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SoftFEM: revisiting the spectral finite element

approximation of second-order elliptic operators

Quanling Deng∗ Alexandre Ern†

July 8, 2021

Abstract

We propose, analyze mathematically, and study numerically a novel
approach for the finite element approximation of the spectrum of second-
order elliptic operators. The main idea is to reduce the stiffness of the
problem by subtracting a least-squares penalty on the gradient jumps
across the mesh interfaces from the standard stiffness bilinear form. This
penalty bilinear form is similar to the known technique used to stabi-
lize finite element approximations in various contexts. The penalty term
is designed to dampen the high frequencies in the spectrum and so it is
weighted here by a negative coefficient. The resulting approximation tech-
nique is called softFEM since it reduces the stiffness of the problem. The
two key advantages of softFEM over the standard Galerkin FEM are to
improve the approximation of the eigenvalues in the upper part of the dis-
crete spectrum and to reduce the condition number of the stiffness matrix.
We derive a sharp upper bound on the softness parameter weighting the
stabilization bilinear form so as to maintain coercivity for the softFEM
bilinear form. Then we prove that softFEM delivers the same optimal
convergence rates as the standard Galerkin FEM approximation for the
eigenvalues and the eigenvectors. We next compare the discrete eigenval-
ues obtained when using Galerkin FEM and softFEM. Finally, a detailed
analysis of linear softFEM for the 1D Laplace eigenvalue problem deliv-
ers a sensible choice for the softness parameter. With this choice, the
stiffness reduction ratio scales linearly with the polynomial degree. Var-
ious numerical experiments illustrate the benefits of using softFEM over
Galerkin FEM.

Keywords finite element method (FEM); Laplacian; spectral approximation;
eigenvalues; stiffness; gradient-jump penalty

1 Introduction

The optimal approximation of eigenvalues and eigenfunctions from second-order
elliptic spectral problems by means of Galerkin finite element methods (FEM)
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is well-established. We refer the reader to the seminal contributions in Vainikko
[1, 2], Bramble and Osborn [3], Strang and Fix [4], Osborn [5], Descloux et
al. [6, 7], Babuška and Osborn [8], and to the more recent reviews in [9, 10].
The approximation of elliptic spectral problems has also been studied by means
of mixed finite element methods [11, 12, 13], discontinuous Galerkin methods
[14, 15], hybridizable discontinuous Galerkin methods [16, 17], hybrid high-order
methods [18, 19], and virtual element methods [20]. All of these methods deliver
optimally convergent approximations. Since the eigenfunctions become more
and more oscillatory in the upper part of the spectrum, their approximation
is accurate only in the lower part of the spectrum. In contrast, isogeometric
analysis [21] delivers a more accurate approximation in the upper part of the
spectrum (see also [22, 23, 24] for some recent improvements on the subject).

The goal of this work is to improve on the Galerkin FEM spectral approx-
imation so as to increase the accuracy in the upper part of the spectrum. This
goal is achieved by reducing the stiffness of the discrete spectral problem. With
this in mind, we refer to the newly coined method as softFEM. The idea is to
subtract a least-squares penalty on the gradient jumps across the mesh inter-
faces from the standard stiffness bilinear form. Thus, the softFEM bilinear form
is defined as

â(⋅, ⋅) ∶= a(⋅, ⋅) − ηs(⋅, ⋅), (1.1)

where a(⋅, ⋅) is the standard Galerkin FEM stiffness bilinear form, η is the so-
called softness parameter, and s(⋅, ⋅) is the bilinear form penalizing the gradient
jumps across the mesh interfaces. The idea behind softFEM shares some com-
mon ground with isogeometric analysis where the basis functions have at least
C1-smoothness. In softFEM, the same basis functions are used as in Galerkin
FEM so that the smoothness is only C0. However, by considering the bilin-
ear form â(⋅, ⋅) instead of a(⋅, ⋅), one reduces the amount of energy stored in
the gradient jumps of eigenfunctions associated with the large eigenvalues in
the spectrum. This change is not needed for eigenfunctions associated with the
lower part of the spectrum since those eigenfunctions are smooth and can be ac-
curately approximated on a given mesh. We notice that the bilinear form s(⋅, ⋅)
has been considered for the purpose of stabilization (i.e., leading to a positive
contribution and not to a negative one as in the present work) in various contexts
related, in particular, to advection-dominated advection-diffusion equations and
to the Stokes equations [25, 26, 27]. In the context of the Helmholtz equation,
the bilinear form s(⋅, ⋅) is weighted by a coefficient with positive imaginary part
to ensure coercivity [28]. In addition, the possibility of using a weighting co-
efficient with negative real part has been considered in [29, 30] to improve the
phase error. Incidentally, we mention that the term softFEM has been used re-
cently in [31] in a completely different context related to heuristic optimization
and soft computing for solid mechanics.

To give the reader a first view on the benefits of softFEM over Galerkin
FEM, we present in Figure 1 the relative eigenvalue and eigenfunction errors for
the 1D Laplace eigenvalue problem (with Dirichlet boundary conditions) using
Galerkin FEM and softFEM. We use a uniform mesh composed of Nh = 100
elements and a polynomial degree p ∈ {1,2,3}. The total number of discrete
eigenpairs is Nh

p ∶= pN
h−1. The benefit of using softFEM is evident when look-

ing at the upper part of the spectrum. Another salient advantage of softFEM
with respect to Galerkin FEM is that softFEM tempers the condition number
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Figure 1: Relative eigenvalue (left) and eigenfunction (right) errors for the 1D
Laplace eigenvalue problem when using Galerkin FEM and softFEM with Nh =

100 uniform elements and polynomial degrees p ∈ {1,2,3}. Upper row: p = 1;
middle row: p = 2; bottom row: p = 3. The eigenfunction errors for linear
Galerkin FEM and linear softFEM are the same as both discretization methods
give the same eigenvectors (but not the same eigenvalues).

of the stiffness matrix. This can have practically important consequences in the
context of explicit time-marching schemes for time-dependent PDEs by reduc-
ing the CFL constraint on the time step. In many situations we observe that
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the stiffness reduction ratio scales linearly with p and is of the order of 1 + p
2
.

The main mathematical results of this work can be summarized as follows.
In Theorem 1 we show that in order to maintain the coercivity of the softFEM
bilinear form â(⋅, ⋅), the softness parameter can be chosen so that η ∈ [0, ηmax),
where the limit value depends on the polynomial degree p and the type of mesh
(tensor-product or simplicial). Specifically ηmax = 1

2p(p+1)
on tensor-product

meshes and ηmax =
1

2p(p+d−1)
on simplicial meshes (here d ≥ 2 denotes the space

dimension). This result is established by means of discrete trace inequalities
with sharp constants. In Theorem 2 we establish that softFEM maintains the
same optimal convergence rates as Galerkin FEM. In Theorem 4 we prove for
the 1D Laplace eigenvalue problem approximated by linear softFEM (i.e., p = 1),
that the choice η = 1

2(p+1)(p+2)
= 1

12
leads to superconvergence of the eigenvalue

errors (quartic convergence rate instead of quadratic). We retain this choice for
the value of the softness parameter in the rest of this work and notice that it
is compatible with the maximum value ηmax obtained in Theorem 1. Finally,
in Theorem 3 we establish lower and upper bounds on the discrete softFEM
eigenvalues by those approximated by Galerkin FEM. In particular, the lower
bound shows that the optimal value for the stiffness reduction ratio should be
1+ p

2
on tensor-product meshes and 1+ p

4−d
on simplicial meshes with d ∈ {2,3}.

Both values are close to those observed in our numerical experiments.
The rest of this paper is organized as follows. Section 2 presents the exact

spectral problem, its Galerkin FEM discretization, the softFEM approximation,
as well as the following salient results concerning softFEM: coercivity (Theo-
rem 1), error estimates (Theorem 2), and lower and upper bounds on the discrete
eigenvalues (Theorem 3). Theorem 2 and Theorem 3 are proved in Section 2,
but the proof of Theorem 1 is postponed to Section 5. Section 3 is concerned
with the softFEM approximation of the 1D Laplace eigenvalue problem on uni-
form meshes. It contains the superconvergence result for softFEM (Theorem 4)
motivating the choice η = 1

2(p+1)(p+2)
for the softness parameter, and numerical

experiments for various polynomial degrees illustrating the benefits of using soft-
FEM with respect to Galerkin FEM both for the accuracy of the upper part of
the spectrum and for the stiffness reduction. Section 4 collects more challenging
numerical examples (Laplace eigenvalue problem in multiple dimensions, ellip-
tic eigenvalue problem and non-uniform meshes for the 1D Laplace eigenvalue
problem, and the use of simplicial meshes on the unit square and the L-shaped
domain still for the Laplace eigenvalue problem) which corroborate the positive
conclusions drawn on softFEM in Section 3. In Section 5, we first study discrete
trace inequalities with sharp constants and then use these inequalities to prove
Theorem 1. Concluding remarks are presented in Section 6.

2 Main idea and results

In this section, we state the elliptic eigenvalue problem and describe its ap-
proximation by means of Galerkin FEM and softFEM. We then state the main
results concerning softFEM.
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2.1 Problem statement

Let Ω be a bounded, open subset of Rd, d ≥ 1, with Lipschitz boundary ∂Ω. For
simplicity, we assume in what follows that Ω is a polyhedron. We use standard
notation for the Lebesgue and Sobolev spaces. For any measurable subset S ⊆ Ω,
we denote the L2-inner product and norm as (⋅, ⋅)S and ∥ ⋅ ∥S , respectively, and
the same notation is used for vector-valued fields. For any integer m ≥ 1, we
denote the Hm-norm and Hm-seminorm as ∥ ⋅∥Hm(S) and ∣ ⋅ ∣Hm(S), respectively.

We consider the following second-order elliptic eigenvalue problem with
homogeneous Dirichlet boundary conditions: Find an eigenpair (λ,u) ∈ R+ ×

H1
0(Ω) such that ∥u∥Ω = 1 and

−∇ ⋅ (κ∇u) = λu in Ω,

u = 0 on ∂Ω,
(2.1)

with the diffusion coefficient κ ∈ L∞(Ω) uniformly bounded from below away
from zero, and we set κmin ∶= ess infx∈Ωκ(x) > 0. For κ = 1, the problem (2.1)
reduces to the Laplace (Dirichlet) eigenvalue problem. The variational formu-
lation of (2.1) is

a(u,w) = λb(u,w), ∀w ∈H1
0(Ω), (2.2)

with the bilinear forms

a(v,w) ∶= (κ∇v,∇w)Ω, b(v,w) ∶= (v,w)Ω. (2.3)

The eigenvalue problem (2.1) has a countable set of eigenvalues λj ∈ R+ (see,
for example, [32, Sec. 9.8])

0 < λ1 < λ2 ≤ λ3 ≤ . . .

and an associated set of L2-orthonormal eigenfunctions uj , that is, (uj , uk)Ω =

δjk, where δjk is the Kronecker delta. With (2.2) in mind, the normalized
eigenfunctions are also orthogonal in the energy inner product since we have
a(uj , uk) = λjb(uj , uk) = λjδjk. In what follows we always sort the eigenvalues
in ascending order counted with their order of algebraic multiplicity.

2.2 Galerkin FEM

Let (Th)h>0 be a shape-regular sequence of meshes of Ω. A generic mesh element
is denoted τ , its diameter hτ , and its outward unit normal nτ . We set h ∶=

maxτ∈Th hτ . To stay general, we consider both tensor-product meshes where
the mesh elements are cuboids (and so is the domain Ω), and simplicial meshes
where the mesh elements are simplices (triangles if d = 2, tetrahedra if d = 3).
Let p ≥ 1 be the polynomial degree. Let Pp(τ) (resp., Qp(τ)) be the space
composed of the restriction to τ of polynomials of total degree at most p (resp.,
of degree at most p in each variable). For tensor-product meshes, the Galerkin
finite element approximation space is defined as

V hp ∶= {vh ∈ C
0
(Ω) ∶ vh∣∂Ω = 0,∀τ ∈ Th, vh∣τ ∈ Qp(τ)}, (2.4)

whereas for simplicial meshes, it is defined as

V hp ∶= {vh ∈ C
0
(Ω) ∶ vh∣∂Ω = 0,∀τ ∈ Th, vh∣τ ∈ Pp(τ)}. (2.5)
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It is well-known that in both cases V hp ⊂H1
0(Ω).

The Galerkin FEM approximation of (2.1) seeks (λh, uh) ∈ R+ × V hp such

that ∥uh∥Ω = 1 and

a(uh,wh) = λhb(uh,wh), ∀wh ∈ V hp . (2.6)

The algebraic realization of (2.6) follows by choosing basis functions {φhj }j∈{1,...,Nh
p }

of V hp with Nh
p ∶= dim(V hp ) (typically, one considers nodal basis functions). This

leads to the following generalized matrix eigenvalue problem (GMEVP):

KU = λhMU, (2.7)

where Kkl ∶= a(φ
h
k , φ

h
l ) and Mkl ∶= b(φ

h
k , φ

h
l ), for all k, l ∈ {1, . . . ,Nh

p }, are the

entries of the stiffness and mass matrices, respectively, and U ∈ RN
h
p is the

eigenvector collecting the components of uh in the chosen basis.

2.3 SoftFEM

For all τ ∈ Th, we define h0
τ to be the length of the smallest edge of τ if τ is a

cuboid, whereas we set h0
τ ∶=

d∣τ ∣
∣∂τ ∣

if τ is a simplex. Let F ih be the collection of

the mesh interfaces. For all F ∈ F ih, we have F = ∂τ1 ∩∂τ2 for two distinct mesh
elements τ1, τ2 ∈ Th. We then set

hF ∶= min(h0
τ1 , h

0
τ2), κF ∶= min(κτ1 , κτ2), (2.8)

with κτ ∶= ess infx∈τκ(x) (i.e., κF is the smallest value of κ on the two elements
that share the interface F ). Moreover, for any function vh ∈ V hp , we define the
jump of its normal derivative across F as

⟦∇vh ⋅n⟧F ∶= ∇vh∣τ1 ⋅nτ1 +∇v
h
∣τ2 ⋅nτ2 . (2.9)

We drop the subscript F when the context is unambiguous.
The softFEM approximation of (2.1) seeks (λ̂h, ûh) ∈ R+ × V hp such that

∥ûh∥Ω = 1 and

â(ûh,wh) = λ̂hb(ûh,wh), ∀wh ∈ V hp , (2.10)

where for all vh,wh ∈ V hp ,

â(⋅, ⋅) ∶= a(⋅, ⋅)−ηs(⋅, ⋅) with s(vh,wh) ∶= ∑
F ∈Fi

h

κFhF (⟦∇vh⋅n⟧, ⟦∇wh⋅n⟧)F ,

(2.11)
and η ≥ 0 is a parameter to be specified below. The terminology softFEM is
motivated by the fact that the term −ηs(⋅, ⋅) reduces the stiffness of the system.
We refer to η as the softness parameter. We will see below that one can take
η ∈ [0, ηmax) for some ηmax depending on the polynomial degree p and the type
of mesh elements so that the bilinear form â(⋅, ⋅) remains coercive. When η = 0,
softFEM reduces to FEM.

Similarly to Galerkin FEM, the algebraic realization of the softFEM ap-
proximation (2.10) leads to the GMEVP

K̂Û = λ̂hMÛ, (2.12)
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where K̂ ∶=K−ηS with Skl ∶= s(φ
h
k , φ

h
l ), K and M are respectively the stiffness

and mass matrices as in (2.7), and Û is the eigenvector collecting the components
of ûh in the chosen basis {φhj }j∈{1,...,Nh

p }
of V hp .

Remark 1 (Variants). For p ≥ 2, the stiffness can be further reduced by imposing
least-squares penalties on higher-order derivative jumps. However, these addi-
tional terms increase the computational costs while our numerical experiments
(not shown for brevity) indicate only a further marginal improvement in terms
of spectral errors. We also mention the recent work [24] which penalizes both
the higher-order derivatives as well as the mass bilinear form near the boundary
to eliminate the so-called outliers in isogeometric spectral approximations.

2.4 Main results on softFEM

In this section, we present our main results on softFEM. We first derive an
upper bound on the softness parameter to ensure coercivity of the bilinear form
â(⋅, ⋅). To improve readability, the proof is postponed to Section 5.

Theorem 1 (Coercivity). Let â(⋅, ⋅) be defined in (2.11). Set ηmax ∶= 1
2p(p+1)

for tensor-product meshes with d ≥ 1 and ηmax ∶=
1

2p(p+d−1)
for simplicial meshes

with d ≥ 2. Assume that the softness parameter η ∈ [0, ηmax). The following
holds:

β1∣w
h
∣
2
H1(Ω) ≤ â(w

h,wh), ∀wh ∈ V hp , (2.13)

with β1 ∶= κmin(1 −
η

ηmax
) > 0.

Let us now consider the convergence of eigenvalues and eigenfunctions for
softFEM. We define the solution operator T ∶ L2(Ω) → H1

0(Ω) ⊂ L2(Ω) such
that for all φ ∈ L2(Ω),

a(T (φ),w) = b(φ,w), ∀w ∈H1
0(Ω). (2.14)

We notice that T is selfadjoint and compact, and the elliptic regularity theory
implies that there is s ∈ ( 1

2
,1] such that T maps boundedly from L2(Ω) into

H1+s(Ω). Moreover (λ,u) is an eigenpair of (2.2) if and only if (µ,u) is an
eigenpair of T with µ = λ−1.

Theorem 2 (Eigenvalue and eigenfunction errors). Let (λj , uj) ∈ R+ ×H1
0(Ω)

solve (2.2) and let (λ̂hj , û
h
j ) ∈ R+ × V hp solve (2.10) with the normalizations

∥uj∥Ω = 1 and ∥ûhj ∥Ω = 1. Let s ∈ ( 1
2
,1] be the index of elliptic regularity. Assume

that there is t ∈ [s, p] and a constant Ct such that one has the following smooth-
ness property: ∥φ∥H1+t(Ω)+∥T (φ)∥H1+t(Ω) ≤ Ct∥φ∥Ω for all φ ∈ Gj ∶= ker(µjI−T )

with µj ∶= λ
−1
j . Then, the following holds:

∣λ̂hj − λj ∣ ≤ Ch
2t, ∣uj − û

h
j ∣H1(Ω) ≤ Ch

t, (2.15)

where C is a positive constant independent of the mesh-size h. The convergence
rates are optimal whenever t = p.

Proof. We cannot apply directly the classical theory for error analysis derived
in [8, Thm. 7.2 & 7.4] since the softFEM bilinear form â(⋅, ⋅) differs from a(⋅, ⋅).
Instead, we can apply the extension of this theory presented in [10, Chap. 48] to
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finite element approximations with so-called variational crimes. We can work on
the extended space Y h ∶= V hp +H1+s(Ω) and establish the boundedness of â on

Y h ×Y h using the H1-seminorm augmented by s(⋅, ⋅)
1
2 . Optimal approximation

properties in this norm are readily derived for smooth functions. Moreover,
consistency holds true since we have s(uj , y) = 0 for all y ∈ Y h because s > 1

2
.

This implies the above error estimates.

Remark 2 (Pythagorean identity). A classical identity relating the eigenvalue
and eigenfunction errors (see, e.g., [4, Chap. 6]) is

∥uj − û
h
j ∥

2
E = λj∥uj − û

h
j ∥

2
Ω + λ̂hj − λj ,

where ∥ ⋅ ∥2
E ∶= â(⋅, ⋅) ≥ β1∣ ⋅ ∣

2
H1(Ω) owing to Lemma 1.

Our third main result quantifies the stiffness reduction by softFEM for
one particular choice of the softness parameter η that is further motivated in
Section 3 (see, in particular, Theorem 4), namely η = 1

2(p+1)(p+2)
. Notice that

η < ηmax =
1

2p(p+1)
for tensor-product meshes and that η < ηmax =

1
2p(p+d−1)

with

d ∈ {2,3} on simplicial meshes.

Theorem 3 (Eigenvalue lower and upper bounds). Assume that η = 1
2(p+1)(p+2)

.

Assume that d ∈ {2,3} if simplicial meshes are used. Let j ∈ N, let (λhj , u
h
j ) ∈

R×V hp solve (2.6), and let (λ̂hj , û
h
j ) ∈ R×V hp solve (2.10) with the normalizations

∥uhj ∥Ω = 1 and ∥ûhj ∥Ω = 1. The following holds:

γpλ
h
j ≤ λ̂

h
j < λ

h
j , (2.16)

with γp ∶=
2
p+2

on tensor-product meshes and γp ∶=
4−d
p+4−d

on simplicial meshes.

Proof. For all vh ∈ V hp ∖ {0}, let us define the Rayleigh quotients

R(vh) ∶=
a(vh, vh)

b(vh, vh)
, R̂(vh) ∶=

â(vh, vh)

b(vh, vh)
.

As shown in Section 5 (see (5.8)), we have

(1 − 2p(p + 1)η)a(vh, vh) ≤ â(vh, vh) < a(vh, vh)

on tensor-product meshes and

(1 − 2p(p + d − 1)η)a(vh, vh) ≤ â(vh, vh) < a(vh, vh)

on simplicial meshes. With the choice η = 1
2(p+1)(p+2)

, a direct calculation shows

that
γpa(v

h, vh) ≤ â(vh, vh) < a(vh, vh),

with γp defined in the assertion, which readily implies that

γpR(vh) ≤ R̂(vh) < R(vh). (2.17)

Let Vj denote the set of the subspaces of V hp of dimension j ≥ 1. Classical results
on the Rayleigh quotient imply that

λhj = min
Ej∈Vj

max
vh∈Ej

R(vh), λ̂hj = min
Ej∈Vj

max
vh∈Ej

R̂(vh).

The bounds in (2.16) then readily follow from (2.17).
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Since the stiffness matrices K and K̂ are symmetric, their condition num-
bers are given by

σ ∶=
λhmax

λhmin

, σ̂ ∶=
λ̂hmax

λ̂hmin

, (2.18)

where λhmax, λ̂
h
max are the largest eigenvalues and λhmin, λ̂

h
min are the smallest

eigenvalue of the GMEVPs (2.7) and (2.12) that are associated with (2.6) and
(2.10), respectively. We define the stiffness reduction ratio of softFEM with
respect to Galerkin FEM as

ρ ∶=
σ

σ̂
=
λhmax

λ̂hmax

⋅
λ̂hmin

λhmin

. (2.19)

In general, for Galerkin FEM and softFEM with sufficient elements (i.e., as

h → 0), one has λhmin ≈ λ̂hmin. Thus, the stiffness reduction ratio depends only
on the largest eigenvalues for both methods. Since softFEM leads to a smaller
largest eigenvalue, softFEM lowers the condition number of the stiffness matrix,
i.e., ρ ≥ 1. We define the asymptotic stiffness reduction ratio of softFEM with
respect to Galerkin FEM as

ρ∞ ∶= lim
h→0

λhmax

λ̂hmax

. (2.20)

Theorem 3 shows that for η = 1
2(p+1)(p+2)

, the best possible asymptotic stiffness

reduction ratio is 1+ p
2

on tensor-product meshes and 1+ p
4−d

on simplicial meshes
with d ∈ {2,3}. Notice that for both types of meshes, this value grows linearly
with p. Our numerical experiments reported in Section 3.2 for the 1D Laplace
eigenvalue problem show that the asymptotic stiffness reduction ratio is indeed
ρ∞ = 1 + p

2
. Moreover, the values of the asymptotic stiffness reduction ratio

observed in the more general situations studied in Section 4 are also close to the
predictions of Theorem 3. Finally, we define the stiffness reduction percentage
of softFEM with respect to Galerkin FEM as

% = 100
σ − σ̂

σ
% = 100(1 − ρ−1

)%, (2.21)

and the asymptotic stiffness reduction percentage as %∞ ∶= 100(1 − ρ−1
∞ )%, re-

spectively.

Remark 3 (SoftFEM eigenvalues). It is well-known that for Galerkin FEM, one
has λj ≤ λ

h
j for all j ≥ 1, but this is not necessarily the case for softFEM. Our

numerical experiments indicate that softFEM approximates the exact eigenvalues
from above in the low-frequency region and from below in the high-frequency
region.

3 Laplace eigenvalue problem in 1D

In this section, we focus on the spectral problem (2.1) with Ω ∶= (0,1) and κ ∶= 1,
that is, on the 1D Laplace eigenvalue problem. In this case, the problem (2.1)
has exact eigenvalues and L2-normalized eigenfunctions

λj = j
2π2 and uj(x) =

√
2 sin(jπx), j = 1,2, . . . , (3.1)
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respectively. We partition the interval Ω = (0,1) into Nh uniform elements so
that the mesh size h = 1/Nh. We first focus on the case of linear finite elements
(p = 1) and derive some analytical results showing that in this case the optimal
choice for the softness parameter is η = 1

12
, that is, η = 1

2(p+1)(p+2)
for p = 1. Then

we present numerical experiments for this choice of the softness parameter and
various polynomial degrees.

3.1 Analytical results for linear softFEM

The advantage of using linear elements is that it is possible to compute analyt-
ically the eigenvalues and eigenvectors for Galerkin FEM and softFEM. Firstly,
it is well-known that the bilinear forms a(⋅, ⋅) and b(⋅, ⋅) with p = 1 lead to the
following stiffness and mass matrices:

K =
1

h

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M = h

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
3

1
6

1
6

2
3

1
6

⋱ ⋱ ⋱

1
6

2
3

1
6

1
6

2
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.2)

which are of order (Nh − 1) × (Nh − 1). The bilinear form s(⋅, ⋅) leads to the
matrix

S =
1

h

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 −4 1
−4 6 −4 1
1 −4 6 −4 1

⋱ ⋱ ⋱ ⋱ ⋱

1 −4 6 −4 1
1 −4 6 −4

1 −4 5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.3)

which is also of order (Nh − 1) × (Nh − 1). Recall that we then have K̂ ∶=

K− ηS, and that according to Theorem 1, we must take the softness parameter
η ∈ [0, ηmax) with ηmax =

1
2p(p+1)

= 1
6

since p = 1 here.

Lemma 1 (Analytical eigenvalues and eigenvectors). (i) Galerkin FEM ap-
proximation: The GMEVP KU = λhMU has eigenpairs (λhj ,Uj) for all j ∈

{1, . . . ,Nh − 1} with

λhj =
6

h2

1 − cos(tj)

2 + cos(tj)
, Uj = cj( sin(ktj))k∈{1,...,Nh−1}

, (3.4)

with tj ∶= jπh and some normalization constant cj > 0. (ii) SoftFEM ap-

proximation: The GMEVP K̂Û = λ̂hMÛ has eigenpairs (λ̂hj , Ûj) for all j ∈

{1, . . . ,Nh − 1} with

λ̂hj =
6

h2

1 + 3η − (1 + 4η) cos(tj) + η cos(2tj)

2 + cos(tj)
, Ûj =Uj . (3.5)

Proof. The result (3.4) is well-known; see, for example, [9, Sec. 2] or [33, Sec. 4],
whereas the result (3.5) follows for instance from an application of [34, Thm. 2.1].
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An interesting consequence of (3.4)-(3.5) is that for linear softFEM, the
stiffness reduction ratio and the asymptotic stiffness reduction ratio are

ρ =
λhmax

λ̂hmax

⋅
λ̂hmin

λhmin

=
5 + cos(πh)

5 − cos(πh)
, ρ∞ = lim

h→0

5 + cos(πh)

5 − cos(πh)
=

3

2
. (3.6)

Thus, asymptotically, linear softFEM reduces the stiffness of Galerkin FEM by
about 33.3%.

For all η ∈ [0, ηmax) with ηmax = 1
2p(p+1)

= 1
6
, Theorem 2 shows that one

should expect a quadratic convergence rate for the discrete eigenvalues. We
now show that for the specific choice η = 1

2(p+1)(p+2)
= 1

12
, one obtains a quartic

convergence rate, uniformly for all the discrete eigenvalues.

Theorem 4 (Eigenvalue superconvergence). Let λj be the j-th exact eigenvalue

of (2.1) and let λ̂hj be the j-th approximate eigenvalue using linear softFEM.

Assume that η = 1
2(p+1)(p+2)

= 1
12

. The following holds:

∣λ̂hj − λj ∣

λj
<

1

360
(jπh)4, ∀j ∈ {1, . . . ,Nh

− 1}. (3.7)

Proof. The exact eigenvalues λj are given in (3.1), and the approximate eigen-

values λ̂hj are given in (3.5). To motivate the result of Theorem 4, we observe

that applying a Taylor expansion to λ̂hj , we obtain (recall that tj ∶= jπh)

λ̂hj − λj

λj
=

1 − 12η

12
t2j +

1

360
t4j −

17 − 84η

60480
t6j +O(t8j),

showing that the choice η = 1
12

leads to a cancellation of the dominant term in
the expansion and that the sixth-order term has a negative coefficient. More
rigorously, using (3.1), (3.5), and algebraic manipulations, we infer that

∣λ̂hj − λj ∣

λj
= ∣

9 − (2 + cos(tj))
2

t2j(2 + cos(tj))
− 1∣ .

Since tj samples the interval (0, π), we can consider a continuous variable t ∈
(0, π) and prove more generally that

∣
9 − (2 + cos(t))2

t2(2 + cos(t))
− 1∣ <

1

360
t4,

or, equivalently, that

−t6(2 + cos(t)) < 3240 − 360(2 + cos(t))2
− 360t2(2 + cos(t)) < t6(2 + cos(t)),

for all t ∈ (0, π). For the first inequality, we notice that the function

f(t) ∶= t6(2 + cos(t)) + 3240 − 360(2 + cos(t))2
− 360t2(2 + cos(t))

is increasing on (0, t0) and decreasing on (t0, π) with t0 ≈ 2.79911, that f(0) = 0
and f(π) ≈ 0.800921. The minimum value of f in (0, π) is thus f(0) = 0. For
the second inequality, we notice that the function

g(t) ∶= t6(2 + cos(t)) − 3240 + 360(2 + cos(t))2
+ 360t2(2 + cos(t))

is increasing on (0, π) and that g(0) = 0. This completes the proof.
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Remark 4 (Literature). The same value for the penalty parameter to achieve
superconvergence is obtained in [29] for the Helmholtz problem under Robin
boundary conditions, still for p = 1. Values of the penalty parameter for p ∈ {2,3}
are derived in [30].

3.2 Numerical results for arbitrary-order softFEM in 1D

In this section, we explore numerically softFEM for various polynomial degrees
p ≥ 1 using in all cases the softness parameter η = 1

2(p+1)(p+2)
.

p Nh ∣λ̂h
1−λ1∣

λ1
∣u1 − û

h
1 ∣H1 ∥u1 − û

h
1∥L2

∣λ̂h
6−λ6∣

λ6
∣u6 − û

h
6 ∣H1 ∥u6 − û

h
6∥L2

8 6.54e-5 3.58e-1 5.85e-3 2.10e-2 1.40e1 3.56e-1

16 4.12e-6 1.78e-1 1.44e-3 4.80e-3 6.63 6.06e-2

1 32 2.58e-7 8.91e-2 3.60e-4 3.27e-4 3.23 1.35e-2

64 1.61e-8 4.45e-2 8.98e-5 2.08e-5 1.61 3.27e-3

rate 4.00 1.00 2.01 3.38 1.04 2.25

4 4.38e-4 7.57e-2 2.54e-3 3.08e-2 1.37e1 2.82e-1

8 3.15e-5 1.84e-2 3.40e-4 1.11e-2 3.95 4.47e-2

2 16 2.04e-6 4.53e-3 4.33e-5 1.80e-3 1.04 7.78e-3

32 1.29e-7 1.13e-3 5.43e-6 1.50e-4 2.52e-1 1.11e-3

64 8.06e-9 2.82e-4 6.80e-7 1.02e-5 6.15e-2 1.45e-4

rate 3.94 2.02 2.97 2.93 1.96 2.72

4 1.16e-7 5.82e-3 8.08e-5 4.32e-2 5.24 1.04e-1

8 4.47e-10 7.19e-4 4.80e-6 7.64e-4 9.12e-1 9.29e-3

3 16 2.08e-12 8.96e-5 2.96e-7 3.02e-6 1.20e-1 4.41e-4

32 4.04e-13 1.12e-5 1.85e-8 1.15e-8 1.46e-2 2.48e-5

rate 6.21 3.01 4.03 7.35 2.84 4.05

4 4.55e-9 2.71e-4 4.54e-6 2.29e-4 2.12 2.39e-2

4 8 2.09e-11 1.55e-5 1.47e-7 6.70e-6 1.38e-1 7.88e-4

16 1.25e-13 9.38e-7 4.65e-9 9.01e-8 8.72e-3 3.24e-5

rate 7.58 4.09 4.97 5.65 3.96 4.77

Table 1: Errors and convergence rates for the first and sixth eigenpairs using
softFEM and polynomial degrees p ∈ {1, . . . ,4}.

Recall that Figure 1 shows the relative eigenvalue and eigenfunction errors
for Galerkin FEM and softFEM with Nh = 100 uniform elements and polyno-
mial orders p ∈ {1,2,3}. Notice that there are Nh

p ∶= pN
h −1 eigenpairs both for

Galerkin FEM and for softFEM. We refer the reader to Section 3.3 for a brief
discussion on the structure of the discrete spectrum for Galerkin FEM, including
the notions of acoustic/optical branches and stopping bands. The improvement
offered by softFEM over Galerkin FEM for the eigenvalues is clearly visible in
Figure 1 over the whole spectrum. For the eigenfunctions, there is no difference
for p = 1 (see Lemma 1), whereas the improvement of softFEM over Galerkin
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FEM for p ∈ {2,3} is salient around the stopping bands (that is, around j = Nh

for p = 2 and around j ∈ {Nh,2Nh} for p = 3). Incidentally, we notice that
for the H1-seminorm, the errors in the low-frequency region are slightly larger
with softFEM than with Galerkin FEM, although the convergence order for
softFEM remains optimal. This is expected since in the low-frequency region,
best-approximation errors in the finite element space decay optimally, and the
softFEM approximation leads to an additional optimally-converging contribu-
tion due to the interface jump penalty on the normal gradient. Table 1 reports
the errors for the first and sixth eigenpairs using softFEM and polynomial de-
grees p ∈ {1, . . . ,4}. We observe that in all the cases, the convergence rates
match well the predictions of Theorem 2 (and of Theorem 4 for p = 1).
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=1/12

=0.001
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Figure 2: Quadratic softFEM spectra in 1D with Nh = 1000 elements using
various softness parameters η. Left: â = a + ηs; Right: â = a − ηs.

To motivate the choice of the softness parameter η = 1
2(p+1)(p+2)

= 1
24

for

p = 2, we show in Figure 2 the softFEM discrete spectra using various values for
the softness parameter η. In this experiment, we increase the mesh resolution to
Nh = 1000 elements. In the left panel of Figure 2, for the sake of illustration, we
actually increase the stiffness, i.e., we set â ∶= a + ηs. As expected, increasing η
merely worsens the results. Instead, in the right panel of Figure 2, we return to
softFEM and consider â ∶= a− ηs. We observe that the choice η = 1

24
appears to

deliver the best overall result concerning the accuracy of the discrete eigenvalues
over the whole spectrum. In the high-frequency region, the accuracy of the
discrete eigenvalues is sensitive to the value of the softness parameter. For
reference, we also display the results for η = ηmax =

1
2p(p+1)

= 1
12

which show that

the limit value on the softness parameter derived in Theorem 1 is indeed sharp.
In Figure 3, we present the ratio ηs(ûhj , û

h
j )/a(û

h
j , û

h
j ) for softFEM eigen-

functions. The mesh is composed of 240, 120, 80, 60 uniform elements for
p ∈ {1, . . . ,4}, respectively, so that the number of eigenpairs is always the same.
As predicted by Theorem 1, this ratio is always lower than one. We see that
the amount of stiffness removed by softFEM is more substantial in the high-
frequency region.

Table 2 shows the minimal and maximal eigenvalues, the condition num-
bers, the stiffness reduction ratios, and the percentages for Galerkin FEM and
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Figure 3: Ratio ηs(ûhj , û
h
j )/a(û

h
j , û

h
j ) for softFEM eigenfunctions. The mesh is

composed of 240, 120, 80, 60 uniform elements for p ∈ {1, . . . ,4}, respectively.

p λhmin λhmax λ̂hmax σ σ̂ ρ %

1 9.8698 4.7991e5 3.1995e5 4.8624e4 3.2417e4 1.5000 33.33%

2 9.8696 2.3998e6 1.2000e6 2.4315e5 1.2158e5 1.9999 50.00%

3 9.8696 6.8046e6 2.7255e6 6.8945e5 2.7615e5 2.4967 59.95%

4 9.8696 1.5209e7 5.1587e6 1.5410e6 5.2269e5 2.9482 66.08%

5 9.8696 2.9555e7 9.1006e6 2.9946e6 9.2208e5 3.2476 69.21%

Table 2: Minimal and maximal eigenvalues, condition numbers, stiffness reduc-
tion ratios, and percentages when using Galerkin FEM and softFEM for a mesh
composed of Nh = 200 uniform elements and polynomial degrees p ∈ {1, . . . ,5}.

softFEM for a mesh composed of Nh = 200 uniform elements and polynomial
degrees p ∈ {1, . . . ,5}. (Recall that λ̂hmin ≈ λhmin so that we only show λhmin in the
table.) We observe that the stiffness reduction ratio increases with the poly-
nomial degree, starting at ρ = 1.5 for p = 1 up to ρ = 3.2476 for p = 5. Thus,
the benefit of using softFEM in tempering the condition number of the stiffness
matrix becomes more pronounced as p is increased. We also notice that the
computed value for the stiffness reduction ratio ρ is quite close to the optimal
value 1 + p

2
resulting from Theorem 3 (see the lower bound in (2.16)).

3.3 Discrete spectrum for Galerkin FEM

The goal of this section is to briefly outline some basic facts about the spectrum
of Galerkin FEM for the 1D Laplace eigenvalue problem. We explore the poly-
nomial degrees p ∈ {1,2,3}. For p = 1, all the degrees of freedom (dofs) in V hp
are attached to the Nh

p mesh vertices. Letting Λ ∶= λh2, solving the GMEVP
leads us to look for nonzero vectors in the kernel of the following matrix of order
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(Nh − 1) × (Nh − 1):

Avv ∶= Λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 1
1 4 1

⋱ ⋱ ⋱

1 4 1
1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.8)

For p = 2, there are Nh
2 = 2Nh − 1 dofs. It is interesting to order first the Nh − 1

dofs associated with the mesh vertices and then the Nh dofs associated with the
mesh elements. The basis functions associated with these Nh dofs are bubble
functions supported in a single mesh element. Solving the GMEVP problem
leads us to look for nonzero vectors in the kernel of the following matrix whose
block decomposition reflects the above partition into vertex and bubble dofs:

[
Avv 0
Abv Abb

] . (3.9)

It turns out that there is one vector in the kernel of Abb whose bubble dofs
oscillate from one cell to the next one, and the corresponding eigenvalue is
λb = 10h−2. The other vectors are obtained by considering the kernel of the
block Avv which admits the following structure:

Avv ∶=Λ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 −1
−1 6 −1

⋱ ⋱ ⋱

−1 6 −1
−1 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 16Λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

13 1
1 13 1

⋱ ⋱ ⋱

1 13 1
1 13

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 240

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.10)

Finally, for p = 3, there are Nh
3 = 3Nh − 1 dofs. We order first the Nh − 1

dofs associated with the mesh vertices and then the 2Nh dofs associated with
the mesh elements. The basis functions associated with these 2Nh dofs are
bubble functions supported in a single mesh element (2 per element). Solving
the GMEVP problem leads us to look for nonzero vectors in the kernel of a
matrix with the same block-structure as in (3.9), but this time the block Abb is
two times larger. The kernel of Abb is two-dimensional and the corresponding
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eigenfunctions are thus composed only of bubble functions. Moreover, we have

Avv ∶=Λ3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8 1
1 8 1

⋱ ⋱ ⋱

1 8 1
1 8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 30Λ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

36 −1
−1 36 −1

⋱ ⋱ ⋱

−1 36 −1
−1 36

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 360Λ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

64 3
3 64 3

⋱ ⋱ ⋱

3 64 3
3 64

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 25200

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1
−1 2 −1

⋱ ⋱ ⋱

−1 2 −1
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.11)
For all p ∈ {1,2,3}, one can readily verify that the matrix Avv has a non-trivial
kernel if and only if Λ is a root of the following polynomials (the subscript refers
to the polynomial degree):

f1(Λ) = (2 + ζj)Λ − 6(1 − ζj),

f2(Λ) = 2(3 − ζj)Λ
2
− 16(13 + 2ζj)Λ + 480(1 − ζj),

f3(Λ) = (4 + ζj)Λ
3
− 30(18 − ζj)Λ

2
+ 360(32 + 3ζj)Λ − 25200(1 − ζj),

(3.12)

where ζj ∶= cos(πtj), tj ∶= jh and j ∈ {1, . . . ,Nh − 1}. By replacing ζj by
the continuous variable ζ ∶= cos(πt) with t ∈ (0,1), one obtains one branch of
eigenvalues for p = 1, two branches of eigenvalues for p = 2, and three branches
of eigenvalues for p = 3. Each branch contains Nh−1 eigenvalues. For p ∈ {2,3},
the spectrum is completed by the one or two eigenvalues associated with the
eigenfunction(s) composed of bubble functions only.

In the literature, one refers to these latter eigenvalues as stopping band(s),
whereas the branch associated with the lowest eigenvalues is called acoustical
branch and the other branches are called optical branches. For instance, [35]
reported that quadratic finite elements for the 1D Laplace eigenvalue problem
delivered an acoustical branch (low-frequency region) and an optical branch
(high-frequency region) separated by one stopping band. We refer the reader
to the left plots in Figure 1 for an illustration of these notions. We also observe
that the notions of acoustical and optical branches as well as stopping bands
depend on the sorting of the eigenvalues and that some overlap between the
branches can happen in multiple dimensions; see Figure 4 for an illustration in
2D.

4 SoftFEM on more challenging numerical ex-
amples

In this section, we present more challenging numerical tests to illustrate the
performances of softFEM. We consider Laplace eigenvalue problems on tensor-
product meshes in Section 4.1, elliptic eigenvalue problems and non-uniform
meshes in 1D in Section 4.2, and finally simplicial meshes and L-shaped domains
in Section 4.3. The exact eigenpairs of the Laplace eigenvalue problems are
known for the problems in Section 4.1, whereas for the problems in Sections 4.2
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Figure 4: Quadratic FEM approximate spectrum with Nh = 40×40 elements for
the 2D Laplace eigenvalue problem. Left: eigenvalues sorted in each dimension.
Right: eigenvalues sorted in 2D.

and 4.3, we use a higher-order method with a large number of elements to
produce reference eigenpairs so as to quantify the approximation errors.

4.1 Laplace eigenvalue problems on tensor-product meshes

We consider the spectral problem (2.1) posed on Ω = (0,1)d, d ∈ {2,3}, with
κ = 1. For d = 2, the exact eigenvalues and eigenfunctions are respectively for
all i, j = 1,2, . . .,

λij = (i2 + j2
)π2, uij(x, y) = cij sin(iπx) sin(jπy),

for some normalization constant cij > 0, whereas for d = 3, the exact eigenvalues
and eigenfunctions are respectively for all k, l,m = 1,2, . . .,

λklm = (k2
+ l2 +m2

)π2, uklm(x, y, z) = cklm sin(kπx) sin(lπy) sin(mπz),

for some normalization constant cklm > 0. For the Galerkin FEM and softFEM
approximation, we use uniform tensor-product meshes. Theorem 1 shows that
admissible values for the softness parameter are η ∈ [0, ηmax) with ηmax =

1
2p(p+1)

.

Motivated by the 1D numerical experiments reported Section 3, we take again
η = 1

2(p+1)(p+2)
.

Figures 5 and 6 show the relative eigenvalue errors when using quadratic
and cubic Galerkin FEM and softFEM in 2D. For quadratic elements, we use
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Figure 5: Relative eigenvalue errors for the 2D Laplace eigenvalue problem when
using quadratic Galerkin FEM and softFEM with 402 elements.
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Figure 6: Relative eigenvalue errors for the 2D Laplace eigenvalue problem when
using cubic Galerkin FEM and softFEM with 202 elements.

a uniform mesh with 40 × 40 elements, whereas for cubic elements, we use a
uniform mesh with 20 × 20 elements. Figure 7 shows the relative eigenvalue
errors for the 3D problem with 20 × 20 × 20 elements and p ∈ {2,3,4}. We
observe in these plots that softFEM significantly improves the accuracy in the
high-frequency region. Moreover, the plots using the log-log scale indicate that
the spectral accuracy is maintained for quadratic elements and even improved
for cubic elements in the low-frequency region. The convergence rates for the
errors are optimal, and we omit them for brevity.

Figure 8 shows the ratio ηs(ûhj , û
h
j )/a(û

h
j , û

h
j ) for the softFEM eigenfunc-

tions in both the 2D and 3D settings. In 2D, there are 48× 48, 24× 24, 16× 16,
and 12 × 12 uniform elements for p ∈ {1, . . . ,4}, respectively, whereas in 3D,
there are 24 × 24 × 24, 12 × 12 × 12, 8 × 8 × 8, and 6 × 6 × 6 uniform elements for
p ∈ {1, . . . ,4}, respectively. These results essentially show how much stiffness is

18



0 0.2 0.4 0.6 0.8 1
j/N

h

p

-0.5

0

0.5

1
(

jh
 -

 
j)/

j

0 0.2 0.4 0.6 0.8 1
j/N

h

p

0

0.5

1

(
jh
 -

 
j)/

j

0 0.2 0.4 0.6 0.8 1
j/N

h

p

0

0.5

1

(
jh
 -

 
j)/

j

quartic FEM

cubic FEM

quartic softFEM

cubic softFEM

quadratic FEM quadratic softFEM

Figure 7: Relative eigenvalue errors for the 3D Laplace eigenvalue problem when
using FEM and softFEM with p = 2,3,4.

removed from the eigenfunctions by means of softFEM. The fact that the ratio
ηs(ûhj , û

h
j )/a(û

h
j , û

h
j ) is more pronounced in the high-frequency region corrobo-

rates the reduction of the spectral errors in this region. Finally, we mention that
the stiffness reduction ratios and percentages are quite close to those reported
in 1D, that is, ρ ≈ 1 + p

2
and % ≈ 100 p

p+2
% for p ∈ {1, . . . ,4} in both 2D and 3D.

4.2 Elliptic eigenvalue problems and non-uniform meshes
in 1D

We now consider the 1D elliptic eigenvalue problem (2.1) with κ(x) ∶= ex sin(2πx),
so that κmax ≈ 1.34 and κmin ≈ 0.46. The exact eigenpairs are approximated
using Galerkin FEM with C6 septic B-spline basis functions and a mesh com-
posed of Nh = 1000 elements. Figure 9 compares the relative eigenvalue errors
for Galerkin FEM and softFEM on a uniform mesh composed of Nh = 200 ele-
ments and polynomial degrees p ∈ {2,3,4,5}. We observe that softFEM reduces
the spectrum errors, especially in the high-frequency region. The convergence
rates for the errors are optimal, and we omit them here for brevity.

Table 3 shows the smallest and largest eigenvalues, the condition numbers,
the stiffness reduction ratios, and the percentages for Galerkin FEM and soft-
FEM. In all cases, we observe that softFEM leads to smaller largest eigenvalues
and hence to smaller condition numbers. The stiffness reduction ratio is about
ρ = σ/σ̂ ≈ 1 + p

2
while the percentage is about % ≈ 100 p

p+2
%; this is consistent

with the 1D results reported in Section 3.2.
Figure 10 compares the relative eigenvalue errors for the 1D Laplace eigen-

value problem when using Galerkin FEM and softFEM with p ∈ {2,3,4,5} on
a non-uniform mesh composed of Nh = 10 elements. The mesh nodes have
been randomly set to {0,0.1,0.18,0.29,0.41,0.5,0.59,0.66,0.81,0.92,1}. Refer-
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Figure 8: Ratio ηs(ûhj , û
h
j )/a(û

h
j , û

h
j ) for the softFEM eigenfunctions for the

Laplace eigenvalue problem in 2D (left) and 3D (right).

ence eigenvalues to evaluate the errors are computed as above. We observe that
the improvement offered by softFEM over Galerkin FEM is similar to the one
observed on uniform meshes. Table 4 reports the smallest and largest eigenval-
ues, the condition numbers, the stiffness reduction ratios, and the percentages.
We observe that the stiffness reduction ratios are slightly larger than when using
uniform meshes (compare with Table 3).

4.3 Simplicial meshes and L-shaped domain

In this section, we consider the 2D Laplace eigenvalue problem posed on the
unit square domain or on the L-shaped domain, and we use simplicial meshes
(triangulations) as depicted in Figure 11. Theorem 1 shows that admissible
values for the softness parameter on simplicial meshes are η ∈ [0, ηmax) with
ηmax =

1
2p(p+d−1)

= 1
2p(p+1)

if d = 2. Motivated by the 1D numerical experiments

reported in the previous section, we take again η = 1
2(p+1)(p+2)

.

Figures 12 and 13 compare the relative eigenvalue errors for the 2D Laplace
eigenvalue problem on the unit square domain and the L-shaped domain, respec-
tively, when using Galerkin FEM and softFEM with p ∈ {1,2,3} and an unstruc-
tured mesh (triangulation). As observed in the previous numerical experiments,
softFEM leads to smaller spectral errors than Galerkin FEM especially in the
high-frequency region.
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Figure 9: Relative eigenvalue errors for the elliptic eigenvalue problem (2.1)
in 1D with κ(x) ∶= ex sin(2πx) when using Galerkin FEM and softFEM with
p ∈ {2,3,4,5}. The mesh has Nh = 200 uniform elements.

Tables 5 and 6 report the smallest and largest eigenvalues, the condition
numbers, the stiffness reduction ratios and the percentages for the 2D Laplace
eigenvalue problem on the unit square domain and the L-shaped domain, respec-
tively. We use Galerkin FEM and softFEM with p ∈ {1,2,3} and an unstructured
mesh. Once again we observe that softFEM is capable to reduce significantly
the stiffness of the resulting matrix on unstructured meshes as well.

5 Proof of Theorem 1

In this section, we prove Theorem 1 which establishes the coercivity of the
bilinear form â(⋅, ⋅) under the condition that the softness parameter η ∈ [0, ηmax)

for some real number ηmax depending on the polynomial degree p and the type of
mesh. To this purpose, we first establish some useful discrete trace inequalities.

5.1 Discrete trace inequalities

For a natural number m ∈ N, we define the sets Im ∶= {0, . . . ,m}, ∂Im ∶= {0,m},
and I0

m ∶= Im ∖ ∂Im. Let p ∈ N be the polynomial degree. We are going to
consider the Gauss–Lobatto rule with (p + 2) points (see, for example, [36]),
which is exact for polynomials of degree at most (2p + 1). The weights are
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p λhmin λhmax λ̂hmax σ σ̂ ρ %

1 8.2832 6.3326e5 4.2263e5 7.6451e4 5.1023e4 1.4984 33.26%

2 8.2829 3.1795e6 1.5936e6 3.8386e5 1.9240e5 1.9951 49.88%

3 8.2829 9.0280e6 3.6298e6 1.0900e6 4.3823e5 2.4872 59.79%

4 8.2829 2.0194e7 6.8865e6 2.4380e6 8.3141e5 2.9323 65.90%

5 8.2829 3.9263e7 1.2129e7 4.7402e6 1.4643e6 3.2371 69.11%

Table 3: Minimal and maximal eigenvalues, condition numbers, stiffness re-
duction ratios, and percentages for the 1D elliptic eigenvalue problem with
κ(x) ∶= ex sin(2πx) when using Galerkin FEM and softFEM on a uniform mesh
composed of Nh = 200 elements.
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Figure 10: Relative eigenvalue errors for the 1D Laplace eigenvalue problem
when using Galerkin FEM and softFEM with p ∈ {2,3,4,5} on a non-uniform
mesh composed of Nh = 10 elements. The mesh nodes have been randomly set
to {0,0.1,0.18,0.29,0.41,0.5,0.59,0.66,0.81,0.92,1}.

denoted {$j}j∈Ip+1 and the nodes in [−1,1] are denoted {ξj}j∈Ip+1 . Recall that

$0 =$p+1 =
2

(p + 1)(p + 2)
, $j =

2

(p + 1)(p + 2)(Lp+1(ξj))2
, ∀j ∈ I0

p+1,

(5.1)
where Lp+1 is the Legendre polynomial of degree (p + 1). For a univariate
function v that is k-times differentiable, we denote its k-th derivative as v(k).

Lemma 2 (Discrete trace inequality, 1D). Let τ ∶= [a, b] with b > a and ∂τ =
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p λhmin λhmax λ̂hmax σ σ̂ ρ %

1 9.9653 1.2631e3 8.0985e2 1.2675e2 8.1267e1 1.5597 35.88%

2 9.8698 7.2767e3 3.2585e3 7.3727e2 3.3014e2 2.2332 55.22%

3 9.8696 2.1782e4 7.6596e3 2.2070e3 7.7608e2 2.8438 64.84%

4 9.8696 5.0056e4 1.5948e4 5.0717e3 1.6159e3 3.1387 68.14%

5 9.8696 9.9119e4 2.9618e4 1.0043e4 3.0009e3 3.3466 70.12%

Table 4: Minimal and maximal eigenvalues, condition numbers, stiffness
reduction ratios, and percentages for the 1D Laplace eigenvalue problem
when using Galerkin FEM and softFEM on a non-uniform mesh com-
posed of Nh = 10 elements. The mesh nodes have been randomly set to
{0,0.1,0.18,0.29,0.41,0.5,0.59,0.66,0.81,0.92,1}.

Figure 11: Unstructured meshes for the unit square domain (left) and the L-
shaped domain (right).

{a, b}. Set hτ ∶= b − a. For all p ∈ N and all k ∈ Ip, the following holds:

∥v(k)∥∂τ ≤ C1(k, p)h
−1/2
τ ∥v(k)∥τ , ∀v ∈ Pp(τ), (5.2)

where C1(k, p) ∶=
√

(p − k + 1)(p − k + 2). Moreover, the constant C1(k, p) is
sharp. In particular, for p ≥ 1 and k = 1, we have

∥v′∥∂τ ≤
√
p(p + 1)h−1/2

τ ∥v′∥τ , ∀v ∈ Pp(τ). (5.3)
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Figure 12: Relative eigenvalue errors for the 2D Laplace eigenvalue problem on
the unit square domain when using Galerkin FEM and softFEM with p ∈ {1,2,3}
and an unstructured mesh.
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Figure 13: Relative eigenvalue errors for the 2D Laplace eigenvalue problem on
the L-shaped domain when using Galerkin FEM and softFEM with p ∈ {1,2,3}
and an unstructured mesh.

Proof. It is clear that it suffices to prove (5.2) for k = 0. Let v ∈ Pp(τ). We
observe that ∥v∥2

∂τ = v(a)
2 +v(b)2. Moreover, since v2 is a polynomial of degree
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p λhmin λhmax λ̂hmax σ σ̂ ρ %

1 2.0020e1 2.9992e3 9.8013e2 1.4981e2 4.8957e1 3.0600 67.32%

2 1.9740e1 1.5224e4 4.1819e3 7.7122e2 2.1185e2 3.6404 72.53%

3 1.9739e1 4.0719e4 1.2356e4 2.0628e3 6.2598e2 3.2954 69.65%

Table 5: Minimal and maximal eigenvalues, condition numbers, stiffness reduc-
tion ratios, and percentages for the 2D Laplace eigenvalue problem on the unit
square domain when using Galerkin FEM and softFEM with p ∈ {1,2,3} and
an unstructured mesh.

p λhmin λhmax λ̂hmax σ σ̂ ρ %

1 4.0162e1 4.7287e3 1.9228e3 1.1774e2 4.7875e1 2.4593 59.34%

2 3.8707e1 2.5394e4 9.2240e3 6.5605e2 2.3830e2 2.7530 63.68%

3 3.8619e1 7.1172e4 2.7611e4 1.8429e3 7.1496e2 2.5777 61.21%

Table 6: Minimal and maximal eigenvalues, condition numbers, stiffness re-
duction ratios, and percentages for the 2D Laplace eigenvalue problem on the
L-shaped domain when using Galerkin FEM and softFEM with p ∈ {1,2,3} and
an unstructured mesh.

at most 2p, it is integrated exactly by the Gauss–Lobatto quadrature with (p+2)
points. Considering the linear mapping from ξ ∈ [−1,1] to [a, b] with x(ξ) ∶=
b−a
2
ξ + a+b

2
and setting gj ∶= x(ξj) for all j ∈ Ip+1, we have

∥v∥2
τ = ∫

b

a
v2

(x) dx = ∫
1

−1
v2

(x(ξ))
dx

dξ
dξ

=
b − a

2
(

2v2(a) + 2v2(b)

(p + 1)(p + 2)
+ ∑
j∈I0p+1

$jv
2
(gj))

=
b − a

(p + 1)(p + 2)
∥v∥2

∂τ +
b − a

2
∑

j∈I0p+1

$jv
2
(gj) ≥ C1(0, p)

−2hτ∥v∥
2
∂τ ,

where we used that g0 = a and gp+1 = b, the definition of C1(0, p) and hτ , and
the fact that the weights $j are non-negative for all j ∈ I0

p+1. This proves (5.1)
for k = 0. Finally, that the inequality is sharp follows from the fact that it is
possible to find a nonzero polynomial in Pp(τ) that vanishes at all the points
gj for all j ∈ I0

p+1.

Let us now turn to the multi-dimensional case. We consider first the tensor-
product case. For simplicity, we focus on bounding the normal derivative on the
boundary of a cuboid cell. For a different result bounding any partial derivative
on the boundary, we refer the reader to Remark 5.

Lemma 3 (Discrete trace inequality, cuboid). Let τ ∶= [a1, b1] × . . . × [ad, bd] ⊂
Rd, with bj > aj for all j ∈ {1, . . . , d}, be a cuboid with boundary ∂τ and outward
normal nτ . Recall that h0

τ ∶= mini∈{1,...,d}(bi − ai) is the length of the smallest
edge of τ . Let p ≥ 1. The following holds:

∥∇v ⋅nτ∥∂τ ≤
√
p(p + 1)(h0

τ)
−1/2

∥∇v∥τ , ∀v ∈ Qp(τ). (5.4)
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Moreover, the constant is sharp. Notice that (5.4) coincides with (5.3) for d = 1.

Proof. We present the proof in the 2D case (d = 2); the general case is treated
similarly. Let v ∈ Qp(τ). One can write v(x, y) = ∑jx,jy∈Ip αjxjyψjx(x)ψjy(y),
where {ψj}j∈Ip are basis functions of the univariate polynomial space of degree
at most p. Moreover, we have ∂τ = Fx ∪ Fy. Fx contains two faces (located
at x = a1, b1) and so does Fy (located at y = a2, b2). We consider the linear
mappings x ∶ [−1,1] → [a1, b1] and y ∶ [−1,1] → [a2, b2]. Let us first consider the
two faces in Fx. Since we are integrating the partial derivative of v with respect
to x, we consider a Gauss–Lobatto quadrature in τ obtained as the tensor-
product of a Gauss–Lobatto quadrature with (p + 1) points in the x variable
and a Gauss–Lobatto quadrature with (p + 2) points in the y variable. We use
a superscript for the weights and nodes to indicate the number of points in the
quadrature, and we set gxj ∶= x(ξp+1

j ) for all j ∈ Ip and gyj ∶= y(ξp+2
j ) for all

j ∈ Ip+1. Using the same arguments as in the proof of Lemma 2, we obtain

∥∇v ⋅nτ∥
2
Fx

= ∫

b2

a2
(∂xv∣x=a1)

2 dy + ∫
b2

a2
(∂xv∣x=b1)

2 dy

=
b2 − a2

2
∑

lx∈∂Ip

∑
ly∈Ip+1

$p+2
ly

( ∑
jx,jy∈Ip

αjxjyψ
′
jx(g

x
lx)ψjy(g

y
ly
))

2

=
b2 − a2

2

p(p + 1)

2
∑

lx∈∂Ip

∑
ly∈Ip+1

$p+1
lx

$p+2
ly

( ∑
jx,jy∈Ip

αjxjyψ
′
jx(g

x
lx)ψjy(g

y
ly
))

2

≤
b2 − a2

2

p(p + 1)

2
∑

lx∈Ip,ly∈Ip+1

$p+1
lx

$p+2
ly

( ∑
jx,jy∈Ip

αjxjyψ
′
jx(g

x
lx)ψjy(g

y
ly
))

2

=
p(p + 1)

b1 − a1
∥∂xv∥

2
τ .

Similarly, we have

∥∇v ⋅nτ∥
2
Fy

≤
p(p + 1)

b2 − a2
∥∂yv∥

2
τ .

Summing the above two inequalities and recalling the definition of h0
τ gives

∥∇v ⋅nτ∥
2
∂τ ≤

p(p + 1)

b1 − a1
∥∂xv∥

2
τ +

p(p + 1)

b2 − a2
∥∂yv∥

2
τ ≤

p(p + 1)

h0
τ

∥∇v∥2
τ . (5.5)

Taking square roots completes the proof for d = 2. Finally, the constant is sharp
since the upper bound in (5.4) can be attained by univariate functions.

Finally, we consider the case of a simplex.

Lemma 4 (Discrete trace inequality, simplex). Let τ be a simplex in Rd, d ≥ 2,

with boundary ∂τ and outward normal nτ . Recall that h0
τ ∶=

d∣τ ∣
∣∂τ ∣

. Let p ≥ 1. The

following holds:

∥∇v ⋅nτ∥∂τ ≤
√
p(p + d − 1)(h0

τ)
−1/2

∥∇v∥τ , ∀v ∈ Pp(τ). (5.6)

Proof. Let v ∈ Pp(τ), let F be a face of τ and set nF ∶= nτ ∣F . Then w ∶= ∇v ⋅nF ∈

Pp−1(τ). Applying the discrete trace inequality from [37] yields

∥w∥
2
L2(F ) ≤ p(p + d − 1)

∣F ∣

d∣τ ∣
∥w∥

2
L2(τ).
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Since ∣∇v ⋅nF ∣ ≤ ∥∇v∥`2 (the Euclidean norm of ∇v), we infer that

∥∇v ⋅nF ∥
2
L2(F ) ≤ p(p + d − 1)

∣F ∣

d∣τ ∣
∥∇v∥2

L2(τ).

Summing over the faces of τ , taking square roots, and recalling the definition
of h0

τ conclude the proof.

Remark 5 (Lemma 2). Using the Gauss–Lobatto nodes and their tensor-products
to prove discrete trace inequalities is a known technique. The result of Lemma 2
however slightly differs from previous results from the literature and provides a
sharper constant. For instance, for p ≥ 1, d = 1 and k = 0, [37, Thm. 2] leads to

the constant
√

2(p + 1)2 and [27, Lemma 3.1] to the constant
√

(p + 1)(2p + 1),
which are both less sharp than C1(0, p) in (5.2). Notice also that (5.6) with

d = 1 leads to ∥v′∥∂τ ≤
√

2p2h
−1/2
τ ∥v′∥τ which is again less sharp that (5.3) for

p ≥ 2. Finally, we have the following multidimensional extension of Lemma 2 in
a cuboid; the proof is omitted for brevity and follows arguments similar to those
above. Let τ ∶= [a1, b1]× . . .×[ad, bd] ⊂ Rd, with bj > aj for all j ∈ {1, . . . , d}, be a
cuboid with boundary ∂τ . Let p ≥ 1. For any multi-index (k) = (k1, . . . , kd) with
kj ∈ Ip for all j ∈ {1, . . . , d}, denoting the k-th partial derivative of v as v(k),
the following holds:

∥v(k)∥∂τ ≤ Cd(k, p, τ) ∥v(k)∥τ , ∀v ∈ Qp(τ), (5.7)

with Cd(k, p, τ) ∶=

√

∑j∈{1,...,d}
(p−kj+1)(p−kj+2)

bj−aj
. Moreover, the constant Cd(k, p, τ)

is sharp.

5.2 Coercivity proof

We can now give the proof of Theorem 1.

Proof of Theorem 1. (i) Tensor-product meshes. For all F ∈ F ih, let TF be
the set collecting the two mesh elements sharing F . For all wh ∈ V hp , we have

s(wh,wh) = ∑
F ∈Fi

h

κFhF ∥⟦∇wh ⋅n⟧∥
2
F ≤ 2 ∑

F ∈Fi
h

∑
τ∈TF

κFhF ∥∇wh∣τ ⋅nτ∥
2
F .

Since hF = minτ∈TF h
0
τ and κF = minτ∈TF κτ (see (2.8)) and exchanging the order

of the two summations, we infer that

s(wh,wh) ≤ 2 ∑
τ∈Th

κτh
0
τ∥∇w

h
⋅nτ∥

2
∂τ .

Applying Lemma 3 yields

s(wh,wh) ≤ 2p(p + 1) ∑
τ∈Th

κτ∥∇w
h
∥
2
τ ≤ 2p(p + 1)a(wh,wh).

Recalling that â(⋅, ⋅) = a(⋅, ⋅) − ηs(⋅, ⋅) with η > 0, we conclude that

â(wh,wh) ≥ (1 − 2p(p + 1)η)a(wh,wh). (5.8)

(ii) Simplicial meshes. The proof is similar but we now invoke Lemma 4 instead
of Lemma 3.
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6 Concluding remarks

In this work, we have shown by mathematical analysis and numerical experi-
ments the benefits of tempering the stiffness of the Galerkin FEM approximation
of second-order elliptic spectral problems. The idea is to subtract a least-squares
penalty on the gradient jumps across the mesh interfaces from the stiffness bilin-
ear form. This novel approximation technique has been named softFEM since it
reduces the stiffness of the problem. SoftFEM is formulated in terms of one soft-
ness parameter for which we provided an admissible range of values to maintain
coercivity on both tensor-product and simplicial meshes. We also gave a prac-
tical choice of the softness parameter that leads to superconvergence for linear
softFEM in 1D and to attractive numerical performances in more general situa-
tions. The main feature of softFEM is that it preserves the optimal accuracy of
the eigenvalues in the low-frequency region, while at the same time improving
significantly the accuracy in the high-frequency region. The main explanation
for this improvement is, as illustrated numerically in our experiments, that in
the high-frequency region the standard Galerkin FEM approximation tends to
store a substantial amount of energy for the eigenfunctions in the form of gra-
dient jumps across the mesh interfaces. Another very important advantage of
softFEM that we illustrated in several settings is its ability to offer a sizable
reduction of the conditioning of the stiffness matrix. The optimal value of the
asymptotic stiffness reduction ratio increases linearly with the polynomial de-
gree and fairly close values to those predicted theoretically are recovered in our
various numerical experiments.

As for future work, a first possible direction is the generalization to other
differential operators, such as the biharmonic operator. Two possible approaches
for the FEM spectral approximation are the mixed (see, e.g., [38, 39]) and the
primal (see, e.g., [40]) formulations. Figure 14 shows the FEM and softFEM
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Figure 14: FEM and softFEM spectral approximations of the 1D biharmonic
eigenvalue problem using mixed (left) and primal (right) formulations on a uni-
form mesh composed of 100 elements.

spectral approximations of the 1D biharmonic eigenvalue problem: Find an
eigenpair (λ,u) such that ∆2u = u(4) = λu in Ω = (0,1) with the simply sup-
ported plate boundary conditions u = u′′ = 0 on ∂Ω. For the mixed formulation,
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we decompose u(4) = λu as v′′ = λu and u′′−v = 0. We then apply FEM and soft-
FEM, as developed in Section 2, to the decomposed problem with C0 quadratic
elements (notice that softFEM is employed for both equations). The left plot
in Figure 14 shows that softFEM maintains the same advantageous features
of softFEM as for the second-order operator. In particular, softFEM reduces
significantly the high-frequency spectral errors. For the primal formulation, we
consider the bilinear form â(v,w) = (v′′,w′′)Ω −ηs(v,w) with the softness bilin-
ear form s(v,w) ∶= ∑F ∈Fi

h
hF (⟦v′′⟧, ⟦w′′⟧)F . The right plot of Figure 14 shows

the comparison of FEM and softFEM with various softness parameters when
using C1 cubic splines. The optimal choice for the softness parameter is η = 1

24
,

that is, η = 1
2p(p+1)

with p = 3. Notice that this optimal value is different from

the one found for the second-order elliptic operator ( 1
2(p+1)(p+2)

). Further anal-

ysis of the optimality parameter along with the error analysis is postponed to
future work.

Another future work direction is the generalization to other discretization
methods, such as isogeometric analysis (leading to softIGA) and discontinuous
Galerkin methods. Preliminary numerical tests indicate that softIGA has the
same features as softFEM: it reduces the stiffness and condition numbers and
it improves high-frequency spectral accuracy. More details will be reported in
future work. Finally, the stiffness reduction by softFEM lends itself naturally
to tempering the CFL condition in explicit time-marching schemes applied to
time-dependent PDEs.
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