeling. In kinetic approaches that decouple the non-thermal population (obeying
Eq. 5) and the thermal population (obeying classical conservation laws), the injec-
tion process is parametrized. The simplest way to do this is to postulate that some
fraction η of the particles crossing the shock enter the acceleration process, at some
momentum pinj above the typical thermal momentum. The requirement that the par-
ticles power-law matches the plasma Maxwellian at pinj actually implies that these
quantities are related, as shown in Blasi et al. (2005). A more advanced approach is
to use a “transparency function” to inject particles at the shock, as done by Gieseler
et al. (2000). In contrast, in the Monte-Carlo simulations of the kind of Ellison and
Eichler (1984) no formal distinction is made between the thermal and non-thermal
populations, allowing for a more consistent treatment of injection, for a given scat-
tering law. Only PIC simulations are able to directly address the formation of the
collisionless shock concomitantly with the energization of particles, and it has been
only very recently that the computational power has become sufficient to see the DSA
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Fig. 3 Sketch of the physical components and their couplings in the diffusive shock accelerationmechanism

power-law naturally emerge (e.g., Caprioli and Spitkovsky 2014a)—although still on
very small space- and time-scales compared to any astrophysical object of interest.
The results associated to these simulations are described with more details in Sect. 4.
This again illustrates the need for a model at different scales and their entanglement,
a given numerical approach often relying on results obtained from other approaches
for the aspects it cannot describe.

2.2.4 Back-reaction and non-linear effects

DSA at astrophysical shocks involves three kinds of actors: energetic particles, a
plasma flow, and magnetic waves (see Fig. 3). Charged particles are being injected
from the plasma and accelerated at the shock, thanks to their confinement by magnetic
turbulence. In our discussion so far we have assumed a prescribed background plasma
flow and magnetic turbulence, that is, we were implicitly discussing the “test particle”
regime. But if the acceleration process is efficient (meaning that a substantial fraction
of the available energy ends up into particles), then the particles will play a role in the
dynamics of the plasma and in the evolution of the magnetic field. This in turn will
affect the way they are being accelerated, so that the DSA process becomes non-linear
(NLDSA). The time-dependent problem is intractable analytically in the general case,
which is the reason why studies of (efficient) particle acceleration rely on numerical
techniques, as described in this review. To end this section on DSA, we summarize
the main aspects of the two back-reaction loops: of the particles on the plasma flow,
and of the particles on the magnetic turbulence.

Even beforeDSA theorywas established, Parker (1958b) noted that CRsmodify the
medium in which they propagate: being relativistic they lower the overall adiabatic
index of the flow. We can make this more precise by considering the CR pressure,
defined as
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Pcr =
∫

p

p v

3
f (p) 4π p2dp = 4π

3
mpc

2
∫

p

p4
√
1 + p2

f (p) dp (9)

(where in the right expression momenta are expressed inmpc units). This quantity can
growwithout limit in the linear regime. But as CRs diffuse upstream of the shock in an
energy dependent way, a gradient of CR pressure forms in the precursor, which pro-
duces a force acting on the plasma. This CR-induced force pre-accelerates the plasma
ahead of the shock front, leading to the formation of a smooth, spatially extended veloc-
ity ramp upstream of the shock front. The shock itself is thus progressively reduced to
a so-called “subshock”, whose compression ratio is rsub < 4, while the overall com-
pression ratio rtot (measured from far upstream to far downstream) becomes > 4 from
mass conservation—the plasma is more compressible when particles become rela-
tivistic, and even more so when the particles escape the system (Berezhko and Ellison
1999). As particle of different energies can explore regions of different extent ahead
of the shock, they will feel different velocity jumps, so that the spectral slope defined
by Eq. 4 becomes energy-dependent. The spectrum is thus no longer the canonical
power-law, but gets concave. Particles of low energy (p � mpc) only sample the
sub-shock, feeling a compression rsub that produces a slope larger than the canoni-
cal value of 2 (that is, a steeper spectrum), whereas particles at the highest energies
sample the whole shock structure, feeling a compression rtot that produces a slope
that is smaller (that is, a flatter spectrum). So one of the historically most attractive
features of DSA—its ability to naturally produce power-law spectra—cannot strictly
hold when it is efficient.

Turning to magnetic turbulence, it was also observed early on (e.g., Skilling 1975b)
that the CRs can generate themselves the waves that will scatter them off. They can
indeed trigger various instabilities by streaming upstream of the shock, which gener-
atesmagnetic turbulence,which is then advected to the shock front and the downstream
region. Denoting by W (k, x, t) the power spectrum of the magnetic waves where k
is the wave vector, its evolution obeys a transport equation of the general form (here
written for simplicity along one dimension). Assuming for simplicity that U is constant
we have:

∂W

∂t
+U

∂W

∂x
= �g − �d , (10)

where �g is the growth rate of the waves, which is dictated by the particles, and
�d is their damping rate in the plasma. For a CR-induced streaming instability the
growth rate �g scales as the gradient in the CR pressure. Using hybrid MHD+particle
simulations, Lucek and Bell (2000), Bell (2004) showed that the seed magnetic field
can be amplified by up to two orders of magnitude, which is important because in turn
the magnetic field controls the diffusion and confinement of the particles and thus the
maximum energy that they can reach (Bell and Lucek 2001). This discovery prompted
a slew of work on this complex topic (see Schure et al. 2012 for a review). Two regimes
of streaming instabilities can operate, a resonant instability at work when the Larmor
radius of a particle matches the wavelength of a perturbation, and a non-resonant
instability driven by the current of particles (see also Gary 1991). The amplified field
saturates at an energy density δB2 that scales as U 2

sh, or possibly even U 3
sh (Vink

2012). Other longer wavelength instabilities can be triggered too. Combined with
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Fig. 4 Particle trajectories along the shock front due to SDA or SSA mechanisms. The flow is directed
along the x-direction, and particles are injected at the left of the box. The magnetic field is perpendicular
to the plane of the plot, as revealed by the gyro-motion of the particles. In the SDA process, the particle is
forced to cross the shock several times. In the SSA process, the particle moves along the shock front. Image
reproduced with permission from Shapiro and Üçer (2003). Copyright by Elsevier

observational evidence for high magnetic fields at the shocks of young supernova
remnants (Reynolds et al. 2012), this has lead to the current view that magnetic field
amplification (MFA) is a critical ingredient of DSA. This effect has been integrated
in numerical simulations in different ways depending on the level of description of
the particles and waves. For instance, in the kinetic description of DSA, one can
in principle compute the diffusion coefficient D(x, p, t) self-consistently from the
cosmic-rays distribution f (x, p, t). Obtaining a fully consistent description of the
dynamical evolution of the particles, the plasma flow, and the magnetic turbulence, is
still a work in progress.

2.3 Shock drift and shock surfing acceleration

These two acceleration processes rely on the effect of the convective electric field
E = −U/c×B induced bymagnetized fluidmotions towards the shock. The difference
between the two processes results from the way the particles are either confined at the
shock front in the case of shock surfing or move up- and downstream in the case of
shock drift (Hudson 1965). Figure 4 shows different trajectories adopted by particles
due to these two different processes.

2.3.1 Shock drift acceleration: SDA

Acceleration associated to the drift of the particle’s guiding center depends strongly
on whether the shock is super- or subluminal. The super- or subluminal character of
a shock depends on the speed of the intersection point of the upstream magnetic field
with the shock front: in superluminal shocks this speed is larger than the speed of
light, in subluminal shocks it is smaller.

123



A. Marcowith et al.

In subluminal shocks it is always possible to find a frame where the convective
electric field vanishes (so where the fluid velocity lies along the magnetic field line
direction), this is the so-called de Hoffmann–Teller (HT) frame (Kirk 1994). In the HT
frame particle energy is conserved. As an upstream field line intersects the shock the
particle guiding center drifts along the shock and can either be transmitted or reflected
at the shock front because the magnetic field is compressed there. The energy gain
is the highest for particles reflected at the shock front (Decker 1988). This effect is
similar to a reflection at the edge of a magnetic bottle. A calculation assuming that
adiabatic theory applies uses a Lorentz transformation between a frame at which the
shock is stationary to the HT frame to derive the energy gained by a particle reflected
at the shock. Averaging over initial particle pitch-angles gives a ratio of the particle
energy after the reflection to the initial energy of

〈
Ef

Ei

〉
= 1 + √

1 − b

1 − √
1 − b

, (11)

where b = Bu/Bd is the ratio of the upstream to downstream magnetic field strengths.
For b = 0.25 (for a compression of themagnetic field by a factor 4)wefind amaximum
ratio 〈Ef/Ei〉max � 15.8 and only half of this for a transmitted particle.

In superluminal shocks, a configuration obtained in perpendicular shocks, the adia-
batic invariant p2⊥/B is conserved even while the particle crosses the shock, as long as
its speed is much larger than the shock speed (Webb et al. 1983; Whipple et al. 1986).
The maximum value of the ratio Ef/Ei is 1/

√
b = 2. Superluminal shocks are the

rule in relativistic flows.6 Begelman and Kirk (1990) investigate the condition under
which SDA process operates at relativistic perpendicular shocks associated with the
synchrotron emission of radio galaxy hot spots. As the flow speed gets closer to the
speed of light the condition for the adiabatic theory breaks down. Begelman and Kirk
(1990) propose an alternative method by following individual particle orbits. Due to
shock dynamics, particles can cross the shock front at maximum three times before
being advected downstream.

2.3.2 Shock surfing acceleration: SSA

Shock surfing is produced when a particle is trapped between the shock electrostatic
potential eφ (+e is the particle charge in case of a proton) which appears at the
shock ramp and the upstream Lorentz force along the shock normal which carries the
particle back to the front. Original ideas about thismechanism can be found in Sagdeev
(1966), Sagdeev and Shapiro (1973). The particle is accelerated under the action of the
convective electric field until its kinetic energy along the shock normal exceeds eφ.
The trapped particle accelerates essentially along the shock front like a surfer’s motion
along a wave; hence Katsouleas and Dawson (1983) name this process shock surfing
acceleration. The SSA mechanism is often invoked at quasi-perpendicular shocks as
a pre-acceleration process. It allows to inject particles beyond the energy threshold

6 The shock is subluminal only if the obliquity angle between the upstream magnetic field and the shock
normal is θu ≤ 1/�sh, where �sh is the shock Lorentz factor.
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for DSA to operate (Zank et al. 1996; Lee et al. 1996). Particles gain energy as long
as they stay trapped at the shock front. The acceleration ceases if they escape either
upstream if the magnetic field has some obliquity or downstream if the Lorentz force
exceeds the electrostatic force at the shock layer. Particle acceleration can operate
also in the relativistic regime where particles with small initial speeds are trapped the
longest. Shapiro and Üçer (2003) for instance find that particles can have 10 bounces
and reach Lorentz factors ∼ 2 through this mechanism.

2.4 Fermi acceleration process at relativistic shocks

Wenow discuss how particle acceleration is affected when the flow itself is relativistic.

2.4.1 General statements

If we consider a relativistic shock front moving with a Lorentz factor �sh =
1/
√

(1 − (Ush/c)2), the relative energy gain as the particle is doing a shock cross-
ing cycle (e.g., up-down-upstream) can be obtained from relativistic kinematics by
imposing a double Lorentz transformation between the upstream and downstream rest
frames. The relative energy variation between the final Ef and the initial Ei particle
energies is (Gallant and Achterberg 1999)

ΔE

E
= (Ef − Ei)

Ei
= �2

r (1 − βrμu→d)(1 + βrμ
′
d→u) − 1, (12)

where unprimed and primed quantities mark upstream and downstream rest frame
quantities respectively. The relative Lorentz factor between upstream and downstream
is�r = �sh/

√
2. Themean energy gain is obtained by averaging over the cosineμu→d

and μ′
d→u of the penetration angles of the particle from upstream to downstream

and downstream to upstream with respect to the direction of the boost. In the most
optimistic case a high relative energy gainΔE/E ∼ �2

sh can be achieved (Vietri 1995).
However, this gain is restricted to the first cycle if the initial particle distribution is
isotropic. The particle distribution after one cycle becomes highly anisotropic, beamed
in a cone of size 1/�sh and due to particle kinematics, the average relative gain drops
to ∼ 2 for the next crossings (Gallant and Achterberg 1999). Particle deflection in
the cone can either proceed through its motion in a uniform magnetic field in the
absence of scattering waves or by scattering with resonant waves with krg ∼ 1.
Resonant scattering occurs only if the amplitude of the magnetic perturbations is small
enough (Achterberg et al. 2001). The shockparticle distribution in the test-particle limit
shows a universal energy spectrum N (E) ∝ E−2.2 whatever the deflection upstream
if scattering is effective downstream. This result is consistent with the index of the
relativistic electron distribution producing synchrotron radiation in GRB afterglow
(Waxman 1997). Note that this result has been obtained for an isotropic turbulence
downstream. A more general formulation in terms of shock speed gives an energy
index (Keshet and Waxman 2005) of
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Fig. 5 Spectral index of the shock particle distribution as function of the shock Lorentz factor. Solid lines
are the solutions obtained in Keshet and Waxman (2005) compared with the solutions of Kirk et al. (2000)
plotted with symbols. A strong shock solutions with the Jüttner/Synge equation of state is shown in solid
line and crosses, a strong shock with fixed adiabatic index γad = 4/3 is shown in dashed line and x-marks,
and a shock with a relativistic gas where βuβd = 1/3 is shown in dash-dotted line and circles. Image
reproduced from Sironi et al. (2015). Copyright by Springer

s = βu − 2βuβ
2
d + β3

d + 2βd

(βu − βd)
, (13)

where βu/d is the upstream/downstream fluid velocity normalized to c; s = 2+2/9 �
2.2 is recovered in the ultra-relativistic limit (βu → 1 and βd → 1/3). The value
of the ultra-relativistic index has also been assessed by numerical simulations using
a Monte-Carlo method (Bednarz and Ostrowski 1998; Achterberg et al. 2001) or a
semi-analytical method based on the derivation of eigenfunctions in the particle pitch-
angle cosine of the solution of the diffusion-convection equation (Kirk et al. 2000).
However, this spectrum is not properly universal in the sense that the index depends
on the geometry of the turbulence (Lemoine and Revenu 2006).

Figure 5 shows the index of the shock downstream particle distribution as a function
of the shock Lorentz factor from mildly relativistic to ultra-relativistic regimes for
different equation of state of the relativistic gas (the quantity plotted is s + 2 with our
notation).

It appears that unless some particular turbulence develops around the shock front,
Fermi acceleration associated with repeated shock crossings does not operate at
relativistic shocks because of particle kinematic condition to cross the shock front
(Begelman and Kirk 1990; Lemoine et al. 2006; Pelletier et al. 2009). This fact results
from that relativistic shocks are generically perpendicular unless the magnetic field
upstream is oriented within an angle 1/�sh along the shock normal. If the background
turbulence around the shock is absent or if its coherence length is larger than the
particle’s gyroradius it can be shown that while returning to the shock from down-
stream to upstream the particle is unable to do more than one cycle and a half before
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being advected downstream (Lemoine et al. 2006). There are two necessary condi-
tions for an efficient scattering and particle acceleration: (1) the turbulence which
develops around the shock has to be strong, with a perturbed magnetic field such that
δB/B0 > 1, where B0 is the background upstream magnetic field strength, (2) the
perturbations have to be at scales smaller than the particle gyroradius (with respect
to the total magnetic field) (Pelletier et al. 2009). One drawback of these conditions
is that, as the micro-turbulence develops with a coherence scale smaller than rg, the
spatial diffusion coefficient scales as D ∝ r2g , and as the acceleration timescale scales

as tacc ∝ D/U 2
sh ∝ E2 even whenUsh → c, the time required to reach extremely high

energies can become very large. This is the main reason which explains why ultra-
relativistic GRB shocks �sh 	 1 cannot be at the origin of CRs with energies ∼ 100
EeV (Lemoine and Pelletier 2010; Plotnikov et al. 2013; Reville and Bell 2014).

One note on the origin of the micro-turbulence We have seen that the onset of
micro-turbulence is necessary for the Fermi process to operate at relativistic shocks.
What type of micro-turbulence develops depending on shock velocity regimes and
upstream medium properties?

The characteristic scale on which the micro-turbulence can develop is given by the
CR precursor scale �prec. It is either set by the regular gyration of particles reflected
by the shock front, in which case �prec = rg/�2

sh, or by diffusion, in which case
�prec = r2g/�c, where �c is the turbulence coherence scale. As the energy spectrum is

softer than E−2, low energy particles carry the bulk of free energy and generatemost of
magnetic perturbations. Hence, the scale over which micro-instabilities can develop in
relativistic shocks is small. This restricts the number of instabilities to a few (Lemoine
and Pelletier 2010). The nature of the dominant instability depends on two main
parameters: the shock Lorentz factor �sh (or momentum �shβsh for mildly relativistic
shocks), and the upstream magnetization σu = B2

0/4π(�sh(�sh − 1)n?mc
2
, where n�

is the ambient (upstream) proper gas density composed of particles of mass m (Sironi
et al. 2015; Marcowith et al. 2016). In weakly magnetized shocks (σu ≤ 10−3) the
dominant instability is the electromagnetic filamentation orWeibel instability (Weibel
1959). Filamentation/Weibel instabilities grow due to the presence of two counter-
streaming population of particles and produce modes in the direction perpendicular to
the streaming direction (Fried 1959; Bret 2009). Plotnikov et al. (2013) discuss also
the case of the oblique two-stream instability which can have a competitive growth rate
with respect to the filamentation instability. Finally, the Buneman instability has been
discussed as a source of electron heating in relativistic shock precursors (Lemoine
and Pelletier 2011). At higher magnetization (0.1 > σu > 10−3) a current driven
instability either in subluminal (Bell 2004, 2005; Reville et al. 2006; Milosavljević
and Nakar 2006) or superluminal shocks (Pelletier et al. 2009; Casse et al. 2013;
Lemoine et al. 2014) can develop in the precursor. If σu > 0.1 then the gyration
of particles in the background magnetic field gains in coherence and the shock is
mediated by the synchrotron maser instability. This instability produces a train of
semi-coherent large amplitude electromagnetic waves that escapes into the upstream
medium (Gallant et al. 1992; Hoshino et al. 1992; Plotnikov and Sironi 2019). The
interaction of this wave with the background plasma is a source of an efficient electron
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pre-heating up to equipartition with protons (Lyubarsky 2006; Sironi and Spitkovsky
2011). The question of whether this wave can lead to a significant particle acceleration
is debated (e.g., Hoshino 2008; Iwamoto et al. 2017; Lyubarsky 2018).

2.4.2 Progress with fully kinetic simulations

Until late 2000s,most progress on the understanding particle acceleration at relativistic
shocks were supported by Monte-Carlo simulations (e.g., Bednarz and Ostrowski
1998; Lemoine and Pelletier 2003; Ellison and Double 2004; Lemoine and Revenu
2006) or semi-analytic approaches (Kirk et al. 2000; Achterberg et al. 2001; Keshet
and Waxman 2005). As pointed out by Bykov and Treumann (2011), recent advances
were possible by employing fully kinetic PIC simulations. Self-consistent build-up
of Fermi process was observed and a survey in which parameter space it operates
was done (Spitkovsky 2008b; Martins et al. 2009; Sironi and Spitkovsky 2009, 2011;
Sironi et al. 2013; Plotnikov et al. 2018). For instance, these simulations demonstrate
that theWeibel-filamentation instability dominates in controlling the shock structure in
weakly magnetized shocks, as predicted by Medvedev and Loeb (1999) and Gruzinov
and Waxman (1999). Particle acceleration is correlated to the efficiency of triggering
this instability. Typically, the non-thermal particles contain about 1% of total particle
number and about 10%of total energy. The tail develops into a power-lawwith spectral
slope s � 2.4 that is close to the semi-analytic prediction of 2.2. The maximum
energy of particles evolves in time as Emax ∝ √

t (Sironi et al. 2013) due to the small-
scale nature of the magnetic turbulence (see above). In the small-angle scattering
regime, the spatial diffusion coefficient of particles is D ∝ E2, unless the external
magnetic field imposes a saturation that sets the maximal particle energy to be Emax >

eδB2/B0�c (Plotnikov et al. 2011; Marcowith et al. 2016). For typical parameters in
ultra-relativistic shocks with �sh ∼ 100 propagating in the ISM with B0 ∼ 3 μG, this
energy does not exceed 1016 eV. Section 4 presents more detailed discussions of these
studies.

2.4.3 Long term evolution

The fate of the micro turbulence and, more generally, the long-term evolution of
the weakly magnetized shocks remains the major unanswered question in relativistic
(but also in non-relativistic) shock physics. As this micro turbulence is composed of
initially short wavelength perturbations, these are expected to be rapidly damped by
Landau damping downstream (Gruzinov 2001;Chang et al. 2008; Lemoine 2015). One
possibility to overcome this effect would be to have some amounts of inverse cascade
to generate large wavelengths or to rely one the perturbations generated upstream by
high-energy particles and transmitted downstream. These possibilities, and others are
detailed in Sect. 3.2 of Sironi et al. (2015).

2.5 Reconnection in astrophysical flows

Magnetic reconnection can occur in a collisional or in a collisionless plasma. The
bulk part of the particles are accelerated to order of the Alvén speed and heated in the
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same process. A fraction of the particles can be accelerated to much higher velocities
and form a power-law up to very high Lorentz factors. The power-law slopes can be
harder than power-laws produced by a Fermi process, e.g. in collisionless shocks. In
astrophysics, reconnection (REC) is a highly important process to accelerate particles.

In this introductory section, we briefly summarize some important concepts of
magnetic reconnection. For any further details, we refer to recent reviews on the
subject by Zweibel and Yamada (2009), Zharkova et al. (2011) (solar flares), Melzani
(2014), Gonzalez and Parker (2016), Jafari and Vishniac (2018). A more deep insight
into subjects directly related to this review, the acceleration of particles, will be given
in Sect. 4.2.

Astrophysical objects where reconnection takes place Well-known REC sites in
the solar systems are the upper chromosphere and the corona of the Sun as well as
the magnetotail and the magnetopause of planets. There, predominately electrons are
accelerated to very high speeds. REC may be partly responsible for heating the solar
corona and thus for the existence of the solar wind. But highly accelerated particles are
also a severe threat for spacecrafts and astronauts and even aircraft passengers. They
are at the source of geo-magnetic storms which severely endanger communication and
power grids on Earth. The demand for a better understanding of space-weather is one
reason why in recent years the effort to understand REC has intensified and brought
decisive new insights.

In outer space, REC was found to play a crucial role in the understanding of
high-energy objects such as pulsars and their winds and nebulae, as well as mag-
netars, (micro-)quasars, and GRBs. In most of these objects, REC is partly a driver of
their dynamics. Besides shocks and wave-turbulence, REC can accelerate particles to
highest energies under such conditions. These particles and their interaction with the
environment also inevitably contribute to the emission spectrum of such objects. In
addition, theymay be at the source of the production of high-energy neutrinos observed
on Earth. REC in such objects is mostly relativistic in that the energy stored in the
associated magnetic fields exceeds the rest mass energies of electrons and protons.

Figure 6 shows the parameter space of magnetic REC present in astrophysics and
relates it to concrete systems. As can be taken from the figure, collisional and non-
collisional REC equally contribute to the overall picture of magnetic REC in space.
Indicated are as well different other regimes which will be discussed below. Fusion
devices like ITER and TFTR and experimental setups like MRX, NGRX, MST, VTF
are also shown.

2.5.1 Collisional reconnection models

Sweet–Parker model The first theory of magnetic reconnection was presented by
(Sweet 1958) for a collisional plasmawith resistivity η; J = ηE. Parker (1957)worked
out the scaling relations presented below. It was soon clear that it is not always applica-
ble, as this model predicts too slow events as compared to observations. The question
how to make REC fast is still today in the center of the discussion and not generally
solved.
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Fig. 6 Different REC regimes, as derived by Daughton and Roytershteyn (2012) (left panel) and Ji and
Daughton (2011) (right panel). SL is the Lundquist number defined by Eq. (17), Lsp themacroscopic system
size, ρi the ion Larmor radius in the asymptotic magnetic field (including the guide field), not to be confused
with the ion mass density. The red curve is computed for βp = 0.2 and a REC rate of R = 0.05. Images
reproduced with permission from Daughton and Roytershteyn (2012), copyright by Springer; and from Ji
and Daughton (2011). Copyright by AIP

Assume a collisional plasma with a certain resistivity. Then the induction equation
and Ohm’s law become, with U the flow velocity,

∂B
∂t

= ∇ ∧ (U ∧ B) + η∇2B; E + U
c

∧ B = J
σ

. (14)

The non-ideal terms are the resistive diffusivity η = c2/4πσ in the induction equation
and the resistive current in Ohm’s law expressed in terms of the electrical conductivity
σ . The non-ideal induction equation makes clear that there is a competition between
the diffusion of the magnetic field (governed by the resistive time-scale τR) and the
ideal evolution (governed by the Alfvénic time scale τA). This balance is expressed by
the magnetic Reynold’s number, Rm ≡ � ·Ũ/η with � a characteristic length scale and
Ũ a typical velocity of the system. In ideal MHD Rm >> 1 and REC is suppressed;
whenever Rm << 1 field diffusivity wins and REC becomes possible though not
mandatory.

Figure 7 describes a 2D steady situation. Plasma from an outer ideal region flows
in parallel to the x-direction towards a dissipation region, which has a length-scale, L ,
and a thickness, δ. The inflow velocity is just given by the E × B-drift in the plasma.
In the outer ideal region (Rm >> 1), the plasma is frozen to the magnetic flux. This
is no longer true in the diffusion region where the resistivity is dominant: the plasma
decouples from the magnetic field. This opens the possibility that the field reconnects
and plasma is expelled in the z-direction. These outflows are called exhausts.

Applying mass and energy conservation, non-compressibility, and that the field
energy is dominant at the inflow and the kinetic energy of the particles at the outflow,
two important relations follow:
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Fig. 7 Sweet–Parker model of magnetic reconnection. See details in the text. Image adapted from Melzani
(2014)

Uout = √
2

B0√
4πm nin

= √
2UA,in, (15)

δ

L
= Uin

UA,in
= Ma,in, (16)

where UA,in is the Alfén speed and Ma,in the Alfénic Mach-number of the inflow.
Thus, the outflow speed in the exhausts is of order of the Alfénic speed of the inflow.
Assuming non-forced REC, the inflow is just E × B-drift, Uin = cEy/B0 = η/δ and
thus generically very sub-Alfénic. The Lundquist-number, SL, and the REC rate R are
defined as

SL ≡ LUA,in

η
∼
(
L

δ

)2

∼
(
UA,in

Uin

)2

∼ (Ma,in
)2

, (17)

R ≡ Uin

Uout
∼ δ

L
∼ 1/S1/2L . (18)

The Lundquist-number is equal to the magnetic Reynolds-number, Rm, for the case
where the typical velocity is equal the Alfvénic speed of the inflow. Highly conducting
plasmas as found in astrophysics have high Lundquist numbers: laboratory plasma
experiments typically have Lundquist numbers between 102 and 108. In astrophysics,
they are higher, up to 1020 (Fig. 6, right panel) and thus Sweet–Parker reconnection
rates very low—in contrast with what is observed.

The ratio between the incoming and outgoing energy flux in Sweet–Parker recon-
nection is∝ 1/SL . So, energy is indeed transferred from the magnetic field (incoming
flux) to particles (outgoing flux). In the diffusive region with de-magnetized particles,
the electric field can accelerate them. But there are other, most probably even more
important acceleration mechanisms as will be discussed in Sect. 4.2.

REC rates of such high Lundquist numbers aremuch too low as compared towhat is
observed. This result can be translated to time-scales. The magnetic Reynolds-number
can also be expressed as Rm = τR/τA,where τR is the resistive diffusion time-scale and
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Fig. 8 Illustration of the fast REC Petschek model. Image adapted from Melzani (2014)

τA Alfvén time-scale. In astrophysical environments with high Lundquist numbers it is
thus found that τR << τA. The typical Sweet–Parker REC time-scale is ∼ τ

1/2
A τ

1/2
R .

This indicates that Sweet–Parker REC is indeed faster than resistive diffusion of the
magnetic field (scaling with τR). However, it is much too slowwhen compared to REC
observed in astrophysical plasmaswhich scales as 10–100 τA. For instance, in flares of
the solar corona, SL ∼ 108 (see Fig. 6),UA ∼ 100 km s−1, and L ∼ 104 km. Thus, the
Sweet–Parker-timescale is a few tens of days. Observed is a magnetic energy release
within a few minutes to an hour. This major discrepancy is known as the fastness
problem of Sweet–Parker REC.

On the other hand, numerical simulations based on resistive MHD as well as exper-
iments such as the MRX, the Magnetic Reconnection Experiment (Ji et al. 1998) are
in good agreement with the Sweet–Parker model. Clearly, the Sweet–Parker model
has its deficits, in that it neglects dimensionality and any time-dependence, as well as
viscosity, compressibility, downstream pressure, and, in particular, turbulence and is
strictly valid only for a collisional plasma. There have been numerous papers address-
ing the fastness problem. Only in recent years, significant progress in this question
has been made, see below.

Petschekmodel Petschek (1964) proposed a REC model in which the reconnection
rate is nearly independent of the Lundquist number, vin/vA,in ≈ π/8 ln SL and thus
REC is fast. The trick is to add, in close neighborhood to the separatrices slow shocks
(left panel of Fig. 8) into the configuration. In this way, particles can be accelerated
without having to pass through the inner dissipation region with resistive dissipation.
Instead, magnetic energy can be conversed to kinetic particle energy in the shocks.

However, all resistive MHD simulation are in agreement with the Sweet–Parker-
model unless a localized anomalously large resistivity is used, mimicking that the
mean free particle path becomes larger than the reconnection layer. Otherwise, shocks
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Fig. 9 Illustration of the fast REC stochastic model by Lazarian and Vishniac (1999). Image adapted from
Melzani (2014)

are not observed in MHD simulations. Therefore, the Petschek-model is likely not a
model of resistiveMHD—though this is still a controversial question. However, recent
PIC simulations in a collisionless plasma show an X-point and separatrix-structure
in reconnection, which resembles somehow the Petschek-model (Higashimori and
Hoshino 2012; Liu et al. 2012; Lapenta et al. 2015)—at least at scales larger than
kinetic scales. There is also observational evidence that in the reconnection region of
Earth’s magnetotail, slow shocks are present (Eriksson et al. 2004). This discussion
will be resumed in Sect. 4.2.

Turbulence External or self-generated in the REC process—seems to be the key
process which allows resistive MHD REC to be fast. As indicated in Fig. 9 turbulent
fluctuations allow to form many, much smaller scaled, reconnection spots along the
global length, L, of the sheet. As shown in Lazarian and Vishniac (1999), the REC
becomes thus much faster and is independent of the exact REC mechanism at each
of these spots (Sweet–Parker, collisionless, ...). The exact result depends, however,
on the nature of the turbulence and its fluctuation. Numerical simulations show good
agreement with the analytic result (Kowal et al. 2009, 2012).

Simulations show that a Sweet–Parker like current sheet generates islands above a
critical Lundquist number Sc ∼ 104 (Daughton and Roytershteyn 2012). In relativistic
flows, this critical number may be higher, Sc ∼ 108 (Zanotti and Dumbser 2011). This
is confirmed by newer investigations and linked to an extremely fast growing tearing
instability of the current sheet (Del Zanna et al. 2016; Papini et al. 2018). This limit
is indicated as the green line in the left panel of Fig. 6.
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Lapenta (2008) showed that a Sweet–Parker sheet setup in a Harris or force-free
equilibrium sheet develops slow REC. On a much longer time-scale, tearing modes
start to fragment the sheet and several X-points form. The exhausts of these X-points
generate turbulence leading tomultiple short livedREC regions, popping up randomly,
frequently and at multiple locations simultaneously. Consequently, fast REC sets in.
Similar findings for 3D resistive reconnection are presented by Oishi et al. (2015). By
linking such self-generated turbulence with external turbulence, Lapenta and Lazarian
(2012) formulate a united approach. So one may, with still some care, conclude that
also collisional, resistive REC is fast, at least under certain conditions.

2.5.2 Collisionless reconnection

On length scales shorter than the ion inertial length c/ωp,i whereωpi ≡ √4πniZ2e2/mi
is the ion plasma frequency, ions decouple from electrons and the magnetic field
becomes frozen into the electron fluid rather than the bulk plasma. Consequently,
other terms than just resistivity start to contribute to the Ohm’s-law. For instance,
based on a two-fluid non-relativistic plasma model, Melzani (2014) derives a more
complex Ohm’s-law for electrons:

E + vi
c

∧ B
︸ ︷︷ ︸

E−field in the ion plasma frame

= 1

nee
J ∧ B

︸ ︷︷ ︸
Hall term

− me

e

(
∂ve
∂t

+ ve · ∇ve

)

︸ ︷︷ ︸
electron bulk inertia

− 1

nee
∇ · Pe

︸ ︷︷ ︸
e− thermal inertia

+ χ

(nee)2
J

︸ ︷︷ ︸
e−i collisions

+ χe

nee
∇2ve

︸ ︷︷ ︸
e−e collisions

.

(19)
Here, ne is the electron number density, vi , ve the ion and the electron velocity
respectively, c the speed of light, e the elementary charge, χ accounts for the effect
of collisions between electrons and ions which, in general can be anisotropic and
depend on the magnetic field orientation. χe∇2ve describes the electron viscosity due
to electron-electron collisions. Pe is the pressure tensor

Pe =
∫

d3vme(va − v̄a)(vb − v̄b) (20)

with a, b = x, y, z, and v̄ is the mean velocity. Electron inertia, both thermal and
bulk, now contribute to the non-ideal terms. In particular, if the plasma is completely
collisionless, (χ = χe = 0), these are the only contribution of non-idealness of the
plasma.

The sketch in the left panel of Fig. 10 shows that the dissipation region now is
subdivided into a larger ion dissipation region with a size of δi and a smaller electron
dissipation region, sized to δe. Here, δi,e denotes the ion and electron inertial length.

On these scales, the Hall effect becomes important, because now the magnetic field
lines are advected with the electrons while the ions no longer follow this motion.
The Hall term is not responsible for REC as it appears when the magnetic flux is
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Fig. 10 Collisionless REC in a electron-ion plasma. Left panel: sketch of REC on a scale smaller than
the ion inertial length. The diffusion regions for ions are much larger than that for electrons. The current
sheet is more like an X-point than a double y-point. Ion trajectories normally do not pass through the
electron non-ideal region. Image adapted from Melzani (2014). Right panel: X-point, exhausts and islands
from a collisionless electron-ion PIC-simulation of REC using a mass-ration mi/me = 25. Visibly, the ion
diffusion regions is about a factor of 5 (δk ∼ √

mk, k = e, i) larger than the electron diffusion region.
Image adapted from Melzani et al. (2014a)

still frozen to the motion of electrons. However, there is a debate whether it may
contribute to the fastness of REC as it allows to accelerate electrons to higher speeds,
increasing the bulk inertia.As can be taken from the right panel of Fig. 10 this two-layer
picture derived from a two-fluid model is quite accurately reproduced by full kinetic
simulations though the two-fluid model will not provide the full picture as effects like
wave turbulence, Landau-damping and particle acceleration to speeds much higher
than the Alfvén speed. Fully collisionless REC is found to be always fast. It will be
further addressed in Sect. 4.2.

2.5.3 Other effects

Dimensionality REC in 3D shows a variety of new features. In some cases still a
separatrix-like reconnection as in 2D can be observed, but there are also many other
cases. It is not the place to discuss this here in detail. A good summary can be found
in Melzani (2014).

Fat tails and high-energy power-laws Magnetic reconnection is efficient to accel-
erate particles, both in the collisional and collisionless regime. The typical speed of
accelerated particles is the local Alfvén speed. If the flow is highly magnetized, this
speed can be close to the speed of light. But kinetic simulations have revealed that
the distribution function of accelerated particles have fat tails and power-laws up to
very large relativistic Lorentz factors (Cerutti et al. 2013; Melzani et al. 2014b; Sironi
and Spitkovsky 2014; Werner et al. 2018; Ball et al. 2018). Different acceleration
mechanism are here at work which will discussed in Sect. 4.2.

Driven reconnection Reconnection sites are normally embedded in a large scale
environmentwhich is dynamic aswell: jets, accretion disks, stellar winds, stellar atmo-
spheres and coronae. Some of these environments are turbulent flows. As seen above,
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this can decisively accelerate the REC process. But also directed large scale flows—as
compared to the diffusion region or X-point where REC actually happens—can sig-
nificantly accelerate REC in that they provide significantly higher inflow velocities.
Therefore, much more magnetic flux can be carried from larger scales to the recon-
nection site. The timescale of the forcing also proves to be important (Pei et al. 2001;
Pritchett 2005; Ohtani and Horiuchi 2009; Klimas et al. 2010; Usami et al. 2014,
2018).

Multi-scale and multi-physics problem As was seen so far, REC is a multi-scale
problem. Large scale MHD flows can have a significant impact on the rate and the
energetics of REC. Another scale is the transition to a diffusive regime which ‘pre-
pares’ for REC, e.g., a Sweet–Parker reconnection sheet. Such sheets may break apart,
introducing even smaller scales. This cascade in scales likely ends on kinetic scales.
There also the physicsmay change, from a collisonal to a collisionless regime. Another
important point is the scale-difference in mass between electrons and ions, which also
translates into differently scaled diffusive regions, the ion-diffusion region being about
42.85 (≡ √

mp/me) times bigger than the electron diffusion region. And the different
spatial lengths translate into equally different temporal scales. Magnetization and with
it the ratio between an inertial length and the gyroradius yet complicates the situation.

But one has to address also other physical processes which influences the REC
process. Outstanding here are radiative processes like synchrotron emission which
directly changes the gyroradius. In an environment which is rich of photons, Compton
scattering and Bremsstrahlung become important. More and more such processes are
being addressed (Kirk and Skjæraasen 2003; Jaroschek and Hoshino 2009; Cerutti
et al. 2013; Beloborodov 2017; Uzdensky 2016; Werner et al. 2019).

Multi-scale, multi-physics simulations demand for special techniques which are
now in the course of being developed (Tóth et al. 2005; Daldorff et al. 2014; Tóth
et al. 2012; Innocenti et al. 2013; Markidis et al. 2014; Ashour-Abdalla et al. 2015;
Rieke et al. 2015; Lapenta et al. 2016; Tóth et al. 2016; Makwana et al. 2017; Lapenta
et al. 2017; Lautenbach and Grauer 2018; Gonzalez-Herrero et al. 2018; Usami et al.
2018). We will come back to the issue in Sect. 4.2.

2.6 Laser plasma experiments

Over the past four decades, tremendous progress in the development of high-energy
and high-power laser systems has brought the scientific community with the possibil-
ity to reproduce, in the laboratory, various scenarios relevant to astrophysics, space
physics and planetology. This opened a new avenue for the development of so-called
Laboratory Astrophysics, a field of growing activity that federates several communi-
ties [among which but not restricted to astrophysicists and (laser-)plasma physicists]
and relies on the joint development of novel experimental and numerical capabilities.

In this section, we briefly review some key experiments focusing on the study of
collisionless shocks and magnetic reconnection in laser-created plasmas7 The reader,

7 Other experimental facilities such as the Z-pinch machines (Remington et al. 2006) or the Large Plasma
Device (LAPD) at UCLA (CA, USA) (Gekelman et al. 1991, 2016) also offer interesting opportunities for
laboratory astrophysics, but are not discussed in this review.
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interested in other branch of laboratory astrophysics using laser-plasma experiments,
will find interesting material covered in the review articles by Ripin et al. (1990),
Rose (1994), Takabe et al. (1999), Remington et al. (1999), Remington et al. (2006),
Takabe et al. (2008). These reviews cover topics ranging from warm dense matter,
to equation of states and their application to planetology, opacities relevant to stellar
interiors, or experiments investigating the hydrodynamics andmagnetohydrodynamics
of supernovae and (collisional) shocks.

In addition to presenting some of the main experimental results on collisionless
shocks and magnetic reconnection, this section also aims at providing the reader with
the characteristic parameters and conditions that can be created in the laboratory.
To do so, we first introduce, in Sect. 2.6.1, the two main classes of lasers used for
laboratory astrophysics. Then, in Sect. 2.6.2 we discuss the conditions that have to
be met to ensure that collisional effects can be neglected. Finally, Sects. 2.6.3 and
2.6.4 summarize some of the key experimental results obtained on collisionless shock
formation and magnetic reconnection.

2.6.1 Overview of laser facilities and characteristic parameters

Two main classes of laser systems are today used to support laboratory astrophysics
research. First, high-energy density laser facilities delivering long (nanosecond) ener-
getic (from few kJ up to 10s of kJ) light pulses have already allowed to reproduce
various astrophysics-relevant scenarios, fromwarmdensematter studies, to the physics
of hydrodynamic (radiative or not) shocks (Remington et al. 2006). Second, ultra-high
intensity laser facilities deliver short (from few tens of femtoseconds to few picosec-
onds) light pulses that once focused onto a target allow to reach very high intensities.
Even though laboratory astrophysics studies on this second class of laser systems is
still in its infancy, recent developments of petawatt (and multi-petawatt) laser systems
worldwide open new possibilities.

In this section, we report on some of the prominent laser facilities that are cur-
rently operating or will soon operate. Figure 11 lists these facilities as a function
of the delivered energy and peak-power (the corresponding pulse durations are also
indicated).

High-energy density lasers The development of high-energy density (HED) laser
systems delivering energies of few tens of kilo-Joule (kJ) up to the Mega-Joule (MJ)
over few to tens of nanoseconds (ns) has been strongly pushed forward by inertial
confinement fusion programs (Atzeni and Meyer-Ter-Vehn 2004). Most of the exper-
imental work that will be discussed in what follows has been performed on such laser
systems. VariousHED laser systems are today available,most ofwhich aremulti-beam
facilities. Each beam can deliver ns pulses with few to 10 kJ (i.e., hundreds of beams
are used on MJ-class laser systems) that, once focused onto target, allow to reach
moderately high intensities of 1013 to a few 1015 W/cm2. HED laser technology is
based mainly on Nd:Glass amplifiers, which provide light beams at a (central) wave-
length of ∼ 1.05µm, but often use frequency doubling of tripling techniques, so that
the operating wavelength can be decreased to ∼ 0.53µm (doubling) or ∼ 0.35µm
(tripling).
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Fig. 11 Prominent laser facilities presented as a function of the delivered laser energy and peak power.
High-energy density (HED) laser facilities are shown in blue, ultra-high-intensity (UHI) laser facilities in
green. The laser characteristics (energy, power and typical pulse duration) are indicative

Among the prominent facilities are—at themulti-kJ level—the LULI 2000 laser8 in
France, the Orion9 and VULCAN10 facilities in the UK, the GEKKO XII facility11 in
Japan, and the Omega laser12 in Rochester, US. Two mega-joule-class lasers are also
operating or under construction: the National Ignition Facility (NIF)13 in Livermore,
California, started operating in the early 2010s. The Laser-MegaJoule (LMJ)14 is still
under construction in the South-West of France. Note that the MJ-energy level is
achieved by combining hundreds of 10 kJ nanosecond laser beams.

Ultra-high intensity lasers High-power ultra-high intensity (UHI) laser facilities
provide light pulses of moderate energy (from few tens of Joule to few kilo-Joule) but
of a very short duration (from tens of femtoseconds to a few picosecondes) that, when
focused onto a target, allow to reach tremendous intensities (beyond 1018 W/cm2). At
such intensities, electrons rapidly—in less than an optical cycle—become relativistic,
and such UHI laser can help drive extremely fast, potentially relativistic, flows of
plasmas.

Among the UHI lasers that are today considered for laboratory astrophysics studies,
many are coupled to HED facilities. This is the case for instance of the PETAL15 and

8 https://portail.polytechnique.edu/luli/fr/installations/luli2000 (in French).
9 https://www.awe.co.uk/what-we-do/science-engineering-technology/orion-laser-facility/.
10 https://www.clf.stfc.ac.uk/Pages/Vulcan-laser.aspx.
11 http://www.ile.osaka-u.ac.jp/eng/facilities/gxii/index.html.
12 http://www.lle.rochester.edu/omega_facility/omega/.
13 https://lasers.llnl.gov/.
14 http://www-lmj.cea.fr/.
15 http://www.enseignementsup-recherche.gouv.fr/cid99515/petawatt-aquitaine-laser-petal.html (in
French).
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NIF-ARC16 petawatt-class lasers coupled to the LMJ and NIF facilities, respectively,
which deliver petawatt-level light pulses with energy of a few kJ and duration in the
picosecond range. LULI 2000, VULCAN and ORION also have short (picosecond)
pulse beamlines that deliver energy up to a few 100s J.

Other UHI facilities are also available that are not coupled to HED laser systems.
This is the case e.g. of the femtosecond laser GEMINI17 in UK. Delivering 15 J in
30 fs, GEMINI has been used e.g. to produce dense electron-positron clouds which
were used to drive current instabilities in a Helium plasma (Warwick et al. 2017).
Let us further note that the most powerful laser is today the CoReLS18 in Gwanju,
South-Korea, that has recently delivered 4 PW pulse (Nam et al. 2018). In addition
the Apollon19 laser (in construction on the Plateau de Saclay, 20 km south of Paris,
France) and the ELI project20 aim at reaching the unprecedented power of 10 PW
within the next few years (in light pulses of a few tens to few 100s fs). Laboratory
astrophysics studies are envisioned on these facilities.

2.6.2 The collisionless regime

As previously stated, this section focuses on collisionless laser-plasma experiments
and on the physics of collisionless shocks and magnetic reconnection in particular.
The first observations of a collisionless coupling in laser-created plasmas date back to
the early 1970s (Cheung et al. 1973), and very early the question collisionality effects
arose, see, e.g., the work by Dean et al. (1971) and following exchange (Wright 1972;
Dean et al. 1972).

The first (theoretical) investigations of collisionless shock experiments actually
addressed this issue (Drake and Gregori 2012; Park et al. 2012; Ryutov et al. 2012).
These works proposed the first designs and scaling laws to reproduce electrostatic or
Weibel-mediated shocks (see Sect. 4 for complementary definitions) in laser-plasma
experiments, and addressed the potential effects of particle collisions (and how to
mitigate them) in counter-streaming plasma flows.

Of particular importance are collisions in between counter-streaming ions of the
two flows (inter-flow collisions) that can have a dramatic effect on the shock forma-
tion. Indeed, and as stressed by Drake and Gregori (2012), the mean-free-path for
ion-ion collisions measures the length over which an ion (subject to multiple scat-
terings/collisions) sees its velocity deflected by 90◦. Hence, collisional effects will
effectively isotropize the flow over a characteristic given by this mean-free-path and
collisional shocks are known to develop on this spatial scale. Conducting a collisionless
shock experiment thus requires that this (inter-flow) collision greatly exceeds the char-
acteristic length of shock formation. As will be detailed in the following Sect. 2.6.3,
it turns out that this condition can be “easily” met in electrostatic and to some extent
magnetized shock experiments. In the case of Weibel-mediated shocks, entering the

16 https://lasers.llnl.gov/science/photon-science/arc.
17 https://www.clf.stfc.ac.uk/Pages/Laser-system-Gemini.aspx.
18 https://www.ibs.re.kr/eng/sub02_03_05.do.
19 http://cilexsaclay.fr/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=9 (in French).
20 https://eli-laser.eu/.
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collisionless regime requires extremely fast (several 1000s km/s) flows overlapping for
a sufficient time accessible only on the most energetic (MJ-class) laser systems (Park
et al. 2012).

In addition to inter-particle collisions, internal collisions between ions of the same
flow can also be of importance, in particular as the ion temperature in the flow is
quite low (at least before shock formation). This issue is briefly addressed by Drake
and Gregori (2012) and Ryutov et al. (2012). Yet their impact on the development of
instabilities such as the ion Weibel instability, or shock formation remains unclear.
While it is difficult to claim that these (internal) collisions may not strongly modify
the physics of shock formation, this may be checked by careful numerical modeling,
e.g. relying on kinetic (Particle-In-Cell) simulations including collisional effects (see
Sect. 3.3.2).

Last, Drake and Gregori (2012) discussed the possible impact of electron-ion col-
lision on the dissipation of the magnetic structures that play a central role in the
formation of Weibel-mediated shocks; and on longer time on particle acceleration.
The authors showed that such collisions may indeed impact the small scale magnetic
structures, but will most likely no impact the larger scale structures that develop on
the scale of the ion skin-depth and thus the formation of Weibel-mediated shocks.

2.6.3 Collisionless shock experiments

As previously mentioned, evidences of collisionless processes in the presence of
counter-streaming laser-produced plasmas were reported is the early 1970s. The first
reported observation of a collisionless shock in a laser-created plasma21 dates back
to Bell et al. (1988). This experiment was conducted on the VULCAN laser (Ross
et al. 1981) at the Rutherford Laboratory (UK) where two laser pulses, each deliv-
ering 120J over 18 ns (FWHM), were focused in a 50 µm-diameter spot onto a flat
carbon target. The resulting laser-produced ablation plasmahad a density∼ 1018 cm−3

and velocity of a few 100s of km/s. It collided with an obstacle (located 250 µm away
from the ablated target). The experiment led to the formation of density structures that
were interpreted as collisionless bow shocks. In this experiment, all mean-free-paths
were larger than the mm, while the width of the observed shock front ranged from 0.01
to 0.05 mm. The nature of the shock—either electrostatic or weakly magnetized—was
however not fully defined.

Electrostatic shocks Following this pioneering work, and since the late 2000s in
particular, collisionless electrostatic shocks have been abundantly produced in laser-
plasma experiments. These later developments were accompanied by both strong
developments in diagnostics, and the use of kinetic (Particle-In-Cell) simulations to
support the experimental effort.

For instance, Romagnani et al. (2008) demonstrated the creation of an electrostatic
shock following the sudden expansion of a plasma into a rarefiedgas. In this experiment
carried out on the LULI 100 TW laser facility, one laser pulse with duration 470 ps
and energy of a few tens of J was focused onto a Tungsten or Aluminium foil. Quickly

21 Collisionless shock waves were obtained in plasma experiments, albeit not using lasers, since the mid-
1960s [see Strokin (1985) and references therein]. Already these studies where motivated by space-plasmas
and astrophysics.
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Fig. 12 Left: typical proton radiographies of laser-driven electrostatic shocks. Region I shows strong mod-
ulations associated with the ablating plasma, regions II and III show different structures that are interpreted
as shock waves propagating ahead of the ablating plasma, while the modulated pattern in Region IV is
located ahead of the shock front and possibly associated with a reflected ion bunch. The arrow indicates
the laser beam direction. Right: shock structure 150 (b), 160 (c) and 170 ps (d) after the beginning of the
interaction. The different times are accessible, for a single shot, by selecting protons with different energies
[11.5 MeV for panel (b), 10 MeV for panel (c) and 9 MeV for panel (d)] as their time of flight from their
source to the shock structure is different. Images reproduced with permission from (left) Romagnani et al.
(2008) and (right) from Ahmed et al. (2013), copyright by APS

heated, the ablated foil expanded in the surrounding media and drove the formation
of a collisionless electrostatic shock wave, about 1 mm away from the target, that was
propagating at a velocity close to the ion acoustic velocity∼ 200–400 km/s. The shock
was diagnosed using proton radiography (Borghesi et al. 2001), a technique that is
now central to the study of collisionless shock in laser-plasma experiments. It relies on
the deflection (in the electromagnetic fields developed at the shock front) of protons
created by a second ultra-short (∼ 300 fs) ultra-intense (� 1018 W/cm2) laser pulse.
The proton radiography is recorded onto dosimetrically calibrated radiochromic films
(RCFs), as shown in Fig. 12.

Other experiments (Kuramitsu et al. 2011; Ahmed et al. 2013; Morita et al. 2013)
have similarly reported the formation of electrostatic collisionless shock waves using
ablating plasmas, either in direct interaction with a standing (background) plasma, or
in counter-streaming plasma flows.

Magnetized shocks The first observation of a magnetized collisionless shock moti-
vated by astrophysics studies was claimed by Niemann et al. (2014) combining the
use of a 25 ns - 200 J laser and the LAPD. In this experiment, the LAPD was used to
produce a large scale (17 m × 0.6 m) low density (1012–1013 cm−3) and temperature
(Ti = 1 eV, Te = 6 eV) hydrogen plasma embedded in an external magnetic field
B0 = 300 G. The 1013 W/cm2 ns laser pulse was fired at a solid polyethylene target
embedded inside the magnetized plasma, which launched a denser (8 × 1016 cm−3)
slightly warmer (Te ∼ 7.5 eV) carbon ion plasma at a velocity of∼ 500 km/s directed
perpendicular to themagnetic field. The interaction of this super-Alfvénic plasmawith
the ambient (LAPD) plasma led—through a collisionless coupling—to the formation
of a magnetic piston and then to the formation of self-sustained magnetosonic shock,
supported by the ambient ions and propagating away from the piston at a velocity
of ∼ 370 km/s (corresponding to an Alfvénic Mach number MA ∼ 2). The reported
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Fig. 13 Magnetized shock experiment at the Large Plasma Device (LAPD, University of California Los
Angeles). a Magnetic (B) field structure as a function of position (x is the direction of the carbon plasma
flow, transverse to the direction of the background magnetic field) and time. b Temporal evolution of the
magnetic field at x = 35 cm with (black) and without (red) the ambient plasma. c Spatial profile of the
magnetic at two different times, 0.3 µs (before shock formation, dashed light blue line) and 0.7 µs (after
shock formation, solid black line). Image reproducedwith permission fromNiemann et al. (2014), copyright
by AGU

measurements (shock velocity andmagnetic field compression B/B0 ∼ 2) were found
to be consistent with Rankine–Hugoniot conditions as well as with two-dimensional,
collisionless, simulations performed using an electromagnetic Darwin code (Winske
and Gary 2007). Note that, as illustrated in Fig. 13, for this particular experiment, the
use of the LAPD allowed to follow themagnetic piston and shock formation over large
spatial (few tens of cm) and temporal (few microseconds) scales, well beyond what is
usually accessible using HED or UHI laser systems.

The first laboratory observation of a laser-driven high-Mach-number magnetized
collisionless shock was reported by Schaeffer et al. (2017a). This experiment was
conducted on the Omega EP laser facility at Rochester (US) and built up on the
concept of magnetic piston used in, e.g, the previous experiment by Niemann et al.
(2014). However, it relied solely on the use of the HED laser Omega EP and allowed
to create super-critical magnetized shocks with (magnetosonic) Mach number Mms ≡
ush/cms ∼ 12, with ush ∼ 700 km/s the measured shock velocity (c2ms = u2A + c2s ,
uA and cs being the (upstream) Alfvén and ion acoustic velocities, respectively). To
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Fig. 14 Magnetized shock experiment at the Omega EP laser facility. (Left) simulation setup. (Right) panels
(a–e) present the angular filter refractometry measurements for different configurations: a no background
plasma, no external magnetic field (no shock is observed); b presence of a background plasma but no
external magnetic field; c with both background plasma and external magnetic field but only one piston
plume; d, e in the presence of the two piston plumes and background plasma, with external magnetic fields
in parallel and anti-parallel configuration, respectively. f Proton radiography signal revealing the strong
magnetic field compression at the location of the shock structure. Images adapted from Schaeffer et al.
(2017a, b)

do so, various beams of the Omega EP laser were used. A first beam, with energy
100 J and duration 1 ns, was focused (at intensity ∼ 1012 W/cm2) onto a CH target
thus producing a background plasma. A second and third beam, with energy 1.5 kJ
and duration 2 ns, were then focused onto two opposing CH targets, leading to the
production of two counter-propagating ablation plasmas. Even though the details of the
resulting three plasma flows are not fully documented in either (Schaeffer et al. 2017a)
or the companion paper (Schaeffer et al. 2017b), the density and temperature of the
overlapping plasma were estimated to ∼ 6×1018cm−3 and Te ∼ 15 eV, respectively.
The whole set-up was embedded into a 80 kG perpendicular magnetic field produced
by a pulsed current passing through Copper wires located behind the 2 opposing CH
targets (for the readers convenience, the experimental set-up is reproduced in the left
panel of Fig. 14). The resulting magnetic piston and shock structures are evidenced
in the right panels of Fig. 14. The importance of the background plasma (created by
the first 100 J-beam) is made clear by comparing panel (a) to panels (b–e). Without
background plasma, panel (a), no shock is observed. In the presence of a background
plasma, panels (b–e), a shock-like structure is observed in all cases, strongest in the
presence of the externalmagnetic field [panels (c–e)], but still presentwhen no external
magnetic field is applied [panel (b)]. The authors advance the possibility, supported by
PIC simulations, that in this latter case, the Biermann-Battery process was responsible
for seeding a large scale magnetic field even though no external one is applied. Note
also, that in panel (c), the authors report the creation of a shock when only one of the
1.5 kJ-beam was used, demonstrating that only one piston plume interacting with the
background plasma was needed to produce a magnetized shock. Last, panel (f) reports
the measurement obtained using proton radiography and reveals a strong magnetic
field compression at the location of the shock structure.
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Note that the overall experimental campaign strongly relied on advanced diagnos-
tics [shadowgraphy, angular filter refractometry (Haberberger et al. 2014), and proton
radiography] as well as the combined used of hydrodynamic (for the plasma charac-
terization) and PIC (for the shock formation and evolution) simulations.

Since these experiments, the effort in producing and studying magnetized shocks
has continued, e.g., exploring the possibility to produce parallel shocks (Weidl et al.
2017), or to use the Biermann-Battery process to magnetize the plasmas (Umeda et al.
2019).

Weibel-mediated shocks Weibel-mediated collisionless shocks are certainly the
most sought after collisionless shocks in laser-based laboratory astrophysics experi-
ments. Even though important progress have been made in the last decade, recreating
such shocks in the laboratory has not yet been achieved. The main difficulty in recre-
ating such shocks stems from the need to achieve flow densities that are, on the one
hand, sufficiently small to ensure that one operates in the collisionless regime and, on
the other hand, large enough for the ionWeibel instability to develop and the resulting
magnetic turbulence to build up. The combined experimental and theoretical effort in
this endeavor has been started since the early 2010s and HEDNIF-class laser systems,
allowing to produce plasma flows with densities of a few 1019 cm−3 and velocities of
several 1000s km/s, have been identified as the most promising path toward collision-
less Weibel-mediated shock formation.

The first step toward creating plasma flows relevant for such studies was taken by
Park et al. (2012), demonstrating the possibility to drive plasma flows with velocities
of ∼ 1000 km/s and densities of ∼ 1018 cm−3 from plasma ablation at the Omega
laser facility. The production of large-scale electromagnetic structures (Kugland et al.
2012) and later clear demonstration ofWeibel-type ion filamentation instabilities (Fox
et al. 2013; Huntington et al. 2015) in the presence of counter-streaming plasmas were
obtained by irradiating a pair of opposing plastic (CH) foils with few kJ, few ns laser
pulses on the Omega EP laser system. Figure 15 reproduces the schematic experimen-
tal set-up used by Huntington et al. (2015) together with a typical proton radiography
measurement of the magnetic field filamentary structures following from the develop-
ment of the ionWeibel instability. The region imaged by the proton radiograph is about
3 mm wide, and the filamentary structures have a typical width of ∼ 150–300 µm,
consistent with the ion skin-depth for the reported plasma density of a few 1018 cm−3.

The plasmas flows achievable at Omega are unfortunately too low density, and
short life, to allow creating a Weibel-mediated collisionless shock. A recent theoret-
ical model and 2D PIC simulations by Ruyer et al. (2016) indeed predict that the
isotropization necessary for shock formation may be achievable if the two counter-
streaming flows overlap over a length of the order of at least:

L iso � 35 [mi/(Zme)]
0.4 (c/ωpi

)→ 5 cm ×
(
A

Z

)0.9
√
1019 cm−3

n0
, (21)

where c/ωpi is the ion skin-depth associated to the plasma flow density n0,mi (me) the
ion (electron)mass, and Z (A) the ion charge (mass) number. Conversely, the two flows
shall overlap for a time of the order of τiso = L iso/v0 �, with v0 the relative flow
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Fig. 15 Demonstration of the ionWeibel instability in counter-streaming plasmas on the Omega EP facility.
Simulation setup: two ablation plasmas are formed in counter-streaming configuration by irradiating two
opposing plastic targets. A 3He-D target is imploded to drive fusion reactions that allow for the production of
3 MeV and 14.7 MeV protons that are used to radiograph the electromagnetic fields developed in the region
where the two counter-streaming plasma overlap. The resulting proton radiograph (here taken about 5 ns
after the beginning of interaction using the 14.7 MeV protons) shows evidence of the growth of filamentary
structures associated to theWeibel magnetic fields. Image reproduced by permission fromHuntington et al.
(2015), copyright by Macmillan

velocity. A necessary, yet not sufficient, condition for maintaining the collisionless
regime imposes that the isotropization length given by Eq. (21) is much smaller than
the characteristic ion-ion collision mean-free-path (Park et al. 2012):

λmfp � 5 cm × A2

Z4

(
v0

1000 km/s

)4 (1019 cm−3

n0

)
, (22)

for which are considered only collisions between ions of the two counter-streaming
flows. These estimates allow to infer that Weibel-mediated collisionless shocks may
be achieved in the presence of (hydrogen) plasma flows with density of the order of
1019 cm−3, colliding at a relative velocity of at least a few 1000s km/s, provided these
flows overlap over distance of a few cm during a few to tens of ns. Such conditions
can be met only at the most energetic, MJ-class laser systems such as NIF.

The first experiments to recreate Weibel-mediated shocks at NIF have been started
in the framework of theDiscovery Science program.Thefirst experimental resultswere
reported by Ross et al. (2017) focusing on how to tune the experimental conditions
to access the collisionless regime. These experiments, for which no external magnetic
field was used, considered two solid targets, made of a mixture of Carbon and either
hydrogen or deuterium (CH or CD), each irradiated by several beams allowing to
deliver energies of ∼ 250 kJ (much larger than accessible e.g. at Omega) per foil
during about 5 ns. The resulting ablation plasma flows at velocities of ∼ 1000 km/s
and (ion) densities of a few 1019 cm−3 in the interaction (overlapping) region. This
work demonstrated that if the foils (in opposing configuration)were sufficiently distant

123



A. Marcowith et al.

from one another, collisional effects could be stronglymitigated due to the reduction of
the plasmaflowdensity in the overlapping region.Most importantly, thiswork reported
evidence of a collisionless (collective) heating in the flow interaction region, which
the authors associate with the nonlinear stage of the Weibel instability and thus to the
early stage of shock formation. This result suggests that the scientific community is on
the verge of producing Weibel-mediated collisionless shocks in the laboratory. A new
experiment was actually conducted at NIF in the last months increasing the driving
laser beam energy to ∼ 500 kJ delivered to each foil. This experiment is expected to
lead to shock formation, and may also gives the first signs of particle acceleration in
the shock. To this date, the results of this last experimental campaign have not been
announced.

Prospective numerical studies The possibility to drive collisionless shocks in the
laboratory has prompted the laser-plasma community to investigate various laboratory
configurations to drive collisionless collective processes and shocks in silico. Indeed,
various numerical experiments have been performed using Particle-In-Cell (PIC) sim-
ulation. Even if some of these numerical experiments consider laser parameters not yet
within our reach (ultra-short ps-level, energy at the 100s J level) other have addressed
conditions that are or will soon be achievable on the forthcoming extreme light facil-
ities such as Apollon or ELI.

Fiuza et al. (2012) put forward the possibility to drive—through Weibel-like
instabilities—a collisionless shock in a dense target using an ultra-intense light pulse.
This scenario was revisited by Ruyer et al. (2015) that demonstrated the dominant
role of laser-driven hot electrons in the shock formation. More recently, Grassi et al.
(2017) showed that tuning the laser-plasma interaction configuration can help mitigate
the hot electron production so that shock formation can be driven by the ion Weibel
instability, as expected in astrophysical scenarios.

In addition, dense electron-positron flows have been produced in laser-plasma
experiments (Chen et al. 2015; Sarri et al. 2015), offering the opportunity to study
pair-plasma processes in the laboratory, and motivated various numerical experiment.
Using QED-PIC simulation, Lobet et al. (2015) demonstrated the possibility to drive
ultra-relativistic, counter-propagating electron-positron pair plasmas using extreme
light pulses (with intensity beyond 1023 W/cm2, 100s kJ and duration of few tens of
fs). Ultra-fast isotropization and thermalization (a first step in shock formation) were
observed in the simulation, and associated to both theWeibel instability and a remark-
able contribution from synchrotron emission by the ultra-relativistic leptons in the
strong (Weibel) magnetic fields. More recently, the (collisionless) interaction of midly
relativistic pair jets with background (electron-ion) plasma was also investigated in
kinetic simulations (Dieckmann et al. 2018a, b). Remarkably, these studies are not only
motivated by astrophysics (Dieckmann et al. 2019) but also by recent experiments that
demonstrated the growth of a current-driven instability developing during the inter-
action a quasi-neutral pair beam with a background (electron-ion) plasma (Warwick
et al. 2017).
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Fig. 16 Adapted from thework byNilson et al. (2006) presenting the firstmagnetic reconnection experiment
with laser-created plasmas. a Experimental set-up using the two-spot configuration. b Proton-radiagraphy
measurements showing in dark the regions were protons are recorded. c Shadowgraphy measurements
indicating the formation of two jets at the reconnection layer

2.6.4 Magnetic reconnection experiments

Laser-plasma experiments also provide a test bed for magnetic reconnection
studies.22 The first evidences for magnetic reconnection in a laser-plasma experi-
ment were reported by Nilson et al. (2006). This experiment was performed at the
VULCAN laser facility in the UK, and relied on a now popular set-up consisting
in firing two laser pulses at a solid (here Aluminium or Gold) target (see Fig. 16a).
The interaction of each pulse leads to plasma ablation and expansion associated with
the generation of an azimuthal magnetic field through the Biermann-Battery process.
In between the two pulses, the magnetic fields driven by the two pulses are in an
anti-parallel configuration, and a reconnection layer can form.

This experiment was carried out in the HED regime of interaction, each laser pulse
of the VULCAN facility delivering 200J over 1 ns in a 30–50 µm focal spot (the
corresponding laser intensity is moderate ∼ 1015 W/cm2). Various complementary
diagnostics were used, highlighting features consistent with magnetic reconnection.
(i) Proton radiography (Borghesi et al. 2001) allowed to probe the generated magnetic
fields. A typical measurement is reproduced in Fig. 16b; and an additional analysis of
these measurements is given in Willingale et al. (2010). Light regions correspond to
regions free of protons, i.e., to regions where the strong Biermann-Battery magnetic
field (estimated to be of the MG-level in this experiment few 100s of ps after the
ablated plasma started expanding) is present.

The presence of a strong proton signal (dark region) in between the two lighter
blobs was identified as the reconnection layer, where opposite magnetic field lines
can reconnect and lead to a null-magnetic field region. (ii) In addition, the interaction
region was also probed by a short (10ps) light pulse allowing to produce a shadowg-
raphy [as well as an interferogram (not shown here)] of the interaction region. Such a
shadowgram is reproduced in Fig. 16c and shows the formation - on the ns-timescale-

22 In this review, we focus once more on laser-plasma experiments. Yet, other experiments have been
conducted on various devices: the Magnetic Reconnection Experiment (MRX) at Princeton (Yamada et al.
1997), the LAPD at UCLA (Gekelman et al. 2010), Z-pinch machines (Hare et al. 2017). Magnetic recon-
nection is also known to affect Tokamak experiments (Goetz et al. 1991). See also Howes (2018) for a
review of various laboratory experiments for space plasma physics.
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of two distinct jets [see original paper and Nilson et al. (2008) for more details] with
velocities of ∼ 500 km/s, which would not be expected should only hydrodynamic
processes govern the plasma evolution. (iii) Finally, Thomson Scattering measure-
ments (not shown here) showed that, while the electron temperature was of the order
of 800 eV (at 1.5 ns) and 700 eV (at 2.5 ns) in the ablated plasmas, a much higher
electron temperature∼ 1.7 keV (at 1.2 ns) was measured in what was identified as the
reconnection layer (where there is no laser). Such high electron temperatures were also
put forward as a result of magnetic reconnection; and were consistent with supporting
hybrid simulations.

Since this first experiment, similar results were obtained on other HED laser
facilities. Li et al. (2007) report on an experiment performed at the OMEGA laser
facility using a slightly more energetic 1ns laser pulse (500J), with a spot diameter
of ∼ 800 µm (corresponding to an intensity of ∼ 1014 W/cm2). This experiment
benefited from a high-quality proton radiography (monoenergetic 14.7 MeV protons
were produced by fusion reactions from an imploded D3-He target), which allows the
authors to probe the changes in the magnetic field topology as magnetic reconnection
proceeds. See also Rosenberg et al. (2015b, a). Similarly, Zhong et al. (2010) reported
on a similar experiment carried out on the Shenguang II (SG II) laser facility in Shang-
hai, China. In this experiment, four laser beams (1ns, few 100s J, 50–100 µm-wide
spots) are used to drive the plasma expansion in the two-spot configuration previously
discussed, but shining the lasers on the front and back side of the target simultaneously.
This experiment also put the accent on scaling their results with respect to reconnection
outflows in solar flares. As an exemple, relying on X-ray imaging of the interaction
region, the authors could demonstrate a change in the directionality of the jets due to
an asymmetry in the driving laser intensities,23 as shown in Fig. 17.

Another experimental set-up was also proposed by Fiksel et al. (2014) and con-
ducted on the OMEGA EP laser. In contrast with the previous experiments, this new
set-up relies on (i) an head-on configuration with two targets (irradiated by kJ, ns laser
beams), (ii) current-carrying conductors placed behind the two targets to create an
external (up to 80 kG) magnetic field imposed perpendicular to the expanding plasma
flows and designed such that the field a x-type null point in between the two targets;
and (iii) the presence of a background plasma created by a third (100J, 1ns) laser beam.
Proton radiography measurements indicate the formation and collision of magnetic
ribbons, pileup of magnetic flux and reconnection which are found to be in remarkably
good agreement with 2D PIC simulations (that include particle collisions).

While the previous experimentswere conducted in a collisional regime,more recent
experiments have focused on the collisionless regime. Dong et al. (2012) conducted
an experiment on the SG II laser, using a similar set-up then previously presented
by Zhong et al. (2010), but firing the laser beams (450J on each target) at two Al-
targets separated by 150–240 µm, which, even though the collisionless nature of the
reconnection region is not fully addressed, lead the authors to claim the study of a

23 See also the work by Rosenberg et al. (2015a) for a study of asymmetric reconnection OMEGA laser
facility.
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Fig. 17 X-ray imaging showing
two bright spots in the Al target
were the expanding plasmas are
heated by the laser beams. Here
the asymmetry in the laser
intensities (in regions B1 and
B2) leads to an inclination of the
upward flow. Bellow the
Al-target, a Cu-target is placed.
The downward flow impinges on
this target and results in a hot
X-ray source. Image reproduced
with permission from Zhong
et al. (2010), copyright by
Macmillan

structure of collisionless reconnection. These authors also report on the ejection of a
plasmoid that, when it rapidly propagates away, deforms the reconnected magnetic
field and generate a secondary current sheet. This process seems to be well reproduced
by PIC simulations, and the primary reconnection event is found to be associated with
well-collimated plasma outflows containing high-energy (MeV) electrons.

In addition, Raymond et al. (2018) conducted experiments, on both theOMEGAEP
facility and the HERCULES laser at University of Michigan, in a regime where mag-
netic reconnection was not only collisionless but also driven by relativistic electrons.
This was made possible by using short pulse laser beams (20 ps for the OMEGA EP
laser, 40 fs for the HERCULES laser) in a configuration otherwise similar to that (the
two-spot experiment) initially proposed by Nilson et al. (2006). Using short pulses
indeed allowed to reach ultra-high intensities (∼ 1018 W/cm2 on OMEGA EP and
∼ 2 1019 W/cm2 on HERCULES), thus allowing to enter the relativistic regime of
laser-plasma interaction. Figure 18 shows the typical experimental set-up as well as
a typical X-ray imaging where the two heated and expanding plasmas can be seen,
together with a reconnection layer in between. In addition, the authors report the for-
mation of a non-thermal (few MeV) electron population whenever reconnection is
expected, consistent with supporting 3D PIC simulations.
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Fig. 18 Experimental set-up relying on ultra-high-intensity short pulse laser beams allowing to probe
relativistic reconnection. A typical X-ray imaging shows the location of the two hot expanding plasmas
and, in between, the reconnection layer. Image reproduced with permission from Raymond et al. (2018),
copyright by APS

3 Solving kinetic problems

This section reviews the model equations used to describe particle kinetic physics, i.e.,
the dynamics of charged particles in the configuration and momentum space under the
effect of electro-magnetic forces. The section is divided as follows: in Sect. 3.1 we
describe the Vlasov–Maxwell system of equations, then in Sect. 3.2 we discuss the
numerical methods developed to follow the dynamics of such a system. Section 3.3
discusses the particle-in-cell (PIC) technique used to study solutions of the Vlasov–
Maxwell system. In Sect. 3.4 we provide a discussion on the comparison between
PIC and Vlasov approaches. Section 3.5 briefly describes hybrid methods where a
fluid approximation is introduced for the electronic component whereas kinetic (PIC)
techniques are used to describe ions. In Sect. 3.6 we specifically discuss the Fokker–
Planck description of kinetic problems. The Fokker–Planck approach is particularly
well-adapted to investigate cosmic ray propagation. Finally, we give a particular focus
on Fokker–Planck simulations developed in the context of the study of the radiative
transfer in hot plasmas around compact objects.

3.1 TheVlasov–Maxwell description of a collisionless plasma

3.1.1 Governing equations

Let us consider a plasma composed of various species, labeled s, corresponding to par-
ticles with mass ms and charge qs . The kinetic description of this plasma relies on the
representation of each species s by its (one-particle) distribution function fs(t, x, p),
fs(t, x, p)d3x d3p measuring, at any time t , the (probable) number of particles of
species s in a volume element d3x d3p at a position (x, p) in phase-space (x and p
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standing for the spatial and momentum coordinates, respectively). In the absence of
collisions, the evolution of the distribution functions fs satisfies the Vlasov equation:

∂

∂t
fs + (v · ∇) fs + (Fs · ∇p) fs = 0, (23)

where v = p/(msγ ) is the velocity corresponding to a particle of momentum p and
Lorentz factor γ = √1 + p2/(msc)2 (c is the speed of light in vacuum), and Fs is the
force acting on the species particles. As this work focuses on electromagnetic plasmas,
this force is theLorentz force exerted by the collective electricE andmagneticBfields:

Fs = qs

(
E + 1

c
v × B

)
. (24)

It is important to stress that, in the Vlasov equation, the electromagnetic fields are
collective fields, also referred to as macroscopic fields in the sense that they do not
account for themicroscopic variations developing at the particle scale.Hence collisions
are not considered in this description.

The electric E(t,x) and magnetic B(t,x) fields are in general functions of both space
and time, and satisfy Maxwell’s equations24:

∇ · E = 4πρ, (25a)

∇ · B = 0, (25b)

∇ × E = −1

c

∂B
∂t

, (25c)

∇ × B = 4π

c
J + 1

c

∂E
∂t

. (25d)

The electromagnetic fields act onto the plasma through the Lorentz force (24), and
are in turn modified by the plasma through the total charge and current densities,
ρ = ∑

s ρs and J = ∑
s Js , respectively, where each species charge and current

densities are defined as:

ρs(t, x) = qs

∫
d3 p fs(t, x, p), (26a)

Js(t, x) = qs

∫
d3 p v fs(t, x, p). (26b)

The coupled system of Eqs. (23) and (25), together with the Lorentz force (24) and
definitions of the charge and current densities (26) form the Vlasov–Maxwell model.
It provides a self-consistent, kinetic description for the evolution of a collisionless
plasma and the associated collective electromagnetic fields.

24 In some cases where only electrostatic fields are important, only Poisson Eq. (25a) may be used. The
Vlasov-Poisson description is of particular importance for the description of cold plasmas in particular, as
considered e.g., for plasma propulsion, see Ref. (Boeuf and Garrigues 2018).
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3.1.2 Initial and boundary conditions

The Vlasov–Maxwell model relies on a system of partial differential equations and
thus requires initial and boundary conditions. The initial condition of the system (at
time t = 0) consists first in defining the initial distribution functions fs(t = 0, x, p) for
all species s of the system. One usually considers equilibrium25 distribution functions,
and Maxwellian or Maxwell–Jüttner distribution functions (drifting or not) are often
considered.26 The initial electromagnetic fields spatial distribution E(t = 0, x) and
B(t = 0, x) also needs to be prescribed. At t = 0, these fields have to satisfy Eq. (25a)
and Eq. (25b), respectively. Hence, B(t = 0, x) has to be divergence free, while
E(t = 0, x) canbe either divergence free (e.g., if an external electric field is considered)
or has to be computed from Poisson’s Eq. (25a) using the initial distribution functions
fs(t = 0, x, p) to compute the initial charge density.
Various boundary conditions (BCs) can be considered and will strongly depend on

the physics at hand. First, BCs on the distribution functions can be used to reflect,
thermalize already existing particles or inject new particles at the border of the spatial
domain. In addition, when directly solving the Vlasov equation in phase-space (see
Sect. 3.4 on so-called Vlasov codes), BCs on the momentum component have to be
considered. Similarly, electromagnetic fields can be reflected, absorbed or injected at
the domain border by prescribing the correct BCs for the electric and magnetic fields.

3.2 Solving theVlasov–Maxwell system numerically: general considerations

Computer simulation is an outstanding tool for solving the Vlasov–Maxwell system
of equations together with the prescribed initial and boundary conditions, and most of
today’s kinetic simulations of plasmas rely onmassively parallel tools to do so. In what
follows, we present two of the main numerical approaches to solve this system. The
first method is used in so-called Vlasov codes, while the second is used in so-called
Particle-In-Cell (PIC) codes. The main difference between the two methods lies in
the way they solve the Vlasov equation. Otherwise, both methods follow the same
procedure which rely on discretizing the fields onto a spatial grid (henceforth referred
to as the simulation grid), advancing the distribution function and then updating the
associated charge and current densities onto the simulation grid. This procedure is
here briefly detailed and summarized in Fig. 19.

3.2.1 Initialization and time-loop

First, the initialization step consists in prescribing the distribution functions for all
species s at time t = 0 together with the initial electric and magnetic fields. Again,
one should stress that both fields must satisfy Eqs. (25a) and (25b). Thus the initial
electric field can be obtained by solving Poisson Eq. (25a) and adding any divergence-
free (e.g., external) electric field. For the magnetic field, one can start either from a

25 At least in the sense of hydrodynamic equilibrium.
26 The loading of a species with drifting Maxwell–Jüttner distribution in Particle-In-Cell codes should be
handle with some care, as discussed e.g., in Refs. (Melzani et al. 2013; Zenitani 2015).
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Initialization

for all species, define                          and associated densities  
define the electromagnetic fields

1. Solve Vlasov Equation 
(over 1 timestep) (over 1 timestep)

2. Update the charge 
& current densities*

Δt

In Vlasov codes:
advance the distribution 
functions by direct integration** 
In PIC codes:
update the macro-particles
position & momentum

E(t = 0,x), B(t = 0,x)
fs(t = 0,x,p)

ρs(t,x),Js(t,x)

∂tE = −4π J + c∇ × B

∂tB = −c∇ × E

Update electric field

Update the magnetic field:

Fig. 19 Schematic presentation of the numerical procedure used to solve the Maxwell–Vlasov system of
equations. *If the computation of the current densities onto the simulation grid is done in such a way
that charge is conserved, and considering that the initial electromagnetic fields satisfy Eqs. (25a) and (25b),
solvingMaxwell–Ampère (Eq. (25d)) andMaxwell–Faraday (Eq. 25c) is sufficient to ensure that Eqs. (25a)
and (25b) remain satisfied (within the machine precision) at all times. **Direct integration here refers to
advancing the distribution function on a grid in phase-space (x, p), as further discussed in Sect. 3.4

zero magnetic field or any non-zero divergence-free magnetic field that will act as an
external field applied to the system.

One then enters the time loop of the numerical solver. This time loop consists in
advancing the various quantities (defined on the simulation grid) from a timestep n
(time tn = n Δt) to the next timestep n+1 (time tn+1 = tn+Δt). Various methods are
available to do so, some of which rely on defining different quantities at either integer
or half-integer timesteps to ensure a centering of the numerical time derivatives. For
the sake of simplicity, we will not account for this subtlety here.

The first step in the time-loop consists in advancing the distribution functions for all
species s. Knowing the electromagnetic field at timestep n, the distribution functions
at timestep n + 1 are computed either by direct integration (this is the case in Vlasov
codes, see Sect. 3.4) or by advancing so-called macro-particles which are in effect
discrete element of the distribution function (this is the case in PIC codes, as described
in Sect. 3.3).

The updated distribution functions are then used to compute, onto the simulation
grid, the updated charge and current densities (step 2).

These densities are then used, in a third step, to advance the electromagnetic fields
from time step n to n + 1. If the current density deposition onto the grid (step 2)
conserves the charge,27 solving Maxwell–Ampère and Maxwell–Faraday Eqs. (25d)
and (25c), respectively, is sufficient to ensure that the electromagnetic fields remain

27 In the sense that it satisfies, at the machine precision, the continuity equation ∂tρ + ∇ · J = 0.
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Maxwell-consistent. To solve these equations, different Maxwell solvers are available
(and are discussed in Sect. 3.2.2).

With the fields updated, the loop gets back to step 1 and is run as long as required
to reach the final timestep of the simulation.

3.2.2 Brief discussion of Maxwell solvers

Various numerical methods (so-called solvers) can be used to solve Maxwell’s equa-
tions. Here we briefly introduce two methods that are most popular in plasma
simulation.

The Finite-Difference Time-Domain (FDTD) method is a time-honoured approach
to solve Maxwell’s equations (Taflove 2005). It relies on a finite-difference dis-
cretization of the partial time derivatives and curl operators in Maxwell–Ampère
and Maxwell–Faraday’s equations. Most important is that all differential opera-
tors are centered. Centering in space requires the use of a staggered grid, the
so-called Yee grid, different components of the electric and magnetic fields being
defined at different positions in space (onto the grid). Centering in time requires
that the electric and magnetic fields are advanced in a leap-frog way, e.g., solv-
ing first Maxwell–Ampère equation to advance the electric field then using the
updated electric field to solve Maxwell–Faraday’s equation and advance the mag-
netic field. A major advantage of the FDTD method stems from its local nature,
which allows for its easy and effective (scalable) implementation in massively
parallel environments. A major drawback of the method is that it is subject to
numerical dispersion, the numerical electromagnetic wave propagating with veloc-
ities potentially smaller than c (Birdsall and Langdon 1985; Nuter et al. 2014). This
effect is in part responsible for the spurious numerical Cherenkov instability, see
Sect. 3.3.3.

Pseudo-Spectral methods, on the other hand, allow to solve Maxwell’s equations
with an extraordinary level of precision and correctly capture the dispersion relation of
electromagneticwaves. They consist of advancing the electromagnetic fields in Fourier
space (for the spatial coordinates) while relying on an (explicit) finite-difference for
the time derivatives (Liu 1997; Vay et al. 2013).

The increased precision allowed by pseudo-spectral methods however comes with
the cost of global communications associated with the use of Fourier transforms
over the entire simulation domain. These global communications have been a major
impediment to the adoption of pseudo-spectral methods in massively parallel envi-
ronments. Recently, Vay et al. (2013) have proposed a domain-decomposition method
that allows for the efficient parallelization of pseudo-spectral solvers. This method
takes advantage of the finiteness of the speed of light and relies only on local (over
subdomains much smaller than the entire simulation domain) fast Fourier trans-
forms and communications between neighbouring subdomains. Vincenti and Vay
(2018) have demonstrated that this method may allow for unprecedented scalability
of pseudo-spectral solvers over tens to hundreds of thousands of computing elements
(cores).
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3.3 Particle-In-Cell codes

TheParticle-In-Cell (PIC)methodwas introduced in themid-1950s byHarlowand col-
laborators to solve fluid dynamics problems (see Harlow 2004 and references therein).
Following the pioneeringworks ofBuneman (1959),Dawson (1962), Birdsall andFuss
(1969) and Langdon and Birdsall (1970) (see Dawson 1983 and Verboncoeur 2005
for a history of the development of PIC codes), PIC codes have become a central tool
for plasma simulation (Birdsall and Langdon 1985). Indeed, the simplicity of the PIC
method together with the possibility to implement it efficiently in a massively paral-
lel environment have established PIC codes as the most popular tool for the kinetic
simulation of plasmas.

3.3.1 Method

The PICmethod differs from the Vlasov-code approach in the way it solves the Vlasov
equation, and by extension, the way it computes the current densities on the simulation
grid. In PIC codes, the distribution function fs is approximated as a sumover N macro-
particles:

fs(t, x, p) ≡
N∑

p=1

wp S
(
x − xp(t)

)
δ
(
p − pp(t)

)
, (27)

where δ(p) is theDirac delta-distribution, S
(
x
)
is the so-called particle shape-function,

and wp, xp(t) and pp(t) are the pth particle numerical weight, position and momen-
tum, respectively. The macro-particles can be regarded as walkers in Monte-Carlo
simulations, and the PIC method as a Monte-Carlo procedure for solving the Vlasov
equation (Lapeyre et al. 2003). The initial state of each species of the plasma is
obtained from a random sampling of the distribution function fs at time t = 0, and the
Vlasov equation is then solved following the macro-particles/walkersmotion through
the influence of the collective electromagnetic fields.

Indeed, introducing the discretized distribution function (27) in Vlasov equa-
tion (23), one can show (see, e.g., Derouillat et al. 2018) that solving Vlasov equation
reduces to solving, for all macro-particles p, their equations of motion:

dpp

dt
= qs

ms

(
Ep + vp

c
× Bp

)
, (28a)

dxp

dt
= vp = pp

msγp
, (28b)

with γp =
√
1 + p2

p/(msc)2 the pth macro-particle Lorentz factor and where we have

introduced the electric and magnetic fields seen by the macro-particle:
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Ep =
∫
d3x S(x − xp) E(x), (29a)

Bp =
∫
d3x S(x − xp) B(x). (29b)

Correspondingly, the species charge and current densities on the simulation grid can
be obtained by direct deposition onto the grid. Yet, such a direct deposition would not
in general satisfy the charge conservation equation, and the electric fields then would
required to be corrected to ensure that they verify the Poisson equation (Mardahl and
Verboncoeur 1997). Some current deposition strategies that conserve the charge have,
however, been proposed. A popular charge conserving deposition scheme has been
proposed by Esirkepov (2001) for PIC code relying on the FDTD Maxwell solver.
The macro-particle equations of motion Eq. 28 are most commonly solved using Boris
pusher (Birdsall and Langdon 1985). It is a second-order leap-frog integrator where
the updated particle momentum is computed knowing the electromagnetic fields at
the position of the macro particle as:

p
(n+ 1

2 )

p = p
(n− 1

2 )

p + qs
ms

Δt

⎡

⎢
⎣E(n)

p + v
(n+ 1

2 )

p + v
(n− 1

2 )

p

2c
× B(n)

p

⎤

⎥
⎦ , (30)

and the updated particle position is computed as:

x(n+1)
p = x(n)

p + Δt
p

(n+ 1
2 )

p

γp
, (31)

Several alternative solvers where recently developed (e.g., Vay 2008; Higuera and
Cary 2017) presenting sometimes better accuracy than the traditional Boris algorithm.

3.3.2 Additional physics modules

In their most basic implementation (detailed above), PIC codes describe collisionless
plasmas through the self-consistent evolution of the particle distribution functions
and collective (macroscopic) electromagnetic fields. Additional physics modules can
easily be implemented in PIC codes to account for additional processes. Here we
provide some references for some of this processes: field ionization (Nuter et al. 2011),
collisions and collisional ionization (Nanbu 1997; Nanbu and Yonemura 1998; Pérez
et al. 2012), high-energy photon (synchrotron or inverse Compton) emission and its
back-reaction (Duclous et al. 2011; Lobet et al. 2016; Niel et al. 2018), pair production
in a strong electromagnetic [Breit–Wheeler process (Duclous et al. 2011; Lobet et al.
2016)] or Coulomb [Trident and Bethe–Heitler processes (Martinez 2018)]. These
later processes are of outmost importance for extreme plasma physics as will soon be
encountered on multi-petawatt laser facilities (see, e.g., Sect. 2.6.1), but also at play
in the most extreme astrophysical environments around, e.g., neutron stars and black
holes (Uzdensky et al. 2019).
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3.3.3 Stability issues: relativistic flows

It is worth mentioning that there is one important numerical issue when one deals with
relativistic flows in PIC simulations: the spurious Cherenkov instability (e.g., Godfrey
1974). This instability results from the resonance of the light-wave modes with the
streaming beamwhen electromagnetic fields are defined on a discrete Eulerian grid. As
the numerical light-wave mode is affected by the finite-difference scheme, especially
at high-k (Birdsall and Langdon 1985), this resonance is nonphysical. The instability
appears as well in spectral codes but has a different signature (Godfrey and Vay 2015).
It is practically very difficult to avoid in long-term simulations of relativistic flows or
shocks. Nevertheless various methods have been proposed that allow to mitigate, or at
least delay the onset of the instability. Some of these methods rely on digital filtering
of electromagnetic fields and/or current densities (Greenwood et al. 2004; Vay et al.
2011); modifying the numerical stencil of the FDTD solver (Lehe et al. 2013; Grassi
2017) or upgrading to a semi-implicit scheme (Pukhov 2019); special patching of the
most unstablemodes (e.g.,Godfrey andVay2014;Li et al. 2017); artificially increasing
the speed of light in the Maxwell solver (Nuter and Tikhonchuk 2016) or solving the
PIC equations in Galilean coordinates (Lehe et al. 2016). Yet, there is no definitive
solution to remove it completely. Even if the most unstable modes are ‘cleaned’ or
stabilized, the difficulty arises in long term evolution from coupling of the secondary
aliasing modes with low-wavenumber oblique modes of the streaming plasma, that
is very hard to remove without touching important physical scales (Dieckmann et al.
2006). Despite this difficulty, several studies managed to push simulations beyond
104 ω−1

pi allowing to extract important results from simulations (see Sect. 4).

3.3.4 Examples

Various PIC codes are today available and used for astrophysics or space plasma
applications.28 Some of these codes are freely distributed under free-software licenses,
this is the case of Epoch

29 (Arber et al. 2015) Piccante30 (Sgattoni et al. 2015),
Smilei,31 (Derouillat et al. 2018) Tristan- MP

32 (Spitkovsky 2005), and Zeltron33

(Cerutti et al. 2013). Among other proprietary codes used for astrophysics applications
are A-ParT (Melzani et al. 2013), Calder (Lefebvre et al. 2003), Osiris (Fonseca
et al. 2002), and Photon-Plasma (Haugbølle et al. 2013). Finally, other PIC codes
rely on more advanced numerical schemes; e.g., the implicit code iPIC3D (Markidis
et al. 2010) or the Slurm code for modeling magnetized fluids or plasmas (Olshevsky
et al. 2019).

28 We restrict our presentation to electromagnetic PIC codes that have been applied to astrophysics and/or
space plasma physics studies.
29 https://gitlab.com/arm-hpc/packages/wikis/packages/EPOCH.
30 https://github.com/ALaDyn/piccante.
31 www.maisondelasimulation.fr/smilei.
32 https://github.com/ntoles/tristan-mp-pitp.
33 http://ipag-old.osug.fr/~ceruttbe/Zeltron/index.html.

123

https://gitlab.com/arm-hpc/packages/wikis/packages/EPOCH
https://github.com/ALaDyn/piccante
www.maisondelasimulation.fr/smilei
https://github.com/ntoles/tristan-mp-pitp
http://ipag-old.osug.fr/~ceruttbe/Zeltron/index.html


A. Marcowith et al.

3.4 Vlasov–Maxwell codes

3.4.1 PIC codes versus Vlasov codes

Particle-In-Cell codes reduce the problem of solving Vlasov equation to solving the
(ordinary differential) equations of motion of manymacro-particles. It follows that the
main advantages of the PIC method are its conceptual simplicity, its robustness and
easy implementation on (massively) parallel super computers. The simplicity of the
PIC method also allows for PIC codes to be multi-purpose simulation tools: a single
PIC code can address various problems from basics plasma physics, astrophysics
studies to the modelling of laser-plasma experiments.

However, due to the introduction of a finite number of macro-particles, PIC simula-
tion suffers from the highly exaggerated level of noise. This well known short-coming
of the PIC method makes it less adapted to treating problems for which regions of
phase-space where the distribution function assumes small values (e.g., in its tail) can
impact the physics at play.

In contrast, Vlasov codes which directly integrate the (partial differential) Vlasov
equation on a grid in phase-space are virtually noise-free, and are thus an interesting
alternative to PIC codes whenever low noise simulation is required.34 The fine descrip-
tion allowed by Vlasov codes however comes with the cost of increased numerical
complexity. As a result, Vlasov codes are in general much less multi-purpose than PIC
codes, and are usually developed to tackle a definite class of problems.

3.4.2 The problem of filamentation in phase-space

One impediment in the development and adoption of Vlasov codes is their com-
putational cost and memory requirement when dealing with all 6 dimensions of
phase-space. This problemcanhowever bemitigated by reducing the number of dimen-
sions e.g., by relying on conservation laws and symmetries of the problem (see, e.g.,
Manfredi et al. 1995; Feix and Bertrand 2005). It also becomes less exacting with the
fast development of modern high-performance computing.

A more stringent limitation to the development of Vlasov codes stems from the
numerical effort necessary to directly solve the Vlasov equation, and to the problem
of filamentation in phase-space in particular. Indeed, the time evolution of the distri-
bution function in the Vlasov equation is associated with its breaking—filamentation
- into increasingly small structures in phase-space, and thus to strong gradients of the
distribution function.When discretizing the distribution function onto a gridwith finite
resolution, handling these gradients becomes numerically inaccurate, and can lead to
spurious oscillations, numerical instabilities and inaccurate rendering of conserved
quantities (e.g., non-positive distribution functions). Dealing with this issue greatly
contributes to the numerical complexity behind Vlasov codes’ development.

34 A theoretical discussion on the relative efficiency of the PIC and (direct) Vlasov approaches to treat a
given problem is presented in (Feix and Bertrand 2005).
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3.4.3 Example of different methods for electromagnetic Vlasov codes

The numerical complexity of Vlasov codes has—since the seminal work byCheng and
Knorr (1976) introducing the time-splitting technique35—led to the development of
various techniques to directly integrate the Vlasov equation onto a grid in phase-space.
It is thus beyond the scope of this brief review to detail these techniques and we here
restrict our presentation to some electromagnetic Vlasov codes and their applications.
Review articles by (Filbet and Sonnendrücker 2003; Büchner 2007; Ghizzo et al. 2009;
Palmroth et al. 2018) discuss various techniques, that range from finite-volume type
methods (Fijalkow 1999; Filbet et al. 2001), to semi-Langrangian methods (Sonnen-
drücker et al. 1999), and spectral methods (Klimas 1987).

Each method has its own advantages and limitations, and Vlasov codes are usu-
ally designed to tackle a specific class of physical problems. Ghizzo et al. (1990) for
instance developed a relativistic electromagnetic 1D Vlasov code to study stimulated
Raman scattering; while Shoucri et al. (2015) considered the problem of stimulated
Brillouin scattering. These codes actually used the conservation of canonical momen-
tum to reduce the number of dimension in velocity/momentum-space.36 A somewhat
similar approachwas used to study the breaking of a relativistic Langmuirwave (Grassi
et al. 2014) as well as laser-driven (electrostatic) shock acceleration of ions and ion
turbulence (Grassi et al. 2016).

A (non-relativistic) Eulerian Vlasov–Maxwell solver was developed by Mangeney
et al. (2002). It was applied to various studies ranging from wave propagation in
magnetized plasmas (Califano and Lontano 2003), to the study of the nonlinear kinetic
regime of the Weibel instability (Califano et al. 2002). An off-spring of this solver is
the hybrid (kinetic ions, fluid electrons) Vlasov code (Valentini et al. 2007) used in
particular to tackle turbulence studies in either 2D3V (see, e.g., Cerri et al. 2017) and
3D3V (see, e.g., Cerri et al. 2018) geometries.

Another Eulerian Vlasov–Maxwell model was developed by Umeda et al. (2009)
and applied to the study of various instabilities, such as the Kelvin–Helmholtz insta-
bility (Umeda et al. 2014) or the collisionless Rayleigh–Taylor instability (Umeda and
Wada 2016).

The semi-Lagrangian method introduced by Sonnendrücker et al. (1999) (see also
Crouseilles et al. 2010) has also led to a new kind of Vlasov codes. As an example, a
relativistic semi-Lagrangian Vlasov–Maxwell solver (VLEM)was recently developed
by Sarrat et al. (2017). It was used to tackle problems related to streaming instabilities
in plasmas, such as the current Weibel-filamentation and two-stream instabilities; and
operates in 1D3V, 2D2V and 2D3V geometries.

3.5 Hybridmethods

In this approach thermal electrons are taken to be a massless, neutralizing and are
treated as a magnetized fluid. Ions (thermal or even non-thermal) are treated using a

35 The time-splitting technique separates advection in (real) space and velocity-space.
36 Other methods have been developed that take advantage of the existence of canonical invariants to solve
the Vlasov equation; see e.g., Liseikina et al. (2004), Inglebert et al. (2011).
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PIC approach. The advantage of this method is to eliminate Debye-scale physics while
still catching microscopic phenomena.

In hybrid codes, ion positions are advanced using the Boris pusher as in PIC codes
(see Sect. 3.3.1). Electron dynamics is the one of a massless fluid then

mene
dve
dt

= 0 = −ene
(

E + ve
c

× B − ∇. ¯̄Pe

)
. (32)

This combined with the Ampère law for a non-relativistic flow, hence neglecting the
displacement current leads to an equation for the electric field

E � −vi
c

× B − 1

ene
∇. ¯̄Pe − 1

4πqini
(∇ × B) × B, (33)

where ¯̄Pe is the electron pressure rank 2 tensor. This method will not be reviewed
here, the interested reader is invited to read recent references on the subject: Lipatov
(2002), Kunz et al. (2014).

We note here the case of the dHybrid code (Gargaté et al. 2007). This code is
explicit fully parallelized code and it uses MPI. dHybrid solves the dynamics of non-
thermal particles based on a PIC approach. The code has been used in the context
of particle acceleration and transport at collisionless shocks, some of its results are
presented in Sect. 4.1.

3.6 Solving Fokker–Planck problems

The Fokker–Planck equation (FPE) is one of the most important equation in kinetic
physics. It describes the evolution in the phase space of the particle distribution function
f (r, p, t) under the effect of a diffusion process with small increments in which
initial conditions are lost (a.k.a. a Markov process). In this review we are interested
in collisionless plasmas, in that case, particle diffusion results from the process of
scattering off plasma waves. However, note that FPEs are also well studied in the
context of collisional plasmas. We refer the interested reader to Wang et al. (2008) for
the description of numerical treatments of the collision operator.As is concerning high-
energy particles, the FPE describes processes which develop over scales explored by
these particles, it is also adapted to the study ofmacroscopic processes in astrophysical
plasmas detailed in Sect. 5. The interested reader can advantageously consult Risken
(1989) for an overview of the properties of the FPE.

For a system of energetic particles in a magnetic field oriented along the z axis, we
can write the FPE as (Schlickeiser 2002):

∂t f + vμ∂z f − εΩs∂φ f = 1

p2
∂x

[
p2
(
Dxx∂x f + a f

)]+ q(r, p, t) (34)

where the diffusion process runs over the variables: x, y, z, p, μ, φ, hence we have
25 diffusion coefficients Dxx ,37 and μ and φ are the particle pitch-angle cosine and

37 The Cartesian coordinates x, y, z mark here the position of the particle’s guiding center.

123



Multi-scale simulations of particle acceleration…

azimuthal gyration angle respectively. Here, particles of charge q and mass m are
relativistic (with speeds v � c) and gyrate around a magnetic field of strength B with
a gyrofrequency Ωs � c/rL. We note ε = q/sgn(q). The term a(p, r, t) describes
the momentum change of the particle either due to loss or acceleration and q(r, p, t)
represents particle injection and/or escape. Although it should be kept in mind that the
FPE is deduced from the more general Vlasov equation, we focus below on numerical
solutions of this equation. Often, in the context of CR physics, the FPE is not directly
solved but rather the convection-diffusion equation (CDE). The CDE results from the
former by an averaging procedure over φ and μ in the case fast scattering processes
build a gyrotropic and an isotropic distribution.

3.6.1 The Fokker–Planck equation

We start by studying 1D diffusion problems as is the case for stochastic acceleration.
In that case the FPE can be simplified as

∂t F(p, t) = 1

p2
∂p

[
p2
(
Dpp∂pF + a(p)F

)]− F

τesc
+ Q(p, t) . (35)

Here, the particle distribution F(p, t) = ∫
f (r, p, t)d3rdμdφ is averaged over the

space volume and is assumed to be isotropic (it fulfills the diffusion-convection limit)
anddiffusive escape is treated by themeans of an escape timescale τesc(p), the loss/gain
a(p, t) term is also averaged. This equation can be solved using finite difference
schemes (Park and Petrosian 1996).

Boundary conditions As stated by Park and Petrosian (1996) any boundary condition
which is a linear combination of F and F ′(p) = ∂pF is viable for Eq. (35) if the points
p1 and p2 at which they are taken fulfill 0 < p1 < p < p2 < ∞. So we end up with
two types of boundary conditions either with no particle F(p1) = F(p2) = 0 or with
no flux φ(p1) = φ(p2) = 0 at the boundaries, where φ(p) = −(p2DppF + a(p)F).
The choice of one condition with respect to the other depends on the specific problem
under investigation. A drawback of the no-particle condition is that it does not respect
the particle number conservation.

Numerical schemes A simple way to solve Eq. (35) is to use an explicit finite
difference method (FDM) with fluxes evaluated at grid midpoints, namely

Fn+1
j+1 − Fn

j

Δt
= − 1

p2j

(
φn
j+1/2 − φn

j−1/2

Δp

)

− Fn
j

τesc(p j )
+ Qn(p j ). (36)

Time is discretized asΔt = tn+1−tn andmomentum is discretized following a constant
logarithmic mesh where Δpj/pj= constant. We write Δpj = (pj+1 − pj−1)/2. The
fluxes are calculated atmidpoints defined as p j+1/2 = (p j+1+ p j )/2. The coefficients
entering in the flux calculation are evaluated as, e.g., a j+1/2 = (a(p j+1) + a(p j ))/2
instead of a direct evaluation at p j+1/2. For an explicit scheme the CFL condition (see
Sect. 5.2.1) Δt/Δp2j < p2j/Dpp,j usually produces prohibitively small time steps.
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Fig. 20 Time-dependent solutions of the FP problem ∂t F = ∂p(p3∂p F − p2F)− F + δ(p− p0)δ(t) over
a logarithmically-spaced mesh in momentum. The injection momentum is p0. Three different numerical
boundaries are compared: p1 = 10−2 and p2 = 102 (short-dashed lines); p1 = 10−2.5 and p2 = 102.5

(medium-dashed lines); p1 = 10−3 and p2 = 103 (long-dashed lines) The steady state numerical solutions
were obtained at t = 10 in normalized units. Image reproduced with permission from Park and Petrosian
(1996), copyright by AAS

Semi-implicit and implicit methods can be used to circumvent this problem; they are
obtained by changing n to n+1/2 and n+1 in the RHS of Eq. (36) respectively. These
methods lead to the derivation of a tridiagonal system of equations that can easily be
solved once the boundary conditions are selected. For a given class ofmethod, schemes
then differ by the way the flux is calculated. One efficient implicit method is due to
Chang and Cooper (1970) and a well-known semi-implicit calculation is the Crank–
Nicholson method (see Press et al. 2002). These methods are second order in time and
second order in momentum for a uniform grid and first order in momentum for a non-
uniformgrid. Park andPetrosian (1996) show that the no-flux condition and the implicit
Chang–Cooper scheme ensure positive solutions of 1D FP problems contrary to the
Crank–Nicholson method (see an example of a solution of a FP problem in Fig. 20).
While accounting for losses in φ(p) it is useful to adapt the time step to the dominant
loss timescale. Donnert and Brunetti (2014) use a time step Δt = 1/2 min(tloss(p j )),
where tloss(p) = a(p)/p.

A note on particle transport and stochastic acceleration in hot plasmas FDM are
widely used in CR physics but they are also used to solve radiative transfer problems
in hot plasmas which develop in corona or in jets associated with compact objects.
The radiative transfer in accretion disk corona can be treated in 1D assuming some
particular geometry (usually slab-type or spherical) for the source of high-energy
particles which allows to derive an escape probability and hence a simple expression
for τesc in Eq. (35). In this approach the coupled system of electron-positron plasma
and its associated photon field can be described by a set of FPEs. However, a major
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difficulty to simulate such plasma systems is that they involve non-local processes
in momentum.38 This is for instance the case for the Compton scattering process
(Nayakshin andMelia 1998). In that case, the fluxes are expressed in terms of integrals
over lepton and photon populations (Belmont et al. 2008; Vurm and Poutanen 2009;
Marcowith et al. 2013).39 Aside from Compton scattering, integrals also result from
the calculation of other processes: pair production and annihilation, Coulomb losses,
synchrotron losses. These codes solve the diffusion problem usually using Chang–
Cooper-type methods. However, as noticed by Belmont et al. (2008), the radiative
transfer problem requires a high accuracy in momentum to preserve a high level of
particle number and energy conservation. The Chang–Cooper method which is only
first order accurate on non-uniform grid needs to be modified using both grid center
and faces and calculating the momentum derivatives as ∂pF = (Fj+1/2 − Fj−1/2)/Δxj
and ∂2p F = (Fj+1 − Fj)/Δpj+1/2 − (Fj − Fj−1)/Δpj−1/2. The integral parts have
to be calculated using specific treatments. First, the different elements of the cross
sections are stored and then interpolated during the course of the runs. Then, boundary
conditions are different for the FP and the transfer parts. The transfer part has a wall-
type boundary condition which includes amodification of the differential cross section
[see Belmont et al. (2008) for details]. Finally, integrals used to calculate the Compton
process can be treated differently depending on the photon energy with respect to the
electron energy from a continuous process at low energy leading to a derivative term
and to a full integral calculation in the Klein–Nishina limit. Compton scattering of
photons involves the same kind of treatment and is applied depending on the electron
energy [see (Vurm and Poutanen 2009) for details].

Multi-variable FPE Astrophysical or spaceplasmasusually involvemulti-dimensional
diffusion-advection processes. The study of CR propagation in theMilkyWay requires
to account for several complex effects: CR spallation reactions, radioactive decay,
anisotropic diffusion with respect to the background magnetic field direction, etc.
Specific numerical tools have been developed to handle this complexity.40 Most of
CR transport codes usemulti-dimensional finite differencemethods, this is the case for
galprop and dragonwhich adopt a Crank–Nicholson method. In multi-dimensional
problems this method leads to a non-tridiagonal system of equations to solve. It is
solved usually adopting an iterative procedure like theGauss–Seidel relaxationmethod
(Press et al. 2002). The integration is adapted to the specific diffusion problem by start-
ing from a large time step and reducing it as the stationary solution is reached (Strong
and Moskalenko 1998). Both galprop and dragon codes also use an operator split-
ting technique to handle multi-dimensional diffusion problems (Press et al. 2002). The
technique of operator splitting consists in splitting the time integration in Eq. (35) or

38 Some processes are also in principle non-local in space, this is the case for instance of the inhomogeneous
synchro-Compton effect in jets, i.e., the Inverse Compton scattering of low energy photons generated by
synchrotron radiation by a population of relativistic electrons (see Ghisellini et al. 1985).
39 A version of such radiative transfer codes adapted to GRBs can be found in Vurm et al. (2011).
40 We point towards the corresponding code websites: dragon: https://github.com/cosmicrays, galprop:
https://galprop.stanford.edu/code.php, picard: http://astro-staff.uibk.ac.at/~kissmrbu/Picard.html Let us
also mention the semi-analytical tool USINE, https://dmaurin.gitlab.io/USINE/, where the FPE is solved
using a path integral method.
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its multi-dimensional generalization into a succession of simpler operations involving
N different operators L i, such that

∂t F(p, t) =
N∑

i=1

L iF(p, t). (37)

Each operator contributes to move the solution from Fn to Fn+1 as Fn+1 =∏N
i=1 LiFn where each finite difference operator solves a part of the numerical

problem. One difficulty with this method is that operator actions do not commute,
hence one usually has to proceed with trials with a guess of the correct solution
to select the correct operator ordering. The Dragon code designed in cylindrical
coordinates uses a series of operators associated to each relevant transport process.
For instance the operator associated with diffusion along galactic vertical height z is
Lz = Dzz∂

2
z F(z, r , p, t)+∂zDzz∂zF(z, r , p, t). Similarly other operators are derived

for diffusion along other space variable r (the galactic radius), momentum loss or
advection (Evoli et al. 2017). Then each derivative is treated using a Crank–Nicholson
scheme. The Picard code uses a different numerical approach as it first solves a sta-
tionary problem and also as the momentum evolution is treated using an integration
instead of a FDM (Kissmann 2014).

Multi-dimensional numerical solutions of FP problems is an active research field
with a rich variety of solvers based on threemain approaches: finite differencemethods
as we just discussed (FDM), finite element methods (FEM) or path integrals tech-
niques. For most of them they still wait to be applied in the context of astrophysical
or space plasma research.

3.6.2 Stochastic differential equations

Stochastic differential equations or SDEs are a very efficient way to solve complex
multi-dimensional Fokker–Planck problemswith simple numerical schemes, although
SDE schemes can become themselves rather complex. We invite the interested reader
to consult some monographs cited in Strauss and Effenberger (2017). These authors
provide an overview of the use of SDE in the fields of DSA, CR transport in the ISM
and space plasmas. The interested reader can consult this complete review to what
concerns space plasmas problems. Below we bring a complementary discussion on
the use of SDE in the context of shock acceleration. The intrinsic idea behind SDE
is to derive a set of equations of motion which reproduce the random walk in each of
the stochastic variables which describe the phase space evolution of a particle. Kruells
and Achterberg (1994) demonstrate the equivalence between a FPE and a set of SDEs.
The simplest SDE scheme is the Ito first order explicit scheme. As an example let us
write the SDE for a 1D random walk in a space x direction of a particle represented
by a diffusion coefficient D(x, t). Let us assume also that the particle is advected with
a speed u(x, t). The first order forward explicit Ito scheme then writes the increment
of the position of the particle within a time step Δt as
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Δx =
(
u(x, t) + ∂D(x, t)

∂x

)
Δt + ξx

√
2D(x, t)Δt = Δxadv + ξxΔxdiff . (38)

We note V (x, t) = u(x, t) + ∂D(x, t)/∂x . This equation shows that the particle path
has two terms, the first term is deterministic and reproduces a forward Euler increment
due to advection. The second term is stochastic and describes a diffusion as Δx ∝
(Δt)1/2. The term ξx is a random variable usually sampled over a Gaussian distribution
with 0 mean and variance 1. The particle distribution can then be reconstructed using
a large number of particles. The method is simple; however, it can suffer from noise in
parts of the phase space sampled by only a few particles. The latter issue can be partly
handled using a particle-splitting scheme (Yamazaki et al. 2015) where the weight
attributed to a particle is split over several particles when reaching a region of the
phase space with low statistics, as can be the case in the energy space if the particle
distribution has an exponential cut-off.

More generally, the diffusive term in Eq. (38) is a Wiener processesW (t, x) which
models the Brownian motion of a particle in an homogeneous medium, we write
dW (x, t)/dt = ξx. More complex SDE schemes can be interesting to use if neces-
sary, like schemes backward in time in order to start from a known distribution and
reconstruct the particle injection at sources. This way has the advantage to improve
statistics if we want to have information at a particular location, corresponding for
instance to a satellite. Higher order schemes in space and time are possible by doing a
Taylor expansion of both advection and stochastic parts of Eq. (38). Schemes stable in
time can be obtained by searching advection and diffusive terms at a time t ′ = t+θΔt ,
where θ is to be taken between 0 and 1 (Smith and Gardiner 1989).

DSA with SDEs The study of shock acceleration using SDEs requires some care in
fixing the time stepΔt (Kruells andAchterberg 1994). In shock acceleration studies the
shock front is usually obtained from a fluid code, so has a finite widthΔxsh traced by a
few grid cells. The condition over the time step to describe the DSA process properly is
then ΔXadv < Δxsh < ΔXdiff . The first inequality allows particles to stay around the
shock to get accelerated whereas the second inequality allows the particle to sample
the up- and downstream media correctly. However, if the diffusion coefficient is an
increasing function of the particle energy, i.e., ∂D(x, E, t)/∂E > 0 it is possible tofind
a threshold energy E∗ for which the condition Δxsh = ΔXdiff(E∗) is fulfilled (Casse
and Marcowith 2005; Schure et al. 2010). Below E∗ the shock acceleration process
can not be properly treated. One possibility to address this problem is to sharpen
artificially the shock (Casse and Marcowith 2003). This method can be easily handled
in 1D (Marcowith and Casse 2010) but is difficult to construct in 2 or 3D as the shock
front starts to corrugate. Another difficulty is that at an non-parallel shock, the MHD
Rankine–Hugoniot conditions induce a discontinuous diffusion coefficient up- and
downstream. Quite generally the diffusion transition at the shock can be decomposed
into a continuous component Dc and a jump at the shock front ΔD = Du − Dd
expressed in terms of the up- and downstream diffusion coefficients. The diffusion
coefficient can then be written as

D(x) = Dc(x) + ΔDδ(x − xsh), (39)
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where xsh is the shock position (Marcowith andCasse 2010). Zhang (2000) proposes to
account for the discontinuous part using a skewed Brownian motion which introduces
an asymmetric shock crossing probability. To proceed we introduce a new variable
x̃ = xζ(x) where

ζ(x) =
⎧
⎨

⎩

ε x < xsh
1/2 x = xsh
(1 − ε) x > xsh,

(40)

with ε = Du(xsh)/(Dd(xsh)+Du(xsh)).Achterberg andSchure (2011) propose amore
general scheme adapted to shock configuration with strong gradients in the diffusion
coefficient. This situation occurs especially upstream, in the shock precursor, in case
of strong magnetic field amplification. The scheme involves a second-order accuracy
predictor-correctormethod [see Section 4 inAchterberg andSchure (2011) for details].
The scheme is however much slower than the simple Ito scheme and it is necessary to
switch from one scheme to the other in order to save simulation resources.

One also has to account for the particle increment in energy or momentum at each
shock crossing. It is also possible to use an explicit Ito scheme for CR energy or
momentum similarly to Eq. (38). If stochastic acceleration can be neglected, Mar-
cowith and Kirk (1999) introduce an implicit scheme:

Δ ln(p) = −
(
aloss p + 1

3

du

dx

)
Δt, (41)

where aloss is a loss rate and the second term accounts for the increase in particle
momentum from shock acceleration. The implicit scheme rewrites the particle position
with time as a linear interpolation x = (Δx/Δt)t . Eq. (41) has the solution

ln(p(t ′)/p(t)) = − ln(FI + Ls), (42)

where FI = exp((ΔV /3)Δt/Δx) gives the momentum increment by DSA and

Ls = as
Δt

Δx
p
∫ x(t ′)

x(t)
exp

(
ΔV

3

Δt

Δx

)
dx ′, (43)

where Ls accounts for the effect of losses. The increment Δx is calculated from the
SDE in x, which is evaluated at t ′ = t + Δt . The new momentum is obtained from
Eq. (42) calculated using x(t ′) = x(t + Δt). Figure 21 gives the shock solution for
electrons including synchrotron losses.

The SDEmethod has proven to be very efficient in calculating particle acceleration
by DSA at non-relativistic shocks in 1D and even in 2.5D in the context of jets (Casse
andMarcowith 2003, 2005). Themethod can in principle be coupled toMHDsolutions
by sub-cycling theMHD timestep (see Sect. 5.5). To our knowledge no scheme has yet
included CR back-reaction over the thermal plasma, but solutions proposed by other
Monte-Carlo models (see Sect. 3.6.3) should be applicable to this particular technique.
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Fig. 21 Shock electron distribution including synchrotron losses. Particles are injected at momentum p0
for as,u = 10, as,d = 1 and a compression ratio r = 4 compared to the analytical solution of Webb et al.
(1984). The solid line shows a solution f (p) ∝ p−4. Image reproduced with permission from Marcowith
and Kirk (1999), copyright by ESO

Relativistic shocks and SDEs In the context of relativistic shock two difficulties
emerge if one wants to apply the SDE method to the problem of particle acceleration
because the shock is moving almost as fast as the particles. First, a simple scheme as
in Eq. (38) may lead to a violation of the causality principle, because over the diffusive
step the particle speedΔx/Δt can exceed the speed of light. Second, DSA is based on
the diffusive approximation which requires the ratio of the particle speed to the shock
speed to be small. Achterberg et al. (2001) evaluate particle acceleration in the shock
rest frame but simulate the spatial diffusion process from the pitch-angle scattering
process and hence reconstruct particle trajectories ([see also Bednarz and Ostrowski
1998)]. These works retrieve the shock particle distribution produced by scattering by
an isotropic turbulence f (p) ∝ p−4.2 (see Sect. 2.4).

3.6.3 Simulating shock acceleration using a Monte-Carlo method

Ellison and Eichler (1984), Jones and Ellison (1991) proposed a Monte-Carlo method
to simulate particle pitch-angle scattering around non-relativistic shocks. The particle
mean free path is assumed to scale as a function of the particle rigidity as λ ∝ Ra/ρ,
where R = pc/q is the particle rigidity and ρ is the fluidmass density. Themomentum
vector follows a randomwalkwhich produces a variation of the particle pitch-angle δα.
The scattering is assumed to be elastic and isotropic in the fluid rest frame. The particle
are injected upstream from the thermal plasma. The CR pressure is reconstructed at
different distances from the shock front; particle-splitting technique is used in order
to improve statistics at high energies. The CR pressure term is then included in the
Rankine–Hugoniot conditions to account forCRbackreactionover the shock solutions.
Finally, a far escape boundary is adopted to calculate the escaping energy flux carried
by the particles. An example of results can be seen in Fig. 43, compared with two
other methods discussed elsewhere in this review.
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Recently the technique has been used to study the effect of magnetic field amplifi-
cation in NLDSA at non-relativistic SNR shocks (Vladimirov et al. 2006), as well as
acceleration at relativistic shocks in GRB afterglows (Warren et al. 2015).

4 Small andmeso-scale numerical particle acceleration studies

The understanding of the initial stages of particle acceleration in astrophysical plasma
relies on the non-linear interplay between the particle distribution function and elec-
tromagnetic fields. The inherent non-linearity of the process prevents the development
of robust analyticmodels, unless numerical simulations provide basic guidelines of the
behavior of the system. This is especially true when particles produce the turbulence
responsible for their self-confinement and acceleration around the shock front. The
improvement in the computation power during last decades allowed for significant
progresses in this field of research using computationally expensive, yet considered
as ab-initio, PIC simulations. Despite the fact that the astrophysical sources space and
time scales are out of reach of PIC simulations, a large number of fundamental ques-
tions have been addressed and, sometimes, answers provided using this technique. In
this section, we review a number of works that investigate the question of particle
acceleration efficiency at shocks (Sect. 4.1) and in magnetic reconnection (Sect. 4.2)
processes, using PIC simulations. Before we further proceed, we first introduce some
vocabulary concerning the different category of shocks investigated with the help of
PIC simulations.

Collisionless shocks classes Collisionless shocks are mediated by collective plasma
effects (Sagdeev 1966). In this sense, more refined classification is required then for
hydrodynamical/MHD shocks (weak, strong, radiative, fast, slow, parallel, oblique,
perpendicular)where the shock is expected to bemediated bybinary collisions between
particles. Seminal (Sagdeev 1966) as well as recent studies (e.g., Stockem et al.
2014b, a; Bret et al. 2014; Ruyer et al. 2016) considered and demonstrated the dom-
inant role of small scale plasma instabilities in forming and mediating collisionless
shocks. Different types of instabilities are dominant depending of plasma beta, com-
position, shock Mach number and upstream magnetic field orientation with respect
to the shock propagation direction. This translates into a bestiary of different plasma
instabilities at play when describing the shock structure. Commonly, the separation
into electrostatic, Weibel-mediated and magnetised shocks is done. Non-relativistic,
weakly magnetised and low-Mach number shocks are believed to bemediated by elec-
trostatic effects (two-stream, Buneman instabilities). With increasing Mach number
(Ma 	 1) or going into relativistic regime, weakly magnetised shocks are mediated
by Weibel-filamentation (Bret et al. 2014; Huntington et al. 2015). Strongly magne-
tised shocks are typically mediated by coherent magnetic reflection of particles on the
shock barrier. In this case the shock width is of the order of ion gyroradius.

4.1 Shock acceleration numerical experiments: PIC simulations

The short chronological version is the following. In the pioneering studies 1D3Vgeom-
etry was adopted because of numerical cost (e.g., Biskamp and Welter 1972). Several
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physical processes were evidenced in this way, such as shock front self-reformation
(e.g., Lembege andDawson 1987; Lembege andSavoini 1992) or positron acceleration
through resonant absorption of ion-cyclotron waves (Hoshino et al. 1992). However,
this configuration was found to be too restrictive to trigger the Fermi process inmost of
cases, especially for quasi-perpendicular shocks. Next, multidimensional simulations
were long enough to form the shock, but no evidence of first-order Fermi accelera-
tion was found (Frederiksen et al. 2004; Hededal and Nishikawa 2005; Kato 2007;
Dieckmann et al. 2008). This raised the question whether shocks can accelerate par-
ticles self-consistently or some external source of turbulence was necessary. More
recent studies were able to form the shock and follow its propagation long enough
to allow several Fermi cycles and produce extended power-law particle distribution
self-consistently (e.g., Spitkovsky 2008b; Martins et al. 2009; Sironi and Spitkovsky
2011; Plotnikov et al. 2018; Crumley et al. 2019; Lemoine et al. 2019b). Yet, even in
the longest simulations the power-law spans no more than two orders of magnitude in
particle energy, reflecting the challenging nature for fully kinetic simulations to reach
astrophysical space and timescales.

4.1.1 Ultra-relativistic shocks

The ultra-relativistic regime is particularly interesting for several reasons.41 (i) Energy
gain per cycle is large,ΔE/E � 2 instead ofΔE/E = βsh � 1 in the non-relativistic
regime and (ii) Scattering time must be short, otherwise particles get advected within
the downstream flow as the shock front recedes rapidly (the shock front moves away
with velocity equal c/3 in the frame where the downstream plasma is at rest). These
two reasons mean that the build-up of the non-thermal power law is faster in the ultra-
relativistic regime than in the non-relativistic case. Hence, one can diagnose whether
relativistic shock accelerate particles efficiently or not for a given parameter regime on
a timescale of several 103 ω−1

pe (given upstream flow magnetization σ , magnetic field
inclination with respect to the shock propagation direction and plasma composition).
On the other hand, fast and efficient particle acceleration prompted early Monte-Carlo
and semi-analytical studies to suggest that relativistic shocks are viable candidates for
the acceleration of Ultra High Energy CRs (UHECRs).

For the reasons outlined just before, the demonstration of the first order Fermi
operability in PIC simulations was firstly done in the regime of relativistic shocks by
Spitkovsky (2008b). In the non-relativistic case it was done several years later, as it
requires much longer simulation time (e.g., Kato 2015; Park et al. 2015).

We now turn to the discussion of different studies that used PIC simulations to
understand the physics of ultra-relativistic shocks. The studies go from 1D to 3D, deal
with different plasma compositions, different magnetic field geometries and magne-
tization. Table 1 provides a (non-exhaustive) list of such studies and presents some
relevant numerical parameters that they used. Below we discuss different type of
micro-instabilities which are reviewed in Marcowith et al. (2016), Bret (2009).

41 See also the recent review article by Vanthieghem et al. (2020) on the physics of weakly magnetized
shocks.
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Table 1 Table of different PIC studies of relativistic shocks, referenced by the authors names and publication
dates

References Compos. Dim. mi/me σ θ◦
B

Langdon et al. (1988) e− − e+ 1D 1 [0.1; 13.3] 90

Gallant et al. (1992) e− − e+ 1D 1 [3 · 10−5; 5] 90

Hoshino et al. (1992) e− − e+ − i 1D 20 [5 · 10−3; 0.5] 90

Nishikawa et al. (2003) e− − i 3D 20 0 –

Frederiksen et al. (2004) e− − i 3D 16 0 –

Hededal et al. (2004) e− − i 3D 16 0 –

Spitkovsky (2005) e− − e+ 3D 1 [0; 0.1] 90

Lyubarsky (2006) e− − i 1D 50 3 · 10−3 90

Kato (2007) e− − e+ 2D 1 0 –

Hoshino (2008) e− − i 1D 50 2 · 10−3 90

Dieckmann et al. (2008) e− − i 1D,2D 400 2.5 · 10−3 � 10

Chang et al. (2008) e− − e+ 2D 1 0 –

Spitkovsky (2008a) e− − e+ 2D 1 0 –

Spitkovsky (2008b) e− − i 2D ≤ 103 0 –

Keshet et al. (2009) e− − e+ 2D 1 0 –

Martins et al. (2009) e− − i 2D 32 0 –

Sironi and Spitkovsky (2009) e− − e+ 2D 1 0.1 [0; 90]
Sironi and Spitkovsky (2011) e− − i 2D,3D 16 [10−5; 0.1] [0; 90]
Haugbølle (2011) e− − i 2D,3D 16 0 –

Sironi et al. (2013) e− − e+/i 2D,3D 1& 25 [0; 0.1] 90

Bret et al. (2013) e− − e+ 2D 1 0 –

Ardaneh et al. (2015) e− − i 3D 16 0 –

Plotnikov et al. (2018) e− − e+ 2D 1 [0; 5] 90

Crumley et al. (2019) e− − i 2D 64 0.007 10 & 55

Mass ratio values indicated with bold font indicate that larger values were also explored

1D studies The first exploration of relativistic shocks was motivated by the study
of the termination shock physics in Pulsar Wind Nebulae. Langdon et al. (1988) per-
formed 1D PIC simulations of perpendicular magnetized shocks in pair plasma with
upstream Lorentz factors γ0 = 20 and 40 and Alfvénic Mach numbers going from 24
to 154. The size of the simulation box was about 10 Larmor radii for σ = 0.1 and
about 100 Larmor radii for σ = 13.3. The shock front formed by magnetic reflec-
tion between the incoming and wall-reflected plasma. Well-formed shocks exhibited
a soliton-like structure where most of dissipation occurs through maser synchrotron
instability. Strong electromagnetic precursor emission was observed in these shocks
but no particle acceleration. More systematic study was performed by Gallant et al.
(1992) where electromagnetic precursor energy was systematically derived. The most
efficient precursor emission was observed for σ ∼ 0.1 where it carries about 10%
of the incoming kinetic energy. Based on these results, the authors concluded that
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magnetized perpendicular relativistic shocks in pair plasma are not efficient particle
accelerators. An interesting particle accelerationmechanismwas observed byHoshino
et al. (1992) in the casewhere a small fraction of the plasma are ions (electron-positron-
ion composition). In this case the shock structure is modified by ions, even if their
number fraction is small compared to positrons. Magnetosonic waves emitted by ions
are resonantly absorbed by upstream positrons that produces a non-thermal tail in
positron distribution function. Electrons and ions distributions are still Maxwellian.

Concerning the studies of shocks in electron-ion plasma using 1D simula-
tions, Lyubarsky (2006) and Hoshino (2008) explored mildly magnetized regimes.
Lyubarsky explored the effect of the electromagnetic precursor on the incoming elec-
trons and found that the relativistic oscillation of electrons in the field of the wave
results in temperature equipartition between electrons and ions, once they reach down-
stream medium. The theoretical model was confirmed by a 1D PIC simulation with
the mass fraction mi/me = 200, upstream Lorentz factor γ0 = 50, upstream magne-
tization σ = 0.003 and 0.6. No supra-thermal tail in electron distribution was found.
This finding was contrasted by the study of Hoshino (2008) where it was found that the
precursor wave produces a non-thermal tail in ion and electron distribution functions.
The mechanism for particle acceleration is expected to be of wakefield nature.

Early multi-dimensional studies The opening of additional degrees of freedom
in directions transverse to the shock propagation is essential for relativistic shock
physics. For instance, the dominant instability in low-σ regime, Weibel-filamentation,
is artificially suppressed in 1D because it is only triggered by a non-zero k⊥, where
k⊥ is the transverse wavenumber to the beam propagation direction. This regime is
particularly relevant for astrophysics (for instance in the case of the GRB or AGN
studies of the propagation of the forward shock) because the magnetization in the
ISM is σISM ∼ 5 10−11B2

μG/ncm−3 , where the magnetic field strength is in units of

μGauss and the ambient density in units of cm−3. Consequently, the observation of fil-
amentation and concomitant trigger of the Fermi process relies on multi-dimensional
configuration of the simulation. This restriction is less severe in non-relativistic case
for quasi-parallel shocks, where non-resonant streaming or Bell instability can be trig-
gered in 1D and sustains particle scattering (or mirroring) on both sides of the shock
front.

Additional step from 2D to 3D is important to correctly deal with particle scattering
properties as the topology of the turbulent magnetic field is different.

The early multi-dimensional exploration of unmagnetized relativistic shocks was
done with full 3D3V but short simulations. Nishikawa et al. (2003) simulated a rel-
ativistic jet with �jet = 5 propagating into an unmagnetized electron-ion plasma
at rest. These simulations were done using Tristan code (Buneman 1993). The
simulation box was small [15 × 8 × 8 × 15](c/ωpe)

3 but still large enough to cap-
ture the electron-scale Weibel-filamentation instability and the simulation time was
Tsim = 23.4ω−1

pe = 5.23ω−1
pi . Capturing only the initial stage (shock not formed)

the authors still demonstrated the importance of the Weibel-filamentation instability.
Frederiksen et al. (2004) performed 3D simulation of unmagnetized colliding plasma
clouds with density ratio ninj/n0 = 3, relative Lorentz factor �jet = 3 and ion to

123



A. Marcowith et al.

electron mass ratio mi/me = 16. The simulation box was larger Lx × Ly × Lz =
[200× 200× 800](c/ωpe)

3 = [10× 10× 40](c/ωpi)
3 and the simulation time longer

Tsim = 480ω−1
pe = 120ω−1

pi . The main result of this work is that the initial fila-
mentation grows from electron to ion scales. However, the simulation was just long
enough to reach the ionic scale, the saturation was just reached and the shock was not
completely formed. Hededal and Nishikawa (2005) continue in the same direction by
producing 3D simulation with similar parameters but longer time Tsim = 360ω−1

pi .
The authors observed an interesting electron acceleration mechanism when electrons
cross the ionic current channels. This produced a non-thermal tail in the electron dis-
tribution function dN/dE ∝ E−2.7. However, here again the shock was not fully
formed because downstream ion distribution was still far from isotropy. The same
electron energization mechanism was later found by Ardaneh et al. (2015), who stud-
ied the jet-ambient medium interaction by means of 3D simulations. These authors
suggested that electrons can also be pre-accelerated by SSA mechanism during the
shock formation.

Spitkovsky (2005) considered a pure e− − e+ plasma where there is no scale
separation. In this way the typical shock formation and evolution time is much shorter
than for electron-ion plasma.Differentmagnetizationswere exploredσ ∈ [0, 0.1]with
the relative Lorentz factor γ0 = 15, in 3D3V configuration. The shock was triggered
by reflection of incoming flow on a conducting wall. In this way, the interaction of
wall-reflected and incomingflows produces the shock [simulation frame=downstream
rest frame]. The box size was similar to previous studies [200 × 40 × 40](c/ωpe)

3.
The shock was formed as the downstream plasma reached the expected Rankine–
Hugoniot jump conditions and the distribution function isotropized in the overlap
region. As previously, for the unmagnetized case σ = 0 the shock is mediated by
Weibel-filamentation but strongly magnetized shock σ = 0.1 has a very different
structure shaped by the perturbation of the upstream magnetic field: the incoming
flow is coherently reflected on the magnetic barrier at the shock front position. The
shock is then mediated by magnetic reflection. In all cases the author did not find
evidence of non-thermal part in particle distribution that suggested that the acceleration
is either slow to setup or not present at all. Very similar conclusions were found by
Kato (2007) where 2D simulations of a shock with γ0 = 2.24 in pair plasma were
performed. This study demonstrated that the small scale magnetic field fluctuations,
self consistently produced by Weibel-filamentation, is able to mediate unmagnetized
collisionless shocks. The ratio of magnetic energy to the incoming kinetic energy of
the upstream flow, ξB = δB2/(4πγ 2

shρc
2), peaks at the shock front (ξB = 0.14) where

the incoming mono-directional flow is isotropized and rapidly decreases downstream
by phase-mixing.

Recent multi-dimensional studies The main difference with the early studies is
(i) full formation of pair and electron-ion shocks and (ii) the realization of efficient
particle acceleration through first-order Fermi process in a self-consistent way by
following the evolution of shocks on longer timescale.

Chang et al. (2008) addressed the question of the fate of the magnetic turbulence
downstream of relativistic unmagnetized shock in pair plasma. The authors used the
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same code as in Spitkovsky (2005) (TRISTAN-MP) with relatively long simulation
time Tsim = 3500ω−1

p , where ωp is the total plasma frequency. As expected, the
unmagnetized shock is mediated by Weibel-filamentation in the precursor. The fila-
mentary magnetic field in the precursor becomes almost isotropic in the downstream
medium once the filaments break at the shock front. The coherence scale of the field
just behind the front is small �c ∼ 10 c/ωp but grows with increasing distance from
the shock front downstream. At the same time magnetic field intensity is found to
decrease rapidly. The authors compared the simulations with an analytic model where
magnetic field decreases by linear response of the plasma. The intensity is predicted to
decrease as ξB ∝ δB2/8π ∝ (xfront − x)−q , with q = 2/3. The simulations suggested
however that q = 1 close to the front located at xfront and becomes closer to 2/3 far
from the shock front. Due to numerical noise in PIC simulations at finite time of the
simulations it is still not clear whether the field strength drops to 0 far from the shock,
on macroscopic scales.

Thework of Spitkovsky (2008b) presented the first self-consistent demonstration of
first-order Fermi process in shocks. The same code as in Spitkovsky (2005) was used,
but in 2D configuration for an unmagnetized pair plasma with upstream Lorentz factor
of γ0 = 15. The simulation time extended up to Tmax = 104 ω−1

p and the box size was

[104 × 400](c/ωp)
2. In the intermediate times the shock structure is identical to Kato

(2007) and Chang et al. (2008). At late time, a supplementary population of particles
builds up as a small fraction of particles in the bulk downstreamplasma is able to scatter
back into upstream and participate in a standard DSA (in the relativistic regime). The
energy gain per cycle is consistent with the analytic prediction ΔE/E � 1. The non-
thermal population carries typically 1% by number and 10% energy fraction of the
total incoming plasma (i.e., the ratio of non-thermal electron energy to the total is
εe ∼ 0.1).

Spitkovsky (2008a) presented the first study of electron-ion relativistic shocks
where the shock is fully formed. Several mass ratios were explored mi/me =
[16, 30, 100, 500, 1000] and the upstreamplasmawas unmagnetized. Themost impor-
tant result of this study is that electrons are brought to sub-equipartition with ions
during their crossing of the precursor where they are substantially heated inside
the ionic filamentary structures. In the downstream medium one gets Te � Ti =
(γ0/3)mpc2. This result implies an empiric similarity between shocks in pair plasma
and in electron-ion plasma because the relativistic mass of particles in the downstream
medium is equal. The simulations where still too short to observe the formation of a
non-thermal tail in particle distributions.

Keshet et al. (2009) addressed the long term evolution of σ = 0 shocks in pair
plasma by performing the longest possible simulations allowed by numerical stability.
The simulation box was [63000× 1024](c/ωpe)

2 and the simulation time was Tsim =
12, 600ω−1

pe . They demonstrated that, as particles accelerate to larger energies with
time, the precursor size increases and the width of the zone filled with magnetic
turbulence increases both upstream and downstream. No convergence was reached,
which leaves the question of long-term evolution open.

Martins et al. (2009), bymeans of 2DPIC simulationswith theOsiris code, demon-
strated that DSA works in electron-ion unmagnetized plasma. The mechanism is very
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similar to the pair plasma case since electrons are at sub-equipartition with ions in the
downstream medium.

The influence of magnetic field orientation with respect to the shock normal in
strongly magnetized relativistic shocks (σ = 0.1 and γ0 = 15) was studied by Sironi
and Spitkovsky (2009) in pair plasma and by Sironi and Spitkovsky (2011) in electron-
ion plasma, using 2D and 3D PIC simulations. These works provide a first survey
of parameter space and show in which conditions relativistic shocks are efficient
accelerators or not. Even if relativistic shocks are known to be generically quasi-
perpendicular, the magnetic field inclination parameter, θB , is important for the shock
physics. The very special case of quasi-parallel (or subluminal) shocks, even if very
rare, is interesting as it shows very different behavior. In all cases, simulations were
carried out for long enough time to form the shock and seewhether particle acceleration
is present or not. For strongly magnetized shocks (σ = 0.1) the authors demonstrate
an important difference between sub-luminal and super-luminal shocks in terms of
structure and particle acceleration efficiency. In parallel shocks, the relativistic version
of Bell instability is triggered and sustains an efficient DSA process. In oblique, but
still sub-luminal, shocks an important contribution from the SDA mechanism was
observed in competition with standard DSA. This contribution comes from the fact
that the upstream plasma carries a motional electric field that can energize particles
when they are reflected on the shock front. Consequently, the power-law slope of
the non-thermal particle distribution function, where dN/dE ∝ E−α , is not equal to
the standard prediction but varies between 2.2 and 2.8. In superluminal configuration
these authors did not find any particle acceleration. In this case shocks are mediated
by the emission of semi-coherent electromagnetic wave from the shock front.

In order to illustrate the output fromPIC simulations of shocks, in Fig. 22we present
the structure of perpendicular (θB = 90◦) relativistic shock in pair plasma for mildly
magnetized case σ = 2×10−3, obtained with the PIC code SMILEI. This structure is
similar to the one found by Sironi and Spitkovsky (2009) for superluminal shocks or,
more closely, to the mildly magnetized case in Sironi et al. (2013). The magnetization
is chosen so that particle acceleration is efficient but maximal energy is limited by the
precursor size being of the order of the Larmor radius of incoming particles RL,0 =
γ0mec2/(eB0): γmax ∼ 20γ0. Panels (a) and (b) present the electron density in the
simulation plane and the transversely averaged profile, respectively. The shock front
position is delimited by the vertical dashed line and the front propagates from the
right to the left side with a velocity υsh|d � 0.5c as measured in the downstream
(simulation) frame. Ahead of the shock front oblique filamentary density structures
emerge as a result of the interaction between the incoming flow and the cloud of
accelerated particles. This region defines the shock precursor. Panels (c) and (d) show
the longitudinal phase space x − ux and transverse phase space x − uy , respectively.
The transition at the shock front is clearly seen at the position where the flow becomes
isotropic and hot. The cloud of energetic particles ahead of the shock front corresponds
to the accelerated population. Finally, panels (e) and (f) present the particle distribution
function in energy around the shock front and far downstream, respectively. Particle
acceleration operatesmainly around the shock front, while far downstreamdistribution
exhibits a Maxwellian part and the start of non-thermal tail at the highest energies.
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Fig. 22 Structure of a relativistic perpendicular shock in a pair plasma, at the simulation time tωp = 500,
obtained using 2D3V PIC code Smilei. The Lorentz factor of the upstream incoming flow is γ0 = 30 and
the upstream plasma magnetization is σ = 2 × 10−3. a The electron number density in the simulation
plane. b The transversely averaged electron density normalized to the upstream value. c, d The longitudinal
phase space x − ux and transverse phase space x − uy , respectively. e, f Present the particle distribution
function in energy around the shock front and far downstream

Haugbølle (2011) explored the differences in the structure of unmagnetized
electron-ion shocks between 2D and 3D simulations. While very similar, some quan-
titative differences emerged in 3D simulations: the cross shock electrostatic field is
slightly larger than in 2D, magnetic energy density in the shock transition region is
smaller and the index of the power-law tail is closer to 2.2, instead of 2.4 in 2D. The
latter is more consistent with analytical expectation (e.g., Achterberg et al. 2001).

Maximal energy of accelerated particles in perpendicular shocks was investigated
by Sironi et al. (2013) bymeans of 2D and 3D long-term simulations. Both pair plasma
and electron-ion plasma were explored for a range of magnetizations from unmagne-
tized case σ = 0 to strongly magnetized σ = 0.1 and for different Lorentz factors of
the upstream flow (γ0 = [3, 240]). The simulation box transverse size was 100 c/ωpi
in electron-positron case and 25 c/ωpi in electron-ion case, allowing to capture at least
several filaments whenWeibel-filamentation mediates the shock. It was found that the
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Fig. 23 Dependence of the structure of relativistic perpendicular shocks in a pair plasma on the flow
magnetization σ , at the simulation time tωp = 900. Five representative cases are shown, from top to

bottom, σ = 8× 10−6, 6× 10−5, 4× 10−4, 3× 10−3 and 2× 10−3. The left column shows the absolute
value of the transverse magnetic field increment and the right column shows the longitudinal x − px phase
space distribution in the shock transition region. Images adapted from Plotnikov et al. (2018)

maximum particle energy increases in time as Emax ∝ t1/2 for both electron-positron
and electron-ion shocks. This result emerges from small-angle scattering regime of
the accelerated particles in the self-excited micro-turbulence, where one expects the
spatial diffusion coefficient to scale as D ∝ E2. The other important result of Sironi
et al. (2013) study is evidencing the critical magnetization abovewhich relativistic per-
pendicular shocks are not accelerating particles. For electron-positron composition the
critical magnetization value is σcrit ≈ 3× 10−3 and for electron-ion composition it is
σcrit ≈ 3×10−5.Weaklymagnetized shocks with σ < σcrit were found to bemediated
beWeibel-filamentation that generates strong small-scalemagnetic field in the vicinity
of the front. In this regime DSA is efficient, with the maximum particle energy scaling
as Emax ∝ σ−1/4, and a fraction of energy transmitted to the supra-thermal particles
ξCR ∼ 10%. On the other side, for σ > σcrit DSA is inhibited as the shock structure
is no longer dominated by the filamentation instability.

Bret et al. (2014) studied the shock formation mechanism in the unmagnetized
σ = 0 case for pair plasma. An analytical model was developed, based on the growth
and saturation time of the Weibel-filamentation instability. The formation time is
estimated as amultiple of the instability e-folding time, 3τsat. At saturation, the density
in the overlap region is 2, then the phase of density accumulation up to Rankine–
Hugoniot conditions is expected to be linear in time as the incoming plasma supplies
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the downstream region. The analytic model is then compared with 2D PIC simulation
obtaining a reasonably good agreement.

Using 2D simulations, Plotnikov et al. (2018) provided a more systematic inves-
tigation over σ than previously done, from unmagnetized to strongly magnetized
shocks. Two different PIC codes were used, Finite Difference Time Domain (FDTD)
and pseudo-spectral. Shock formation time, jump conditions, shock structure transi-
tion from low-σ to high-σ were investigated. The shock structure evolution for five
different values of σ is presented in Fig. 23. It shows the gradual transition from fil-
amentation mediated shocks (σ < 10−3), where particle acceleration is efficient, to
magnetic reflection-shaped shocks (σ > 10−2) where particle acceleration is inhib-
ited, confirming the findings of Sironi et al. (2013). The shock formation time was
found to be significantly longer than predicted by Bret et al. (2014). This points out
the importance of other physical process than only saturation of Weibel-filamentation
instability. For example, the studies of Vanthieghem et al. (2018), Ruyer and Fiuza
(2018) demonstrate a dominant role of the drift-kink instability in the non-linear phase
during which the shock front really forms. The particular focus of the study of Plot-
nikov et al. (2018)was on particle scattering properties, directly extracted by following
self-consistent particle dynamics. The results demonstrated that the particle diffusion
coefficient scales as D = 〈Δx2〉/2Δt ∝ E2 in weakly magnetized shocks, which jus-
tifies the increase in particle maximum energy of accelerated particles as γmax ∝ √

t ,
evidenced by Sironi et al. (2013). In moderately magnetized shocks, the diffusion
coefficient is modified by the presence of the ordered component that imposes a satu-
ration of the maximum particle energy once particles get advected downstream under
the effect of regular gyration.

4.1.2 Mildly relativistic shocks

The current consensus is that ultra-relativistic shocks are not very efficient particle
accelerators for particle energies above PeV energies, mainly because of the quadratic
dependence of the spatial diffusion coefficient on the particle energy, D ∝ E2. In
the non-relativistic case, supernova remnants are considered to accelerate protons
up to several hundreds of TeV or a few PeV at best and iron nuclei at energies 26
times higher. The question is then: how do the particles get accelerated to 1020 eV,
maximal energyofCRs asmeasured atEarth?Oneof the promising scenarios considers
mildly relativistic shocks as viable candidates (for example, trans-relativistic phases
of supernova explosions or internal shocks in GRBs and jets of the AGNs). The reason
is that the energy gain approaches the relativistic limit (ΔE/E � 1 per cycle), while
a number of intrinsic limitations of the ultra-relativistic regime are alleviated, such as
the generic superluminal configuration imposed by strong contraction of the pre-shock
magnetic field by the shock front. Also, recent non-linear Monte-Carlo simulations
demonstrated the efficiency of trans-relativistic shocks to accelerate particles to very
high energies (Ellison et al. 2013).

The mildly relativistic regime is still poorly explored with kinetic simulations as of
now. In the reviewbyMarcowith et al. (2016, section 4.3)was devoted to the discussion
of mildly relativistic shocks. The studies discussed there concerned mainly the plasma
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physics of shock formation, but not the long term evolution. Here we provide a short
update in light of the most recent studies.

Electron-positron plasma Using the PIC code Epoch Dieckmann and Bret (2017),
Dieckmann and Bret (2018) investigate the generation of instabilities in a 2D
configuration in the case of two interpenetrating pair plasma clouds. One of the beams
is produced by the reflection at a wall of the incoming beam. The simulations focus on
the generation of micro-instabilities and the shock formation process, but are not long
enough to investigate non-thermal particle production. Dieckmann and Bret (2018)
consider a pair plasma moving at a speed of c/2 and perform three simulations, one in
1Dwith a resolution of 67500c/ωpe and 3.4×107 macro particles, and two in 2Dwith
the best resolution at [67500×1500](c/ωpe)

2 and using 1 billion macro particles. The
two-stream and Weibel instabilities are found to rule the wave growth at the shock
transition layer in this regime and to take over the filamentation instability, which
nevertheless may develop upstream. We note that the Debye length has to be resolved
in order to accurately capture the two-stream instability, which limits the spatial and
temporal extension of the simulations.

Another interesting configuration can be found in the study of the expansion of a
mildly relativistic pair plasma in a background electron–proton plasma. This setup
approaches the scientific case studied in the so-called two-flow model developed to
investigate gamma-ray emission in blazar jets (Sol et al. 1989). Two setups have been
considered either in an unmagnetized plasma (Dieckmann et al. 2018a, b) or with a
guiding magnetic field oriented along the pair plasma drift direction (Dieckmann et al.
2019).While in the formerwork the pair were hotwith amildly relativistic temperature
of 1 MeV, the two latter works have a similar setup: the simulations are 1D with a cold
pair plasmawith a temperature of 400keVmoving at 0.9c, the backgroundplasmahas a
realistic proton/electronmass ratio of 1836. The study follows the formation of the pair
jet and the interaction between the two plasmas. It results from the free expansion of
the pair beam the production of an electromagnetic piston that expels and compresses
ambient electrons. The excess of negative current decelerates further the electrons but
accelerates the positrons than can drift ahead the jet’s head, and reach kinetic energies
of ∼ MeV. In the meantime in both configurations (unmagnetized and magnetized)
the pair beam and the background plasma interact through the filamentation instability
which builds up a turbulent electro-magnetic field and contributes to accelerate the
ambient protons also to MeV energies.

Electron-ionplasma Early studies ofmildly relativistic shocks in electron-ionplasma
(e.g., Dieckmann et al. 2008) presented important insights on the shock formation pro-
cess but unfortunately their simulations were not long enough to follow-up on particle
acceleration efficiency. The longest (and largest in transverse dimension) 2D PIC sim-
ulations to date were performed by Crumley et al. (2019) allowing the full formation
andmid-term evolution of the shock. These authors studied the regimewhere the shock
front velocity (in the pre-shock frame) is βsh ≈ 0.83c, Lorentz factor γsh ≈ 1.8, and
the Aflvénic Mach number of MA = 15. Two different magnetic field inclinations
to the shock-normal where investigated: θBn = 15◦ (sub-luminal) and θBn = 55◦
(super-luminal). The main finding is that sub-luminal (quasi-parallel) shocks are effi-
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cient particle accelerators (for both electrons and ions) but not super-luminal shocks.42

When particle acceleration is efficient, the energy fraction transferred from the shock
to supra-thermal ions was found to be εp � 0.1 (same as in non-relativistic and ultra-
relativistic cases) and the energy fraction in accelerated electrons εe � 5× 10−4 was
found to be higher than in the non-relativistic shocks (εe ∼ 10−4; see next subsec-
tion) but still much smaller than in ultra-relativistic shocks where electrons are in
equipartition with ions, hence εe ∼ 0.1.

Some details of plasma physics underlying the particle acceleration efficiency were
also addressed by Crumley et al. (2019). The presence of whistler waves was found
in the simulation of the quasi-parallel shock, confirming the finding of Dieckmann
et al. (2008), but their role in electron acceleration or injection was found to be sub-
dominant, i.e., with increasing mass ratio mi/me from 64 to 160 whistler dynamics
were expected to play more important role in electron acceleration efficiency but this
effect was not observed. The maximal energy of the accelerated particles was found to
increase linearly in time similarly to non-relativistic shocks, implying that the diffusion
coefficient scales as D ∝ E , resulting from efficient excitation of Bell instability in
the shock precursor. On numerical side, these authors also evidenced the importance
of large transverse size of the simulation box, showing that too narrow box suppresses
the electron acceleration efficiency. The reason is that too narrow box suppresses Bell
modes, which dominate the non-linear physics of the shock precursor.

4.1.3 Non-relativistic shocks

If compared to ultra-relativistic (UR) or mildly-relativistic (MR) shocks, the difficulty
of capturing the full development of non-thermal tail in non-relativistic (NR) shocks
comes from the fact that the energy gain per Fermi cycle (upstream → downstream
→ upstream) is much smaller than in UR and MR cases, as ΔE/E � ush/c. As a
consequence, the duration of simulations must be long enough to capture at least a
dozen of cycles in order to get a well-developed power-law tail while in UR shocks
only a couple of cycles provides a distinguishable tail.

Despite significant efforts, only the initiation and very early stages of particle accel-
eration process were conveniently addressed using PIC and hybrid-PIC simulations.
DSA is the most accepted model for particle acceleration at shocks. As already dis-
cussed in Sect. 2.2.3 one major difficulty for DSA to operate is the process requires
particle to have a Larmor radius larger than the shock width, typically of the order
of a few thermal ion Larmor radii. This concern is particularly stringent for electrons
which at sub-relativistic energies have very small Larmor radii. We here discuss recent
PIC simulations which address the problem of injection of electrons and ions, while
the acceleration performances on dynamical timescale of the shock will be discussed
in the following sections.

Table 2 presents a (non-exhaustive) list of PIC numerical experiments applied to
NR shock studies. All these works are discussed in the text below.

42 We note that some caution has to be taken when assimilating super-luminal shocks with quasi-
perpendicular shocks. In non-relativistic cases, quasi-perpendicular—but still sub-luminal—shocks can
be efficient electron accelerators.
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Electron injection at non-relativistic shocks Non-thermal electrons are responsible
for the radio synchrotron emission from SNRs (Vink 2012) and are observed at inter-
planetary shocks (Masters et al. 2016). Several PIC simulations have explored the
injection of electrons for different shock regimes and magnetic field obliquity.

At quasi-perpendicular shocks electrons can be accelerated by SSA if large ampli-
tude electrostatic waves can develop at the shock front. These waves can be produced
in the non-linear regime of the Buneman instability triggered by the relative streaming
of reflected ions and incoming electrons (Wu et al. 1984; Shimada and Hoshino 2000).
Hoshino and Shimada (2002) and Amano and Hoshino (2007) using 1D PIC simula-
tions investigate the acceleration of electrons in a perpendicular fast shock. Electrons
are heated by the interplay of the Buneman instability and trapped in these electrostatic
waves and reflected back to the shock front by the motional upstream electric field.
The maximum energy is expected to be at best Emax = mic2(ush/c). These simu-
lations have been generalized to multi-dimensions (2D in configuration space 3D in
velocity space) by Amano and Hoshino (2009), Matsumoto et al. (2012), Dieckmann
et al. (2012), Wieland et al. (2016), Bohdan et al. (2017). These works first set the
criteria for SSA to occur43: (1) the thermal speed of electrons has to be smaller than
the drift speed between ions and electrons, hence the shockMach number must satisfy
Ms ≥ (1 + α)/

√
2
√
miTe/meTi where α is the density ratio of reflected to incom-

ing ions and Ti,e are the background ion and electron temperatures, and (2) Buneman
modes have to be destabilized, this requires the shockAlfvénicMach number to satisfy
MA ≥ (1+ α)(mi/me)

2/3. These conditions depend on the ion to electron mass ratio
adopted in the PIC simulations. The development of the Buneman instability and the
intensity of electrostatic waves vary considerably with the number of reflected ions in
the shock reformation process. Acceleration of electrons to non-thermal energies is
confirmed (but see the discussion in Dieckmann et al. 2012), but the efficiency of the
process depends on the backgroundmagnetic orientationwith respect to the simulation
plane (recall that simulations are 2D). Acceleration is the most efficient when Bune-
man instability-generated waves have the highest intensities, which happens when the
magnetic field is out of the plane of the simulation (Bohdan et al. 2017). Electron accel-
eration also depends on shock non-stationarity associated to its reformation (Lembège
et al. 2009). Matsumoto et al. (2017) perform 3D perpendicular shock PIC simulations
of anoblique shock (θB � 75◦)with a highAlfvénMachnumber (MA � 21). Theyfind
a two-step electron acceleration: first electrons gain energy via SSA in the electrostatic
waves driven by the Buneman instability as above, but then they further gain energy by
interactingwith turbulent fields produced by theWeibel ion-ion instability triggered by
the interaction of reflected and background ions. The downstream electron distribution
shows the formation of a power-law energy spectrum with an index ∼ −3.5.

Riquelme and Spitkovsky (2011) perform an extensive survey of shock conditions
to investigate electron acceleration. They study the effect of variations of the shock
speed, ambient medium magnetization, electron to ion mass ratio and magnetic field
obliquity over non-thermal electron injection at shocks. However their simulations are
restricted to rather modest Alfvénic Mach numbers MA < 14. One important issue

43 Bohdan et al. (2017) provide an update of these conditions for the orientation of the magnetic field with
respect to the simulation plane.

123



A. Marcowith et al.

raised by the authors is that a small ion to electron mass ratio suppresses the prop-
agation of oblique whistler waves (Scholer and Matsukiyo 2004),44 whereas these
waves can become over-dominant to heat/energize electrons in the foot. A criterion
for whistler wave to grow is MA/(mi/me)

1/2 < 1 (Matsukiyo and Scholer 2003). The
acceleration mechanism relies on the property of oblique whistler waves to have an
electric field component parallel to the magnetic field. Particles are then first acceler-
ated by this electric field before the complementary action of the convective electric
field. Electrons are preferentially accelerated at high obliquity θB ∼ 70o (at MA = 7),
where the downstream energy index is ∼ 3.6. At smaller obliquities particles are not
sufficiently confined at the shock front whereas for quasi-perpendicular shocks par-
ticles can not propagate in the foot. Electron acceleration efficiency depends mostly
on the Alfvén Mach number first through the condition on whistler wave production
recalled above. The electron distribution is the hardest for Alfvénic Mach numbers in
the range 3–7. The energy index changes form 2.6 to 4 as MA changes from 3.5 to
14. A complementary study of electron acceleration in low Mach number (Ma ≤ 5)
shocks was performed by Guo et al. (2014b, c) using 2D PIC simulations in order
to get better understanding of electron acceleration in galaxy cluster shocks. These
authors found that a measurable fraction of incoming upstream electron (up to 15%)
bounces back upstream and formes a non-thermal tail in the distribution function with
power-law index in energy p � 2.4. These particles scatter back to the shock front
on self-generated waves via firehose instability and participate in the SDA process.
This acceleration process was found to be efficient if upstream plasma is high beta
(β ≥ 20) for nearly any magnetic field obliquity.

High Alfvénic Mach number, quasi-parallel shocks could also allow electron injec-
tion. These shocks are likely good proton injectors (see below). In turn protons (ions)
can trigger magnetic perturbations, as the magnetic field grows in the pre-shock
medium then lowering MA and its transverse component can be compressed at the
front. The conditions then resemble the case of highly-oblique moderate AlfvénMach
number shocks discussed by Riquelme and Spitkovsky (2011) [see also Caprioli and
Spitkovsky (2014b)]. Park et al. (2015) perform long term 1D PIC simulations of
high MA quasi-parallel shocks (see also Kato 2015). Protons destabilize non-resonant
streaming (Bell) modes and electrons are accelerated by a combination of SDA and
Fermi processes as they are scattered by the non-resonant streaming modes. Interest-
ingly, non-thermal electrons entering in the relativistic regime showa E−2 energy spec-
trum and a non-thermal electron to proton ratio∼ 10−3 roughly proportional to ush/c.

Ion injection at non-relativistic shocks The major drawback of full-PIC simulations
to address the ion injection into DSA is the need to resolve both electron- and ion-scale
physics, that bakes typical simulation not longer than a ∼ 10ω−1

ci . This difficulty is
partly bypassed using hybrid-PIC simulations where ions are still treated kinetically
but electrons are treated as massless fluid (see,e.g., Lipatov 2002; Gargaté et al. 2007;
Kunz et al. 2014). In this approach all ion-scale kinetic physics are preserved while
the global numerical cost is about two orders of magnitude lower than in full-PIC
simulations.

44 Whistler waves are likely excited due to the cross-field drift of background electrons with respect to
either reflected or background ions, this is the so-called modified two-stream instability or MTSI.
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The injection of thermal ions into the acceleration process was investigated by Guo
and Giacalone (2013) and Caprioli et al. (2015) using multi-dimensional hybrid-PIC
simulations. The first main finding of these studies is that protons are not injected
by ‘thermal leakage’ of downstream thermalized distribution into pre-shock medium
but by specular reflection on time-varying shock barrier. For quasi-parallel shocks
(θBn ≤ 45◦) and highMa > 5, the injection efficiency is larger than 10%.As evidenced
by Caprioli et al. (2015), protons gain energy through SDA in consecutive reflections
on the shock front and inject into DSA when their energy is large enough to escape
upstream.They also propose a quantitativemodel that accounts for the drop in injection
efficiency of quasi-perpendicular shocks with θBn ≥ 45◦, as more than 4 SDA cycles
are required for injection into DSA, while at each SDA cycle a large fraction of ions
(∼ 75%) is lost downstream. This effect explains the rapid drop in injection efficiency
of θBn ≥ 45◦ shocks (see, however, Ohira 2016).

Other studies addressed the thermalization of heavy ions in post-shockmedium and
chemical enhancement in shock accelerated particles. It was found that each species
acquires downstream temperature proportional to its mass, Td ∝ Ai , where Ai is the
atomic number (Kropotina et al. 2016; Caprioli et al. 2017). The efficiency of ion
injection into DSA increases with A/Z ratio, where Z is the charge. Caprioli et al.
(2017) show that there is preferential acceleration of ions with large A/Z in quasi-
parallel shocks. For Ma > 10 these authors find that the fraction of DSA-accelerated
ions scale as (A/Z)2, in quantitative agreement with abundance ratios in Galactic
Cosmic Rays. The injection mechanism of heavy ions is different from proton injec-
tion, since they do not have any dynamical impact on the shock structure. Instead of
reflecting specularly on the shock front, heavy ions directly thermalize in the post-
shock medium. If the downstream isotropization time is shorter than advection time,
a small fraction can back stream into pre-shock medium and participate in DSA. We
note that Hanusch et al. (2019), using 2D hybrid-PIC simulations as well, confirm
the preferential injection of heavy ions up to A/Z ∼ 10 but find that there is sat-
uration for higher A/Z values, in contrast with Caprioli et al. (2017) findings. For
quasi-perpendicular shocks with θBn > 50◦, similarly to pure electron–proton shocks
(Caprioli and Spitkovsky 2014a), there is no injection into DSA of any ion species,
since advection time becomes shorter than isotropization time.

4.1.4 Discussion

Let us summarise and briefly discuss themicro-physical studies of particle acceleration
at collisionless shocks. Several key points emerge in recent studies:

– The self-consistent shock structure produces non-thermal particle distributions
for a broad range of parameter space. The main requirement for efficient particle
acceleration is the ability of particle impinging the front to escape back into the
pre-shock medium and trigger wave growth through kinetic instabilities. This
condition is generally met in high-Mach number sub-luminal shocks (or weakly
magnetized shocks).

– Unmagnetized relativistic shocks are efficient particle accelerators in both
electron-positron and electron-ion plasma. Here, it was demonstrated that the
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Weibel-filamentation instability mediates the shock transition region. It leads to
significantmagnetic field amplification and concomitant particle acceleration.Typ-
ically, about 1% by particle number fraction and 10% by the shock kinetic energy
fraction is channelled to non-thermal particles. However, the acceleration rate is
slow as it scales quadratically with particle energy: tacc ∝ E2. Thus, one infers
the maximum energy of protons achievable in ultra-relativistic shocks of GRBs as
Emax ∼ 1016 eV.

– When the relativistic shock front propagates into highly magnetised medium (σ >

0.01) one has to distinguish between sub-luminal and superluminal configurations.
In the former case, particle acceleration was found to be efficient, sometimes even
more than in unmagnetised case. Yet, the sub-luminal configuration is statistically
disfavoured in relativistic case. When the configuration is superluminal, shock-
processed particles are advected downstream and are unable to undergo Fermi
process.

– At intermediate magnetization, σcrit < σ < 0.01, limited particle acceleration
occurs and the maximum energy scales as Emax ∝ σ−1/4.

– The interesting case of mildly-relativistic shocks, e.g., γsh ≥ 1, where energy gain
per Fermi cycle is large and the shock can easily be subluminal is poorly studied.
Recent study by Crumley et al. (2019) found that shock physics in quasi-parallel
case is similar to non-relativistic shocks.

– Non-relativistic shocks are the most common and studied in literature. The most
representative case is the external shock of the SupernovaRemnants. In this regime,
when particles are efficiently reflected on the front, several instabilities can be in
competition in the precursor region (e.g., Buneman, firehose, Whistler, Weibel,
gyroresonant, Bell), depending on the Mach number, magnetic field strength and
obliquity. Hence, the phenomenology is more complex then in ultra-relativistic
shocks. For example, quasi-parallel shocks are common, contrary to the ultra-
relativistic regime, and lead to efficient magnetic field amplification through
resonant and Bell instability in the shock precursor.

There are several open questions under active investigation or to be addressed in
the near future.

1. Are ultra-relativistic shocks always locked in the slow acceleration rate, i.e., tacc ∝
E2, or an additional source ofmagnetic turbulence can produce faster acceleration?
How is the long term evolution of unmagnetized shocks where the shock transition
is governed by self-excited microturbulence ? No steady state was reached with
current simulations. For recent progress in this field, see Lemoine et al. (2019a).

2. The question ofwhich configuration, quasi-parallel or quasi-perpendicular, in non-
relativistic shocks is more efficient for ion/electron acceleration? The regime of
quasi-perpendicular but still sub-luminal shocks is a particular case that requires
clarification.

3. How promising is the mildly relativistic regime?
4. On numerical side, important efforts are undertaken to push PIC simulations to the

largest scales and longest time benefiting from modern computational resources.
While largely needed, gainingoneorder ofmagnitude in systemsize and simulation
time becomes rapidly prohibitive even with the largest available supercomputers.
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In this respect, hybrid approaches such as MHD-PIC are promising when one
is mainly interested in dynamics of supra-thermal particles (see Sect. 5.5). Yet,
this requires to robustly prescribe how some part of thermal particles (simulated
using the fluid approach) are promoted to non-thermal status (simulated using PIC
or Vlasov approach). For example, in the shock problem one prescribes a fixed
fraction of shock-processed particles to be injected into the non-thermal pool (Bai
et al. 2015; van Marle et al. 2018) but more accurate parametrisation is required
when the shock structure becomes modified by non-thermal particles.

In conclusion, PIC simulations provide detailed non-linear solutions of the shock
problem. Therefore, they are an efficient tool to probe the efficiency of particle accel-
eration for a given parameter set. They are, however, of limited duration (a couple of
ion gyro-periods for full-PIC and ∼ 103 ion gyro-periods for hybrid-PIC) and box
sizes are typically less than thousands of ion skin depths. Even with the most pow-
erful current computational facilities, simulating the global astrophysical systems is
unachievable with this approach. The goal and common approach is to provide robust
scalings which can be included in fluid simulations as sub-grid prescriptions.

4.2 Kinetics of magnetic reconnection

There is a vast literature on magnetic reconnection, both for the collisional case based
on resistive MHD and the non-collisonal case based on the Maxwell-Vlasov equa-
tions. Nevertheless, many questions are still far from understood, including ‘what
triggers reconnection events in real astrophysical objects’, ‘what are the physical
processes which accelerate particles to super-high Lorentz-factors’, ‘do associated
energy spectra always show power-law slope and what is the spectral index’, ‘can
ions be accelerated to equal energies as electrons’, ‘is there an upper limit for the
Lorentz-factors that can be achieved andwhich process sets this upper limit’?Adeeper
understanding of these questions will definitely help to answer relevant astrophysical
questions: (1) To what degree is magnetic reconnection important for the dynamics
of large scale flows like the launching of jets from compact objects or driven shock
waves? (2) To what degree is REC responsible for the production of thermal and non-
thermal high-energy photons observed from the Sun to AGNs? (3) To what degree can
REC accelerate ions to relativistic speeds and can thus contribute to the cosmic ray
flux and the hadronic channel of emissivity of photons and energetic neutrinos?

As the literature is vast there is no chance to refer to all papers. In a hopefully not
too biased view, basic ideas are thus presented on the basis of selected papers in 4
subsections. (1) What kinetic simulations can achieve and why we decisively need
them, (2) Some key results based on kinetic simulations, (3) The most prominently
discussed physical processes able to accelerate particles, (4) A critical discussion and
outlook. For further important points, which are not discussed due to lack of space,
we refer to the reviews given at the beginning of Sect. 2.5.

4.2.1 What kinetic simulations can achieve and why we decisively need them

Microphysical studies have the great advantage that they rely only on fundamen-
tal physics. Difficult questions—like which equations of the MHD family best
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model reconnection events and which values of the transport coefficients (resistivity,
viscosity, Hall-parameters, or even higher moments) are most appropriate—can be
omitted. All this comes self-consistently from the kinetic physics solved, described
by Vlasov–Maxwell equations given in Sect. 3.1. The numerical method most widely
used in astrophysics is the PIC method described in Sect. 3.3, though solvers for the
Vlasov equations in the 6+1 dimensional phase space start to appear.

The price to pay is that the computational costs to solve kinetic equations are much
higher than those to solve any MHD model—even complex ones like the popular 10-
moment closure model, see for instance Wang et al. (2015) or Lautenbach and Grauer
(2018). With kinetic simulations, even huge ones, only local aspects can be addressed,
on spatial scales which measure at most some thousand electron inertial lengths and
thus up to about hundred proton inertial lengths. This is sufficient to study a single
X-point or even a small current sheet breaking up into a plasmoid chain. It is, however,
not sufficient to answer questions like how these reconnection sites are embedded in
the large scale environment and how they have been formed. One way out, which is
included in the discussion below, is to apply some splitting between MHD models
and localized particle models or to post-process MHD solutions by propagation of
test-particles. In the future, more numerical codes will probably be available which
dynamically couple MHD and particle dynamics. Some references to such codes are
given at the end of Sect. 2.5.

Another limitation of kinetic simulations is that they do not include photons and
particle physics. Such aspects are ultimately relevant for high-energy plasma pro-
cesses. Power law slopes and cutoffs may change when considering energy losses by
the emission of synchrotron radiation or inverse Compton scattering of electrons on
colder photons originating from the reconnection site itself or from other, external
processes, possibly far away from the reconnection site. In relativistic REC, where
the energy involved exceeds the rest masses of electrons (and maybe even of protons),
the building of electron-positron-pairs is very likely to take place, which significantly
back-react on the reconnection dynamics. The samemay be true if accelerated protons
can create pions and higher hadronic resonances and neutrinos. Attempts to account
for radiative losses have recently been made, but are only at the very beginning.

Despite these limitations, kinetic simulations have brought, in about the last 10 to
15 years, an immense progress in our understanding of both, magnetic reconnection
and shock waves, as well as of associated particle acceleration. This progress could
not have been achieved on the basis of pure MHD simulations.

Simulation setup Most kinetic simulations of magnetic reconnection have been per-
formed in two spatial dimensions or in simple prolongations into the third dimension
(but see the paragraph on dimensionality) of the setup sketched below. In two space-
dimensions, there are known two analytical, stationary, though unstable configuration
of current sheets for the Vlasov–Maxwell equations. These solutions are typically
used to setup a kinetic simulation to study magnetic reconnection.

(1) Harris-sheet: the reconnecting magnetic field B0 is oppositely oriented along
one axis (say the x-axis in Fig. 24). Normal to it (along the y-axis), the field
strength varies as Bx,rec(y) = x̂ B0 tanh (y/δ). The thickness of the sheet, δ,
typically is a few electron inertial lengths and thus, for realistic mass ratios between
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Fig. 24 Acceleration sites in a Harris-sheet broken into a chain of plasmoids and X-points (from an unpub-
lished PIC simulation by D. Folini and R. Walder). Shown are accelerated electrons on top of the electron
number density (top panel), magnetic field orientation (middle panel), and magnetic field strength (bottom
panel). Possible acceleration sites are indicated by different labels: (A) Reconnecting electric field. (B)
First order Fermi-mechanism between the converging inflows to the reconnection site. (C) Contracting
plasmoids. (D) Merging plasmoids. (E) Drifts in inhomogeneous magnetic fields. (F) Turbulence

electrons and ions, less than a proton inertial length. The plasma density varies as
n(y) = n(0)/ cosh2(y/δ) along the y-axis. Together with an appropriate temper-
ature, the thermal pressure within the sheet balances the magnetic pressure from
outside the sheet. The induced current then points into the normal direction and writes
J (x) = cB0/4πδ sech2(x/δ)ẑ.

(2) Force free equilibrium: a basically similar equilibrium can be obtained using
the force-free equations (see, e.g., Guo et al. (2015); Wilson et al. (2017) for details).

The parameters of both configurations are symmetric with respect to the center of
the sheet, except that the direction of the magnetic field is reversed. Some authors use
for their setup many such current sheets aligned in parallel, (see Biskamp 2000; Drake
et al. 2010; Kowal et al. 2011; Kagan et al. 2013;Werner et al. 2018). This can be quite
natural, for instance within the frame of striped wind models of the solar corona (Li
et al. 2014) or at the termination shock of the solar wind at the heliopause (Drake et al.
2010) or in neutron star nebulae (Pétri and Lyubarsky 2007; Kirk et al. 2009; Sironi
and Spitkovsky 2012; Uzdensky and Spitkovsky 2014; Cerutti et al. 2016; Cerutti and
Philippov 2017).

An extension, and a step towards more realistic models, is to use asymmetric initial
configurations (Cassak and Shay 2007; Belmont et al. 2012; Hesse et al. 2013; Aunai
et al. 2013; Pritchett 2013; Eastwood et al. 2013). Within this review we do not further
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elaborate on this situation. We concentrate on the 2D Harris-sheet instead, what can
be learned from it and where the limitations of this toy setup lie.

If the thickness of such current sheets is less than a typical field diffusion length,
they are linearly unstable to tearing modes. Eventually, X-points will develop where
REC will start. In simulations, one often uses overpressured inflows to accelerate
the development of the instability. As described below, each X-point will develop
its exhausts. Exhausts of different X-points may collide to form magnetic islands
(also called plasmoids or O-points), see Fig. 24. Waves are generated and with them
turbulence develops within the sheet and outside of it, on both its sides in the diffusion
regions. These ingredients turn out to be important drivers of non-thermal particle
acceleration.

Some authors trigger one single X-point in their simulations, from which huge
exhausts develop. Within the exhausts, secondary X-points and islands can develop.
Many features described below are valid for both, the triggered and the un-triggered
approach. Both approaches develop a power-law spectrum of accelerated non-thermal
particles (Figs. 25, 26, 27). Differences between the two approaches and whether one
approach is more close to a reconnection event in astrophysics are not yet worked out
in detail (but see some points discussed below).

Different boundaries can be used and these will be discussed when presenting
simulations and associated results below.

The parameters governing the physics It turns out that the evolution of the sheet
and the acceleration of particles depend on the strength of the reconnecting magnetic
field, the particle density, and the field temperatures of electrons and ions. Often, the
magnetization is given as the ratio σs of magnetic energy density to enthalpy density,
where s stands for the particle species, either electrons or ions, s = e, i . To account
for temperature effects, one may define βs as the ratio of particle thermal pressure
and magnetic pressure. Other, equivalent, characterizations used are σhot,s, the ratio
of the energy flux in the reconnecting magnetic field to that in the particles for each
species (thermal and bulk, and particle rest mass) and σcold,s, which does not consider
temperature and bulk flow.

A particular parameter is the background field. The term refers to the field com-
ponent which is not going to reconnect, i.e., a component which encloses a certain
angle, θB, with the inverted field components that drive the reconnection process. If a
background field is present, the reconnection physics is going to alter drastically.

As discussed in Sect. 2.5, the physics of collisionless REC is different for pair
plasmas on the one hand and for an electron-ion plasma on the other hand. The much
larger masses of ions as compared to those of electrons results in their much earlier
de-magnetizationwhen the plasma flows into the reconnection region (consult Fig.10),
with a series of consequences (Melzani et al. 2014b). Relativistic settings also result in
peculiarities (Melzani et al. 2014a, b). In the ultrarelativistic limit (i.e., when for both,
electrons and ions, the energy largely exceeds the rest-mass), plasma time- and lengths-
scales (cyclotron frequencies, skin depths, Larmor radii) become independent of the
particle rest mass and depend only on the particle energy. Guo et al. (2016) showed
that, in this ultra-relativistic limit, a pair and ion/electron plasma behave essentially
similarly.
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Fig. 25 Upper row: final electron spectrum for various simulations, without (left panel) and with a guide
field (right panel). Lower row, left panel: Lorentz factor distributions of electrons of a simulation byMelzani
et al. (2014b), using ωce/ωpe = 3 and a magnetization in the background plasma σhot,i,e = 3.6, 83. Red
curves indicate particles originally found in the setup current sheet, green curves indicate particles from
the plasma which flows into the sheet during the reconnection process. For the green curves, times are
ordered as dark to light green, with values 0, 750, 1500, 2250, 3000, 3750 ω−1

ce , i.e., one curve every
750ω−1

ce = 250ω−1
pe = 50ω−1

pi = 30ω−1
ci . The blue dashed line indicates the final power-law slope of

the background accelerated particles. Lower right panel: the time-evolution of the maximum Lorentz factor
of the background particles for various simulations with mi/me = 25 or 1. Solid lines are for electrons,
dashed lines for ions and represent mi/me γi,max. ω̃c,e = ωc,e/ωp,e. The index s refers to the power law
index ts. Images adapted from Melzani et al. (2014b)

Regarding PIC simulations themselves, caremust be taken that the number of super-
particles per discretization cell is sufficiently high to ensure that collisionless kinetic
processes remain faster than collisional effects, e.g., for thermalization. For this, the
PIC-plasma parameter, �P IC , the number of superparticles per Debye sphere, has
to be sufficiently large, see Melzani et al. (2013) for a more thorough discussion. In
addition, when using an explicit PIC scheme on a Yee grid (in particular of low order),
care must be taken that energy conservation is sufficiently well guaranteed and that
artificial Cherenkov radiation (Greenwood et al. 2004) does not dominate the scene.
The problem appears in particular for particles traveling close to the speed of light,
where the high-frequency waves from artificial Cherenkov radiation actively interact
with the particles and thus may influence the acceleration process in a non-physical
way (see section 3.3.3).

123



A. Marcowith et al.

Fig. 26 Upper row: final electron (blue-solid) and proton (green-dotted) spectrum of non-thermal particles
for a low (σi = 0.03, left panel) and a high magnetization (σi = 30, right panel). Lower left panel: fit for
the electron power law index p (Eq. 46). Lower right panel: final energy partition between background
electrons and ions at different ionizations σi. As expected, there is no difference between electrons and ions
in the ultra-relativistic regime. The fit relates to Eq. (45). Images adapted from Werner et al. (2018)

4.2.2 Some key results based on kinetic simulations

In this section, selected results are presented regarding the energy spectra of accelerated
particles, the energy partitioning between ions and electrons, and the overall efficiency
of the energy transfer from the reconnectingmagnetic field to the accelerated particles.
These results set the stage for a more detailed view on the physical mechanisms behind
particle acceleration, to be presented in the next section.

We concentrate on the case of a relativistic electron-ion plasma in an idealized 2D
Harris-sheet set up. The non-relativistic case is important to understand processes on
the Sun, space-weather, but also technical devices, from plasma thrusters to tokomaks.
The case of relativistic pairs is interesting in pulsarwinds and perhaps in certain regions
of a black hole corona—in every environment where pair-cascades could develop.
However, these two cases will not be discussed due to lack of space and because
many results have been presented in other reviews (references given at beginning of
Sect. 2.5).

We call REC semi-relativistic when the energy of the magnetic field exceeds the
electron rest mass energy but is smaller than the ion rest mass energy, otherwise we
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Fig. 27 Upper left panel: the βi-dependence of the final (t/tA = 2) electron spectra at low magnetization.
Upper right panel: time-evolution of the electron spectrum for σi = 1 and βi = 0.16. The spectrum starts
to develop an additional component after about one tA. Lower panels: electron spectra for different initial
and boundary conditions. For details, see text. Image adapted from Ball et al. (2018)

call it relativistic. Ultra-relativistic REC terms the situation where themagnetic energy
largely exceeds the rest mass energy of both species, electrons and ions.

There are only a few papers that have addressed the relativistic electron-ion regime
though it is decisive for our understanding astrophysical high-energy objects: the
dynamics and emission of accretion disks around and jets from either black holes or
neutron stars (see Table 3).

Melzani et al. (2014a) and Melzani et al. (2014b) present a first study of collisonless
relativistic magnetic reconnection of an electron–proton–plasma in two space dimen-
sions. They use reducedmass ratiosmp/me = 25 and 50 respectively, and started from
a Harris-equilibrium. Periodic boundary conditions normal to the current sheet and
reflecting conditions parallel to the sheet are used. Tearing instability and subsequent
REC develop from numerical noise. The magnetization varies as 10 ≤ σe ≤ 260 and
as 0.4 ≤ σi ≤ 14. Except for one simulation 2.8 ·10−5 ≤ βp,i = βp,e ≤ 2 ·10−3. They
present cases without a guide field andwith a guide field of BG = 0.5B0 and BG = B0,
where B0 is the reconnecting component of the field, the component (anti-)parallel to
the current sheet.

Melzani et al. (2014a) describe the general structure of the reconnection process for
both, the cases with and without guide field. The bulk inertia is identified as the main
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Multi-scale simulations of particle acceleration…

non-ideal process, which de-magnetizes both, electrons and ions. In the energy flux of
the exhausts the thermal component dominates over the bulk component. Protons are
generally hotter than electrons in the exhausts. The numerical results correspond to
analytical estimates given. They identified a good measure for the relativistic recon-
nection rate,

E∗ = ERec/B0U
R
in, (44)

withUR
in the relativisticAlfvén speed, B0 the reconnectingfield, and ERec the reconnec-

tion electric field. This rate varies between 0.14 and 0.25, showing higher values with
lower background densities. Generally, the rate is higher than in the non-relativistic
case (for which 0.07 ≤ E∗ ≤ 0.14), which is in line with the findings for pair plas-
mas, e.g., by Zenitani and Hoshino (2007) (E∗ = 0.2), by Cerutti et al. (2012b)
(E∗ = 0.17), or by Bessho and Bhattacharjee (2012) (E∗ = 0.19 and 0.36). It follows
directly that the reconnection electric field is very large, ERec/B0 ∼ 0.2UR

A,in ∼ 0.2c,
which turns out to be important for the acceleration process of particles.

Melzani et al. (2014b) further elaborate on associated results, notably on the acceler-
ation of non-thermal particles to very highLorentz-factors. The results are summarized
in Fig. 25.

REC produces a population of non-thermal particles. This population shows a
power-law spectrum,which gets harder for increasingmagnetization (upper left panel).
To first order, the slope of the power law is independent of the presence of a background
field (upper right panel). There is a clear difference in the spectrum of accelerated par-
ticles (lower left panel), depending on whether the particles have been present in the
initial current sheet (population CS) or whether particles have floated into the sheet
after REC has started (population BG). Population BG forms a power-law, population
CS is substantially heated but its spectrum is stillMaxwellian. This points to a different
acceleration mechanism of the two populations, see next section.

The lower right panel of Fig. 25 shows the temporal evolution of the maximum
Lorentz-factor γmax(t) ∼ t s, which is close to an exponential growth. Higher mag-
netization σ in a larger coefficient s and thus a faster growth of the spectrum to high
Lorentz-factors.While, as said above, non-thermal accelerated particles have the same
spectrum, independently whether a background field is present or not, the growth time
of the power-law cutoff γmax is clearly slower in the presence of a background field.
Also, to first order, γmax for protons grow slower than electrons by a factor mi/me.

Finally, while in the thermal exhausts there is much more energy in the ions than in
the electrons, the situation is slightly different for the accelerated particles. Without
a background field, there is more energy in the ions. But the situation reverses when
a background field is present, when more energy is carried by the electrons. We add
a note of caution to this result as the mass-ratio between electrons and ions used is
either 25 or 50. Simulations with a realistic mass ratio should be undertaken and their
results be confronted with the findings of Melzani et al. (2014b).

Guo et al. (2016) perform PIC simulations of relativistic electron-ion reconnec-
tion (magnetically dominated in their terms) without a guide field, starting from a
force-free equilibrium of the current sheet. They use different mass-ratios between
electrons and ions, between 1 and 1836 and use different domain sizes and different
inflow temperatures. They explore magnetizations reaching from the relativistic to the
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ultra-relativistic case, but cover not really the semi-relativistic case, in contrast to the
other work discussed in this section. This should be kept in mind when looking at
the following results. They find that for low mass ratios, ions gain slightly (1.1 times)
more energy than electrons while for a real mass ratio, the ions gain 1.5 times more
energy than the electrons. All power-law slopes are hard – when put into the form
f ∝ (γ − 1)−s , s is between 1 and 2 and very close to 1 for high magnetizations. For
their high magnetizations, the electron power-law slope does not depend on the mass
ratio and is the same for a pure pair plasma, for a mass ratio of 100 and for a realistic
mass ratio. In energy space, the slopes for electrons and ions slightly differ, e.g., 1.35
for electrons and 1.2 for ions for a simulation with σ0 = B2

0/(4π(mi+me)nc2 = 100
(n is the particle number density) and mi/me = 100. However, the momentum distri-
bution shows sp = 1.35 for both species. They argue that this can only be achieved
by a Fermi-like acceleration mechanism. They find a slight dependence of the power
laws on the size of the current sheet, not so much for the all over slope, but for sec-
ondary variations of the slope. Smaller domain sizes show more variations, with a
significant change of the slope for different energies (γe − 1). Larger domain sizes
show a much more smooth, unique slope over the entire energy range. Finally, these
authors emphasize that all their power-laws show an exponential cutoff.

Werner et al. (2018) present an extensive 2D study of collisionless REC in the
semi-relativistic and relativistic regime, varying the ion magnetization, σi, from 10−3

to 104. The plasma-beta value of ions was 0.01 for all simulations. A realistic mass
ratio between ions and electrons is used. For their setup, they use a doubled Harris
sheetwith twofield reversals an they use period boundary conditions in both directions.
The authors analyze the plasma flows in the ’thermal’ regime and describe the Hall
signatures due to the different sizes of the electron and ion diffusion region (see Fig.10).
They find a reconnection rate of about 0.1 of the Alfvénic rate (their slightly different
definition of the reconnection rate) across all regimes, slightly below (0.08) in the
semi-relativistic regime and slightly above (0.12) in the ultra-relativistic regime. In
the ultra-relativistic limit, the release of magnetic energy during REC is distributed
equally between electrons and protons, but protons gain more in the semi-relativistic
regime, up to 75 % for the weakest σi (see Fig. 26, lower right panel). The authors
present a formula for the fractional energy gain of the electrons, qe,

qe = 1

4

(

1 +
√

σi/5

1 + σi/5

)

. (45)

Integration is done till 2000 Larmor time-scales. Particles are accelerated to a
non-thermal regime. Power-laws and energy-cut off seem to saturate till the end of
the simulation. By fitting their data to a power-law, they find for electrons the time-
saturated relation

f (ε) ∼ ε−p; p(σi) ≈ 1.9 + 0.7σ−1/2
i , (46)

where ε denotes the kinetic energy of the electrons without their rest-mass (see Fig. 26,
lower left panel). They emphasize that this index can be understood on the basis of the
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bouncing of electrons between approaching islands (see next section). The normalized
cutoff energy εc/σemec2 rises slowly with σi in the semi-relativistic regime, from
around 2.5 to 4 or 4.5 as σi goes from 0.1 to 10. The authors emphasize that it is
not yet clear, whether the computed power-law indices and cut-off energies are truly
independent of the simulation length L of the current sheet. In the ultra-relativistic
regime, σi > 10, the ion spectra show a power law which closely matches that of the
electrons. For lower σi , the situation is somehow puzzling (see Fig. 26, upper row).
A possible power law only appears at high ion energies while at lower energies the
spectrum is rather flat and much harder, with a slope of about 1. This part is neither
a clear power law nor, as it is much broader, a Maxwellian. This flat region in the
spectrum turns downward significantly below the electron cut-off energy. However,
at these energies, there are always more ions than electrons. The authors find no
explanation for this behavior but speculate that indeed the power laws may show a
break at energies where protons become trans-relativistic (ω ≈ mic2 ≈ 103MeV).We
add that yet another possibility is different dominant acceleration process for protons
depending on energy.

Ball et al. (2018) present another study of collisionless relativistic REC of an
electron-ion plasma, adding new facets to the picture (see Fig. 27). Firstly, the depen-
dence on the βi parameter is systematically explored, in addition to the dependence on
σi. They explore σi = 0.1, 0.3, 1 and 3, while βp,i varies from βp,i = βp,e = 10−4 up
to the maximum possible value of βmax ≈ 1/4σi. A realistic mass ratio is used. The
computational domains are larger by at least a factor 5 than those of previous studies.
The initial current sheet width is δ = 80c/ωp,e. Periodic boundaries are used normal
to the sheet. A moving injector and a dynamically-enlarging box is used. A descrip-
tion of the implementation of this boundary type is given in Sironi and Spitkovsky
(2009). In this way, the magnetic flux is not limited to the one present at initial times.
Finally, they trigger the start of REC by removing the pressure at one point within
the sheet’s center. Two exhausts with powerful depolarization fronts develop. As the
boundaries are periodic normal to the sheet, the fronts meet to form a large plasmoid.
When the fronts first meet, a secondary current sheet is created normal to the first
sheet. In addition, they perform a study with different initial and boundary condi-
tions, see below and Fig. 27, lower panels. All runs of this study are integrated till
2 tA, independently of the box size and value of other relevant parameters, with tA is
given by the ratio between the length of the sheet and the Alfvén speed of the inflow,
tA = Lx/UA.

The initial current sheet fragments to a certain degree into secondary plasmoids
and secondary X-points. For fixed σi, the fragmentation is less pronounced for higher
βp,i and, for fixed βp,i, is more pronounced for higher σi. Sironi et al. (2016) found
the same dependences for the ultra-relativistic case.

Ball et al. (2018) find that the electron spectrum in the reconnection region is non-
thermal and can be modeled as a power-law with slope p which depends on σi and
βp,i, as

p(σi, βp,i) = Ap + Bp tanh(Cpβp,i)

Ap = 1.8 + 0.7/
√

σ , Bp = 3.7σ−0.19
i ; Cp = 23.4σ 0.26

i . (47)

123



A. Marcowith et al.

Thus, at low βp,i, the slope is (nearly) independent of βp,i and hardens with increasing
σi, having a (nearly) equal form as found by Werner et al. (2018). At higher values of
βp,i, the electron power law steepens and the electron spectrum eventually approaches
a Maxwellian distribution for all values of σ , see Fig. 27, upper left panel. At values
of βp,i near βp,i,max ≈ 1/4σi, when both electrons and protons are relativistically hot
prior to REC, the spectra of both species display an additional component at high
energies, containing a few percent of particles, see Fig. 27, upper right panel.

Importantly, when using the same σi and βp,i as Werner et al. (2018), the non-
thermal particle spectra found by Ball et al. (2018) are systematically softer than the
one by Werner et al. (2018). It is shown in Ball et al. (2018) that this discrepancy may
be caused by two reasons: firstly, the authors find numerically that a larger box size
makes the spectra generally softer—though there areweak indications for a certain sat-
uration of the slopes at the two biggest box-lengths they have used (Lxc/ωp,e = 5′440
and 10′880). Secondly, also found numerically, runs with a (single) triggered initial
X-point show a softer spectrum than runs in which the tearing instability produces
spontaneously many X-points (as used by Melzani et al. 2014b and Werner et al.
2018). Indeed, Ball et al. (2018) reproduce exactly the same slopes as Werner et al.
(2018) when using exactly the same setup and boundary conditions. The lower row of
Fig. 27 summarizes the influence of the initial and boundary condition for the electron
spectrum. Another finding is that protons have up to a magnitude larger mean energy
than electrons, though protons show a steeper slope in their spectrum than electrons.

An important result is that for all low βp,i, the time-evolution of non-thermal accel-
eration is different for electrons and protons. While electrons immediately develop
a non-thermal tail in their spectrum, protons develop a non-thermal tail only after
t ≈ 0.8tA, corresponding approximately to the time when the two reconnection fronts
interact across the periodic boundaries. This may indicate another acceleration mech-
anism for the two species.

Result summary The last few years have brought progress in our understanding
of the population of the non-thermal high-energy particles accelerated by relativistic
REC. However, we emphasize again that all these results have been achieved on the
basis of only one particular setting, 2D Harris or force free sheets. One should always
keep in mind that this setting is a very particular one out of many other, probably more
realistic settings. Under these conditions, the reconnection rate is given by Eq. (44).
This rate is about 0.2 and thus higher than in the non-relativistic case. Two parameters
are responsible for the formation of the power-law slope of the distribution of non-
thermal particles accelerated in the reconnection event. The ‘cold’ magnetization σi
and the magnetization βp,i, which includes thermal aspects of the plasma in which the
REC takes place.Apretty good expression for this power-law slope is givenbyEq. (47).
Note that for cold plasma (low βp,i), this expression becomes fairly independent of
βp,i and matches the simpler expression given by Eq. (46). Without a background
field—unless in the highly relativistic limit—the ions gain more energy, up to 75% of
the released magnetic energy in the semi-relativistic regime (see Eq. (45)).

There are, however, some aspects which disturb the picture and point to the need
of additional work. Firstly, the exact shape of the power-law seems to depend, to a
certain degree on the initial and boundary conditions (Fig. 27, lower row) and on the
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length of the Harris sheet. Secondly, if electrons and ions are hot before reconnection,
there seems to exist an additional power-law slope in the electron spectra, at least at
late times (Fig. 27, upper right panel). This may indicate that at least two different
acceleration mechanisms are dominantly at work.

While the questions just addressed can be judged as minor, there remain two more
fundamental largely open questions. One is the role of a background field (and such
a background field is always present in a real environment). Melzani et al. (2014b)
found indications that a background field (at least up to BG = B0) does not affect the
power-law slope of the electron distribution, but the spectrum evolves more slowly
than without a background field (Fig. 25, right column panels). In addition, this study
found that in the presence of a background field, electrons may gain more energy than
protons, reversing the ratio found in simulations without a background field. However,
one study is no study, the more as the low mass ratio used for these simulations may
have spoiled the result. The second question is the exact shape of the proton population
distribution. At low σi, these spectra seem to consists of a very flat part at intermediate
energies, before a clear power-law is established at higher energies (Fig. 26, upper
left panel). This may again point to two different acceleration processes at work. The
slope of the high-energy power-law for protons may be close to the one of electrons
(Melzani et al. 2014b; Werner et al. 2018) or may be steeper (Ball et al. 2018):

4.2.3 Selected physical processes which accelerate particles

So far there is no comprehensive picture on which physical process is responsible for
the acceleration of non-thermal particles in magnetic reconnection—though several
reasonable ideas exist and some processes could be identified to be active, but possibly
together with other processes. Therefore, at this place, we present those acceleration
channelsmost discussed in the literature and the arguments of the authorswho advocate
them. We attempt a provisionally ranking in the next section.

Thermal exhausts As discussed in Sect. 2.5, REC at single X-points or on larger
current-sheets produces exhausts where the particles leave the reconnection region
(consult Fig. 10). Strictly speaking, the flow in the exhaust is not completely thermal.
For instance, temperature is non-isotropic and electrons and ions do not have the same
temperature, see e.g., Fig. 10 of Melzani et al. (2014a). However, the magnitude of the
speed in the exhausts, uout ∼ √

2 uA,in (Eq. 15), and the temperature in the exhausts
can be understood on the basis of flow conservation laws between the inflow and the
outflow.

Note that in a highly magnetized environment such as relativistic REC (but not
exclusively), the Lorentz-factor of the exhausts may already be of order of a few,
because the Alfvén speed of the inflowmay already be very close to the speed of light.

Below, the dynamics of chains of X-points and current sheets are discussed. There,
exhausts of the different sites collide and form plasmoids (Fig. 24). But in nature there
are also reconnection sites found with just one X-point. There, the exhausts can freely
expand to form jets. This mechanism is used to explain jets on all scales, from the
solar atmosphere and corona (Zharkova et al. 2011), but also from compact objects
(de Gouveia dal Pino and Lazarian 2005). The more, small reconnection events and
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associated exhaust within large scale jets may be at the origin of fast TeV variability
in blazars (Giannios et al. 2009; Khiali et al. 2015).

Dynamics of plasmoids and chains of plasmoids We now look at a longer current
sheet that break apart and, consequently, allows a variety of potential particle accel-
eration mechanisms—to be further detailed below—to act on the plasma. If the sheet
is long enough, many X-points will develop, with associated exhausts. Exhausts of
neighboring X-points collide and form plasmoids, plasma regions which are bound by
a strong circularly closed magnetic field (consult Fig. 24). The formation of plasmoids
(→ Colliding plasmoids) has the potential to accelerate particles as the border of two
associated exhausts, called dipolarization fronts, form approaching magnetic mirrors,
see e.g. Lapenta et al. (2015).

The field within the plasmoid tends to zero. Thermal plasma within the plasmoids
cannot escape as the strong encircling field deflects particles immediately back to the
interior. As REC goes on and more of the inflowing plasma is being processed, islands
potentially grow in size and their encircling fields grow in strength. Plasmoids will
also merge and grow in size. After merging, plasmoids will contract and give rise
to an important acceleration mechanism (→ Contracting plasmoid). The process of
breaking a current sheet will also generate turbulence, another important source of
particle acceleration (→ Turbulence).

At this place, the stability of current sheets, the formation and dynamics of plas-
moids cannot be reviewed in detail. This process sets the stage for the acceleration of
ultra-fast particles, but not directly causes it. For a deeper understanding of the process,
the reader may consult the vast literature on the subject, e.g. Loureiro et al. (2007),
Lapenta (2008), Samtaney et al. (2009), Lapenta and Lazarian (2012), Kowal et al.
(2012), Markidis et al. (2013), Kagan et al. (2013), Loureiro and Uzdensky (2016),
Sironi et al. (2016), Kowal et al. (2017).

Contracting plasmoids PIC simulations show that contracting plasmoids (see struc-
ture B in Fig. 24) can efficiently accelerate electrons (Drake et al. 2006) and ions
(Drake et al. 2010) to super-Alfvénic speeds by a Fermi-like process. Such particles
are injected into magnetic islands from the exhausts of X-points of a reconnecting
current sheet. Particles approaching the strong magnetic fields encircling magnetic
islands will be turned around by these fields and are captured in this way within the
island, bouncing in the island backwards and forwards or move along the magnetic
field lines. When islands are freshly formed, the encircling field also lets contract the
island, up to a point where a quasi-stationary equilibrium is reached between the pres-
sure of the enclosed particles and the tension force of the magnetic structure. In this
way, the particle will gain energy at each bounce. When more energized, the particles
will start to diffuse out of the island and either escape or, in a more complex situation,
may be kept by another island held together with a stronger field.

Counting on this mechanism, Drake et al. (2010) can explain the anomalous cosmic
ray (ACR) energy spectrum observed by both voyager missions in the region between
the solar wind termination shock and the heliopause (note that the same idea was also
developed in Lazarian and Opher 2009). Drake et al. (2010) firstly perform large scale
MHD simulations of the solar wind which show stripes of inversed field directions
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due to the non-alignment of the magnetic dipole of the Sun with its rotation axis.
Current sheets develop in the region where the field polarity changes. (This is very
similar to the striped neutron star winds (Kirk 2004; Uzdensky et al. 2011; Cerutti
et al. 2012a, 2014a; Bühler and Blandford 2014).) The MHD simulations show that
stripes and current sheets are compressed in the passage of the solar wind through the
solar wind termination shock, setting the stage for REC in the now unstable sheets.
The post-shock situation can be well approximated by multi-layered Harris-sheets.

Subsequent PIC simulations using the plasma-parameters found in the MHD sim-
ulations demonstrate that particles can be accelerated to several tens Alfvénic speeds,
forming a power law with a spectral index of about 1.5. The multi-layered Harris-
sheets break off, forming a network of plasmoids which collide and collapse. By a
thorough analysis of the data, Drake et al. (2010) show the outstanding role contracting
islands play in the acceleration process.

Themodel assumes that interstellar ions are pickupedby the solarwind and advected
subsequently through the solar wind termination shock. Thus the model can also
explain similarities in the spectra of different ion species observed by the voyager
missions. The result achieved demonstrates the power of combining large-scale MHD
simulations with detailed kinetic simulations.

Subsequently, Kowal et al. (2011) performed MHD simulations in two and three
space dimensions of the samemulti-layeredHarris sheets. A dynamic network ofmag-
netic islands develops, similar to the one observed in the PIC simulations of Drake
et al. (2010). Test-particles are injected into this configuration and integrated with
the sixth-order implicit Runge–Kutta–Gauss method (Sanz-Serna and Calvo 1994)
which conserves particle energy and momentum. The accelerated test-particles show
also a super-Alfvénic distribution though there are differences in the distribution as
compared to Drake et al. (2010). Contracting island again play a dominant role in
the acceleration process. But the authors report also on drift acceleration along the
magnetic field discontinuity and the Fermi-process between the converging inflows
(see the corresponding paragraphs within this section). The reasons behind these dif-
ferences remain open. The paper extends the multi-layered Harris sheet configuration
to three space dimensions and repeats the analysis. They find substantial differences
in the acceleration process and stress the need for more comparative studies between
2D and 3D settings.

Montag et al. (2017) develop a general framework which includes compressibility
and non-uniform fields to analyze the process of contracting plasmoids. They derive
an expression for the power-law scaling of the distribution function and for the rate
at which the power-law develops in time. In analogy to the case of acceleration by
the converging inflows, the spectrum gets harder if the compression increases, which
is generally true for Fermi-like processes. The authors also find that a guide field of
order unity suppresses the development of power-law distributions.

Colliding plasmoids As described, plasmoids eventually collide. Subsequently, they
first grow and then contract, thereby accelerating particles.

There are two other interesting points in colliding plasmoids. Firstly, at the contact
interface between the coalescing plasmoids secondary current-sheets with secondary
RECdevelop, mostly normal to the primary sheet. This secondary RECmay support or

123



A. Marcowith et al.

suppress particle acceleration, its effect seems, however, to be small, see the discussion
in Bessho and Bhattacharjee (2012). Secondly, even before collision, in the phase
they approach each other, a Fermi-like acceleration process may work as particles are
reflected on the plasmoids and travel back and forth between neighboring approaching
plasmoids (Lapenta et al. 2015, for instance).

Werner et al. (2018) use this process to explain the expression for the power-law
index they found (Eq. 45). The acceleration by approaching plasmoids is a second order
Fermi process as the movement of the plasmoids can be regarded as stochastic. The
energy gain per bounce is thusΔε � (upl/c)2ε, where ε is the particle energy without
the rest-mass energy and upl the speed of the plasmoid. The typical bounce time can be
approximated by tb ∼ λpl/c. Thus, the acceleration time-scale is tacc ≡ εΔtb/Δε =
const · cλpl/u2pl. The process ends when the two plasmoids collide and the particle
escapes, at tesc � λpl/u pl , where λpl denotes a typical distance between plasmoids.
By this, the Fermi II power law index, p, can be written as p = 1 + tacc/tesc =
1 + const c/upl. Werner et al. (2018) assume that upl � UA. In the regime where

σi << 1 (but still σe >> 1), UA ≈ cσ 1/2
i , and thus p = 1 + Cσ

−1/2
i , which has the

form of Eq. (45).We note that one can repeat the exercise for any other Fermi II process
taking place within the sheet, in particular also for acceleration due to turbulence. Ball
et al. (2018) account for a variant of this process to explain the additional component
in the power-law at high energies when the inflow is hot (βp,i close to βp,i,max).

Turbulence As discussed in Sect. 2.5, the break apart of current sheets by tearing
mode instabilities (or a combination of tearing and kink mode in 3 spatial dimen-
sions) generates turbulence in the region where REC takes place. This turbulence,
in combination with turbulence in the inflows, is responsible that collisional REC
becomes as fast as observed (Kowal et al. 2009; Lapenta and Lazarian 2012). In the
frame of test particles, it was shown that MHD fast and slow compressible modes
accelerate energetic particles through the second order Fermi acceleration. Density
fluctuations in converging flows can enable first order Fermi acceleration of particles
(Kowal et al. 2012). Kowal et al. (2017) provide a thorough analysis of the statistics
of the reconnection-driven MHD turbulence. Lazarian et al. (2012) and Lazarian et al.
(2016) review the development and the character of (self-generated) turbulence related
to magnetic reconnection, in the classic as well as in the relativistic regime.

Corresponding studies for the collisionless case only recently start to appear.
Zhdankin et al. (2018) study forced turbulence using PIC simulations. They show
that particles can indeed be accelerated to very high energy also in the case of colli-
sionless turbulence. Figure 28, top panel, shows the time-evolution of the spectrum
of accelerated particles, converging to a power law of the form γ −3. The lower panel
shows the dependence of the domain resolution, from 5123 to 15363 cubed.

In a preprint, Zhdankin et al. (2019) present corresponding results for an ion-
electron plasma and come to the conclusion that non-thermal acceleration is efficient
for both species in the fully relativistic regime. In the semi-relativistic regime, while
still efficient for cosmic ray production, the mechanism is less efficient for electrons.
For the production of hard non-thermal radiative signatures a (very) low βp,i is neces-
sary, or nearly relativistic ion-temperatures. The authors emphasize that the result is
still somehow preliminary as it is not yet established how this result scales to a large
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Fig. 28 Top panel: evolution of the particle Lorentz factor (energy) distribution f (γ ) for the 15363 sim-
ulation of forced collisionless turbulence. The dotted line indicates the slope expected for a second order
Fermi-process. Bottom panel: compensated distribution f (γ )γ 3, at fixed time tUA0/L = 7.0, for varying
system sizes. Power laws with pre-compensated index −3.0 (black dashed) and −2.7 (black dash-dotted)
are also shown, along with the mean energy 〈γ 〉 (green dash-dotted) and system-size cutoff γmax (green
dotted) for the 15363 case. Images reproduced with permission from Zhdankin et al. (2018), copyright by
AAS

system size. Related to these simulations, the authors have statistically analyzed colli-
sionless turbulence (Zhdankin et al. 2017) andmake a connection to the Fokker–Planck
framework (Wong et al. 2019).

A word of caution, equally raised by the authors, must be added. The forcing of
the turbulence implies a steady energy input into the system. As no energy sinks are
present, energy may pile up to give artificial heating and non-thermal particle accel-
eration. More studies are clearly needed. Also, non-global compression was present
which would rise the value for the power-law index (Bell 1978a; Drury 2012).

Nevertheless, it can be firmly stated that turbulence is present in reconnection
sites, both, collisional and non-collisional, and that this turbulence can contribute to
particle acceleration. We note these results are also very promising to advance our
understanding of particle acceleration in shocks.

123



A. Marcowith et al.

The reconnecting electric field This field is an important source of particle energiza-
tion in the relativistic case.

As particles are de-magnetized in the current sheet, this field can directly accelerate
particles without perturbation by other structures. However, the width of the region
where the electric field is strong is not too large, i.e., it is given by E > cB, or with a
guide field, by E · B �= 0.

In non-relativistic REC, this process cannot be too effective as the electric field is
too weak as compared to the width of the acceleration zone and the particles escape
soon (Drake et al. 2010; Kowal et al. 2011; Drury 2012).

In the relativistic case, however, the process becomes important and the accelerated
particles will form a power law. Particles enter the region with a large electric field
at all distances from the central X-points. The particles close to the X-point will only
slowly be turned, by BX , towards the exhausts, in contrast to those particles which
enter the sheet at some distance from the X-point. The longer the particle is held in the
central region, the longer it can be accelerated by the reconnection electric field. As
emphasized by Zenitani and Hoshino (2001) the gyro-radius of relativistic particles
grows with their Lorentz-factors. Already accelerated particles thus stay even longer
within the region of a large electric field and hard tails of the distribution can grow.
These authors predict, for a pair plasma, a power-law distribution of non-thermal
particles created by the reconnection electric field of p ∝ cBx/ERec Bessho and
Bhattacharjee (2012) refined the analysis in two aspects, also for a pair plasma. Firstly,
they looked closer at the creation of the power law distribution but then included also
the process when the particles finally have to leave the region immediately around the
X-point. The latter produces an exponential cut-off such that the particle distribution
function can be written in the form

f (γ ) ∼ γ −1/4 exp−a
√

γ , (48)

with a a constant of order cBx/ERec. Note that this is a very hard distribution. The
authors emphasize that particles accelerated by the reconnection electric field may be
further accelerated by other processes, in the field when they swirl around contracting
islands or when they encounter other X-points. We add that any other of the processes
described in this section could be tapped. PIC simulations of relativistic collisionless
REC confirm that this process significantly contributes to the high-energy spectrum,
for both cases, of a electron/positron pair plasma (Bessho and Bhattacharjee 2012;
Sironi and Spitkovsky 2014) and an ion-electron (Melzani et al. 2014b; Ball et al.
2018).
Fermi process within the inflow region Recall that the inverse field components
float, due to E×B-drift, towards the region where they will reconnect (Fig. 1, right
panel).

de Gouveia dal Pino and Lazarian (2005) point out that this may, in principle,
accelerate particles by a first order Fermi-process (see Sect. 2.2.1), if particles are
allowed to cross the reconnection region and to be ping-ponged between the lower to
the upper inflow into the sheet. Repeating the argumentation given by Bell (1978b) for
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the shock case, de Gouveia dal Pino and Lazarian (2005) derive an emerging spectrum
of accelerated particles of N (E) ∝ E−5/2 for this acceleration mechanism.

An important point is raised by Giannios (2010) who states that this mechanism
does not depend on the not well known reconnection mechanism but works solely on
the converging inflows to the reconnection region. Be δ the width of the dissipation
region and RG the gyro-radius associated to the undisturbed magnetic field and θ the
angle under which the particle enters the reconnection layer. Be this angle moderately
small (as compared to the length of the sheet, L) and consider the case where the
particle can freely pass the reconnection region. Then, the particle will gyrate around
the field drifting into the reconnection site andwill cross back the sheet to its other side,
where it gyrates back and forth. Of course, turbulent field fluctuations or collisions
may scatter the particle as well, but their presence is not really necessary. In addition,
the particle is gaining energy (though less) at each passage in the reconnection electric
field. Giannios (2010) refers to this process as the betatron effect.

The energy amplification factor, A, for one cycle can then be derived to:

A(θ) = �2
r (1 + βr cos θ)2, (49)

where θ denotes the angle at which the particle enters the reconnection layer and�r, βr
the Lorentz-factor and normalized speed of the inflow. We note that with θ = 0 and
βr � 1, the formula of de Gouveia dal Pino and Lazarian (2005) is recovered. The
time-scale of the acceleration process is

tAcc = 2πγmc2

(1 − 1/A)eBc
(50)

and is thus of the order of the gyration period of the largest γe factor. Giannios (2010)
shows that for an isotropic particle distribution (and thus θ ), the amplification ampli-
tude, A, is only about one quarter smaller as for the case θ = 0.

The process is limited by two factors, the size of the current sheet and by radiative
losses. These are dominated by synchrotron losses while photo-pion production turn
out to be much less important (Waxman 1995). Assuming jets carrying field-reversed
components of length of the jet diameter, Giannios (2010) estimates that protons can
reach energies up to 1020 eV in GRBs or luminous AGN jets. For iron, an important
species in very high energy cosmic rays, the same limit applies. For electrons, however,
the acceleration process stops much earlier due to synchrotron losses. The author
emphasizes that an important pre-requisite for the process to work is that it can only
be initiated if the particles are sufficiently pre-accelerated, because, otherwise, the
gyro-radius of the particles is not large enough to let the particle stream over the
reconnection region.

Drury (2012) points out that the spectrum derived by de Gouveia dal Pino and
Lazarian (2005) is probably much too weak (i.e., the power-law slope should be much
smaller than 5/2). This, because the compression of the plasma within the sheet is not
considered. The paper provides arguments that, in the case of REC, the compression
is probably larger than in the shock case, where mostly a compression ratio of 4 is
assumed, which corresponds to an adiabatic shock. For REC, spectra like f (p) ∝ p−2
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or N (E) ∝ E−1 have to be expected. This was the first indication that spectra of
particles accelerated in magnetic reconnection events may indeed be very hard, much
harder than for particles accelerated by the Fermi process in shocks.

Bosch-Ramon (2012), considering compressible effects, realistic cross B-field dif-
fusion coefficients, and accounting for synchrotron cooling, shows that for protons a
maximum energy of

Emax ≈ 60 (χ/k)1/2 (v/c)1/2
1√
B0

TeV. (51)

can be reached. k and χ depend on the concrete microphysics, with good arguments
for χ/k ≈ 1/10. The spectrum of the accelerated particles is harder than standard
Fermi I.

Provornikova et al. (2016) analyze possible compression rates of REC in the solar
corona. They look at configurations such as a Harris current sheet, a force-free current
sheet, and two merging flux ropes. Plasma parameters are taken to be characteristic of
the solar corona. It is found that plasma compression is expected to be strongest in low-
beta plasma βp ∼ 0.01–0.07 at reconnection magnetic nulls and can be as high as a
factor 10. Provornikova et al. (2018) derive magnetic wave solutions in compressible
reconnection sites and claim that such waves may act as scattering centers for the
Drury-mechanism.

In conclusion one may say that this is a promising process whenever there are
pre-accelerated particles present which can initiate the back- and forth-bouncing.

Drift acceleration If the particles enter the diffusion region or if they leave the current
sheet the magnetic field changes substantially. In this situation, the particles encounter
magnetic drifts and magnetic drift acceleration (see Sect. 2.3 for the description of
the equivalent mechanism in shocks). Kowal et al. (2009) and Guo et al. (2016) report
that this mechanism contributes to the acceleration of particles, both in the collisional
(Kowal et al. 2009) and non-collisional (Guo et al. 2016) case.

Associated shocks de Gouveia dal Pino and Lazarian (2005) point to another inter-
esting possibility: analogous to the sun, eruptive reconnection may push matter away
and produce a shock-wave in which particles can be accelerated by the ’ordinary’
Fermi-mechanism related to shocks, leading to a power-law slope of 2.

Dimensionality The role of dimensionality in the particle acceleration process is
largely unexplored.

2D spatial setups can easily be extended to 3D spatial setups by just expanding the
2D configuration to the third dimension in a planar way. Such configurations will still
be subject of the tearing mode, but, in addition, the 3D extension will be subject to the
kink instability. Cerutti et al. (2014b), using PIC simulations with radiative feedback,
compare the cases where either the kink or the tearing instability grows faster and
discuss application to the Crab nebula. In their setup they found the kink mode to
dominate, leading to a disruption of the current sheet and associated turbulence unless
the kink-mode is stabilized by a background magnetic field. The same result is also
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found by Oishi et al. (2015) in 3D MHD simulations. Other authors, using different
configurations, found that rather the kink mode develops slower than the tearing mode
even without a guide field. Here, REC develops essentially similarly as in two spatial
dimension. Oblique modes, a combination of tearing and kink modes, are possible and
may even grow fastest (Daughton et al. 2011).

The results of different 3D kinetic studies of current-sheet reconnection do not yet
converge to a unique picture. Some authors claim that there are small differences in
the reconnection rate between 2D and 3D, e.g., (Liu et al. 2012; Daughton et al. 2014,
for non-relativistic REC) and (Guo et al. 2014a, for the relativistic case). On the other
hand Sironi and Spitkovsky (2014) found a four times lower rate for 3D REC of a
relativistic pair plasma as compared to 2D REC.

In a series of papers it was advocated that the drift kink instability can modify
the electric and magnetic field structures in an anti-parallel reconnection layer and
prohibit non-thermal acceleration (Zenitani and Hoshino 2005a, b, 2007, 2008). But
other authors found that the kink mode cannot suppress the acceleration of particles
(Liu et al. 2011; Sironi and Spitkovsky 2014).

There are very few generic 3D configurations which include 3D nulls. Based on
observations, Baumann and Nordlund (2012) reconstruct a field configuration within
the solar corona and use it as initial condition for 3D PIC simulations. Olshevsky et al.
(2013) simulate REC, starting from a cluster of eight null points. Much more work
will be necessary in future to get a more comprehensive picture of 3D reconnection
events.

4.2.4 A critical discussion and outlook

The first point to state is that there has been a tremendous progress in our understanding
of magnetic reconnection in the last few years. Given a correct environment, both col-
lisional and non-collisional magnetic reconnection proof to be fast. For the collisional
case, both, self-generated and/or external turbulence is the key-ingredient to make the
process fast. The collisionless case turns out to be always fast. With this progress,
we now can understand qualitatively, and even to a good degree quantitatively the
‘thermal aspects’ of REC.

This review has for subject the non-thermal, ultra-energetic particles. Mostly PIC-
simulations have shown that such particles can originate from reconnection sites.Many
questions remain, however. We want to address three of them, A–C, in the following
paragraphs.

(A) Open questions concerning small scale kinetic simulations As summarized at
the end of Sect. 4.2.2, we have, on the basis of 2D current sheet simulations some
definitive results. However, and as emphasized also there, many details remain un-
answered also for this case. There remains, in our view, three large questions which
need to be answered before we can state that our understanding even for this simple
case is sufficiently secured.

1. There is only one study which includes a guide field (at least for ion/electrons).
This study has brought interesting results, the independence of the spectral slope on
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the presence and the strength of a guide field and that the energy partition between
electrons and ions may critically depend on the presence of a guide field. Guide
fields are necessarily present in a current sheet like reconnection event in space.
Corresponding large parameter studies, which derive the relations for ion-electron
energy partition, the dependence of the power-law slope on the magnetization and
the thermal state of the inflow when a guide field is present are urgently needed.

2. The situation in three spatial dimensions remains unclear, even for the most sim-
ple case, the extension of a 2D current sheet towards the third dimension and a
comprehensive study is lacking.
Beyond this simple case, there are much more complicated reconnection topolo-
gies present in 3D than the simple extension of a 2D current sheet to 3D. An
overview of such topologies can be found in Birn and Priest (2007, Chapter 2) and
Pontin (2011). None of these topologies have been systematically addressed by
kinetic simulations.

3. Finally, REC is always accompanied with radiative emission. In a magnetized
environment, synchrotron radiation is always present and cool the particles which
emit. In addition, these photons undergo inverse Compton scattering with the hot
particles, cooling them again. Many reconnection sites are embedded in a strong
external cold radiative source, e.g., companion stars in X-ray binaries, leading
to additional cooling. Radiative effects introduce new parameters into REC not
discussed here so far. For instance, REC in a micro-quasar corona close to the
hole and in the γ -ray emitting region of an extragalactic jet takes place with the
same magnetizations (see Table 3). Without considering radiative effects, REC in
both environments features the same reconnection rate, particle spectra, or energy
distribution. However, the field strength differs by six orders of magnitude and
thus the effect of synchrotron radiation is largely different.
There are first attempts to account for radiative emission in PIC-simulations.
Werner et al. (2018) perform a relativistic 2D Harris sheet study of a pair plasma
and describe effects of external inverse Compton cooling on the basic dynamics,
the non-thermal particle acceleration, and radiative signatures. They find the recon-
nection rate and the overall dynamics basically unchanged. Important differences
are found for the particle spectra. They still show a hard power law (index ≥ −2)
as in nonradiative REC, but transition to a steeper power law that extends to a
cooling-dependent cutoff. The steep power-law index fluctuates in time between
roughly −3 and −5. Some other studies which include radiative losses address
mostly REC in pulsar winds (Cerutti et al. 2014b, a, 2016). Also the community
of the laser-plasma facilities starts to study radiative effects with PIC codes as
newer, more powerful lasers establishes a regime where radiative losses essen-
tially co-determine the dynamics, see for instance Wallin et al. (2015), Gonoskov
and Marklund (2018), Blackburn and Marklund (2018).

(B) How are particles accelerated? So far, it is not possible to rank the relative impor-
tance of the different acceleration processes discussed in Sect. 4.2.3. It seems likely
that different mechanisms are at work even for a simple setting, but the more if one
also considers the prevailing large scale physical conditions, e.g., hot non-relativistic
pair plasma or cold ultra-relativistic electron proton plasma (see also part C below).
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Most papers mentioned above come to this conclusion. In the same direction points
the finding that the distribution functions of the non-thermal particles, electrons and
protons, often show broken power-law slopes, with up to three different slopes and
an exponential cut-off. Even if some studies suggest that the shape of the distribution
functions for protons and electrons are close to identical, other studies shows differ-
ences between the shapes of electron and proton distribution functions. In relativistic
REC, the direct acceleration by the reconnection electric field is unambiguously iden-
tified as one important ingredient—in contrast to the non-relativistic case. However,
all studies showed that it is accompanied by some stochastic Fermi-process. Whether
this process operates between magnetic islands or other magnetic structures or is just
a consequence of kinetic turbulence in the diffusion region and in the current sheet, is
not yet clear.

First order Fermi processes can also be present. Such a process certainly works
in contracting islands and seems to accelerate the population of particles which is
originally located in the current sheet. If particles can cross island-boundaries, this
process may contribute to the acceleration of other particles as well. Whether, or
under what physical conditions, the first order Fermi process between the converging
inflows can work is an open question. In none of the relativistic simulations it has been
observed. The reasonmay be that a Harris sheet is a too symmetric constellation where
it is very hard to initiate particle motions normal to the direction of the sheets which
are sufficiently fast to move the particle out of the diffusion region. However, if one
would be able to find a mechanism to pre-accelerate particles, this mechanism could
become operational. Corrugated sheets, spine-fan or other topologies may support the
initialization of this mechanism. This question remains open and is part of the next
point of discussion.

(C) Magnetic reconnection in a large scale environment and in real objects Under-
standing microphysical processes is decisively important but, on the other hand, only
one part of the game to understand REC and to what degree REC contributes to the
emission of real objects via both, the leptonic and hadronic channel. And it does not
answer the questionwhether RECcontributes to the cosmic ray flux. To get the answers
to such questions, we definitely need to combine microphysics with large scale flow.

It is important to understandwhat triggers a reconnection event and the nature of the
event. Are, in real astrophysical objects, quasi-stationary configurations present, like
Harris-sheets or other magnetic nulls which eventually get unstable? Or are reconnec-
tion events driven by large-scale flows more important. Related, does REC start at one
point or will a network of reconnection points establish? All this is largely unexplored.

We therefore advocate simulations of large scaleMHD flows, entire accretion disks
and large portions of jets in high-energy objects. Such MHD simulations must control
magnetic diffusion, to be able to identify reconnection sites and topologies. Ideally,
such large scale simulations are also resistive. Only on the basis of such MHD sim-
ulations we will obtain a good estimate of the spatial and temporal distribution of
reconnection events in such objects. Subsequent microphysical studies which adapt
the configurations found by the MHD solutions will then allow to model photon
and possible neutrino emission. MHD simulations of magnetic reconnection will be
reviewed in a future version of the review.
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5 Macro scale numerical particle acceleration studies

At scales comparable with the system size dynamics are often treated in the magneto-
hydrodynamics (MHD) approximation. In this approximation different methods have
been developed to handle the acceleration and propagation of energetic supra-thermal
particles, which are listed and described below. Before treating this aspect we present
in Sects. 5.1 and 5.2 the main MHD solvers used in most of modern codes. A discus-
sion concerning relativistic MHD is also included. Detailed monographs and reviews
on the subject can be found, e.g., in Leveque (1998), Martí and Müller (2015) and
references therein. The next sections treat the way CRs can be coupled with MHD.
Section 5.3 discusses the multi-fluid approach where energetic particles are treated as
a fluid. Section 5.4 describes the procedure to combine kinetic andHD/MHDmethods,
in particular the way to treat energetic particles back-reaction over fluid solutions (see
Sect. 3.6). Section 5.5 presents the P(MHD)IC method in some details, this method
combines simulation techniques exposed in Sect. 3.3 to investigate microscale physics
but uses the electromagnetic field derived from the MHD equations. Section 5.7 dis-
cusses semi-analytical calculations of the problem of DSA, introduced in Sect. 2.2.

5.1 The equations of magnetohydrodynamics

The use of a magnetohydrodynamic (MHD) approach is crucial for the descrip-
tion of the large scale astrophysical phenomena involving collisional plasma, i.e.
if the timescale associated to collision is shorter than the system dynamical time.
This circumstance can occur for instance in supernova remnants, stellar bubbles and
accretion discs. However, most of astrophysical shocks (including SNR shocks) are
non-collisional as previously explained and their structure can not be dynamically
described using a MHDmodel. However, if collective interactions are sufficiently fre-
quent to keep the system isotropic, if electroneutrality can be assumed (which is the
case for scales larger than the Debye length), in the cold plasma approximation the
MHD equations reduce to the one-fluid system of equation derived in Eq. 52 below.
This system describes long wavelength and low frequency perturbations.

5.1.1 Classical magnetohydrodynamics

MHD equations couple fluid mechanics equations and Maxwell’s equations. They are
obtained by averaging themoments of the Boltzmann equation over the velocity space.
Particle density conservation is deduced by taking the zeroth order moment of the
Boltzmann equation, the momentum conservation equation is obtained by taking the
first order moment, and the energy conservation equation is obtained by taking the sec-
ond order moment. Each of these moment equations introduces a new unknown func-
tion: the continuity equation introduces the velocity, themoment conservation equation
introduces the pressure and the energy conservation equation introduces the internal
energy. Additional assumptions are then required to close the system. To that aim, an
equation of state is usually introduced which expresses the internal energy as function
of density and pressure, but other assumptions can be used concerning energy fluxes.
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The full MHD equations for a single fluid are given in a conservative form as
follows:

∂tρ + ∇. (ρ u) = 0,

∂t (ρ u) + ∇.

(
ρuu − BB +

(
p + B2

2

)
I
)

= 0,

∂t (e) + ∇.

((
e + p + B2

2

)
u − (B · u) B

)
= 0,

∂t (B) − ∇ × (u × B) = 0, (52)

where ρ is proper rest mass density, p is the thermal pressure, u is the Eulerian

fluid velocity vector, B is the magnetic field, and e = p
γad−1 + ρu2

2 + B2

2 is the total

energy density, where γad is the gas adiabatic index. The ideal Ohm’s law (perfect
conductivity) is retained: E = −u/c × B.

These equations are justified for a plasma where the relevant time scales are long
in comparison with microscopic particle motion time scale and spatial scales are large
in comparison with the thermal ion gyroradius and Debye length.

5.1.2 Equation of state (EOS)

The set of partial differential Eq. (52) governing compressible fluid dynamics is incom-
plete. There aremore unknowns than equations and then an additional closure equation
is required. Usually, this equation involves the internal energy, the thermal pressure,
and the density, and in some cases the temperature as well. This closure equation
describes the thermodynamical processes in the fluid. In a real plasma the different
particle populations can have different thermodynamical behaviour. For simplicity,
the most used closure equation is the polytropic equation of state,

d

dt

(
p

ργad

)
= 0, (53)

in an adiabatic gas with one degree of freedom γad = 5/3 and in an isothermal gas
γad = 1.

5.2 Numerical solutions

The finite volume method (FVM) is widely applied to solve problems described by
hyperbolic partial differential equations (PDEs) as is the case for MHD equations. In
this method the set of Eq. (52) is written in a shortened conservative form:

∂tU + ∂iFi(U) = 0, (54)

where i = (x, y, z) are the space variables, the conserved variables are given by
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Fig. 29 Finite volume scheme with variables set at cell center and flux computed at face center

U =

⎡

⎢⎢
⎣

ρ

ρu
e
B

⎤

⎥⎥
⎦, (55)

and the associate fluxes are

F =

⎡

⎢
⎢⎢⎢
⎣

ρu

ρuu − BB +
(
p + B2

2

)
I

(
e + p + B2

2

)
u − (B · u) B

uB − Bu

⎤

⎥
⎥⎥⎥
⎦

(56)

Numerically Eq. (54) are discretized in space and time as

Un+1 = Un + Δtn

⎡

⎣
idim=ndim∑

idim=1

F
i+ 1

2
idim − F

i− 1
2

idim

Δxidim

⎤

⎦, (57)

where U n and U n+1 are the conserved variables respectively at time tn and tn+1 =
tn + Δtn where Δtn is the time step. The time-averaged fluxes F

i+ 1
2

idim in the time
interval

[
tn, tn+1

]
at the interface between a cell with indices i and its neighbour i+ 1

in the direction idim are calculated from the solution of Riemann problems.45 This is
illustrated in Fig. 29.

In MHD, the Riemann problem is described by a 7-waves pattern. These seven
eigenvalues correspond to the left and right goingAlfvènwaves and fourmagnetosonic
waves (two fast and two slow), and between these two propagating waves there is the
entropy wave. These waves are defined in a direction idim as

45 A Riemann problem is an initial value problem of a conservative equation in fluid dynamics which
involves a discontinuous distribution of the conserved variables. It leads to the derivation of characteristics
or the eigenvalues of the problem corresponding to different wave solutions.
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λidim2,6 = uidim ∓U idim
a

λidim1,7 = uidim ∓U idim
f

λidim3,5 = uidim ∓U idim
s

λidim4 = uidim (58)

where the Alfvèn speed U idim
a , the fast U idim

f and the slow U idim
s speed in direction

idim in ideal MHD case are defined as (Ryu et al. 1995)

U idim
a = |Bidim|√

ρ
,

(
U idim
f,s

)2 = c2s +U 2
a ±

√(
c2s +U 2

a

)2 − 4 c2s U
idim
a

2

2
. (59)

Here cs =
√(

∂ p
∂ρ

)
is the local sound speed and Ua = |B|√

ρ
is the local Alfvèn speed.

We can note here that the characteristic MHD waves are direction dependent. These
waves are depicted in Fig. 30. The seven eigenvalues satisfy the inequalities

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7. (60)

However, some eigenvalues can coincide depending on the direction and strength
of the magnetic field. Therefore, the MHD equations form a non-strictly hyperbolic
system (Brio and Wu 1988).

5.2.1 The Courant–Friedrichs–Lewy condition

Courant, Friedrichs and Lewy (1928) showed that the stability of numerical schemes
requires the use of all the information contained in the initial state that will influence
the solution in a given spatial cell. To satisfy this condition, the ratio between the spatial
discretization Δx and the time step Δt should be smaller than the largest velocity of
the signal solution of the PDEs; i.e. max(| λ1 |, | λ7 |) (maximum speed propagating
to the left and to the right). This inequality is called the CFL condition:

Δt ≤ Δx

max(| λ1 |, | λ7 |) . (61)

Satisfying this condition is necessary for the convergence of explicit difference
schemes.

5.2.2 Riemann solvers

The Riemann solvers are a fundamental tool in the development of FVM. They are
based on a simplification of the hyperbolic equations. Moreover, at each step they sim-
plify the physical state to constant piecewise values with jump discontinuities at some
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Fig. 30 The Riemann fan. See text for the nomenclature of the waves.

or all eigenvectors (and associated eigenvalues) that characterize the hyperbolic equa-
tions. In the case ofMHD equations, the solution of the Riemann problem is controlled
by sevenwaves, either discontinuities or rarefaction fans. Eachwave is associated with
one eigenvalue [characteristic velocities (Eq. 58)], where λ1,3,5,7 are associated with
shock or rarefaction waves, λ2,6 are associated with rotational discontinuity and λ4 is
associated with a contact discontinuity (see Fig. 30).

There are different types of Riemann problem solvers (see Leveque 1998; Martí
and Müller 2015):

– An exact Riemann solver requires an iterative method and thus is impractical for
a MHD code (e.g., Takahashi et al. 2014; Torrilhon 2003). However, the results of
the exact Riemann problem are used as reference solution to check the numerical
precision and performance of approximate Riemann solvers.

– A linearized Riemann solver such as the Roe solver (Roe 1981) requires a decom-
position of the left and right eigenvectors into characteristics. This solver is
complex and time-consuming in MHD and HD cases. Moreover, the Roe solver
can lead to negative solutions (Einfeldt et al. 1991).

– A guess-based Riemann solver such as the HLL solver (Harten–Lax–van Leer)
introduces an estimate of the wave speed and the solution is averaged over the
Riemann fan.

In this review, we focus on the most used Riemann solvers for MHD, all in the guess-
based category. There are three main such solvers:

– The TVDLF (Total Variation Diminishing Lax–Friedrich Rusanov) Riemann
solver (e.g., Bouchut 2004) is constructed by assuming a mean state which is
given by the fastest wave. Indeed, the flux at cells interface i + 1/2 is given by,

F i+1/2 = 1

2

[
F
(
UL,i+1/2

)+ F
(
UR,i+1/2

)− Smax
(
UR,i+1/2 −UL,i+1/2

)]
,

(62)
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where the fastest propagating speed at cell interface is:

Smax = max
(
SL,max, SR,max

)
,

with SL,max, SR,max are the eigenvalues associated with the fastest wave propa-
gating respectively at the left and at the right of cell interface i + 1/2. They are
defined as,

SLmax = max
(1≤k≤7)

(| λk,L |), SRmax = max
(1≤k≤7)

(| λk,R |). (63)

– The HLL solver proposed by Harten et al. (1983) is constructed by assuming an
average intermediate state between the fastest and slowest waves.

F i+1/2 =

⎧
⎪⎨

⎪⎩

F
(
UL,i+1/2

)
SL,i+1/2 > 0

F (HLL, i + 1/2) SL,i+1/2 ≤ 0 ≤ SR,i+1/2

F
(
UR,i+1/2

)
SR,i+1/2 < 0

(64)

where

F (HLL, i + 1/2)

= SR,i+1/2UR,i+1/2 − SL,i+1/2UL,i+1/2 + F
(
UL,i+1/2

)− F
(
UR,i+1/2

)

SR,i+1/2 − SL,i+1/2

(65)

The outermost wave speed SL,i+1/2 and SR,i+1/2 are estimated using the left and
right states,

SL = min
(1≤k≤7)

(
λk,L, λk,R

)

SR = max
(1≤k≤7)

(
λk,L, λk,R

)
(66)

– The HLLC solver proposed by Toro et al. (1994) is a two-state HLL Riemann
solver. It introduces sub-structures associated with a contact discontinuity into the
sub-slow state of the HLL Riemann solver.

– TheHLLD solver (Miyoshi andKusano 2005) is a four-state HLLRiemann solver.
The HLLDRiemann solver introduces sub-structures associated with the two rota-
tional discontinuities λa,L, λa,R separated by the contact discontinuity.

In the Riemann solvers presented above, the numerical estimation of the fluxes at
interface F i+1/2 requires the values of the conserved variables to the leftUL,i+1/2 and
to the right UR,i+1/2 of the cell interface located at xi+1/2. These are reconstructed
from cell centred values U . These spatial reconstructions can be performed by using
a slope limited scheme to keep the reconstruction monotonic. There are various slope
limited schemes such asminmod, super-bee andmonotonized central difference limiter
(MCD) (Toro 2009), ppm (Colella andWoodward 1984), KOREN (Koren and van der
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Maarel 1993), van Leer (van Leer 1979). The minmod limiter is the most stable in
the presence of strong discontinuities and is very efficient in decreasing numerical
instabilities. MCD and Super-bee limiters are more efficient in the vicinity of smooth
flows because they permit to retrieve a centered slope. PPM and KOREN are higher
order limiters and thus with lower numerical dissipation, they can be used on large
classes of problems with smooth flow, intermediate discontinuities and some strong
shocks.

Numerical resolution of the partial differential Eq. (52) also requires high order
temporal accuracy. This is realized by using a second order predictor-corrector scheme
or a higher order scheme such as the strong stability preserving Runge-Kutta scheme.

5.2.3 Semi-implicit and implicit schemes

The various complex physical processes associated with astrophysical plasma phe-
nomena act on widely different time scales. The precise treatment of these phenomena
with an explicit MHD approach relies on the accuracy to which one can capture the
dynamics as imposed by the CFL condition. In some cases, the resulting short time-
resolution canmake theMHD simulation computationally intractable with the explicit
method. To make these simulations computationally feasible, it is necessary to inte-
grate the MHD equations with larger time steps. This is possible when we are not
interested in tracking all fast waves in the system and we can step over some unim-
portant propagating waves. This can be realized by the use of implicit schemes, which
are preferable for complex astrophysical MHD simulations. However, parallel com-
putation with implicit schemes becomes less efficient than with explicit schemes since
implicit schemes use iterative algorithms that request more communication between
the different processes.

In the implicit method the original system of differential Eq. (54) is rewriten as
follows:

∂tU = R(U), (67)

where R(U ) = −∂iFi(U) + S(U ) and S(U ) represents source terms. R(U ) is a
non-linear function of U . Eq. (67) is usually discretized in time using a third-level
Backward Differentiation Formula method

Un+1 = Un + Δt

[
βR(Un+1) + (1 − β)

Un −Un+1

Δtn−1

]
, (68)

where β = (Δtn + Δtn−1
)
/
(
2Δtn + Δtn−1

)
. In the case of constant time steps β =

2/3 and Eq. (68) is simplified to a second-order Backward Differentiation formula;
with β = 1 Eq. (68) corresponds to a backward-Euler scheme. In the case β = 0.5
the scheme is fully implicit.

In the implicit method, at each time step, the multidimensional nonlinear system

G(Un+1) = Un+1 −
{
UnΔt

[
βR(Un+1) + (1 − β)

Un −Un+1

Δtn−1

]}
= 0, (69)

must be solved to determine the time-updated solution for the state Un+1.
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In some specific simple cases, such as 2D isothermal hydrodynamics, Eq. (69)
can be preconditioned analytically to obtain a diagonal matrix, leading to a system
of linear equations that can be solved by relaxation techniques (Harlow and Amsden
1968). The linearization (analytical preconditioning) of Eq. (69) can be done either
about the initial equilibrium G(Un) or about the current state in order to construct the
implicit operator G(Un+1) = 0 needed to advance to the next time step. These classes
of implicit schemes are used for specific problems and geometry (e.g., Harned and
Schnack 1986). Another class of implicit schemes uses Newton–Krylov techniques
for the resolution of nonlinear systems like Eq. (69). Newton’s method consists of the
local linearization of Eq. (69) for each state U n (m) at iteration m according to

G(U n (m)) = (U n (m−1)) + ∂G(U )

∂ U

(
U n (m) −U n (m−1)

)
+ O(Δt2), (70)

which can be substituted into Eq. (69) giving the equation to be solved,

(
I − Δt β

∂G(U )

∂ U

)
δU = Δt

(

βU n (m−1) + (1 − β)
U n (m−1) −U n (m−2)

Δtn (m−2)

)

,

(71)
and after the values of U is updated as

Un+1 = Un + δU . (72)

However, this nonlinear resolution method benefits tremendously from accurate initial
guesses,Un(0). In many cases an explicit predictor is used to provide an initial guess to
the implicit scheme (e.g., Reynolds et al. 2006). The iterative resolution of the linear
Eq. (71) is performed in general by using preconditioned Krylov (sub)space solvers
(e.g., Tóth et al. 2006) with the non-restarted generalized minimum residual method
(GMRES) iterative solver (Brown and Hindmarsh 1989). These linear solvers are very
efficient for large-scale problems since they do not require storage of the matrix.

5.2.4 Magnetic divergence-free algorithms

The resolution of Euler and Maxwell equations using the standard Godunov schemes
does not work by default in maintaining the divergence-free property of the magnetic
field ∇ · B = 0. The resulting error accumulated during the simulation may grow
to the point that it produces unphysical forces (Tóth 2000). Several strategies have
been undertaken to handle the magnetic field evolution in numerical MHD. They are
classified into two main categories.

We first find the divergence-cleaning schemes, where the evolution of magnetic
field components is treated as any other MHD variables and only in a second step a
divergence-cleaning procedure is applied. In these schemes the magnetic field com-
ponents are defined at cells center as others variables. Then, the MHD equations
are solved by adding source terms function of ∇ · B. There are various methods for
divergence-cleaning schemes, such as the Generalized Lagrange Multiplier (GLM)
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(Dedner et al. 2002). In the GLM method, a new transport variables � and its gov-
erning equation is introduced into the MHD equations system, which plays the role
of advection and dissipation of the local divergence error. The divergence-cleaning
can be treated as well by the eight-wave formulation approach Powell et al. (1999).
There is also the projection method (Brackbill and Barnes 1980). In this scheme at
each iteration the Poisson equation∇2� = −∇ ·B is solved and in the second step the
magnetic divergence part is removed form the magnetic field B = B−∇�. Let us also
mention the vector divergence-cleaning scheme (Balsara 1998) which is an extension
of the projection method. Finally, another divergence-cleaning scheme based on the
use of an artificial diffusivity added at each time step, following the completion of the
TVDLax–Friedrich scheme (van der Holst andKeppens 2007), where a term η∇·∇ ·B
is added to the magnetic field to diffuse the magnetic divergence.

A second category of schemes is based on constrained transport methods, origi-
nally introduced by Evans and Hawley (1988). Such schemes use a staggered mesh
formulation which is inherently divergence-free. In this method the magnetic field is
defined at face centers and the remaining fluid variables are defined at cell centers.
In this approach, the electric field is set along the cell edges. This method sustains
a specified discretization of the magnetic field divergence around machine round off
error.

The constrained transport method is attractive from a physical point of view, how-
ever, it requires specific treatment for magnetic field variables different from others
variables, which is inconvenient for implementation specifically in the AMR. The
diffusive method reduces the numerical error of ∇ · B by adding a source term in
the induction equation and the energy equation. The projection method involves an
additional Poisson equation which significantly increases the computational cost. The
GLM method is based on the use of central cell magnetic field and thus it can easily
be applied on general grids.

5.2.5 Adaptive mesh refinement techniques

The numerical resolution of the PDEs (Eq. 57) uses a discrete domain. Therefore
its precision depends on the mesh resolution (spacing), determined according to the
scales of the phenomenon under study. In fluid mechanics a broad variety of spatial
perturbations exist and can interact with each other. The complexity of these inter-
actions requires the resolution of the problem at all scales. With uniform meshes, if
high resolution is required throughout the computational domain the simulation can
become computationally extremely costly.

Adaptive Mesh Refinement (AMR) addresses the problem of resolving this wide
range of scales by increasing the spatial resolution around small scale structures. It
is achieved by increasing locally the mesh resolution and then adjusting the com-
putational effort locally to maintain a uniform level of accuracy throughout the
computational domain. This type of AMR approach is called the h-type refinement.
It consists in the splitting of existing elements into smaller ones. The development
and use of the AMR starts with Berger and Oliger (1984), the transition from serial
to parallel computing occurred after Griebel and Zumbusch (1999). Various AMR
approaches exist, depending on the cells shape and the logical grouping of the cells
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on the mesh: gathering the cells according to their size h, inducing a particularly strict
ansatz in the hierarchy, h = n−L, corresponding to some refinement level L (L is an
integer). The cells volume at level l are h−ND (ND = number of dimensions) smaller
than the cells at coarse level l = 1. The most used hierarchy is n = 2 where the coarse
cell is divided by 2ND when it is refined.

In the block structured methods the cells are arranged in blocks according to their
levels only. This method does not have any constraints on the size or shape of these
blocks. Tree-base methods impose constraints on the block size and shape. With this
method, the blocks are organized hierarchically as a quadtree in 2D (octree in 3D). In
this distribution, the blocks in use at level l represent the tree leaves since they have no
children and they have an associated parent (ascendant) blocks. The parent blocks that
are at the lowest refinement level l = 1 represent the tree roots. In some simulations,
there is a need to use multiple tree roots arranged in an unstructured AMR, giving rise
to a forest of trees.

5.2.6 Errors estimator

TheAMR consists in the use of a coarse grid over the entire computational domain and
refined grids only in some specific regions where the local truncation errors are judged
to be too large to maintain a given numerical accuracy. These errors can be computed
using the Richardson-estimator which compares the evolution of the variables at two
successive levels. This estimator is accurate however it requires a lot of memory and is
time consuming. Another estimator is the Löhner-estimator (Lohner 1987), a modified
central second derivative normalized by the sum of first-order forward and backward
gradients. It has the advantage of using mostly local calculations of any variables of
the simulation and their combinations.

5.2.7 Load balance

In the simulation box, the distribution of blocks across the processors requires the
use of a space filling curve. The most used space filling curves (SFCs) are Hilbert,
Peano, and Sierpinski curves (Bader 2013). TheHilbert and Peano curves use recursive
algorithms. The Morton order is also widely used due to its ease of implementation in
the space filling. However the curves it generates are not continuous and thus do not
fit into the family of finite SFCs.

With this curve the blocks are organized over a forest of trees and thus they are
distributed over all the processors. There are two approaches for this forest partition.
In the first approach, each tree and its leaves are associated to one owner process.
In the second approach, the tree leaves can belong to multiple processes. The first
approach is simple to implement however it does not provide a right load balance
since the number of blocks per process may differ. The second approach, even if it
presents issues with shared tree between processes, provides a perfect load balance,
the difference in block distribution over processes is at most one. This last approach
provides the best scalability (Keppens et al. 2012).
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Fig. 31 Sod shock tube test in MHD. The density, pressure, velocity components, transverse component of
the magnetic field, and specific internal energy [scaled by (γad − 1)] for the Brio & Wu (1988) shock tube
problem are plotted at t = 0.08, computed with 400 grid points, second-order spatial reconstruction, and
Roe fluxes. The solid line is a reference solution computed with 104 grid points. Image reproduced with
permission from Stone et al. (2008), copyright by AAS

5.2.8 Standard numerical tests

The development of numerical tools requests extended tests for all implemented
physics and algorithms. Many comprehensive and well documented sets of tests have
been presented in the literature. Tests are set for all physics, all dimensions, and imple-
mented geometries and AMR schemes. For many 1D tests an exact solution exists and
it is possible to compute the deviation of the numerical result from it using some error
norm (e.g., norm error L1 = �i‖qi − q0i ‖/N , where N is number of point, q0i is the
exact solution at cell i , q0i is the numerical result at cell i).

One of the standard one-dimensional tests is the Sod MHD shock tube (Brio and
Wu 1988). The shock tube test consists of two constant states, one on the left and the
second on the right, separated by a discontinuity. This test allows to check the ability
of a numerical code to treat correctly the Riemann problem in 1D and resolve the
Riemann fan evolution, see Fig. 31.

For two-dimensional MHD tests, one of the standard tests in the vortex of Orszag
& Tang (1979), see Fig. 32. This test consists in a doubly periodic fluid configuration
leading to 2D supersonicMHD turbulence. The density and pressure are set to constant
values, while the velocity and magnetic field are set as
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Fig. 32 Orszag–Tang vortex test. Contours of selected variables at t f = 1/2, computed using a grid of
192 × 192 cells, third-order reconstruction, and Roe fluxes. Thirty equally spaced contours between the
minimum andmaximum are used for each plot. Image reproduced with permission from Stone et al. (2008),
copyright by AAS

u = (− sin y, sin(x), 0),

B = (− sin y, sin(2 x), 0). (73)

This test does not have an analytical solution and the results have to be compared
between different codes.

5.2.9 Relativistic magnetohydrodynamics

The MHD description introduced in the previous paragraphs is relevant for non-
relativistic plasma velocities and energies. It is adequate for plasmas in the interstellar
medium and in the vicinity of stars. However, some astrophysical phenomena involve
relativistic plasma flows with energies of the order of the mass energy. In order to
model these plasmas in the framework of the fluid model, the MHD formulation has
to be revised using the special relativity (SR) framework. In flat space-time, the plasma
is described by the following SR-MHD equations (see Martí and Müller 2015)
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∂t (γρ) + ∇. (ρ�u) = 0,

∂t

(
γ 2hu + E × B

)
+ ∇.

(
γ 2huu − EE − BB + pI

)
= 0,

∂t

(
hγ 2 − p − γρ + E2 + B2

2

)
+ ∇.

((
hγ 2 − p − γρ

)
u + E × B

)
= 0,

∂tB + ∇. (uB − Bu) = 0, (74)

where the closure of this system of equations is provided by the equation of state
expressed with the enthalpy h = h(ρ, p). The total pressure is pt = p + E2+B2

2
where the electric field is given by Ohm’s law. In the ideal case E = −u/c×B, finally
� = (1 − (u/c)2)−1/2 is the Lorentz factor of the flow.

The numerical resolution of SR-MHD equations exploits the same type of algo-
rithms as presented before, by solving Eq. (74) in conservative form

∂tU + ∂iF
i(U ) = 0, (75)

where the conserved variables are

U =

⎛

⎜⎜
⎝

γρ

hγ 2u + E × B
hγ 2 − p − γρ + E2+B2

2
B

⎞

⎟⎟
⎠, (76)

and the corresponding flux tensor

F(U ) =

⎛

⎜⎜
⎝

γρu
hγ 2uu − EE − BB + pI(
hγ 2 − p − γρ

)
u + E × B

uB − Bu

⎞

⎟⎟
⎠ . (77)

Most of the complications in relativistic MHD comes from the non-linear relation
between the primitive variables (ρ, u, p) and conserved variables U :

ξ − p − τ − D + B2 − 1

2

((
B

γ

)2

+
(

S · B
ξ

)2
)

= 0,

u · B = S · B
ξ

,

1

γ 2 = 1 − (S + (u · B) B)2

(
ξ + B2

)2 ,

u = S + (u · B) B
ξ + B2 , (78)

where D = γρ is laboratory frame density, ξ = γ 2ρ h, S = hγ 2u + E × B the
momentum and τ = hγ 2− p−γρ+ E2+B2

2 . Eq. (78) can be handled only numerically,
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themost used scheme is theNewton–Raphsonmethod (Noble et al. 2006). The iteration
is performed on the pressure, on the enthalpy or the velocity. In SR hydrodynamics
the iterative method can be avoided and instead a quartic equation can be solved
(Schneider et al. 1993).

As in classical MHD, the SRMHD schemes exploits characteristic speed of plasma
normal modes, but these are limited by the light speed, i.e.

− 1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ 1. (79)

For a specific direction idim, the entropy wave as in classical MHD travels with speed
λ4 = vidim, the Alfvén wave has speed

λ2,6 = uidim ∓ Bidim
√

(ρh + B2) ∓ (v · B)
, (80)

and the magneto-acoustic speeds are found from the quartic equation

ρh (1 − cs) γ 4
(
λ − uidim

)4 −
(
1 − λ2

)
×

(

γ 2
(
ρ h c2s − B2

) (
λ − uidim

)2 − c2s

(
� (u · B)

(
λ − uidim

)
− Bidim

γ

)2
)

= 0

(81)

where cs is the sound speed. In the hydrodynamics case, Eq. (81) becomes a single
quadratic expression, and then the use of exact analytic formulae for the root evaluation
is straightforward. In SRMHDEq. (81) is quartic, although an analytical solution exists
(Del Zanna et al. 2003), it is more easily obtained by numerical iteration, for which a
Laguerre method can be used.

Standard numerical tests In special relativistic hydrodynamics and magnetohydro-
dynamics several numerical experiments are used as benchmark tests. Like in classical
HD andMHD there is the Sod shock tube and the equivalent of the Orzag–Tang vortex
(see above). Here we show the rotor test (Del Zanna et al. 2003), in Fig. 33. It consists
in a disk of radius 0.1 with higher density, ρ = 10, positioned at the center of the
computational domain [0, 1] × [0, 1], rotating at high relativistic speed, Ω = 9.95,
thus the Lorentz factor at the disk edge �max � 10.0, the rotor is embedded in a static
background with ρ = 1, p = 1, and uniform magnetic field Bx = 1 with polytropic
index γ = 5/3.

5.3 Multi-fluid methods

The previous section presented the case of a single fluid. However, in astrophysics
the thermal plasma pressure is usually in competition with the pressure in other com-
ponents: cosmic rays, radiation fields, dust, neutral species, or requires to include an
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Fig. 33 The relativistic rotor problem. The top panel shows the density structure (both in linear scale as
well as using a Schlieren plot), the bottom panel the magnetic field components, at time t = 0.4. Image
reproduced with permission from Keppens et al. (2012), copyright by Elsevier

electron fluid. In bi- or multi-fluid models it is in principle necessary to add as many
fluid equations as the number of species to be included in the simulations, and to
account for the friction forces induced by collisions among the species in the momen-
tum conservation equation (see, e.g., O’Sullivan and Downes 2007).

As in this review we are mostly interested in non-thermal particle acceleration and
transport we restrict our discussion to the case of the interaction of a thermal fluid
and a non-thermal (or cosmic ray) component (Drury and Voelk 1981; Rasera and
Chandran 2008).

5.3.1 Model equations

CRs impact fluid dynamics through the effect of the gradient of their pressure pCR
(Eq. 9). The momentum equation is modified as
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∂t (ρ u) + ∇.

(
ρuu − BB +

(
p + pCR + B2

2

)
I
)

= 0, (82)

and the energy equation now includes the work of this force plus another component
produced by the CR diffusion

∂t (e) + ∇.

((
e + p + pcr + B2

2

)
u − (B · u) B + FCR

)
= 0, (83)

where the CR flux is FCR = − ¯̄D.∇eCR and eCR is the CR energy density. The CR
diffusion coefficient can be decomposed into parallel and perpendicular components
with respect to the background magnetic field, namely

Di j = D⊥δi j + (D‖ − D⊥)bib j (84)

where b = B/B (Hanasz and Lesch 2003). An energy equation for the CR energy
density eCR is now required. It reads

∂t (eCR) + ∇. (eCRu + FCR) = −pCR∇.u. (85)

CR pressure and energy density are linked by pCR = (γCR − 1)eCR, where a CR gas
adiabatic index γCR is introduced. The above energy equation does not have a flux-
conservative form. Kudoh andHanawa (2016) (see also Pfrommer et al. 2006) propose
an alternative approach leading to a full set of flux-conservative equations for the CR-
MHD system. To proceed the authors introduce the CR mass density ρCR = p1/γCRCR ,
thus approximating CRs as a polytropic gas. With this assumption the CR energy
equation can be recast into a continuity equation for the CR gas

∂t (ρCR) + ∇. (ρCRu) = 0. (86)

The previous equation implies that that ρCR/ρ is conserved along a streamline.

5.3.2 Specific numerical schemes of CR-fluid systems

The new set of equations can be solved using FVM as for standard MHD equations.
The solver now has to account for the CR pressure which modifies the local sound
speed cs = √

γadP/ρ + γCRPCR/ρ. The CR pressure is dominated by the relativis-
tic part of the CR distribution hence γCR � 4/3. The standard solvers detailed in
Sect. 5.2.2 can be used to treat the above CR-MHD system.Working in the framework
of the fluid-kinetic approach (Sect. 5.4), Miniati (2007) develop a modified Glimm–
Godunov solver where the CR mediation is included in the Riemann problem. Kudoh
and Hanawa (2016) propose a CR+MHD solver, second order accurate in space and
time for a bi-fluid system based on a Roe solver.
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Semi-implicit and implicit methods An important difficulty of explicit schemes for
CR-HD or CR-MHD systems comes from the CFL stability criterion for the CR dif-
fusion, which imposes a timestep Δt ≤ XCFL Δx2/(2D), where XCFL is the CFL
number. This criterion, because the time step scales non-linearly with the grid reso-
lution, imposes severe slowing down limitations, especially in multi-scale problems
where AMR is active. Several semi-implicit or implicit approaches have been pro-
posed to cure this issue, usually in the context of thermal conduction studies (Balsara
et al. 2008). The CFL constraint from CR diffusion is alleviated by calculating the
diffusion operator using an implicit method (see Sect. 5.2.3 and next). Another way to
reduce the computation time is the so-called super-time stepping technique (O’Sullivan
and Downes 2007; Balsara et al. 2008) where the CFL condition is imposed over a
large time interval composed of multiple elementary substeps over which the stability
condition can be relaxed. To increment the guessed solutions at every substep from
the previous guess a Runge–Kutta method is applied, using a polynomial recursion
relation (using either Chebyshev or Legendre polynomials).

Here we discuss more specifically the implicit scheme proposed by Dubois and
Commerçon (2016) which is well-adapted to simulations with AMR. The diffusion
operator in the energy Eq (83) can be discretized as (we write it here in 2D for a
Cartesian grid but it can easily be generalized to 3D)

en+1
i,j = eni,j −

Δt

Δx

(
Fn+1
i+1/2,j + Fn+1

i,j+1/2 − Fn+1
i−1/2,j − Fn+1

i,j−1/2

)
(87)

where the energy density is calculated at the cell center (i,j) and the fluxes are obtained
at cell interfaces. The quantities are expressed at the final time step tn+1, forming a
linear system that can be solved by matrix inversion. In this scheme the anisotropic
part of the fluxes at the cell interfaces are calculated from the fluxes at the cell cor-
ners, i.e., Fn+1

i+1/2,j = 0.5(Fn+1
i+1/2,j+1/2 + Fn+1

i+1/2,j−1/2). The anisotropic part of the flux
corresponds to the diffusion along the background magnetic field D‖bb.∇e.

Cosmic-ray streaming regularization CRs are not exactly advected with the back-
ground fluid but with the scattering centers (MHD waves) carried by the background
fluid (Skilling 1975a). Considering slab-type waves that CRs can self-generate as they
stream along the background magnetic field, we find a streaming velocity

ust = u +
〈
3

2
(1 − μ2)

ν+ − ν−
ν+ + ν−

〉
uA, (88)

where u and uA are resp. the fluid and waves speed, μ is the CR pitch-angle cosine,
and ν± are the angular scattering frequency produced by the forward/backward (+/−)

propagating waves along the background magnetic field. This calculation assumes
that the quasi-linear theory of CR transport applies (Schlickeiser 2002). A detailed
calculation of this velocity requires to know the scattering frequencies, which is only
possible by adding two other energy equations for each type of propagating wave. This
is the purpose of the next paragraph. However, self-generated waves are preferentially
produced when the local CR pressure is in excess with respect to the gas and magnetic
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pressure (as is likely the case close to CR sources), along a CR gradient. In that
case, waves are preferentially triggered in one direction and one can write ust =
u − uaB.∇pCR/|B.∇pCR| (Pfrommer et al. 2017). The CR energy Eq. (85) needs to
be modified according to

∂t (eCR) + ∇. (eCRust + FCR) = −pCR∇.ust. (89)

This equation is non-linear as ust depends on ∇ecr. The LHS of Eq. (89) resembles
an advection equation but with a speed dependent on the sign of the gradient of the
CR energy density, which introduces some spurious oscillations at extrema where the
gradient changes its sign (Sharma et al. 2010). These authors propose a regularization
of the energy equation by replacing the sign of B.∇pCR in Eq. (89) with a smooth
function. The drift speed is rewritten as

udrift = uA tanh

(
X

ε

)
, (90)

where X = B.∇pCR/|B.∇pCR|, and ε is a small parameter to be adjusted. The energy
equation becomes diffusive at streaming speed extrema with a diffusion coefficient
dependent on ε. Sharma et al. (2010) show that an implicit non-linear integration
scheme (see their Eq. 3.9) produces a rapid convergence, but requires a sufficiently
small time step to be adjusted with the value of ε. Jiang and Oh (2018) propose an
alternative approach where Eq. (89) is replaced by a system of two equations

∂t (eCR) + ∇. (�CR) = −pCR∇.ust

1

u2m
∂t (�CR) + ∇PCR = − 1

D
�CR, (91)

where �CR = FCR + eCRust is the total CR flux and Um is a speed in practice taken
larger than the maximum natural mode speed of the plasma. In this approach the prob-
lematic term sgn(X) is replaced by ∇.�CR. The system is closed by choosing the
diffusion coefficient as D = D0 − ust(eCR + pCR)/(b.∇pCR), where D0 is a back-
ground coefficient produced by large-scale injected turbulence. Thomas and Pfrommer
(2019) criticize the two previous methods. They present CR transport mediated by
self-generated waves including an accurate description of CR pitch-angle scattering
up to the second order in accuracy in (ua/c). The latter is possible because of the
addition of two supplementary energy equations respectively for forward and back-
ward propagating waves (see the next paragraph). The authors employed a system of
equations similar to Eq. (91) but with supplementary terms derived from the effect of
CR scattering off self-generated waves.

A four-fluid approach Amore complete description of the CR-fluid system includes
the description of the forward and backward propagating CR self-generated waves
(Skilling 1975a). It includes two supplementary fluid energy equations (Ko 1992).
Now the total pressure includes the contribution of forward (backward) waves Pw,+
(Pw,−), and the total energy density includes wave terms as well ew,+ (ew,−), see Ko
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(1992), Thomas and Pfrommer (2019) for a complete derivation of the new system
of equations. This system is restricted to the quasi-linear theory framework. Hence,
coupled with a MHD code the amplitude of self-generated waves has to be small with
respect to the amplitude of the background magnetic field. The four-fluid system has
been numerically solved by Thomas and Pfrommer (2019) using an explicit scheme
separating the CR and wave fluid equations.

The interest of this approach resides in the more accurate calculation of the CR
streaming speed given by Eq. (88) as well as the CR diffusion coefficient in space
and energy, both dependent on the amplitude of scattering frequencies ν± off forward
and backward waves. In particular, it is possible to account for a fluid description of
a stochastic acceleration term in the CR fluid energy density equation. This term has
the form (Thomas and Pfrommer 2019)

4
ν̄+ν̄−

ν̄+ + ν̄−
v2a

c2
(eCR + PCR), (92)

where ν̄ is the momentum-averaged scattering frequency.

Other numerical strategies Pfrommer et al. (2006) and Enßlin et al. (2007) develop
a method based on a smooth particle hydrodynamics (SPH) approach. In SPH fluid
dynamics is treated using Lagrangian particles. To each particle is attached relevant
fluid properties (e.g. density, pressure ...) calculated using a SPH kernel dependent
on a smoothing length (Monaghan 1992). The CR distribution follows a power-law
distribution whose normalization and power-law index vary under the effect of adi-
abatic gas variation (compression/expansion) as a function of the gas density (itself
calculated in the SPH code).

5.3.3 Numerical tests

Aside the standard numerical tests for HD and MHD codes described in Sect. 5.2.8,
we detail here some specific setups aiming at testing the transport (either passive or
active) of CRs.

Hanasz and Lesch (2003) propose a series of tests of the CR flux term in Eq. (83)
using the Piernik code (Hanasz et al. 2010).Afirst, straightforward test is 1Ddiffusion
of CRs along the background magnetic field directed in one direction of the Cartesian
grid, setting the perpendicular diffusion to zero, and no CR backreaction (turning off
the CR pressure gradient), in a static medium. Diffusion can also be tested along an
inclined magnetic field with contributions of the different directions to the CR flux.
Figure 34 shows the profile of the CR energy density along and perpendicular to the
ellipsoid solution of the propagation of an initial spheroidal distribution in 3D (see
Fig. 2 in Hanasz and Lesch 2003).

The authors propose also the same test but now turning on the effect of CR pressure
gradient. Figure 35 shows two plots: CR energy density and magnetic field lines (left),
gas density and velocity field lines (right). It can be seen that the gas accelerates up to a
few km/s under the effect of a strong CR gradient preferentially along the background
magnetic field line. This gas motion leads to a drift of CRs along the magnetic field.
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Fig. 34 CR propagation along an inclined magnetic field. The two curves show cuts of the ellipsoid solution
at a given time along the major axis (crosses) and along the minor axis (asterisks). The solid and dotted
lines represent the analytical solutions corresponding cuts of the fitted 2D Gaussian profile. CR diffusion
is treated using an explicit scheme with D‖ = 100 (in units of pc2Myr−1 and D⊥ = 0. Image reproduced
from Hanasz and Lesch (2003), copyright by ESO

Fig. 35 CR propagation along an inclinedmagnetic field in the case CR backreaction is active. Equipartition
between gas, magnetic field and background CR pressures is assumed. An over pressure of a factor 100
in CR is injected at the center at the start of the simulation. The diffusion coefficients are: D‖ = 100 and

D⊥ = 4 (in units of pc2 Myr−1). Left: CR pressure map and magnetic field lines. Right: gas density map
and velocity vectors. Image reproduced with permission from Hanasz and Lesch (2003), copyright by ESO

Perpendicular diffusion imposes a broadening of the CR profile perpendicular to the
magnetic field lines. Similar tests are proposed in Snodin et al. (2006) (see their Fig. 5).

A second type of tests used in the context of CR acceleration at SNR blast waves
involves Sod shock-tube simulations (restricted to HD). Pfrommer et al. (2017) (see
also Salem and Bryan 2014) derive an analytical solution of the shock-tube problem
including a CR gas. Figure 36 shows a solution of a 1D Riemann shock tube problem.
Three cases are shown: on the left the solutions for a shock propagating in a composite
gas of thermal plasma and CRs but without any CR acceleration, in the middle the
same case but now including CR acceleration, on the right a shock propagating in the
thermal gas only but with CR acceleration. Butsky and Quinn (2018) propose a 1D
Brio–Wu shock-tube test (hence in MHD).
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Fig. 36 1D shock-tube test problems includingCRs. From top to bottom are shown: the gasmass density, gas
pressure, gas velocity and shock Mach number. Left: shock propagation in a composite gas including CRs
but without the effect of CR acceleration. Middle: same as the left case but now including CR acceleration.
Right: same as the middle case but without background CRs. Solid lines: analytical solutions, dotted lines:
numerical solutions. The different pressures are: gas (blue), CRs (orange), total (red), the pressure in the
CR injected at the shock front is in green. In the left and middle cases the initial CR pressure is two times
the gas pressure on the left part and equal to it on the right part. Image reproduced with permission from
Pfrommer et al. (2017), copyright by the authors

5.3.4 Cosmic ray physics using a bi-fluid approach

We illustrate here the ability and the limits of the bi-fluid approach in treating three
important aspects of CR physics: CR acceleration at shocks, CR-driven winds and
CR-induced magnetic production in the Galaxy.

Cosmic ray acceleration at shocks After the derivation of the test-particle solu-
tion produced by DSA (see Sect. 2.2), it appeared that the pressure carried by the high
energyCRs is large enough tomodify the shock structure and hence the Fermi accelera-
tion process itself. Drury andVoelk (1981), Axford et al. (1977) derived self-consistent
fluid solutions including the CR pressure in the Rankine–Hugoniot conditions using
a bi-fluid model. They find that the non-linear model has up to three stationary shock
solutions when the adiabatic indices of the gas and CR are γad = 5/3 and γc = 4/3
respectively. The selection among these solution depends on the injection efficiency
(Malkov 1997b). Saito et al. (2013)46 discuss the time-dependent stability of these
solutions and confirm that the high- and low-efficiency solutions are stable against
large-amplitude perturbations, while the intermediate one is not. At high-injection

46 Section 2 of Saito et al. (2013) provides a short updated review of the main assumptions and issues of
the bi-fluid model.
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efficiency and high-shock Mach numbers the shock may be completely smoothed in
the two-fluid approach. Malkov and Drury (2001), Malkov (1997a) show that a sub-
shock must always exist in a kinetic model and hence that these smooth solutions are
an artefact of the model because the maximum CR energy is always finite.

Acknowledging these issues, themain interest of the bi-fluid approach to investigate
CR back-reaction resides in its simplicity and also in the fact that this formalism can
be easily combined with a MHD model (Webb et al. 1986; Jun et al. 1994; Frank
et al. 1995) and used to follow CR-MHD fluid non-linear dynamics with respect to
the shock obliquity. The bi-fluid model also allows to combine effects of CRs and
radiation (Wagner et al. 2007). It is particularly useful to diagnose the profile of Hα

lines in Balmer-dominated shocks occurring while a SNR propagate in a partially
ionized medium (Wagner et al. 2009). However, only a kinetic calculation permits to
follow the energy dependence of the particle distribution and the instabilities particles
may generate. Non-linear kinetic models have since superseded the bi-fluid approach
in this context. Numerical non-linear kinetic models are presented in Sects. 5.4 and
5.5 and semi-analytic models in Sect. 5.7.

CR driven winds CRs by the interplay of the generation of waves for instance by the
streaming instability can convert a part of theCRbulkmomentum intofluidmomentum
and hence drive winds (Ipavich 1975). Breitschwerdt et al. (1991), Breitschwerdt
et al. (1993) investigate both analytically and numerically the launch of CR-driven
winds in the framework of the bi-fluid model. Actually as their model includes also
self-generated waves it proposes a three-fluid description. The authors use the flux
tube approximation where stationary MHD equations are solved along the outwardly-
directed magnetic field lines. The flux tube has a variable area cross section A(z), z
marking the height above the galactic disk. Solutions, especially the sonic point of
the MHD system, are searched for as in the case of the solar wind. The numerical
solutions start from the calculation of the fluid speed gradient at the critical point
and then are propagated out- and downward to match the inner and outer boundaries.
Stationary CR-driven outflows are obtained if the inter galactic gas pressure is low
enough. Zirakashvili et al. (1996) extend this work by including galactic rotation. They
show that the wind forces the gas in the halo to corotate with the galactic disk up to a
distance of a few kpc. The waves generated by the CRs also contribute to heat the halo.
Everett et al. (2008) adopted a similar modelling as in previous works although with
different boundary condition assumptions. They find that thermal and CR pressures
are equally important to drive the wind. Their solutions are found to be consistent with
an injection of CRs by SNe at a standard rate although with a bit high efficiency. Uhlig
et al. (2012) carry SPH simulations including a treatment of adiabatic gain/loss of the
CR gas and the physics of streaming. Pakmor et al. (2016), Ruszkowski et al. (2017)
add the effect of anisotropic diffusion coefficients in the disk in a bi-fluid formalism.
All these works show that CRs have a systematic negative feedback impact over the
star formation rate in our Galaxy while they can launch powerful winds from the
galactic disk.

Galactic magnetic dynamo Dynamo is likely at the origin of large scale magnetic
fields generated in the Galaxy (see Kulsrud 1999 and Sect. 6 in Brandenburg 2018).
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Bi-fluidmodels have beenwidely used to investigate the Parker or buoyancy instability
thought to participate fast dynamo processes in spiral galaxies (Parker 1992; Hanasz
and Lesch 1993). CRs produce an inflation of magnetic loops anchored in the galactic
disk that inducesmagnetic reconnection and disconnects disk and halomagnetic fields.
The closed loops in the halo and the anchored loops in the disk can be subject to
cyclonic rotation at the origin of an αΩ dynamo process, the α effect resulting from
the Parker instability. Notice that CRs can provoke α dynamo because of their current,
strong enough to trigger the non-resonant streaming instability (Beresnyak and Li
2014).

A numerical investigation of the Parker instability using a bi-fluid model has been
proposed byHanasz and Lesch (2000) using a flux-tube approximation. In that approx-
imation CR are injected from a SNR at its lifetime end in the flux tube composed of
the magnetic field lines threading the SNR. CRs are injected with an over-pressure of
∼ 30 with respect to their background pressure and then inflate the flux tube in the
vertical direction (with respect to the disk), eventually leading to a flux-tube explo-
sion in a runaway process and ultimately to the production of galactic winds.47 The
authors were able to find α coefficients large enough to ensure efficient Parker insta-
bility including magnetic field back-reaction. Ryu et al. (2003) investigate the growth
rate of the Parker instability as function of the CR diffusion coefficient and find that
the growth rate decreases with the parallel coefficient whereas the perpendicular coef-
ficient has no strong impact. Kuwabara et al. (2004) conducte a 2D analysis of the
Parker and explosion instabilities. Later Hanasz et al. (2004) and Hanasz et al. (2009)
propose 3D simulations of the Parker instability using the Piernik code in a 3D box
and in global Galactic geometry respectively. The global simulations show the growth
of the magnetic field strength saturates at about t = 4 Gyr, reaching values of 3–5 μG
in the disk. The magnetic field, initially randomly oriented, shows at the end of the
simulation a toroidal component forming a spiral structure with reversals in the plane
of the disk.

5.4 The fluid-kinetic framework

Solving the Fokker–Planck equation (FPE) is usually a very demanding task for com-
puter simulations (see Sect. 3.6). Then, coupling a FPE with a MHD code has only
been scarcely attempted yet. In this sectionwe discuss approaches developed to couple
a fluid model (HD orMHD) and a kinetic model (Vlasov or Fokker–Planck or approx-
imations of these), appropriate to describe respectively the shock and the particles in
the context of CR acceleration at shocks. In Sect. 5.4.1 we discuss methods that couple
(M)HD equations and the diffusion-convection equation. In Sect. 5.4.2 we present a
different approach that relies on a more general Vlasov-Fokker–Planck equation for
description of the evolution of the distribution function f (p).

47 Figure 1 in Lesch and Hanasz (2003) lists a series of physical processes which result from the Parker
instability.
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5.4.1 Coupling hydro and diffusion–convection equations

Works reviewed in this sectionmodel separately the evolution of the astrophysical flow
(e.g., the blast wave of a supernova remnant, or a cosmological structure formation
shock), using HD or MHD equations (see Sect. 5.1), and the acceleration of energetic
particles, using the diffusion-convection equation, that is the angle-averaged Fokker–
Planck equation (see Sect. 3.6) of the form

∂ f

∂t
+ ∂

∂x
(u f ) = ∂

∂x

(
D

∂ f

∂x

)
+ 1

3p2
∂ p3 f

∂ p

∂u

∂x
, (93)

which includes advection terms in space and in momentum, and a diffusion term in
space (we are here restricting ourselves to first order acceleration, and so have not
included diffusion in momentum). When written in a conservative form the spatial
advection term may be included in the hydrodynamical solver, using the operator-
splitting technique. The right-hand side is commonly solved with Finite Differences
methods (FDM), using the techniques presented in Sect. 3.6. The diffusion term is the
most difficult to treat. As stressed before, explicit schemes suffer from the constraint
due to a CFL condition that is quadratic in the resolution Δt < Δx2/2D, and which
for physically-motivated values of the diffusion coefficient imposes time-steps that
are much shorter than the hydrodynamic time-step. As in Sect. 5.3, this leads to the
use of implicit or semi-implicit schemes, or possibly accelerated explicit schemes.
The diffusion coefficient D, although it should in principle be computed from f itself,
is commonly prescribed as a function of p, usually as a power-law D(p) ∝ pα ,
with optionally a dependence on position x (the Bohm coefficient reduces to such a
form with α = 2 in the non-relativistic regime and α = 1 in the relativistic regime).
Compared to the bi-fluid approach of previous Sect. 5.3, the methods presented in this
section aim at describing the spectrum of particles f (p), using various approximations
and techniques to handle the large range of scales to be resolved.

The piecewise power-law method This method was introduced by Jones et al.
(1999), Tregillis et al. (2001) to investigate the time evolution of relativistic
synchrotron-emitting electrons in radio galaxies.48 The basic idea is to approximate
the electron distribution f (p) as a piecewise power-law with N bins in momentum,
f (p) = ∑

i f0,i (p/pi)
αi with i ∈ [1, N ] (on a fixed, logarithmic momentum grid),

and to calculate f0,i, αi as function of the position in the simulation space (here a
jet). The number of relativistic electrons in the bin i is ni = ∫ pi+1

pi
f (p)4π p2dp,

which can be normalized to the grid mass density of the gas. We note bi = ni/ρ. At
shocks, the standard DSA theory in the test-particle limit is applied (see Sect. 2.2.1),
the index is fixed to α = 3r/(r − 1) where r is the shock compression ratio evaluated

48 An alternative approach was proposed by Micono et al. (1999) where a set of Lagrangian test particles,
a set of relativistic electrons is followed along a jet including acceleration and losses. Note that simulations
combining mixed Lagrangian (for energetic particles) and Eulerian (for the magnetized fluid) coordinates
have also been developed in the framework of relativistic flows by Vaidya et al. (2018). The authors solve
the diffusion-convection equation for relativistic electrons transported in a relativistic flow calculated using
a relativistic version of the Pluto code.
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from the shock Mach number. At shocks b = ∑
i bi is calculated solving a simple

equation db/dt = Qinj/ρ where Qinj = εush,L/μemp. Here ush,L is the Lagrangian
shock speed, μe the electron mean mass, mp the proton mass. The parameter ε is the
fraction of thermal electrons injected as non-thermal particles. Away from shocks, the
parameters bi and αi = 3 − (bi+1/bi)/Δ ln(p)i evolve accounting for adiabatic and
radiative losses (see Miniati 2001).

Adiabatic losses, which produce a shift in energy to lower energy, are of partic-
ular importance for CR-MHD systems discussed in Sect. 5.3. These systems can be
extended to account for more than one CR population. This extension is reflected
in the choice of the mean diffusion coefficient corresponding to a particular CR
energy range of a given population. This effect can be treated with the piecewise
power-law method (Miniati 2001; Girichidis et al. 2014). The adiabatic loss rate is
d ln(p)/dt = (γCR − 1)∇.u. Here the adiabatic CR index γCR changes depend-
ing on the CR energy, from 5/3 in the non-relativisitc case to 4/3 in the relativistic
case. The CR density can be computed from the relation ni = Ei/〈Ei〉, where Ei
is the CR energy in the ith bin, and the average energy per CR particle in bin i
〈Ei〉 = ∫ pi+1

pi
E(p)p2dp/

∫ pi+1
pi

p2dp = eCR,i/ni does not depend on f . The CR
energy density in the bin i can then be updated accounting for the loss term

en+1
CR,i = enCR,i + Δt(�i−1/2 − �i+1/2) (94)

where the energy flux is�i+1/2 = 4π/Δt
∫ t+Δt
t b(E)Ep2 f (p)i+1/2. The final energy

E(t + Δt) is expressed in terms of the adiabatic loss term and Δt and has to be in
the interval [Ei−1/2, Ei+1/2], otherwise a sub-cycling is required (see Girichidis et al.
(2014) for further details).

Including backreaction effects In efficient DSA the evolution of the shock and
of the particles are non-linearly coupled (NLDSA). In the hydro-kinetic approach
the connection between the fluid and the particles is made via extra terms in the
equations, that model the injection and the back-reaction of particles. First, a source
term is required in the diffusion-convection equation at the shock front, that depends
on the shock jump conditions, and a corresponding loss termmust be added in the set of
hydrodynamic equations to ensure energy conservation (and in principle conservation
of mass, but the inertia of energetic particles is normally negligible). Secondly, similar
to the bi-fluid approach, one has to take into account the pressure of particles PCR
given by Eq. (9). The force −∇PCR exerted by the particles on the flow is added as
a source term to the equation of conservation of momentum, and the corresponding
work −u.∇PCR is added as a source term to the equation of conservation of energy.
At this level of modeling it is the gradient of particle pressure upstream of the shock
that will cause the appearance of the shock precursor,49 which in turn will produce
concave particle spectra.

The first investigations of time-dependent NLDSA using this approach were per-
formed by Falle and Giddings (1987) and Bell (1987). Knowing that the canonical
result for f (p) is a power-law of index s = 4, Falle and Giddings (1987) work with

49 At the PIC/hybrid level of modelling of Sect. 3.1, this is done via the Lorentz force.
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the quantity g(p) = p4 f (p), and since the momentum gain is proportional to the
current momentum they replace p with the quantity y = ln p. Equation (93) is then
rewritten as

∂g

∂t
+ ∂ (ug)

∂x
= ∂

∂x

(
D

∂g

∂x

)
+ 1

3

(
∂g

∂ y
− g

)
∂u

∂x
. (95)

These early works assumed a small dependence of the diffusion coefficient on p, using
resp. α = 1/4 and α = 1/2, because of numerical limitations. As already noted in
Sect. 2.2, it is the diffusion coefficient that sets the spatial and temporal scales of the
simulation. The spatial scales range from the microscopic scale where the particles
decouple from the fluid (of the order of a few thermal gyration lengths) to macroscopic
scales (like the radius of the supernova remnant). The resolution of the numerical grid
is dictated by the diffusion of the lowest energy particles, whereas the size of the grid is
dictated by the diffusion of the highest energy particles. The ratio D(pmax)/D(pmin),
and thus the number of cells, may exceed ten orders of magnitude if D(p) ∝ p, which
is too demanding in terms of memory requirements and computing time. Fortunately
we need very high resolution only around the shock, since low energy particles cannot
travel far away from the shock. More generally, particles of a given momentum p
require a certain spatial resolution over a certain extent around the shock. This leads
to the implementation of adaptive mesh refinement (AMR), reviewed in Sect. 5.2.5.
In the context of DSA simulations, this technique was pioneered by Duffy (1992),
to be able to use the true Bohm scaling D(p) ∝ pv, and later used by Kang et al.
(2001) and by Ferrand et al. (2008). The latter authors also parallelized the scheme in
the p-direction, and studied repeated acceleration by multiple shocks. Ferrand et al.
(2014a) use a different diffusion coefficient, proposed for perpendicular shocks, while
DSA simulations are usually focused on the case of parallel shocks.

The hydro-kinetic approach was mostly developed by the team of Kang and Jones
and collaborators with their code Crash, starting from Kang and Jones (1991), with
a number of publications produced until this date. An example of results can be seen
in Fig. 43, compared with two other methods discussed elsewhere in this review.
Some important numerical developments include the following. Gieseler et al. (2000)
introduced an injection scheme based on the thermal leakage model. Kang et al.
(2001) implemented a grid-based AMR scheme, as well as sub-zone shock tracking,
in order to address realistic diffusion coefficients at a manageable computational cost.
Jones and Kang (2005) applied a Coarse-Grained Finite Momentum-Volume Scheme
(CGFMV), an extension of the piecewise power-lawmethod introduced by Jones et al.
(1999) already presented above. The basic idea is to lower the numerical resolution in
momentum (down to as few as two to three bins per decade), but prescribe the shape of
the spectrum in each bin so as tomaintain reasonable accuracy; the numerical spectrum
is then no longer a piecewise constant function but a piecewise linear function. All the
works cited so far were restricted to slab geometry, Kang and Jones (2006) simulated
shocks in spherical geometry—still effectively one-dimensional, under the assumption
of spherical symmetry—in order to study CR feedback at SNR shocks. For this the
authors employed a framecomovingwith the outer shock,whichwas found to lower the
convergence requirements. Following the formalismof cosmology, they use coordinate
r̃ = r/a where a(t) is the expansion factor, with expansion rate obtained from the
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measured shock speed in the Cartesian grid. Then density and pressure (or energy
density) are re-scaled as ρ̃ = ρa3 and P̃ = Pa3 (the time variable is left unchanged).
For quasi-parallel plane shocks,Kang and Jones (2007);Kang et al. (2009) found a self-
similar evolution and proposed analytic forms for the solutions during that stage. All
these improvements allowed the team to investigate the time evolution of CR-modified
shocks and particle spectra, and eventually compute the non-thermal radiation from
the accelerated particles in SNRs (Edmon et al. 2011; Kang et al. 2012). The latest
developments are the inclusion of prescriptions formagnetic field amplification (MFA,
see Sect. 2.2.4) and of the effects of the Alfvénic drift (see Eq. (88)) by Kang (2012),
Kang (2013), Kang et al. (2013), with a formalism similar to the approaches discussed
later in Sect. 5.7.2.

Other approaches in spherical geometry To account for the spatially-dependent dif-
fusion of energetic particles, an alternative approach to AMR is to perform a change
of variables, as done by Ptuskin et al. (2010); Zirakashvili and Ptuskin (2012) and by
Telezhinsky et al. (2012b, a). These simulations are performed in spherically symmet-
ric geometry, and notably include the reverse shock and the contact discontinuity as
well as the forward shock (located at radius Rb, Rc, and R f respectively).

In Ptuskin et al. (2010), Zirakashvili and Ptuskin (2012) the radius r is replaced
by r/Rb for r < Rb and r/R f for r > R f (unshocked medium), and by (r −
Rc)/(Rc − Rb) for Rb < r < Rc and (r − Rc)/(R f − Rc) for Rc < r < R f (shocked
region). Also time is replaced by a dimensionless parameter that scales as ln(R f ). The
hydrodynamic equations are solved using FDM, separately in the upstream regions
(using an implicit scheme since the flow is supersonic) and in the downstream regions
(using an explicit scheme), and the three discontinuities between the different regions
are moved manually in time. As in other methods, the diffusion-convection equation
for particles is recast as a set of tri-diagonal equations. In theseworks theCRpressure is
included in the HD equations, and the velocity used for particles includes the Alfvénic
drift. An example of the results is shown in Fig. 37, for a fiducial SNR at age 1000 year.

In Telezhinsky et al. (2012b, a) the radius is first normalized to the outer shock
radius: x = r/R f (a comoving coordinate, as in Kang and Jones 2006) and then
transformed according to (x − 1) = (x∗ − 1)3, so that dx/dx∗ = 3(x∗ − 1)2, with
a uniform binning in new coordinate x∗. The transport equation for the particles is
solved using an implicit FDM, while the HD equations are solved with the VH- 1

code. These simulations were made in the test-particle regime, they do not include the
back-reaction of energetic particles on the hydrodynamics. Telezhinsky et al. (2012a)
discuss the possible contribution to the SNR emission of CRs accelerated at the reverse
shock w.r.t. those accelerated at the forward shock.

5.4.2 Coupling MHD and Vlasov–Fokker–Planck equations

Bell et al. (2011), Reville and Bell (2013) develop a method based on performing a
spherical harmonics expansion of the distribution f in momentum p, using theKalos
code previously developed for simulations of laser–plasma interactions (Bell et al.
2006). The authors consider a 1D problem with a planar shock (with the normal to the
shock front oriented in the x direction with x < 0 the upstream medium) and keep the
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Fig. 37 Representative results from a hydro-kinetic simulation of a SNR in spherical geometry, at t =
1000 year. The supernova has typical mass 1.4M� and energy 1051 erg, released in a uniform medium of
density 0.1 cm−3, temperature 104 K, and magnetic field 5 μG. Left: radial dependencies of gas density
(thick solid line), gas velocity (dotted line), CR pressure (thick dashed line), and gas pressure (dashed
line). The reverse and forward shocks are visible as discontinuities in the hydro profiles. An extended CR
precursor is visible ahead of each shock. Right: spectra of accelerated particles: protons at the forward
shock (thick solid line), ions at the reverse shock (thick dashed line), electrons at the forward shock (×100,
thin solid line), and positrons at the reverse shock (×100, thin dashed line) present from radioactive decay
in the ejecta. Note the concavity of the spectra, plotted as p4 f (p). Image reproduced with permission from
Zirakashvili and Ptuskin (2012), copyright by Elsevier

information about the momentum vector p. They solve the following Vlasov–Fokker–
Planck (VFP) equation (Bell et al. 2011)

∂t f (x, p, t) + (vx + u)∂x f − ∂xu px ∂px f − u

c
∂xu px ∂px f

+ qv × B.∂p f = C( f ), (96)

where v andu stand for the particle and thefluid speeds, and q is the particle charge. The
particle distribution function ismeasured in the fluid rest-frame.B is the localmagnetic
field. The term C( f ) is a collision term; in the collisionless plasmas investigated here
this term is due to wave-particle interactions. It is written

C( f ) = ∂μνs(1 − μ2)∂μ f (x, p, t), (97)

where μ = cos(θ) and νs is a parameter to be scaled with respect to the particle gyro-
frequency Ω = qB/γmc. In this model particle angular deflection is assumed to be
small. This justifies the use of the term Fokker–Planck.

The particle distribution is then expanded into spherical harmonics as

f (x, p, t) =
∑

l,m

f ml (x, p, t)P |m|
l (cos θ) exp(−imφ), (98)

where l is a positive integer, m is an integer between −l and +l, θ is the particle
momentum pitch-angle with respect to the shock normal, φ is the particle momentum
azimuthal angle, and Pm

l (cos θ) are the associated Legendre polynomials of order l.
We have f −m

l = ( f ml )∗, the complex conjugate of f ml . By applying this expansion
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to the VFP equation, one obtains a hierarchy of equations for each component f ml ,
not reproduced here [see Eq. (2) of Bell et al. 2011]. Usually, as in shocks the particle
distribution is close to isotropy due to efficient wave-particle scattering it is only
necessary to retain the first few terms f 00 , f 01 , and f 11 . f 00 represents the isotropic
part of the distribution function while f 01 represents the particle flux along the shock
normal. f 11 complements the construction of the CR current. In the limit of a small
ratio u/c the system reduces to a simple system using the Chapman–Enskog expansion
f ml ∼ (u/c)l f 00 (with v � c). In the upstream medium

c

3
∂x f

1
0 + u∂x f

0
0 = 0,

c∂x f
0
0 + 2Ωz Re( f

1
1 ) = −νs f

0
1 ,

−iΩx f
1
1 − Ωz

2
f 01 = −νs f

1
1 , (99)

while in the downstream medium the particle distribution is isotropic, so limited to
the term f 00 . The solution at the shock front can be obtained using the continuity
of the particle distribution and its flux at the shock front, accounting for the frame
transformation across the shock. Looking for a power-law solution f ∝ p−γ , at the
leading order in u/c one finds

γ = 3 + 3
u2

ush − u2

f 00 (+∞)

f 00 (x = 0)
, (100)

where u2 is the fluid speed and f 00 (+∞) the particle isotropic component far down-
stream. One recovers γ = 4 for a strong unmodified shock.

Oblique shock solutions Bell et al. (2011) apply the above formalism to an oblique
flow, where the magnetic field direction is given by the angle θ with respect to the
shock normal. The procedure requires to start with a guess of the particle distribution
at the shock front as a power-law. The index γ is calculated iteratively with the full set
of equations for f ml . These are solved using FDM techniques (see Sect. 3.6.1) with f ml
calculated at the cell centers for even l and at the cell boundaries for odd l. The spatial
resolution is finer close to the shock front and coarser at the edge of the simulation box.
Non-linear CR backreaction is not considered in this work: the background magnetic
field and fluid velocity are not modified by the CR pressure. The shock velocity
profile is smoothed using a hyperbolic tangent profile of width xs of 1% of the particle
Larmor radius upstream. The shock index solutions show soft distributions at quasi-
perpendicular fast shocks. Such configurations can occur if strong magnetic field
amplification occurs after the supernova shock breakout (Marcowith et al. 2018) or/and
if the shock propagates in circumstellar medium with a spiral magnetic field (Bell
2008).

CR driven instabilities Reville and Bell (2013) and Bell et al. (2013) couple the VFP
method described above to MHD solutions in order to calculate the CR pressure back-
reaction over the shock solutions. The authors adoptmixed coordinate frames (Skilling
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1975a) where the particle momenta are evaluated in the local fluid frame. It has the
advantage of considerably simplifying the collision term on the r.h.s. of Eq. (96),
which is parametrized by a scattering frequency νs. The spherical harmonic expansion
is stopped at the first order and f0 and f1 are used to evaluate the CR charge density and
current to be re-injected into the ideal MHD equations (see Sect. 5.1.1). The vector
f1 = fxex + fyey + fzez, where fx = f 01 , and the perpendicular components are
fy = −2R f 11 and fz = 2I f 11 . The CR charge and current densities can be defined
as

ρCR = 4πq
∫

f 00 p
2dp

JCR = 4π

3
q
∫
⎡

⎣
f 01−2R f 11

2I f 11

⎤

⎦ p2vdp. (101)

The current drives a Lorentz force -JCR/c × B and induces a plasma heating -JCR.E.
(We will come back on CR-MHD coupling in Sect. 5.5.)

The numerical scheme relies on the following approximations:

1. The particle distribution follows a power-law.
2. A ratio νs/Ωs < 1 ensures the closing of the spherical harmonics expansion.
3. Another component fLS is added to fx in order to mimic the effect of a large scale

CR component slowly varying over the simulation domain.

Spatially, the simulations are 3D and use periodic boundary conditions. The CFL
condition requires some sub-cycling of theMHD step to account for the CR evolution.

In Fig. 38 we show the solution of the 3D VFP-MHD system at a particular time.
The simulation has the following setup: a background gas density n = 0.1 cm−3, a
background parallel magnetic field B = 47μG, a shock speedUsh = 60, 000 km s−1,
the CR are injected at 100 TeV. The background field is oriented in the z direction. The
simulation box has 5676 cells in this direction and 32 in the x and y directions. The CR
current is initialized along z. Figure 38 clearly shows twoCRpopulations (see panel c).
A first one is escaping ahead of the shock and generating a current (see panel e). The
return current in the plasma then triggers non-resonant streaming modes and magnetic
field fluctuations which induce a confinement of a second population of CRs at the
shock front. This population is accelerated via DSA. Inoue (2019) has adapted this
procedure to the case of a SNR propagating in a molecular cloud. There TeV CRs
are released first and produce through their current enough magnetic perturbations to
confine GeV CRs around the shock front.

5.5 Particle-in-cell-magnetohydrodynamics

The approach presented in this section combines a MHD approximation necessary to
derive the evolution of the background thermal plasma coupled to a PIC module nec-
essary to calculate the trajectories of supra-thermal particles imposed by the Lorentz
force. Contrary to standard PIC simulations, now the Lorentz force is calculated using
the electro-magnetic field derived from the system of MHD equations rather than
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Fig. 38 2D slices of 3D simulation of the VFP-MHD system. From top to bottom: gas density, gas pressure,
CR pressure, magnetic field component perpendicular to the shock normal, CR current. All quantities are
obtained at a time of 1.3 year. The scales in the z direction are compressed by a factor 24. Image reproduced
with permission from Bell et al. (2013), copyright by the authors

Maxwell equations (Lucek and Bell 2000; Reville and Bell 2012). From the distribu-
tion of macro particles obtained by the PIC module it is now possible to derive the
electric charge and current distribution associated with the supra-thermal particles and
to re-inject these two quantities into the MHD equations. This modifies the dynamics
of the background plasma. We also need to update the Ohm’s law to account for the
electric field associated with the energetic particles. Bai et al. (2015); van Marle et al.
(2018); Mignone et al. (2018) are three recent works which propose the PIC-MHD
approach adapted to the problem of CR in astrophysical flows incluing such a modi-
fied Ohm’s law. They are based on three different MHD codes: respectively Athena,
MPI- AMRVAC, and Pluto.

The PIC-MHD model assumes global plasma electro-neutrality, i.e.,
∑

α nαqα +
e(nth,i−nth,e) = 0, where the index α runs over the different supra-thermal population
species: electrons, positrons, ions and nth,p/e stands for the thermal background elec-
tron and ion densities (here we have assumed the plasma to be composed of protons
only for simplicity). Non-thermal particles carry a current density JEP =∑α nαqαuα

to be inserted into the Ampère’s law. In the general Ohm’s law Hall and electron
pressure gradient terms can be safely neglected because they become important only
at scales smaller than the ion inertial scale c/ωpi, see Bai et al. (2015). The modified
Ohm’s law can the be written as

cE = [(1 − R)u + R uEP ] × B, (102)

where
R =

∑

α

nαqα

nth,ee
(103)
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is a measure of the relative density of energetic particles (the ideal Ohm’s law is
recovered by setting R = 0), and

uEP =
∑

α nαqαuα∑
α nαqα

= JEP
nEPe

(104)

is the average velocity of the energetic particle population defined in terms of the
energetic particles current JEP and density nEP. Energetic particles (or CRs) then
induce a specific Hall effect. Even if nEP/nth,e � 1 as it is the case for CRs, the
average speed of the non-thermal particles may not be small compare to c, so it has to
be retained in the modified Ohm’s law. The Lorentz force to be inserted as a source
term in the Euler and energy conservation equations is now:

FEP = (1 − R)

(
nEP e u × B + JEP

c
× B

)
. (105)

The Lorentz equation which controls supra-thermal particle trajectories can be written
as (for particle j of type α):

∂pα, j

∂t
= qα

c

(
uα, j − RuEP − (1 − R)u

)× B. (106)

Again setting R = 0 gives the standard form of the Lorentz equation. Notice now
that the ensemble of energetic particles produce an electric field which modifies the
trajectory of each energetic particle.

Energy conservation can be obtained by imposing within each cell the condition:

∑

α

∑

j

nαuα, j .
∂pα, j

∂t
= FEP.uEP. (107)

5.5.1 Numerical schemes

All works cited above use a Boris pusher to integrate energetic particle trackswith time
(Birdsall andLangdon 1985). In order to reach second-order accuracy of the PIC-MHD
scheme, Bai et al. (2015) (see alsoMignone et al. 2018) introduce a predictor-corrector
scheme to calculate the background plasma evolution under the effects of energetic
particles. In the predictor (resp. corrector) part the source terms in the MHD equations
are deduced from the location of individual particles to neighboring grid cell centers at
the initial time (resp. at half the MHD timestep). The momentum and energy feedback
are calculated at cell centers to derive new fluid solutions. This feedback calculation
ensures second order accuracy. Aside the corner transport upwind (CTU) scheme
(Colella 1990), Mignone et al. (2018) also introduce a second order Runge–Kutta
time stepping method in the predictor-corrector scheme. van Marle et al. (2018) use
a different strategy. Each component, i.e., the MHD fluid and the energetic particles,
evolves over their own grid: the MHD grid is used as a base and the PIC grid is offset
so that MHD cell centers stand as PIC cell corners.
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5.5.2 Coupling MHD and PIC time steps

In order to properly resolve each particle trajectory the MHD timestep deduced from
the CFL condition has to verify Δt rg ≤ ζ , with ζ a constant to be adjusted and rg
the maximum gyroradius of the energetic particles. For instance in the case of a fixed
grid, Bai et al. (2015) use ζ = 0.3 for shock problem studies. In the case of non-
relativistic MHD flows, the kinetic part evolves more rapidly than the MHD part. To
treat this issue it is possible to impose some sub-cycling of the PIC step. Bai et al.
(2015) typically use 10 sub-cycles. Mignone et al. (2018) improve this strategy and
propose two sub-cycling schemes which recalculate the energetic particle induced
Lorentz force at every sub-steps or at even sub-steps.

5.5.3 Adaptive mesh refinement for the PIC module

vanMarle et al. (2018) have adopted an adaptivemesh refinement procedure for thePIC
part, conversely Bai et al. (2015) use a fixed grid. The octree system of adaptive mesh
refinement of theMPI- AMRVAC code is used but it involves an additional refinement
condition on the energetic particles: if the number of energetic particles within a grid
reaches 25% of a pre-set maximum the grid is no longer allowed to coarsen. If the
number of particles reaches 80% of the maximum, the grid is refined (assuming it has
not yet reached the maximum allowed refinement level). A supplementary condition
is applied over the average gyroradius of the particles: if within the grid it becomes
smaller than a pre-set number of times the size of the individual grid cells the grid is
allowed to be refined. Hence, the particle gyro-radius is always resolved which is a
necessary condition for a correct calculation of the source terms in theMHDequations.

A tricky aspect of mesh refinement appears when a particle is moving from one cell
of a given level to another cell of a finer level. In that case it is essential to conserve
charge and current. Then, the effective weight of the particle has to be increased by a
factor equivalent to the reduction in effective volume. This effective weight has to be
carefully calculated on the finer grid if a particle stands at the boundary of two grids
at different levels. The physical extent where the weight is calculated is fixed by the
coarser mesh, so the calculation of the particle weight may cover several rows (in a
2D view) of the finer grid (see Fig. 1 in van Marle et al. 2018).

5.5.4 Numerical tests

Bai et al. (2015) propose two tests of the PIC-MHD method. The first one follows
the evolution in time of a test-particle in an uniform magnetic field, so it tests particle
gyromotion. Different setups have been tested: non-relativistic and relativistic parti-
cles, background plasma moving perpendicularly to the background field. Figure 39
shows the time evolution of the particle energy in the co-moving plasma frame and
the evolution of the particle position in the co-moving frame in the relativistic case.
It can be seen that the Boris pusher conserves the energy perfectly in the case of no
drift, and to better than 0.1% level in the case of a small drift (a bit better than in the
non-relativistic case as the energy conservation degrades with respect to the relative
speed of the drift with respect to the particle speed). The particle trajectory fits with the
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Fig. 39 Gyromotion test for a relativistic particle (with a Lorentz factor γ = 10). The normalized variable
time step is ΔtΩL = 0.5 ± 0.1. Dashed blue lines: numerical solutions obtained in the case of a null
drift velocity. Red dashed lines: numerical solutions obtained in the case of a drift velocity with strength
ud = UA. Left panel: time evolution of the particle energy in the co-moving frame (indicated by a prime).
Right panel: particle motion in the co-moving frame. The black curve is the analytical solution. Image
reproduced with permission from Bai et al. (2015), copyright by AAS

Fig. 40 Real and imaginary part of the non-resonant instability relation dispersion as a function of ε =
UA/UCR. Solid lines: analytical solution. Diamond and circle: numerical solutions. Image reproduced with
permission from Mignone et al. (2018), copyright by AAS

analytical solution well for long time evolution. Mignone et al. (2018) obtain similar
results for this test. The authors propose another setup which tests the motion of a
particle in a non-orthogonal electric and magnetic field. Energy conservation to 0.1%
level is found for a mildly relativistic particle with respect to the analytical solution
(see their Fig. 3).

A second setup concerns the test of the CR feedback. It captures the linear growth
rate of the non-resonant (or Bell) instability (Bai et al. 2015; Mignone et al. 2018). In
this setup, the background plasma is uniform and at rest, it is pervaded by a uniform
magnetic field and a CR current is propagating along the background magnetic field
with a speed UCR. The results are displayed in Fig. 40. The plots show the real and
imaginary parts of the dispersion relation as a function of the ratio of the background
Alfvén speed and the CR drift speed. A very good agreement between analytical (solid
lines) and numerical (symbols) solutions is obtained.

Finally, Mignone et al. (2018) propose a setup to test the relative drift of the thermal
gas andCRs. In this test, the two components drift in opposite direction perpendicularly
to a background uniformmagnetic field. This test is used to evaluate the performances
of the predictor-corrector scheme and the impact of the number of CR sub-cyclings.
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The results show that the predictor step is mandatory in order to reproduce the analyt-
ical expected solution and to reach second order accuracy in time.

5.5.5 Results on cosmic ray acceleration at non-relativistic shocks

CR acceleration and CR driven instabilities at SNR shocks can be investigated with
the help of the PIC-MHDmethod, as, in contrast to the case of hybrid techniques, now
the PIC part only has to handle supra-thermal particles. This improves a lot particle
statistics, which is necessary to properly reconstruct the CR charge and current.

Simulation setups Reville and Bell (2012) investigate the development of CR driven
instabilities at shocks in the PIC-MHD framework generalizing the work of Lucek and
Bell (2000) restricted to the resonant streaming instability. In this work the background
plasma is at rest and pervaded by a uniformmagnetic field augmented with a turbulent
spectrum composed of modes in the perpendicular plane. CR are initialized with a
mono-energetic distribution, drifting with respect to the background plasma. A total
of 1024 particles per grid cell is used to ensure gyrotropy. The drift speed of CRs
corresponds to a shockAlfvénicMach number of initiallyMA = 103. CRs are injected
at an energy that allows the gyromotion to be resolved. The fraction of incoming kinetic
energy imparted into CRs is 10−4.

Bai et al. (2015) also report on fast super-Alfvénic shock simulations. Their setup
is as follows: a plasma flow is launched against a static, conductive wall (Mignone
et al. (2018) proceed similarly). Quasi instantaneously after the collision a shock
forms which propagates in the upstream medium with a speed ush > UA,u, where
UA,u = Bu/

√
4πρu is the upstream Alfvén speed. The shock position is identified by

evaluating the transversely-averaged fluid speed along the shock propagation direction
(let say x) ux. This speed is further smoothed by a Gaussian kernel of typical size of 4
grid cells. Then the shock position is fixed at the location where ux has decreased by
40%. Supra-thermal particles are injected as CRs at a kinetic energy of Einj = 10Esh at
the shock position. The CR population injected is normalized to a small fraction of the
incoming flux. Another important aspect is that the authors use an artificial light speed
C different from c for CRs but still much larger than any fluid speed in the system. The

Lorentz factor of species α of an individual CR is: γj = C/
√
C2 − u2,j. This speed is

inserted into theLorentz equation. It has the advantage to be adapted to the investigation
of different particle energy regimes (a large C is adapted to follow non- or mildly-
relativistic CRs and a small one is adapted to the relativistic regime). Bai et al. (2015)
report on the production of non-thermal particle distribution consistent with the Fermi
first order process, which is a strong indication that PIC-MHD methods can handle
CR scattering off self-generated waves. van Marle et al. (2018) use a different shock
generation procedure. The shock is set up from a configuration following the Rankine–
Hugoniot conditions. Particles are then injected following the same procedure as in
the Bai et al work. Table 4 summarizes the setups of these different works.

Non-resonant CR driven instability studies and shock acceleration The main objec-
tive of these first studies is the onset of non-resonant (NR) streaming modes in the
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Table 4 Setups for shock acceleration studies

Authors Resolution tmax MA θB
(rg) (ω−1

c ) (◦)

Bai et al. (2015) 1.2 105 × 3000 3 103 30 0

3.89 105 × 4800 1.2 104 30 0

van Marle et al. (2018) 240 × 30 2 103 3–30–300 0–70–90

Mignone et al. (2018) 1.2 105 × 3000 3 103 30 0

3.84 105 × 4800 1.1 104 30 0

All simulations have been done in 2D space configuration. The spatial resolution for vanMarle et al. (2018)
is the basic one, the simulations also include four levels of refinement. The maximum time tmax is in units
of ω−1

c . The last column displays the shock magnetic obliquity. The second row for Bai et al. (2015) and
Mignone et al. (2018) shows the setup for relativistic runs with a reduced light speed C

context of strong shocks.50 All these studies have considered the case of parallel super-
Alfvénic shocks and conclude that indeed CRs trigger a streaming instability in the
non-resonant regime (see Fig. 41). The theoretical linear growth timescale is recov-
ered by the simulations. A Fourier analysis shows the destabilization of the main NR
modes in the upstream medium at a scale fixed by the CR current (see Fig. 42). The
interest of the PIC-MHD method with respect to previous MHD simulations (e.g.,
Bell 2004; Zirakashvili and Ptuskin 2008) is that it accounts for the time evolution of
the CR-MHD including CR back reaction. A clear transfer to smaller wave numbers
(hence large scales) can be noticed on Fig. 42. The back-reaction of CR also induces
a strong corrugation of the shock front as can be seen on Fig. 41. The corrugation is
so strong that it becomes difficult to identify the position of the shock front. Longer
term simulations in 3D are required to investigate the transition from a non-relativistic
to relativistic regime and to capture the propagation of the CRs in the self-generated
turbulence (van Marle et al. 2019).

van Marle et al. (2018) have also considered an oblique shock configuration with
a magnetic obliquity angle of 70◦ with respect to the shock normal. The authors find
that particle acceleration is delayed but still present. Particle acceleration proceeds in
two steps in this configuration. First SDA occurs that injects a population of charged
CRs upstream,which trigger non-resonant streamingmodes parallel to the background
magnetic field, which in turn perturb themagnetic field downstream. This perturbation
leads to a corrugation of the shock front, which changes the orientation of themagnetic
field and ultimately allows particles to be injected in a parallel configuration. Here
again long-term 3D evolution are necessary to investigate the dynamics of particle
acceleration and transport. At perpendicular (super-luminal) shocks the electromotive
electric field cannot be compensated upstream and the authors do not observe any
particle acceleration. The results on the oblique shock configuration have triggered
some discussions. The main argument against is (Caprioli and Spitkovsky 2014a;
Caprioli et al. 2018) that at highobliquityCR injection is not efficient because incoming

50 Reville and Bell (2012) discuss a filamentation instability generated by the CRs drifting ahead the shock
front. This instability, contrary to the non-resonant streaming instability, is able to generate large scale
perturbations which helps to confine high energy CRs.
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Fig. 41 Super-Alfvénic parallel shock at time 225ω−1
c , 450ω−1

c and 600ω−1
c . The Alfvénic Mach number

is MA = 300. The upper row shows the magnetic field strength relative to the original backgroundmagnetic
field. The middle row shows the non-thermal particle charge density relative to the thermal gas density. The
lower row shows the thermal gas mass density relative to the upstream density at the start of the simulation,
combined with the magnetic field stream lines. Filamentary structures characteristic of the non-resonant
streaming instability develop in the upstream medium. The shock front gets strongly corrugated with time.
Image reproduced with permission from van Marle et al. (2018), copyright by the authors

Fig. 42 Fourier spectra of the turbulence in the up- and downstream media at times 225ω−1
c and 600ω−1

c .
At early times the non-resonant Bell-like mode develops at the maximum wavelength predicted by the
linear theory. The turbulent scale is smaller in the downstream medium due to to shock compression of the
transverse magnetic field component. At later times non-linear effects start to inject turbulent motions at
larger scales and modify the upstream CR current. Image reproduced with permission from van Marle et al.
(2018), copyright by the authors
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ions are reflected at the shock overshoot, a structure which can not be captured by
a MHD code. The main argument in favour is that hybrid simulations have a small
simulation box and cannot be performed over durationmuch exceeding a few hundreds
of c/ωc,i so they are not able to capture instabilities that develop at larger scales
in the downstream medium once the non-resonant streaming instability is triggered.
Moreover, hybrid simulations treat the entire ion population (both thermal and supra-
thermal) as kinetic and hence have much lower statistics to reconstruct the CR current
at the origin of the streaming instability. Both techniques however agree at early
timescales for high Alfvénic Mach number shocks and both show the development of
a supra-thermal tail associated with the SDA mechanism.

5.5.6 Other astrophysical applications

We discuss here recent setups designed to investigate CR or energetic particles trans-
port in specific astrophysical contexts. Two subjects are considered: other type of CR
driven instabilities and energetic particles acceleration near X points in relativistic
magnetic reconnection. The number of scientific cases will likely rapidly increase
with the availability of numerical resources.

CR driven instabilities In Lucek and Bell (2000) perturbations are produced by
the drifting of a mono-energetic or Gaussian distribution of CRs in a background
medium at rest. The background magnetic field is composed of a uniform component
of strength B and Alfvén waves of amplitude δB = 0.1B. CR drift with a speed ten
times the localAlfvén speed. The authors consider the growth of the resonant streaming
instability and the energy/impulsion transfer to the background plasma using 1-, 2- and
3-D simulations. Rapid magnetic field generation is obtained. The linear growth rate
can be sustained even in the non-linear regime. Magnetic field generation saturates
when the level of perturbations are ∼ B.

Lebiga et al. (2018) use a similar numerical approach as the one developed in Bai
et al. (2015) (also using theMHD codeAthena) to investigate the growth of the gyro-
resonant instability produced by an anisotropic pressure of the CR gas with respect to
the backgroundmagnetic field. If the strength of themagnetic field changes over scales
larger than particle Larmor radius then the first adiabatic invariant p2⊥/B is conserved
along the particle trajectory. In this instability the driving term is given by the relative
perpendicular to parallel CR pressure A = P⊥/P‖ − 1. The simulation setup involves
a background uniform magnetic field on which is superimposed a flat spectrum of cir-
cularly polarized MHD waves, and an anisotropic CR energy distribution scaling as
E−2.8 consistent with the Galactic CR spectrum. The main parameters in the simula-
tions are the ratio of CR density to gas density nCR/ng � 1, and the initial anisotropy
parameter |A| < 1. The main findings are: the linear growth phase well reproduces
the quasi-linear growth rate deduced from Bykov et al. (2013), the non-linear satura-
tion of the instability occurs due to particle isotropization, a process faster at low CR
energies which contain most of the CR pressure. Bai et al. (2019) perform PIC-MHD
simulations to study the resonant streaming instability. The authors use the δ f method
(see Kunz et al. 2014 and references therein) which consists in affecting a weightwi to
each particle i as:wi = 1− f (xi(t), pi(t))/ f . This method permits a drastic reduction
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Table 5 A list of the main fluid codes used in astrophysics

Code name physics modules AMR geometry parallelization

Athena CR, PIC-MHD y Ca, Cy, Sp, Po OpenMP/MPI

BATS-R-US PIC-MHD y Ca OpenMP/MPI

Enzo CR y Ca, Sp MPI

MPI-AMRVAC CR, PIC-MHD, PIC-RMHD y Ca, Cy, Sp, Po OpenMP/MPI

Piernik CR y Cy MPI

Pluto CR, PIC-MHD y Ca, Cy, Sp, Po OpenMP/MPI

Ramses CR y Ca OpenMP/MPI

The table displays: the code name, the CR treatment module CR = fluid or PIC-MHD, if or not a relativistic
option exists (SR = special relativistic), if or not an AMR version does exist, the geometrical options
(Ca= Cartesian, Cy= Cylindrical, Sp= Spherical, Po= Polar coordinates), the parallelization model. Code
presentation can be found in Stone et al. (2008) forAthena, Powell et al. (1999) for BAT-R-US, Bryan et al.
(2014) for Enzo, Keppens et al. (2012) for MPI-AMRVAC, Hanasz et al. (2010), for Piernik, Mignone
et al. (2007) for Pluto, Teyssier (2002) for Ramses

of the noise inherently associated with particle simulations. In their fiducial setup the
authors inject 2048 particles per cell. The results show that the quasi-linear theory of
wave growth is well reproduced for both right- and left-handed mode polarizations.
The technique permits to investigate the problem of 90◦ pitch-angle scattering which
involves non-linear wave particle interactions.

CR acceleration near an X-point Mignone et al. (2018) propose a study of particle
acceleration near a 2D X-point in relativistic flows. The simulations are performed
in the test-particle limit. The out-of plane electric Ez and guiding magnetic field Bz
strength are varied. Initially particles are distributed over a Maxwellian with a thermal
speed of 0.1 UA. Particles are accelerated near the null point where the electric field
intensity is the highest. An energy distribution with a power-law approximately E−2

is obtained. The particle energy shifts to high energies as the guiding magnetic field
strength increases because the acceleration zone where E.B �= 0 extends with respect
to the case when Bz is smaller than the in-plane magnetic field strength.

5.6 A list of HD andMHD codes with CR physics

In Table 5, we present the MHD codes in use in various astrophysical applications
that include a module (fluid or kinetic) to treat CR physics, a more complete list can
be found in the appendix of Martí and Müller (2015).

5.7 Semi-analytical approaches for cosmic ray acceleration

Because direct simulations of DSA are numerically expensive, simpler approaches
are desirable for the modelling of large-scale and multi-physics problems. Most
of the methods described above deal with the microphysics of collisionless shocks
and particle acceleration in some way, and are not readily applicable to simulate a
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macroscopic object like, say, a supernova remnant. The most precise methods, PIC
simulations, are restricted to tiny scales and narrow dynamical ranges. For instance,
in the most advanced numerical simulations of DSA relevant to SNRs to date, by
Caprioli and Spitkovsky (2014b), lengths are normalized by l p = c/ωp where ωp

is the ion plasma frequency, which for a typical density n p = 1 cm−3 evaluates to
l p � 2 × 107 cm = 2 × 10−12 pc. So in their Figs. 6 and 7, the “far upstream”
reaches about 3 × 10−7 pc, whereas in state of the art simulations of the 3D evo-
lution of a young SNR, by Ferrand et al. (2010), the smallest length resolved is
� 5 pc/1024 � 5×10−3 pc, nearly 5 orders ofmagnitude larger. Similarly in the same
figures the range of magnetic turbulence scales probed is ∼ 10−11–10−8 pc, whereas
in one of the most recent study of the effect of turbulence on the SNR emission, by
West et al. (2017), the smallest resolved scale is 4 × 10−2 pc, 6 to 9 orders of magni-
tude larger. It is therefore necessary to make use of sub-grid models in simulations of
astrophysical objects. In hydro-kinetic approaches of Sect. 5.4.1, the complex interac-
tion between the particles and the magnetic turbulence is encapsulated in the diffusion
coefficient D. With such approaches it is possible to operate on space- and time-scales
that are relevant to an object like a SNR (e.g. Kang 2015), although simulations still
have a high computational cost when using a realistic dependence of D on p, and
to our knowledge their use has been restricted to 1-dimensional problems (in either
slab or spherically symmetric geometries). When the focus is on properly describing
the geometry of the SNR, and a 3-dimensional modeling is required, the treatment of
DSA needs to be simplified even further.

5.7.1 General considerations

To fill this need, Berezhko and Ellison (1999) proposed a simple analytical model of
NLDSA, where the spectrum of the particles is assumed to be a three-parts power-
law, with slopes linked to the shock properties. This model was used to make the
first studies of the effect of NLDSA on young SNRs, by coupling it to 1D self-
similar solutions (Decourchelle et al. 2000) then to 1D hydrodynamic simulations
(Ellison et al. 2004). A more physical, semi-analytical model was proposed by Blasi
(2002), in the framework of the hydro-kinetic treatment. The key idea (developed in
the next section), which allows to greatly simplify the mathematics, is that the energy-
dependent diffusion of the particles allows to establish a one-to-one correspondence
between the particle energy E (or equivalently momentum p), the position variable x ,
and the fluid velocity u. This trick was already used in Eichler (1979) and developed
by Eichler (1984), Ellison and Eichler (1984), Berezhko (1996), but somehow its
usefulness was not fully realized until Blasi (2004; 2005) published their NLDSA
model.

Being physically motivated while computationally extremely fast, Blasi’s model
was quickly adopted by the community doing SNR simulations: it replaced the
Berezhko and Ellison model in the 1D hydrodynamic simulations of Ellison et al.
(2007) and following works, and it was used for the 3D hydrodynamical simulations
of Ferrand et al. (2010) and following works. It allowed Kosenko et al. (2014) to per-
form parametric studies of the efficiency of CR acceleration in young SNRs. Note that
an important limitation of the model is that it is looking only for stationary solutions,
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and so needs to be re-run at each time step in order to compute the time evolution of the
coupled shock-particles system, assuming quasi-stationarity is reached at each step.
This is justified at most energies, but will break down close to the highest energies
when the acceleration time becomes of the same order as the age of the simulated
shock. The model jointly solves the particle spectrum and the fluid velocity profile as
functions of the momentum of particles. As inputs, it requires basic information on
the shock (speed Vsh and Mach number Msh), which can be determined from a hydro-
dynamic simulation, as well as an injection recipe at some pinj and a cutoff recipe to
set pmax. Amongst the outputs, it provides the total shock compression ratio rtot, that
can be used to determine an effective adiabatic index γeff for the fluid+particles sys-
tem. The back-reaction of the particles on the flow can then be imposed by tweaking
the value of γ in the hydro model according to the prediction of the NLDSA model.
Ellison et al. (2004) showed good agreement between this pseudo-fluid approach and
two-fluid calculations in 1D. It is worth mentioning that in the original (and most
popular) version of Blasi’s model one does not deal explicitly with the diffusion coef-
ficient D (although often an assumption on D(p) is made in order to estimate pmax(t)).
Accordingly, hydrodynamic simulations typically do not need to explicitly resolve the
shock precursor generated by the particles, although for a given D(p) law the velocity
profile in the precursor may be reconstructed if desired (the position xp where the fluid
velocity is u p is given by xp = D (p) /u p). In a subsequent model, Amato and Blasi
(2005) introduced the explicit spatial dependence of the distribution f and the dif-
fusion coefficient D. This generalization is more complex to derive and significantly
longer to compute, andAmato et al. (2008) showed that the twomodels provide similar
results.

The simple model was gradually improved to incorporate other physical processes.
Of particular importance is the improvement of the treatment of the magnetic turbu-
lence (Caprioli et al. 2008, 2009b). A recipe for magnetic field amplification (MFA)
was included, and the fate of magnetic waves generated by the particles was consid-
ered: they may either be damped in the plasma upstream of the shock or be carried
through the shock, which leads to very different magnetic fields in the downstream
region, although similar overall levels of back-reaction on the shock. These effects
were included in SNR simulations as well (by Lee et al. 2012 in 1D and Ferrand et al.
2014b in 3D). Another point of interest, regarding SNRs as sources of cosmic rays,
is the role of particles escaping the accelerator. In the base model only the spectrum
at the shock is computed and escape is treated implicitly, but if desired the escape of
particles can be treated explicitly, in two ways (Caprioli et al. 2009a, 2010a). Other
recent developments include the role of ionization (Morlino 2011) and the role of
neutrals (Morlino et al. 2013) in the DSA process.

A comparison between Blasi’s semi-analytical model and two popular numerical
approaches, hydro-kinetic simulations à la Kang & Jones (Sect. 5.4.1) and Monte
Carlo simulations à la Ellison & Eichler (Sect. 3.6.3), can be found in Caprioli et al.
(2010b). Typical results are shown in Fig. 43.

In the following last section, we outline the inner workings of Blasi’s NLDSA
model.
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Fig. 43 Comparison of different methods for non-linear diffusive shock acceleration. The plot at the top
shows the distribution function f (p) of particles, the Maxwellian component and a non-thermal tail are
apparent. The two plots at the bottom show the hydro profiles of the shock: velocity u(x) and density ρ(x).
The models assume efficient acceleration and include backreaction effects: the reduced sub-shock and
extended precursor are apparent, and accordingly the non-thermal spectrum is concave. The three different
sets of curves show the results of three different methods to solve the coupled fluid and particles system:
a semi-analytical model (solid lines, labelled CBA for Caprioli–Blasi–Amato, described in Sect. 5.7.2), a
numericalmodel coupling hydro equations and a diffusion-convection equation (dashed lines, labelledKJ for
Kang and Jones, described in Sect. 5.4.1), and another numerical model relying on a Monte Carlo approach
(dot-dashed lines, labelled EV for Ellison & Vladimirov, described in Sect. 3.6.3). Images reproduced with
permission from Caprioli et al. 2010b, copright by the authors

5.7.2 Construction of a NLDSAmodel

We restrict ourselves to 1D slab geometry along direction x , with a velocity discon-
tinuity (sub-shock) located at x = 0, and a velocity ramp (precursor) extending for
x < 0 over a distance xmax. Subscripts distinguish between three distinct media,
with usual notations: 0 denotes the far upstream (unperturbed) medium (x < −xmax),
1 denotes the region immediately upstream of the sub-shock (x = 0−), and 2 the
region downstream of the sub-shock (x = 0+).

Distribution of accelerated particles at the shock The evolution of the distribution
function f is described by a convection-diffusion equation which, under the assump-
tion of stationarity ∂ f /∂t = 0 reads
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∂ f

∂x
+ ∂

∂x

(
D

∂ f

∂x

)
+ 1

3

du

dx
p
∂ f

∂ p
+ Q = 0, (108)

where D is the diffusion coefficient, and Q represents injection of particles, assumed
to occur only at the shock front: Q(x, p) = Q1(p) δ(x). By integrating Eq. (108)
across the shock (from x = 0− to x = 0+), using the continuity of the distribution
function f2 = f1, then integrating it from far upstream (x < −xmax) to just ahead of
the sub-shock (x = 0−), and assuming homogeneity downstream and of the shock:
(∂ f /∂x)2 = 0, the equation can be recast as

1
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(
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)
p
d f1
dp

−
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u p + 1

3
p
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)
f1 + (u0 f0 + Q1) = 0, (109)

where we have introduced the key function

u p = u1 − 1

f1

∫ 0−

−xmax

dx
du

dx
f (x, p), (110)

which is the average fluid velocity experienced by particles with momentum p while
diffusing upstream of the shock front. Assuming that D is a growing function of p,
particles of a given momentum p explore a region of a certain extent xp upstream of
the shock, and thus sample only a part of the precursor in the velocity profile. Hence,
u p can be thought of as being the typical velocity of the fluid at the point xp that
particles of momentum p can reach.

The solution of Eq. (109) can be written in implicit form

f1 (p) = 3

Up − R−1
tot

∫ p
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dp′

p′

(

f0
(
p′)+ Q1

(
p′)

u0

)

exp

(

−
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p′
dp′′

p′′
3Up′′

Up′′ − R−1
tot

)

,

(111)
where we have noted pmin the minimum momentum of particles and we have intro-
duced the total compression of the shock Rtot = u0/u2 and, in a similar way, the
normalized velocity everywhere in the precursor: Up = u p/u0.

If we further assume that there are no pre-existing particles: f0 = 0, and that a
fraction η of the particles crossing the sub-shock are “injected” in the acceleration
process at a single momentum pinj:

Q1 (p) = ηn1u1
4π p2inj

δ
(
p − pinj

)
, (112)

then Eq. (111) simplifies to

f1 (p) = 3

Up − R−1
tot

ηn0
4π p3inj

exp

(

−
∫ p

pinj

dp′

p′
3Up′

Up′ − R−1
tot

)

. (113)
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The injection momentum pinj can be parametrized as

pinj = ξ pth,2. (114)

where pth,2 = √2mpkT2 is the mean downstream thermal momentum. Continuity of
the thermal and non-thermal distributions at pinj imposes that

η = 4

3
√

π
(Rsub − 1) ξ3 exp

(
−ξ2

)
, (115)

where we have introduced the compression of the sub-shock Rsub = u1/u2. The
factor Rsub − 1 acts as a regulator: injection is switched off when the sub-shock gets
smoothed. We have a single parameter ξ to describe injection, but note that the value
of η is extremely sensitive to the value of ξ .

Velocity profile of the fluid in the precursor In the previous paragraph we have
expressed the distribution of accelerated particles f as a function of the velocity
profile of the thermal fluid U . As particles back-react on the shock dynamics, U is
itself a function of f . To find this second relation, we make use of conservation of
momentum, which involves 4 terms: dynamical pressure ρu2, thermal pressure Pth,
non-thermal pressure PCR, and waves pressure Pw. We write it from a point far
upstream (x < −xmax), where the fluid velocity is u0, to the point xp (reached by
particles of momentum p), where the fluid velocity is u p:

ρpu
2
p + Pth,p + Pcr,p + Pw,p = ρ0u

2
0 + Pth,0 + Pcr,0 + Pw,0. (116)

The upstream fluid pressure Pth,0 can be expressed as

Pth,0 = ρ0u20
γthM2

S,0

. (117)

Assuming adiabatic compression, the fluid pressure Pth,p at any point xp in the pre-
cursor is given by

Pth,p
Pth,0

=
(

ρp

ρ0

)γth

= U−γth
p (118)

where in the second equality we have made use of the conservation of mass. Various
processes may lead to non-adiabatic compression in the precursor. One of the most
discussed is heating through the damping of Alfvén waves, for which Berezhko and
Ellison (1999) propose the following recipe (obtained for large MA,0):

Pth,p
Pth,0

= U−γth
p

(

1 + ζ (γth − 1)
M2

S,0

MA,0

(
1 −U γth

p
)
)

(119)

where MA,0 is the upstream Alfvénic Mach number, and ζ ∈ [0, 1] is a free parameter
added by Caprioli et al. (2009b) and discussed more below.
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The particle pressure Pcr,p = Pcr,p,0 + Pcr,p,1 at point xp is the sum of two terms.
The first term is the pressure contributed by the adiabatic compression of an upstream
population f0:

Pcr,p,0 = U−γcr
p × Pcr,0 (120)

where γcr � 4/3 is the adiabatic index of the particles “fluid” and

Pcr,0 =
∫ pmax,0

pmin,0

p′v
(
p′)

3
f0
(
p′) 4ßp′2dp′ = 4π

3
mpc

2
∫ pmax,0

pmin,0

p′4 f0
(
p′)

√
1 + p′2 dp′

(121)
(with momenta expressed in mpc2 units in the right expression). The second term
is is the pressure of the particles accelerated at the shock (with distribution f1 (p)
extending up to pmax,1) and able to reach the position xp (that is those of momenta
≥ p):

Pcr,p,1 =
∫ pmax,1

p

p′v
(
p′)

3
f1
(
p′) 4ßp′2dp′ = 4π

3
mpc

2
∫ pmax,1

p

p′4 f1
(
p′)

√
1 + p′2 dp′.

(122)
Finally we turn to the pressure in magnetic waves. Far upstream, we assume that

the magnetic field is not turbulent: Pw,0 = 0. In the precursor, particles are believed
to generate themselves the turbulence required for their scattering, hence as a first
approach we may parametrize the pressure of waves as being some fraction α < 1 of
the pressure of particles:

Pw,p = α Pcr,p. (123)

According to quasi-linear theory,α ∼ vA/u0 for the resonant streaming instability, and
α ∼ u0/c for the non-resonant modes. Caprioli et al. (2009b) propose the following
recipe for the resonant instability (obtained for large MS,0 and MA,0):

Pw,p

ρ0u20
= 1 − ζ

4MA,0
U−3/2

p

(
1 −U 2

p

)
. (124)

The term U−3/2
p represents adiabatic compression. The factor 1 − ζ is introduced

to balance the factor ζ in relation (119): the amount of wave damping has to
remain reasonably small for the magnetic field to be substantially amplified. Dif-
ferent parametrizations of δB in the precursor are possible, see Kang et al. (2013) for
a comparison of four different models.

Using the above relations for Pth, Pcr, Pw, together with mass conservation,
Eq. (116) can be written as

123



Multi-scale simulations of particle acceleration…

Up +

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

U−γth
p

γthM2
S,0

(

1 + ζ (γth − 1)
M2

S,0

MA,0

(
1 −U γth

p
)
)

+ U
−γcr,0
p

γthM2
S,0

Pcr,0
Pth,0

+ 4π

3

mpc2

ρ0u20

∫ pmax,1

p

p′4 f1
(
p′)

√
1 + p′2 dp′

+ 1 − ζ

4MA,0

1 −U 2
p

U 3/2
p

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

= 1 + 1

γthM2
S,0

(
1 + Pcr,0

Pth,0

)
. (125)

Deriving relation (125) with respect to p, we finally obtain

(

1 − U−(γth+1)
p

M2
S,0

(

1 + ζ (γth − 1)
M2

S,0

MA,0
+ γcr,0

γth

Pcr,0
Pth,0

U
−γcr,0
p

U−γth
p

)

− 1 − ζ

8MA,0

U 2
p + 3

U 5/2
p

)

×dUp

dp
= 4π

3

mpc2

ρ0u20

p4 f1 (p)
√
1 + p2

. (126)

The distribution of particles f1 at the shock being known, the velocity profile Up of
the fluid can be computed by integrating Eq. (126) from one of these two boundary
conditions to the other:

Up (p = 0) = Up
(
x = 0−) = 1

Rprec
, (127)

Up (p = pmax) = Up (x = −xmax) = 1, (128)

where we have introduced the compression factor of the whole precursor Rprec =
u0/u1. In practice, we will be looking for a Rprec such that, starting from condi-
tion (127), condition (128) is matched after integration of Eq. (126).

Compression at the sub-shock So far we have expressed f1 as a function ofUp, Rtot
and Rsub [Eq. (111) with injection recipe (112)–(115)], and Up as a function of f1
and Rprec [Eq. (126) with boundary conditions (127)–(128)], To solve the coupled
system f1 − Up, we need another independent relation between any two of the three
compression ratios Rprec, Rsub and Rtot (the third one being deduced from Rtot =
Rprec × Rsub). To obtain this relation, we once again use conservation of momentum,
this time across the sub-shock (from x = 0− to x = 0+):

ρ2u
2
2 + Pth,2 + Pcr,2 + Pw,2 = ρ1u

2
1 + Pth,1 + Pcr,1 + Pw,1. (129)

The pressure of accelerated particles is always continuous across the shock: Pcr,2 =
Pcr,1. For the magnetic waves, using a simplified treatment of the parallel shock and
in the limit of large Alfvénic numbers, Caprioli et al. (2008, 2009b) estimate the jump
in pressure Pw and in energy flux Fw to be
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[Pw]
2
1 = R2

sub − 1, (130)

[Fw]
2
1 = 2 (Rsub − 1) Pw,1 u1. (131)

Then the jump in fluid pressure at the shock is

Pth,2
Pth,1

=
(γth + 1) Rsub − (γth − 1)

(
1 − (Rsub − 1)3 Pw,1

Pth,1

)

(γth + 1) − (γth − 1) Rsub
. (132)

Substituting relations (132) and (130) in Eq. (129), and using mass conservation, we
obtain

M2
S,1 = 2Rsub

(γth + 1) − (γth − 1) Rsub − 2Rsub (γth − (γth − 2) Rsub) P�
w,1

, (133)

where we have introduced the sonic Mach number MS,1 of the sub-shock, and where
we have noted

P�
w,1 = Pw,1

ρ1u21
= Rprec

Pw,1

ρ0u20
= 1 − ζ

4MA,0
R5/2
prec

(
1 − R−2

prec

)
, (134)

where we used recipe (124) for the last equality. In the case where the pressure of
magnetic waves is negligible [Pw,1 � 0, that is ζ � 1 with recipe (124)], Eq. (133)
reduces to the well-known hydrodynamics relation

M2
S,1 = 2Rsub

(γth + 1) − (γth − 1) Rsub
⇐⇒ Rsub = (γth + 1) M2

S,1

(γth − 1) M2
S,1 + 2

. (135)

In the case Pw,1 > 0, Eq. (133) is a quadratic relation for Rsub as a function of Ms,1
and P�

w,1, and thus of Rprec. We can thus solve the sub-shock.

Alfvénic drift At this point, we should make the distinction between the velocity of
the flow u, and the velocity of the scattering centers ũ. In the MFA picture Alfvén
waves are generated by particles counter-streaming the flow, so that in the precursor
ũ p = u p −vA,p where vA,p is the Alfvén speed at the location reached by particles of
momentum p, while in the downstream region ũ2 = u2+vA,2. It is this velocity ũ that
should be used in the transport equation for the particles. The effective velocity jumps
experienced by the particles are smaller than Rsub and Rtot, which leads to steeper
spectra. In the preceding derivation we have assumed u � ũ for simplicity, but if
MFA is efficient this may not be true. Now a difficulty is that, when the magnetic field
is strongly turbulent, it is not clear how the waves speed should be calculated. The
common approach (used, e.g., by Lee et al. 2012; Kang 2012; Ferrand et al. 2014b) is
to parametrize the Alfvénic drift in the form
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vA,p = B0 + f A × (Bp − B0
)

√
4πρ

, (136)

where Bp =
√
B2
0 + δB2

p is the total magnetic field at point xp and we have intro-
duced the free parameter f A ∈ [0, 1]. In this model, MFA is thus described by two
free parameters ζ [Eqs. (119) and (124)] and f A. The Alfvénic drift is an important
correction when ζ is close to 0 and f A is close to 1.

Escaping flux A steady-state solution to the problem can only exist if particles
can escape above some maximum momentum pmax, or upstream of some maxi-
mum diffusion length xmax. In the model, the two approaches are equivalent, the two
quantities being related through the relation xmax = D (pmax) /u0. However, the two
approaches do not provide the same information on the escape of particles: imposing
f (xmax) = 0 allows to compute the energy spectrum φ0 (p) of particles leaving the
shock around pmax, whereas imposing f (pmax) = 0 only allows to compute the net
(integrated) energy flux Fesc,0 at the boundary xmax.

If one integrates Eq. (108) from the point xmax where particles are supposed to leave
the system, defined so that f (xmax) = 0, then a new term φ0 appears on the l.h.s. of
Eq. (109):

φ0 = −D

(
∂ f

∂x

)

0
, (137)

which is the flux of particles leaving the system through the boundary xmax. Assuming
as before that no seed particles are present upstream and that injection at the shock
front is mono-energetic, the solution (113) becomes

f1 (p) = 3

Up − R−1
tot

ηn0
4π p3inj

exp

(

−
∫ p

pinj

dp′

p′
3
(
Up′ + �0

(
p′))

Up′ − R−1
tot

)

, (138)

where we have noted the normalized escape flux �0 (p) = φ0 (p)/(u0 f1 (p)).
According to Caprioli et al. (2010a), to a very good approximation we have

1

�0 (p)
=
∫ xmax

0
dx ′ u0

D (x ′, p)
exp

(

−
∫ x

′

0
dx”

u (x”)

D (x ′, p)

)

. (139)

The net flux of energy through the upstream boundary is

Fesc,0 =
∫ pmax

pinj
K (p′) φ0

(
p′) 4π p′2dp′

= 4π mpc
2
∫ pmax

pmin

(√
1 + p′2 − 1

)
p′2 φ0

(
p′) dp′, (140)

where K (p) is the kinetic energy of a particle of momentum p (expressed in mpc2

units in the right expression).
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If one integrates Eq. (108) from sufficiently far upstream, one can assume that
the upstream gradient of particles vanishes, so that φ0 = 0. One can still compute
the flux of escaping energy, by requesting that the particle distribution vanishes at
the maximum momentum pmax: f (pmax) = 0. From Caprioli et al. (2009a), this
condition imposes that

Fesc,0 = 4π

3
(u2 − u0) p3max K (pmax) f (pmax), (141)

where K (p) is the kinetic energy of a particle of momentum p.
Finally we note that, to obtain all the required relations between hydrodynamic

and kinetic quantities, we have only made use of the conservation of mass and of the
conservation of momentum. Once the particle distribution, shock velocity profile, and
escape flux have been obtained, the third conservation law, namely conservation of
energy, can be checked, which provides a way to assess the precision of the model.
We write it between upstream (x = −xmax) and downstream of the shock (x = 0+):

1

2
ρ2u

3
2 + γth

γth − 1
Pth,2u2 + γcr

γcr − 1
Pcr,2u2 + Fw,2

= 1

2
ρ0u

3
0 + γth

γth − 1
Pth,0u0 + γcr

γcr − 1
Pcr,0u0 + Fw,0 − Fesc,0,

(142)

where the different terms account for kinetic energy, thermal energy, CR pressure,
magnetic waves pressure, and CR escape.

Procedure for solving the coupled problem As a summary, we outline the practical
way for the numerical resolution of the system. For a given compression Rprec in the
precursor, the non-linearly coupled system ( f ,U ) can be solved iteratively as follows:

compute quantities upstream of the sub-shock
compute Rsub and Rtot = Rprec × Rsub
compute quantities downstream of the sub-shock
set injection: pinj and η, and pmax
set f1 = 0
set Up = 1/Rprec
(set φ0 = 0)
repeat until convergence of

(
f1,Up

)
:

compute f1 from Up (and φ0)
set Up (0) = 1/Rprec
compute Up from f1
(compute φ0 from f1)

We have neglected the Alfvénic drift for simplicity, and the lines in parentheses
apply only when computing particle escape by imposing a spatial boundary condition.
Possible values for Rprec range from 1 (no precursor, the shock is notmodified,MS,1 =
MS,0 and Rsub = Rtot) to some value Rprec,max obtained by requesting that Rsub = 1
(limit case of a totally smoothed shock, all the compression is done in the precursor).
For a pure hydrodynamical shock, Rsub → 1 is equivalent toMS,1 → 1 [seeEq. (135)],

123



Multi-scale simulations of particle acceleration…

although this is no longer true for a magnetized shock, when taking into account the
pressure Pw,1 ofwaves [see Eq. (133)], that reduces the compressibility of themedium.
Note that when P�

w,1 reaches 1/2, a shock can no longer form.
For each value of Rprec, the couple

(
f1,Up

)
will be accepted as a solution of the

model if and only if Up (pmax) = 1. Note that a solution may be found for more than
one value of Rprec. For most of the parameter space, a single solution is found, but
sometimes three solutions are found. One corresponds to a weakly modified shock,
while the other two correspond to significantly modified shocks (see Blasi et al. 2005
and Amato et al. 2008). Multiple solutions for CR-modified shocks had already been
observed before (using completely different methods, see Sect. 5.3) but their physical
meaning is unclear. In reality only a single solution will be realized, it is commonly
assumed that the others will be suppressed because they are not stable. At this point we
should keep inmind that Blasi’s NLDSAmodel is not time-dependent, and thus cannot
describe how the modified shock structure progressively takes shape. This requires
numerical simulations of the kind presented in the previous Sects. 5.4 and 5.5.

6 Summary and conclusions

This review addresses the numerical techniques developed in the community of
high-energy astrophysics and high-energy lasers to investigate non-thermal particle
acceleration and transport in magnetized turbulent flows.We first review the main the-
oretical frameworks developed for the study of particle acceleration in astrophysical
flows: diffusive shock acceleration, shock drift and shock surfing processes, stochas-
tic acceleration, and also provide a short survey of recent developments in the field
of laser plasmas. We do not cover the process of shear acceleration, the reader can
advantageously consult the work of Rieger and Duffy (2006) for further reference.
We then detail the technical numerical techniques necessary to investigate problems
which appear in the kinetic treatment of particle acceleration. We only give at this
stage a short introduction on hybrid methods, the reader is referred to Lipatov (2002)
for further details. Kinetic problems in cosmic ray physics can also be treated in the
framework of Fokker–Planck or diffusion-convection equations. The Fokker–Planck
model finds many astrophysical applications, from the study of cosmic ray transport
in the Galaxy to the study of hot plasmas around compact objects. We then focus
on recent developments in the theory of particle acceleration at collisionless non-
relativistic or relativistic shocks and in reconnection sites based on particle-in-cell
and/or hybrid simulations. The final part of the review addresses large-scale particle
transport and acceleration studiesmostly in themagnetohydrodynamic approximation.
We review the rapid developments of numerical techniques coupling MHD with the
kinetic description of non-thermal components. We end with the developments made
to find semi-analytical solutions of the diffusion-convection equation in the context
of CR acceleration at shocks. For completeness, we recommend interested readers to
consult some recent and complementary reports and monographs on particle-in-cell
methods and Vlasov methods (Palmroth et al. 2018), hybrid methods (Lipatov 2002),
and magnetohydrodynamics (Martí and Müller 2015; Leveque 1998).
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The subject of energetic particle acceleration and transport in turbulent flows is
rapidly growing thanks to the increase in computational power. This applies to stan-
dard techniques for catching the propagation of energetic particles like particle-in-cell
simulations. Beside this, we have seen that the real challenge is to handle the dynamics
over the space, time and energy scales of the high-energy phenomena in astrophysics.
This is mandatory because as the highest energetic particles are accelerated they trig-
ger magnetic perturbations necessary to the acceleration of lower energetic particles.
This back-reaction requires numerical tools able to treat the inter-connections between
large and micro scales. The recent effort in developing PIC modules in MHD codes
goes in this direction. This is also true for magnetic reconnection. The microphysics of
current sheets depends on the way the magnetic field lines are forced to reconnect by
large scalemotions. Here it seems important to have simulations which combineMHD
and kinetic simulations. One major difficulty remains however to control the numeri-
cal noise inherently related to PIC simulations (either due to Cherenkov radiation, or
as in the case of PIC-MHDmethod due to the perturbations generated by the energetic
particles themselves). An alternative resides in using a Vlasov approach (Lauten-
bach and Grauer 2018), but this possibility remains limited by numerical resources
to investigate multi-dimensional problems properly. This aspect is crucial to a proper
description of particle acceleration and turbulence around shocks and in reconnection
zones. One way to make progress beyond the increase of computational power is to
combine different numerical techniques to investigate different regions, as it is the
case with implicit PIC simulations coupled with MHD solvers (Makwana et al. 2017;
Rieke et al. 2015). Another challenge is to adapt the simulations developed for New-
tonian flows to special and now general relativistic cases. This aspect is of particular
importance since the era of multi-messenger astrophysics is now a reality, in a near
future we will obtain an unprecedentedly accurate description of high-energy particle
sources with the advent of high precision/high sensitivity gravitational wave, neutrino
and gamma-ray detectors.

A positive aspect we can see is that the different numerical tools discussed in this
review are and will be further routinely used by very different communities, i.e., high-
energy astrophysics, high-energy laboratory plasmas and space plasmas to study the
energetic events from the Sun. These converging interests will undoubtedly contribute
to the emergence of new fruitful interdisciplinary research subjects.
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