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Review
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Abstract

Sarcomas are heterogeneous and clinically challenging soft tissue
and bone cancers. Although constituting only 1% of all human
malignancies, sarcomas represent the second most common type of

solid tumors in children and adolescents and comprise an important
group of secondary malignancies. More than 100 histological
subtypes have been characterized to date, and many more are being
discovered due to molecular profiling. Owing to their mostly aggres-
sive biological behavior, relative rarity, and occurrence at virtually
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every anatomical site, many sarcoma subtypes are in particular dif-
ficult-to-treat categories. Current multimodal treatment concepts
combine surgery, polychemotherapy (with/without local hyperther-
mia), irradiation, immunotherapy, and/or targeted therapeutics.
Recent scientific advancements have enabled a more precise molec-
ular characterization of sarcoma subtypes and revealed novel thera-
peutic targets and prognostic/predictive biomarkers. This review
aims at providing a comprehensive overview of the latest advances
in the molecular biology of sarcomas and their effects on clinical
oncology; it is meant for a broad readership ranging from novices to
experts in the field of sarcoma.
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See the Glossary for abbreviations used in this article.

Epidemiology of sarcoma

Although sarcomas are rare among adult malignancies, they repre-

sent 12–15% of all pediatric tumors (Stiller et al, 2013). Despite the

implementation and continuous optimization of multimodal thera-

pies, around one-third of sarcoma patients still succumb to the

disease. Historically, sarcomas have been clustered in two large

subgroups, according to the anatomical site of occurrence—sarcomas

of the skeleton and sarcomas of the soft tissues (hereafter referred

to as “bone sarcomas” or “soft tissue sarcomas” [STSs], respec-

tively). Both subgroups comprise a variety of histological subtypes,

and recent technological advances have enabled to decipher a

constantly increasing number of subtypes at the molecular level

(Fig 1; Baldauf et al, 2018a; Koelsche et al, 2018a; Watson et al,

2018; Weidema et al, 2020). Table 1 summarizes the major sarcoma

subtypes discussed in this review and their main features.

Among bone sarcomas, osteosarcoma (OS) is the most frequent

subtype (Heymann, 2014). OS primarily affects adolescents and

young adults, with the first and largest peak of incidence at age ~10–

14 years. Coinciding with the pubertal growth spurt, the incidence

rate of OS is 4 (3.5–4.6) for the range 0–14 years and 5 (4.6–5.6) for

the range of 0–19 years per year per million persons (Ottaviani &

Jaffe, 2009). The current standard of care was first introduced in the

late 1970s and remains largely unaltered despite numerous efforts to

improve outcomes (Rosen et al, 1976). Nowadays, patients with

localized disease still face 5-year overall survival rates < 70%, and

< 20% of patients who develop metastatic disease or relapse survive

> 3 years (Roberts et al, 2019). Ewing sarcoma (EwS) is included in

the group of bone sarcomas because it is an aggressive sarcoma of

both bone (~85% of cases) and soft tissue (~15% of cases), and

because it has an incidence and survival rate similar to OS.

The STS subgroup comprises ~70–80% of all sarcomas with > 70

heterogenous histological subtypes (WHO Classification of

Tumours: Soft Tissue and Bone Tumours, 2020). Although STSs

represent < 1% of all cancers, they have the highest incidence

among rare malignancies. Overall, the 5-year survival for STS is esti-

mated at ~57–62% and can vary widely depending on the disease

stage and the complex interplay between anatomical site and STS

subtype (Lyu et al, 2019). Unfortunately, the epidemiological data

Glossary

Cancer stem cells
(CSCs)

Cells within the tumor found in very small
fractions that are thought to be responsible
for resistance to cancer treatments and thus
relapse.

Cell dormancy Stage in cancer progression during which
tumor cells cease dividing but survive in a
quiescent state while waiting for appropriate
environmental conditions.

Chorioallantoic
Membrane (CAM)
models

Chick embryo CAM models used to study
tumor formation, angiogenesis, and
metastasis.

Circulating tumor
cells (CTCs)

Cells that leak into the vasculature or
lymphatics from a primary tumor and are
carried around the body in the blood
circulation.

Epigenomic
alterations

Heritable change that does not affect the
DNA sequence but results in a change in
gene expression.

Extracellular vesicles
(EVs)

Heterogeneous family of vesicles generated
from different subcellular compartments and
released into the extracellular space or the
blood circulation.

Genomic alterations Permanent modifications in the DNA
sequence including somatic mutations, copy-
number variations (CNVs), and gene fusions.

Immunotherapy Type of cancer treatment that aids the
immune system to fight tumors.

Oncolytic viruses Viruses that, by their intrinsic properties or
through genetic engineering, specifically
replicate in and kill cancer cells.

Orthotopic
xenografts

Animal models based on the injection of
tumor cell lines in the location where the
tumors typically appear in humans.

Patient-derived
xenografts (PDXs)

Animal model based on transplantation of
human tumor biopsies that encompass tumor
cells and the TME in immunodeficient
animals.

Pediatric tumors Tumors that typically arise between 0–14
years of age.

Precision medicine Approach to patient care that allows
physicians to select the treatments that are
most likely to help patients based on a
molecular understanding of their disease.

Sarcomas Malignant neoplasms that originate from the
skeleton or soft tissues.

Tumor
microenvironment
(TME)

Cellular environment in which cancer cells
reside encompassing the extracellular matrix
and stromal cells (endothelial cells,
fibroblasts, and immune cells)
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on specific STS subtypes are limited and frequently incomplete.

National initiatives are ongoing to improve the databases, and they

likely will benefit from the use of “big data” approaches. A recent

review on the epidemiology of STSs in Italy and other European

countries stated that they generally have an incidence of 6.27 and

4.71 cases per 100,000 inhabitants per year in Italy and Europe,

respectively (Trama et al, 2019), with median ages at diagnosis of 58

and 63 years, respectively. Leiomyosarcoma (LMS), liposarcoma

(LPS), and undifferentiated pleomorphic sarcoma (UPS; previously

termed malignant fibrous histiocytoma) are the most common STS

subtypes (WHO Classification of Tumours: Soft Tissue and Bone

Tumours, 2020). A recent study in the Australian population reported

that the incidence rate has almost doubled in the last 30 years

(Bessen et al, 2019), which could be related to improved diagnostics

or molecular pathology sub-classification.

The complex biology of sarcoma: How current knowledge
may affect therapy

To date, targeted therapy of sarcomas has only been partially effec-

tive, possibly due to the existence of compensatory pathways, the

intrinsically heterogeneous nature of sarcomas, and the complex

interplay with the tumor microenvironment (TME; Brown et al,

2018). In the TME, multiple intermingled cell types coexist through

complex heterotypic cellular interactions and communicate via a

large array of paracrine signals. The heterogeneity of different

cancer cell subpopulations is further modulated by the extracellular

matrix, admixed with intra- and extracellular reactive elements,

such as metabolites, oxygen tension, and pH.

Impact of the tumor microenvironment on the stemness and
behavior of sarcoma cells
Similar to the “seed and soil” theory described for other malignan-

cies, sarcoma cells evolve in a permissive milieu favoring their

quiescence and drug resistance or their proliferation and aggressive-

ness. Sarcoma cells are embedded in a highly heterogeneous tissue

context composed of immune cells, endothelial cells, pericytes,

mesenchymal stem cells (MSCs), cancer-associated fibroblasts

(CAFs), and nerve fibers, all of which may influence their behavior

and favor “stemness” properties. Cancer stem cells (CSCs) usually

represent only a very small fraction of the tumor cell mass, yet their

eradication is critical for improving drug response. Indeed, CSCs

have a great potential for self-renewal and develop protective mech-

anisms against conventional anti-tumor treatments, thereby causing

sarcoma relapse and metastasis (Abarrategi et al, 2016; Brown et al,

2017a; Fourneaux et al, 2019; Hatina et al, 2019). Common meth-

ods of isolating/enriching CSCs to model sarcoma heterogeneity

in vitro include culturing floating three-dimensional (3D)-colonies

(tumorspheres), cell sorting based on the expression of specific

markers (i.e., CD133, ABCG2, CD44, CD184, STRO1, CD117, CD271,

or aldehyde dehydrogenase 1), the ability to extrude fluorescent

dyes (side populations), or the selective pressure induced by long-

term culturing with chemotherapeutic drugs. CSCs have been

extensively characterized in both bone sarcomas and STSs (Salerno

et al, 2013; Abarrategi et al, 2016; Brown et al, 2018; Genadry et al,

2018; Skoda & Veselska, 2018; Hatina et al, 2019; Schiavone et al,

2019; Fig 2).

Stemness in sarcoma is a fluctuating functional state orchestrated

by the expression of pluripotency factors, such as OCT3/4, NANOG,

KLF4, and, especially, SOX2 (Basu-Roy et al, 2012; Maurizi et al,

 1 Angiosarcoma

 2 Alveolar soft part sarcoma (ASPS)

 3 Chordoma

 4 Liposarcoma (LPS; dediff.)

 5 Dermatofibrosarcoma protuberans

 6 Ewing sarcoma (EwS)

 7 Gastrointestinal stromal tumor (GIST)

 8 Kaposi sarcoma

 9 Fibromyxoid sarcoma (low-grade)

 10 Leiomyosarcoma (LMS)

 11 Liposarcoma (LPS; myxoid)

 12 Malignant peripheral nerve sheath tumor (MNPST)

 13 Osteosarcoma (OS; high-grade)

 14 Alveolar rhabdomyosarcoma (ARMS)

 15 Embryonal rhabdomyosarcoma (ERMS)

 16 Solitary fibrous tumor (SFT)

 17 Synovial sarcoma (SS)

 18 Undifferentiated pleomorphic sarcoma (UPS)

DNA-methylation-based clustering of sarcoma subtypes
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Figure 1. Diversity of sarcomas as highlighted by DNA methylation profiling.

t-distributed stochastic neighbor embedding (t-SNE) plot of n = 18 major sarcoma and soft tissue tumor subtypes based on genome-wide DNA methylation profiling on

Illumina EPIC arrays (Koelsche et al, 2018a,b). Web-link to classifier: www.molecularsarcomapathology.org.
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2018; Skoda & Veselska, 2018; Sannino et al, 2019). The expression

of these factors in sarcomas is oncogene-driven and triggered by a

combination of mutational and epigenetic events or by developmen-

tal programs (Rodriguez et al, 2012; Xiao et al, 2013). These events

ultimately result in the deregulation of pathways that control stem-

ness and differentiation, such as Hedgehog, Notch, Wnt/b-Catenin,
Hippo, or ALK (Graf Finckenstein et al, 2008; Naka et al, 2010;

Table 1. Main sarcoma subtypes discussed in this review and their
characteristics.

Sarcoma subtype Abbreviation Main features

Bone sarcomas

Chondrosarcomaa CHS • Localization: Cartilage, bone
surface, or centrally in bone

• Histopathology: Lobules
composed of malignant
chondrocytes entrapped in a
chondroid matrix with
calcified foci

• Identified mutations of
IDH1/2, EXT1/2

Ewing sarcomaa EwS • Localization: Long and flat
bones (~85%), extraskeletal
sites (~15%)

• Histopathology:
Undifferentiated small
round cells; mostly strong
membranous CD99
immunoreactivity and PAS-
positive cytoplasm

• Harbor somatic FET-ETS
translocations (~85%
EWSR1-FLI1; ~10% EWSR1-
ERG; ~5% rare subtypes)

Osteosarcomaa OS • Localization: Bone surface or
centrally in bone

• Histopathology: Neoplastic
cells with mesenchymal
morphology and frequent
polymorphism (epithelioid,
fusiform, round, spindled,
etc.) associated with an
extracellular osteoid matrix

• Various subtypes including
telangiectatic OS character-
ized by numerous hemor-
rhagic areas

• Complex highly aneuploidy
karyotypes with multiple
chromosomal aberrations
(numerical and structural)

• Frequent TP53 and RB
mutations and numerous
other mutations defining a
“BRCAness” signature

Soft Tissue Sarcomas (STSs)

Fibrosarcomaa • Localization: Deep soft tis-
sues of the extremities,
trunk, and head & neck

• Histopathology: Composed
of monomorphic fibroblastic
cancer cells in collagenous
matrix

GastroIntestinal
Stromal Tumors

GIST • Localization: Gastrointesti-
nal track (main site: stom-
ach and small intestine)

• Histopathology: broad mor-
phological spectrum with
mainly spindle cells and
epithelioid cells (~20% of
cases) or mixed histology

Table 1 (continued)

Sarcoma subtype Abbreviation Main features

characterized by differentia-
tion toward the interstitial
cells of Cajal. Usually
immunopositive for CD117
(KIT) and DOG1

• Harbor frequent activating
mutations in KIT and PDGFRA

Leiomyosarcoma LMS • Localization: Most com-
monly detected in the peri-
toneum and uterus (rarely
in bone)

• Histopathology: Mesenchy-
mal, spindle-shaped cells
with smooth muscle differ-
entiation (SMA, desmin and
h-Caldesmon positivity)

• Highly complex karyotypes
with genomic instability

Liposarcomaa LPS • Localization: Variable (most
commonly in the retroperi-
toneal space)

• Histopathology: Cancer cells
with variable adipocytic dif-
ferentiation and heteroge-
nous morphology embedded
in a vascularized stroma (in
case of myxoid LPS in myx-
oid stroma)

Rhabdomyosarcoma RMS • Localization: Variable

• Histopathology: Mesenchy-
mal phenotype with vari-
able myogenic
differentiation (usually posi-
tive for myogenin and MYOD)

Undifferentiated
pleomorphic
sarcomaa

UPS • Localization: Most fre-
quently in extremities

• Histopathology: Undifferen-
tiated cancer cells with a
high degree of cellular
atypia and pleomorphism

Synovial sarcoma SS • Localization: Mostly in deep
soft tissues of the extremi-
ties

• Histopathology: Spindle cells
with variable mesenchymal
and/or epithelial differentia-
tion (i.e., monophasic/bipha-
sic SS)

• Harbor specific SS18-SSX1/2/
4 fusion oncogenes

aThe most common bone sarcoma and STS subtypes (WHO Classification of
Tumours: Soft Tissue and Bone Tumours, 2020).
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Tumor dormancy and local recurrence
Agents targeting CSCs and 
drug resistance

• Mithramycin analogues (EC-8042)
• Metformin
• Salinomycin
• Histone deacetylase inhibitors
• TGF-β inhibitors
• NFκB inhibitors

Minimal residual disease and
tumor recurrence 

Metastatic
foci

Cell dissemination

Proliferative
cancer cell clones

Cancer
stem-like cell /
dormant cell

COMPLEX MICROENVIRONMENT 

Local immune tolerant
environment 

Extracellular matrix
components 

Extracellular
vesicles

• Osteocytes
• Chondrocytes
• …

Vasculature

Microbiome

• VEGF
• PDGF

• IL-6
• IL-8
• TGF-β
• RANKL
• TGF-α

• FLT3
• M-CSF
• IL-4
• IL-6
• IL-17
• IL-10
• IL-34

Polyclonal tumor
development

Additional
oncogenic and

epigenetic
events

First
oncogenic

event

Apoptotic
cell

Mesenchymal
stem cells

• TGF-β

• TGF-β

Cytotoxic agents

• Doxorubicin
• lfosfamide
• Methotrexate
• Docetaxel
• Gemcitabine
• Cisplatin
• Trabectedin

Targeted therapies
(targets) 

• Apatinib (VEGFR)
• Dasatinib (Src, KIT,

EPHA2, PDGFR) 
• lmatinib (PDGFR, KIT)
• Larotrectenib (NTRK)
• Nilotinib (BCR-ABL, DOR,
 KIT, PDGFR, M- CSFR) 
• Pazopanib (VEGFR,
 PDGFR, KIT) 
• Sorafenib (RET, VEGFR)
• Sunitinib (FLT3, PDGFR,

VEGFR, M-CSFR) 
• Bevacizumab (VEGF)
• Trastuzumab (HER2/neu)
• Ridaforolimus (mTOR)
• STAT3 inhibitors
• Tocilizumab (IL-6 receptor)

Agents targeting
microenvironment
and immune system 

• Bisphosphonates
• Anti-RANKL antibodies 
• Anti-PD-1/PD-L1
• Anti-GD2
• Anti-CD47

Cell types from
mesodermal tissues

• Adipocytes
• Myocytes

Figure 2.
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Riggi et al, 2010; Rodriguez et al, 2013; Basu-Roy et al, 2015, 2016;

Eid & Garcia, 2015; Tamaki et al, 2015; Abarrategi et al, 2016;

Almazán-Moga et al, 2017; Slemmons et al, 2017; Deel et al, 2018;

Genadry et al, 2018; Hatina et al, 2019; Rodrı́guez-Núñez et al,

2019; Schiavone et al, 2019; Trautmann et al, 2019). Alternatively,

both stemness and aggressiveness can be regulated by the interac-

tion with cells in the TME (Alfranca et al, 2015; Schiavone et al,

2019), or physical and chemical properties of the TME (i.e., hypoxia

and extracellular acidosis) (Zeng et al, 2011; Alfranca et al, 2015;

Avnet & Cortini, 2016; Avnet et al, 2017).

Several recent studies have focused on characterizing the

sarcoma-associated stroma and its effect on drug response

(Tarnowski et al, 2010; Ehnman et al, 2013; Baglio et al, 2017;

Cortini et al, 2017, 2019; Avnet et al, 2019). OS cells interact closely

with MSCs, CAFs, osteoblasts, osteocytes, osteoclasts, chondrocytes,

immune infiltrates, or components of the extracellular matrix to

drive stemness-promoting signaling (Avnet et al, 2008; Basu-Roy

et al, 2012; Zhang et al, 2013; Alfranca et al, 2015; Avnet & Cortini,

2016; Heymann et al, 2019). Moreover, MSCs/CAFs regulate tumor

growth and metastasis through PDGFRa/b and MIF-CXCR4/7 signal-

ing, enhancing sarcoma aggressiveness via the secretion of

inflammatory cytokines, exosomes (Miller et al, 2013; Cortini et al,

2016; Avnet et al, 2017; Baglio et al, 2017; preprint: Evdokimova

et al, 2019), or metabolites that can fuel the oxidative metabolism

of tumor cells (Bonuccelli et al, 2014). Metabolic fueling of sarcoma

cells by stromal cells may be particularly relevant to sustain the

energy demand of uncontrolled tumor growth and progression

(Zhang et al, 2010; Ren et al, 2017; Gaude et al, 2018; Zhu et al,

2019). Consequently, the composition of the local TME has direct

influence on the histological response to chemotherapy (Crenn et al,

2017). In addition, although axonogenesis has largely been

neglected in sarcoma preclinical modeling so far, increasing

evidence suggests that nerves in the TME may contribute to tumori-

genesis, progression, and cancer-associated pain in several sarcoma

subtypes, such as fibrosarcoma, OS, EwS, LPS, and extraskeletal

myxoid chondrosarcoma (CHS; Cain et al, 2001; Wacnik et al, 2005;

Endo et al, 2008; Ghilardi et al, 2010; Kanojia et al, 2015; Moriarity

et al, 2015; Shor et al, 2015; Brenca et al, 2019).

Moreover, the sarcoma TME may contain a specific microbiome

(Nejman et al, 2020): A recent study described that bacterial DNA

can be found in most CHSs. Bacteria were mostly intracellular and

were detectable in immune and tumor cells (Nejman et al, 2020).

Interestingly, metabolic functions related to intratumoral bacteria

appeared tumor type-specific; that is, degradation of hydroxyproli-

nes by bacteria was enriched in CHSs (Nejman et al, 2020).

Although more work is needed to decipher the precise role(s) of this

symbiotic microenvironment, it is tempting to speculate that it could

affect the stemness/differentiation and metabolic state of CHSs and

possibly other sarcomas.

To date, several clinical and preclinical studies have reported

treatments able to target the TME and/or CSCs in sarcomas (Abar-

rategi et al, 2016; Genadry et al, 2018; Schiavone et al, 2019)

(Fig 2). The advent of techniques for single-cell analysis, such as

single-cell DNA/RNA sequencing and spatial transcriptomics, will

accelerate studying and modeling of sarcoma tissue heterogeneity

and possibly lead to the identification of novel biomarkers and/or

therapeutic targets.

The immune infiltrate in sarcoma as a source of new
therapeutic targets
The TME of sarcoma cells is infiltrated by different immune cell

populations (Fig 3). For example, OS tumor tissues are infiltrated by

T lymphocytes (tumor-infiltrating lymphocytes, TILs) in a very high

percentage of patients, mainly expressing CD8+ (Théoleyre et al,

2005; Palmerini et al, 2017), and both TILs and tumor cells showed

a high expression of HLA-DR compared with other, non-malignant

bone tumors (Trieb et al, 1998). In preclinical models, CD8+ TILs

are cytotoxic against allogeneic tumor cells (Théoleyre et al, 2005),

and the number of CD8+ or CD8+/TIA1+ TILs correlates positively

with longer survival in patients (van Erp et al, 2017; Gomez-Brou-

chet et al, 2017; Palmerini et al, 2017). Similarly, in a small percent-

age of tumors, FOXP3+ (regulatory T cells, Tregs), and Arginase+

(myeloid-derived suppressor cells, MDSCs), immune-suppressive

infiltrating cells were detected (Fritzsching et al, 2015; Palmerini

et al, 2017). Notably, the CD8+/FOXP3+ ratio had a positive prog-

nostic value (Fritzsching et al, 2015). Furthermore, a high pretreat-

ment ratio of infiltrating neutrophils to lymphocytes, high levels of

C-reactive protein, Glasgow prognostic score, platelet–lymphocyte

ratio score, and lymphocyte-monocyte ratio or systemic absolute

leukocyte counts in post-therapeutic early recovery are independent

prognostic markers (Moore et al, 2010; Liu et al, 2016; Vasquez

et al, 2017).

Sarcomas are also frequently infiltrated by macrophages, which

represent the main immune infiltrate and a highly heterogeneous

population (Toulmonde et al, 2018; Mu et al, 2019; Stahl et al,

2019). Macrophage subpopulations are composed of a balance

between immune-stimulatory M1 and immune-suppressive M2

macrophages that can be dysregulated in sarcomas. Both subpopula-

tions are CD68+ and can be distinguished by the INOS and CD163

expression in M1 and M2 macrophages, respectively (Jayasingam

et al, 2020). However, their roles are complex, as revealed by the

functional discrepancy observed according to the given sarcoma

subtype. Indeed, CD163+ is required for their protumoral activities

(Shiraishi et al, 2018) and is a prognostic marker for specific

◀ Figure 2. Biological features of sarcomas and therapeutic approaches.

Sarcoma development results from a complex biological process. Their natural history combines the emergence of a first oncogenic hit followed by secondary oncogenic and

epigenetic events with a conjuncture of a permissive microenvironment composed by cell types from mesodermal tissues, immune infiltrate, vascular, and extracellular

matrix components. Sarcoma cells interact with their close environment through direct contact, enhanced cytokine/growth factors/miRNA signaling under a soluble form or

encapsulated in extracellular vesicles. Sarcoma cells are characterized by a phenotypic and genetic heterogeneity coming from the successive oncogenic/epigenetic events

occurring during tumor development and by cancer cells acquiring stemness properties that become progressively quiescent. Sarcomas are prone to induce distant

metastatic foci spread by circulating tumor cells and invading after extravasation appropriate metastatic niches. Cancer cells installed in distant organs can spread again

and enrich other metastatic sites increasing the tumor heterogeneity and potentially drug resistances. Persisting cells after resection of the primary tumor or dormant

cancer cells located in distant organs characterize the minimal residual disease and are responsible of tumor recurrences. A selection of approved and experimental

treatments aimed to prevent tumor growth and/or dissemination is shown.
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sarcoma subtypes such as embryonal rhabdomyosarcoma (ERMS;

Kather et al, 2019), whereas in OSs, CD163+ M2 macrophages are

proangiogenic, facilitating cancer cell extravasation and promoting

the metastatic process (Dumars et al, 2016; Han et al, 2016; Gomez-

Brouchet et al, 2017). Conflicting results showed a positive associa-

tion of tumor-associated dendritic cells (CD1a+) and macrophages

with either a worse disease-free survival (Koirala et al, 2016) or

inhibition of metastases (Buddingh et al, 2011). However, their

phenotype has not been fully characterized.

Sarcomas driven by reciprocal fusion oncoproteins, such as EwS,

generally exhibit a low immune infiltrate, constituting so-called

“cold” tumors. Few available studies have demonstrated that TILs

and dendritic cells are quite rare (immune desert) and that

programmed death-ligand 1 (PD-L1) expression is usually low

(Spurny et al, 2018). The presence of infiltrating macrophages has

been associated with poorer overall survival (Vakkila et al, 2006),

and elevated levels of circulating proinflammatory factors (e.g.,

interleukin 6, IL-6) correlate with tumor-associated fever at

advanced stages (Lissat et al, 2015), implying the recruitment of

immunosuppressing myeloid dendritic cells, macrophages, and

other inflammatory cells at the tumor site (preprint: Evdokimova

et al, 2019).

For STSs, only a very few recent reports have aimed to determine

the “hot” or “cold” tumor immunophenotypes and their potential as

biomarkers for response to therapy (Galon & Bruni, 2019). Kim et al

reported the presence of PD-1+ and PD-L1+ TILs at rates of 65%

and 58%, respectively, in various STS subtypes (Kim et al, 2013a).

Similarly, the infiltrations of PD-L1-expressing macrophages and

lymphocytes were observed in 58% and 30%, respectively, of 50

analyzed STS samples (D’Angelo et al, 2015), and the PD-L1
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Figure 3. Sarcomas are characterized by an immune oasis.

Sarcomas are infiltrated by numerous immune cells, which are in some sarcoma subtypes deleterious by establishing an immune tolerant microenvironment that can be at

the origin of innovative therapeutic approaches. In physiological condition, the adaptive immune system is activated by exogenous antigens leading to initiation of an

effective immune response against the host at the origin of these antigens. Unfortunately, inmost cases immune activation by tumor-associated antigen is counterbalanced

by inhibitory signals transmitted after the binding of immune checkpointmolecules (e.g., PD-1) expressed by immune effectors to their ligands expressed by cancer cells such

as PD-L1. Macrophages also contribute to the immune surveillance in sarcomas with two main distinct subsets: M1 macrophages with pro-tumor activities and M2

macrophages with anti-tumor and immunosuppressive functions. This immune landscape has led to the development of immunotherapies including immune checkpoint

inhibitors, activated NK cells, or genetically modified T lymphocytes (CAR T cells) in order to reactivate the tumor immune surveillance.
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expression was associated with a higher density of CD3+ PD-1+

TILs, a higher tumor grading, and a lower overall survival (Orth

et al, 2020). PD-L1 was also expressed by tumor cells in 12% of

cases, with the highest prevalence in gastroIntestinal stromal tumors

(GISTs). Finally, the detection of low CD3+ or CD4+ TILs was

significantly correlated with better overall survival by a univariate

analysis (D’Angelo et al, 2015). However, recent reports have

provided a more panoramic view of PD-1 and PD-L1 expression in

larger series of STS and revealed that most STS subtypes show

expression of both factors (Dancsok et al, 2019; Orth et al, 2020).

However, the bioclinical relevance of PD-1 and PD-L1 (e.g., prog-

nostic value) remains controversial in sarcomas, mainly due to their

high heterogeneity (Fujii et al, 2014; Nduom et al, 2016; Nowicki

et al, 2017).

Collectively, the immune infiltrates observed in sarcomas offer a

rich opportunity for implementation of immunotherapeutic

approaches in sarcomas. Yet, a complete and more standardized

immune score may help to better understand the different

immunophenotypes related to each sarcoma subtype and to improve

immunotherapeutic approaches.

Models for studying the biology of sarcomas
Human cancer cell lines have become the cornerstone of cancer

research. However, the accumulation of (epi-)genetic mutations

over time and across laboratories can have crucial implications

when investigating new treatments as shown in carcinoma cell lines

(Liu et al, 2019), since they affect drug response (Ben-David et al,

2018). Whether this holds true for translocation-driven sarcomas,

such as alveolar rhabdomyosarcoma (ARMS), EwS, myxoid LPS,

and SS, which display rather “silent” genomes, remains to be deter-

mined. Yet, the use of low-passaged primary cell lines can prevent

accumulation of mutations: A recent study of CHS patient samples

and their derived cell lines characterized the genetic drift process of

primary cell lines after 20–34 in vitro cell culture passages (Rey

et al, 2019). Although the adaptation of tumor cells to in vitro cell

culture is accompanied by additional genetic mutations, these rather

low-passaged CHS cell lines retained the most relevant mutations of

the patient’s founder clone (Rey et al, 2019).

For preclinical modeling of sarcoma, 3D culture has recently

emerged as a tool for better prediction of drug efficacy and develop-

ment of precision medicine approaches (Vaira et al, 2010; Santoro

et al, 2015; Bregenzer et al, 2019). These 3D models include

microfluidic devices, bioprinted cell-enriched structures with tailor-

able biomechanical properties, and well-defined tumoroids (Murphy

& Atala, 2014), which contain different cell types, defined gradients

of bioactive factors, and “physiological” biomaterials to precisely

recapitulate the natural TME (Ma et al, 2018). This will help to

elucidate the mechanical cross-talk between sarcoma cells and

“normal” cells (including vasculature and immune cells) (Huang

et al, 2014; Datta et al, 2017), as well as components of the extracel-

lular matrix (Doraiswamy et al, 2007; Pavlou et al, 2019). However,

although a recent study has successfully employed a mineralized 3D

bone model to evaluate the effect of the small-molecule elesclomol

on EwS cells (Marchetto et al, 2020), 3D models for the study of

sarcoma are still in their infancy (Barron et al, 2004, 2005).

In vivo, the chick chorioallantoic membrane (CAM) assay is a

valuable option due to its low costs and relatively easy implementa-

tion. CAM assays have been employed to study sarcoma

angiogenesis, fibroblast infiltration, tumorigenesis, tumor invasion,

and metastasis in CHS, EwS, fibrosarcoma, LPS, and OS (Sys et al,

2013; Patil et al, 2014; Manjunathan & Ragunathan, 2015; Cimpean

et al, 2018; Kunz et al, 2019; Perut et al, 2019; Steinestel et al,

2020). Numerous additional in vivo models of inducible or sponta-

neous sarcomas have been described in non-mammalian vertebrates

(e.g., zebrafish; Leacock et al, 2012; Mohseny et al, 2012; Brown

et al, 2017b; Hayes & Langenau, 2017; Ignatius et al, 2018; Fleming

et al, 2019) and in mammalians (e.g., mouse, rat, and dog; Cannon,

2015; Jacques et al, 2018; Castillo-Tandazo et al, 2019; Pomella &

Rota, 2020). Genetically modified zebrafish and xenotransplantation

of human sarcoma cells in fish were simultaneously proposed. Their

main advantages are (i) their small size, allowing the maintenance

of many animals at low costs; (ii) their high rate of proliferation

(> 200 embryos per pairing); (iii) ex utero development of embryos,

facilitating cell transplantations; (iv) their transparency, which facil-

itates non-invasive and repeated imaging; (v) the possibility of

imaging at the single-cell level; (vi) studies of human cells and host

factors facilitated by the use of transgenic lines; (vii) no immune

rejection in early cell transplantation; and (viii) facilitation of high-

throughput drug screening due the animals’ permeability to small

molecules through diffusion. Yet, the lack of specific organs (e.g.,

lungs) and the difference with human TME are two major limita-

tions of zebrafish models (Mohseny et al, 2012; Brown et al, 2017b;

Hayes & Langenau, 2017).

Genetically engineered mouse models (GEMMs) are considered

reliable models for studying cancer development. Indeed, by induc-

ing the formation of spontaneous tumors mimicking the natural

history of human pathologies, GEMMs are privileged models to

functionally identify and characterize molecular drivers or genetic

initiator events of the disease (Kersten et al, 2017). While EwS, for

which no bona fide GEMMs have been developed to date, is an

exception among sarcomas, numerous GEMMs of bone sarcomas

(for reviews, see ref. Jacques et al, 2018, 2019) and STSs (for

review, see ref. Dodd et al, 2015) have been described. The first

GEMM overexpressed the AP-1 transcription factor c-Fos in murine

osteoblasts, which led to the development of OS without inducing

metastatic foci (Grigoriadis et al, 1993). More recent models include

deletion of Tp53, Rb, Prx-1, or Prkar1a; overexpression of Sonic

Hedgehog signaling components; or targeting Apc and Twist, and

lead to the formation of metastatic OS (Jacques et al, 2018). Simi-

larly, conditional loss of Tp53 or Ink4a/Arf in an Ext1-driven GEMM

results in the formation of CHS (de Andrea et al, 2015).

GEMMs of STSs were also developed (Dodd et al, 2015). For

example, the conditional Pax3-Fkhr knock-in allele is associated

with the development of ARMS with a frequency that can be

increased by the loss of function of Ink4a/ARF and Tp53 (Keller

et al, 2004). In addition, ERMS can be induced from the adipocyte

lineage by adipocyte-restricted activation of Hedgehog signaling

through constitutive expression of an active Smoothened allele (Hat-

ley et al, 2012). The latter model has also helped to demonstrate

that Hedgehog signaling drives aberrant expression of myogenic

specification factors, which may induce ERMS from non-myogenic

endothelial progenitors (Drummond et al, 2018). More recently,

GEMMs for sarcomas have been obtained by CRISPR-Cas9 technol-

ogy (Huang et al, 2017).

Xenografts are alternatives to GEMMs and can be obtained by

injection of tumor cells into immunodeficient mice. Xenografts are
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relatively easy to generate and highly reproducible (Picarda et al,

2010; Gambera et al, 2018; Jacques et al, 2018), but cannot fully

recapitulate the TME of many sarcoma subtypes, and only rarely

give rise to spontaneous metastases (Jacques et al, 2018). In this

context, orthotopic xenografts obtained through injection of a

suspension of tumor cells into the para- or intraosseous site for OS

and EwS modeling (Hauer et al, 2013; Lamora et al, 2014; Stewart

et al, 2014; Ségaliny et al, 2015; Baglio et al, 2017), or through

intramuscular injection for the modeling of “soft tissue EwS”

(Jaboin et al, 2002; Merchant et al, 2004), more closely recapitu-

lated the TME of the respective tumor histotype. Similarly, early

passage patient-derived xenografts (PDXs) constitute a powerful tool

for preserving the TME, histology, and genetic profiles of sarcomas

(Hoffman, 2015; Stewart et al, 2017). PDXs are obtained through

subcutaneous or orthotopic implantation of small fragments of

tumors isolated from patients in immunodeficient mice. However,

so far, only few studies have been published on PDXs in sarcoma

due to the low success rate of the engraftment, the complex implan-

tation procedure (Stewart et al, 2017; Nanni et al, 2019; Rainusso

et al, 2019), and the costs required for the stabilization of the

model, which may require up to a year (Nanni et al, 2019).

Current standard therapies for sarcomas

The therapeutic care of bone sarcoma and STS patients requires

specialized sarcoma units. In fact, treatment in such specialized

centers has been shown to result in improved surgical and oncologic

outcomes (Blay et al, 2017). In addition, due to the potentially

devastating consequences that can arise from poorly performed

biopsies, biopsies of lesions suspected of being a sarcoma should be

carried out in (or directed by) a specialized center (Mankin et al,

1982; Potter et al, 2008; Pretell-Mazzini et al, 2015; Traub et al,

2018). The cornerstone of bone sarcoma and STS management is

surgical resection of the primary tumor, which is typically accompa-

nied by neoadjuvant and/or adjuvant chemotherapy and/or irradia-

tion. Radiation therapy contributes to local control of tumor growth

with positive margins or high-grade STS (Kim et al, 2008).

Chemotherapy regimens of bone sarcomas (e.g., OS, EwS) combine

doxorubicin, cisplatin, methotrexate, and ifosfamide administered

before and/after surgery for 6–12 months (Brown et al, 2018). Simi-

larly, systemic treatments of STSs are mainly based on anthracycli-

nes (e.g., doxorubicin) alone or in combination with an alkylating

agent (e.g., ifosfamide) (Judson et al, 2014; Gómez & Tsagozis,

2020; Smrke et al, 2020). Interestingly, the use of adjuvant

chemotherapy or radiotherapy may be defined by biological risk

factors in high-risk STSs (Sundby Hall et al, 2018). Although

systemic therapy is the treatment of choice in metastatic disease

(Meyers, 2015), resection of the primary tumor may still be

performed with palliative intent, or rarely, in combination with

resection of oligometastatic disease (Blakely et al, 2015). Wide

margin surgery then remains the crucial technical approach in

sarcoma treatment (Patrikidou et al, 2011).

For bone sarcomas, studies have demonstrated that oncologic

outcomes of OS and EwS are similar between limb salvage and

amputation when wide margins are achieved (Simon et al, 1986;

Rougraff et al, 1994; Alamanda et al, 2012; Jauregui et al, 2018).

Thus, the current standard of care is limb salvage surgery if

preservation of neurovascular structures allows reconstruction of a

functional extremity (Yang et al, 2017). Special considerations are

made for limb reconstruction in the growing child, such as the use

of growing prostheses, vascularized autografts, or van Nes rotation-

plasty. The choice of (neo)adjuvant treatment modalities is largely

driven by the histological subtype: For instance, OS and EwS are

usually chemosensitive and treated with neoadjuvant and adjuvant

chemotherapy to decrease the risk of systemic disease progression,

while STSs are frequently treated with neoadjuvant radiation ther-

apy to decrease the risk of local recurrence (Gaspar et al, 2015;

Brown et al, 2018; Le Cesne, 2018; Ray-Coquard et al, 2018; Fig 2).

In contrast, high-grade CHS is largely resistant to existing chemo-

and radiotherapies; thus, achieving a wide margin resection is

currently the best option for prevention of disease progression (Reed

et al, 2017; Brown et al, 2018; Whelan & Davis, 2018).

GIST is one of the STS subtypes for which the therapeutic devel-

opment has been the most spectacular (Farag et al, 2020). For

instance, up to 85% of patients with advanced GIST benefit from

imatinib treatment (Blay, 2011). In fact, 90% of GISTs harbor driver

mutations in the KIT proto-oncogene receptor tyrosine kinase (KIT)

and platelet-derived growth factor receptor alpha (PDGFRA), which

can be targeted by tyrosine kinase inhibitors (TKIs). Their therapeu-

tic efficacy is directly linked to the type of mutation, and conse-

quently, the acquisition of secondary mutations can result in drug

resistance (see section “Resistance to targeted therapies”), which

remains the most significant challenge in the treatment of locally

advanced and metastatic GIST (Li & Raut, 2019). However, even

fourth-line therapy with TKIs may still be effective in advanced GIST

(Blay et al, 2020).

Yet, the mostly moderate efficacy of any second-line treatment

for the majority of relapsed bone sarcomas and STSs highlights the

need for intensified research to identify novel targets and improved

preclinical models to predict drug response in molecularly defined

cohorts of patients suffering from refractory and/or recurrent

disease.

Mechanisms of drug resistance

Chemoresistance has been largely associated with the expression of

specific detoxifying molecules, such as efflux pumps (ATP-binding

cassette (ABC) family proteins or ALDH enzymes), as it has also

been recently demonstrated for CSCs (Lohberger et al, 2012). In

particular, P-glycoprotein is a 170 kDa transmembrane energy-

dependent efflux pump encoded by the MDR1 gene. Its expression

leads to a multidrug resistance phenotype rather than an increased

biological aggressiveness (Scotlandi et al, 1996; Baldini, 1997),

which is associated with decreased event-free survival in OS

patients (Baldini et al, 1995) and in a small percentage of STS

patients (Serra et al, 1996), and has also recently been found in

bone sarcoma PDXs (Nanni et al, 2019).

Besides P-glycoprotein, additional drug resistance mechanisms

are caused by tumor heterogeneity arising from high DNA repair

capacity, deregulation of apoptotic factors, adoption of a quiescent

state (Honoki et al, 2010; Abarrategi et al, 2016; Martinez-Cruzado

et al, 2016; Roundhill et al, 2019; Vallette et al, 2019), drug delivery

failure, the epithelial–mesenchymal transition (EMT) (Sannino et al,

2017), increased autophagy (Xiao et al, 2018), enrichment of CSCs
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(Eyler & Rich, 2008), protective signaling traits after chemothera-

peutic treatment (Martins-Neves et al, 2016; Yu et al, 2016), and

immune evasion (Vasan et al, 2019).

In addition, resistance to conventional TKIs (e.g., imatinib) is

associated with secondary mutations of KIT or PDGFRA in GIST (see

section “Resistance to targeted therapies”). To overcome such

acquired resistance, “switch pocket inhibitors” have been developed

(Blay et al, 2020). A switch pocket inhibitor has the same target as

the conventional inhibitors but acts like a light switch that deacti-

vates cell signaling associated with the targeted receptor via block-

ing conformational activation of the kinase. For example, ripretinib

targets KIT, PDGFRa/b, kinase insert domain receptor (KDR), and

colony-stimulating factor 1 receptor (CSF1R alias C-FMS) and has

been developed to overcome the TKI resistance occurring in GIST

patients. The Asp842Val (D842V) mutation of PDGFRA was identi-

fied as the primary driver mutation in 5–6% of GISTs, which are

refractory to all currently approved TKIs (Corless et al, 2005). The

D842V mutation is located in the exon 18 encoding the PDGFRA

activation loop and modifies the protein conformation to a “consti-

tutive” active form.

Avapritinib is a new TKI designed on the base of its selectively

property to target the active conformation of KIT and PDGFRA. A

phase I clinical trial (ClinicalTrials.gov No. NCT02508532) has

recently assessed its safety, tolerability, and anti-tumor activity

(Heinrich et al, 2020). Interestingly, 9% of complete response and

79% a partial response was observed. Ripretinib—an inhibitor of all

known KIT and PDGFRA mutations—forces the switching of the

mutated receptors to assume the “off” position. A recent double-

blind, randomized, placebo-controlled, phase 3 clinical trial (Clini-

calTrials.gov No. NCT03353753) showed that ripretinib significantly

improved the progression-free survival with an acceptable safety

profile in patients suffering from advanced GIST resistant to

approved treatment (Blay et al, 2020).

Similarly, the classification of BRAF mutations, the knowledge

about dysregulated signaling pathways and dysregulated circuitries

related to these mutations, and the function of BRAF in sarcoma led

to the development of new therapeutic options to overcome resis-

tance to conventional chemotherapy. For instance, the BRAF V600E

mutation was recently identified as a potential therapeutic target in

a small subset of SS (Watanabe et al, 2020). It is interesting to note

that resistance to BRAF mutation inhibitors may be overcome by

combining BRAF inhibitors with EGFR, PI3K, mTOR, MEK, RTK,

HGF, and MET inhibitors, leading to the targeting of the MAPK and

PI3K-AKT-mTOR signaling pathways (Liu et al, 2020). CX-6258 is a

pan-Pim kinase inhibitor selected for its potent activity against

sensitive and resistant cancer cells to RAF/MEK inhibitor (Haddach

et al, 2011).

Using a KINOMEscan assay platform, haspin kinase was identi-

fied as a target of CX-6258. The inhibition of haspin reduced cancer

cell proliferation and regulated the immune system by increasing

the frequency of interferon c (IFNc)-producing CD8+ T cells and

reducing the number of Tregs in vivo (Melms et al, 2019). Interest-

ingly, the haspin kinase inhibitor can overcome RAF/MEK inhibitor-

resistant cancer cells and shows anti-tumor effects in EwS (Melms

et al, 2019). Acquired resistance to cisplatin observed in OS patients

is associated with a poor prognosis (Higuchi et al, 2019). Peroxi-

some proliferator-activated receptor gamma (PPARc) was reported

to enhance the efficacy and overcome resistance to cisplatin in

various oncological entities and exhibits similar properties in OS

(Higuchi et al, 2019).

The cell differentiation state also affects drug sensitivity (Dawson

et al, 2020). A subpopulation of RMS cells that expressed MYOD1

and NOG exhibited primary resistance to vincristine and doxoru-

bicin, which can be partly overcome by the combination of 12-O-

tetradecanoylphorbol-13-acetate (TPA) and an enhancer of zeste

homolog 2 (EZH2) inhibitor (GSK126) (Dawson et al, 2020). EZH2

is an epigenetic drug acting as a histone methyltransferase inhibitor

that has been recently approved for metastatic or locally advanced

epithelioid sarcoma (Rugo et al, 2020). The elimination and recy-

cling of damaged proteins and organelles are driven by autophagy,

which provides energy to the cells. Autophagy can be activated by

chemotherapy and can promote increased chemosensitivity, as well

as drug resistance in OS (Camuzard et al, 2019; Liao et al, 2019).

Thus, drugs regulating autophagy may be an option to overcome

drug resistance in the future.

Cell dormancy and recurrence
The risk of recurrence in oncology is associated with the persistence

of cancer cells, which are not clinically/biologically detectable after

resection of the primary tumor (Arlt et al, 2013). The latency with-

out any detectable disease varies according to the clinical condition

(e.g., histological grade and subtype) and depends on cancer cells

characterized by slow cycling, low metabolism and fitness, and

consequently, long-term survival mechanisms (Vallette et al, 2019).

Awakened cancer cells re-acquire an active state, with capacities of

proliferation and spreading to distant sites, and they define the mini-

mal residual disease (Riethmüller & Klein, 2001). Dormant cells

have been identified in several sarcoma subtypes, including

fibrosarcoma (Dobson & Dickey, 1956; Varani et al, 1981; Cao et al,

1998), LPS (Almog et al, 2006; Rogers et al, 2014), RMS (Kimura

et al, 2002), Kaposi sarcoma (Indraccolo et al, 2006), and OS (Nau-

mov et al, 2006; Shimizu et al, 2014; Avril et al, 2016a,b; Guo et al,

2017). These rare dormant cells exhibit stemness properties (Vis-

vader, 2011), and they have been related to drug resistance (De

Angelis et al, 2019; Smith & Macleod, 2019; Vallette et al, 2019).

The emergence of dormant cells is a conserved biological process

linked to cell survival and controlled by multiple parameters,

including genetic and epigenetic alterations, clonal cell evolution,

cell–matrix interactions within the TME (e.g., immune tolerance),

and diversity/heterogeneity. No specific molecular signature of

dormant sarcoma cells has yet been identified. The most recent

molecular approaches (e.g., single-cell RNA sequencing, RNA/DNA

methylation profiling) should lead to the identification of their speci-

fic molecular profile and of the molecular drivers of this state. For

instance, myeloma dormant cells are switched “on” by engagement

with osteoblastic cells and switched “off” by active osteoclasts

(Lawson et al, 2015), which illustrates the clinical interest of target-

ing cell dormancy also in the context of bone sarcomas and STSs

(Endo & Inoue, 2019; Recasens & Munoz, 2019; Tellez-Gabriel et al,

2019).

Resistance to targeted therapies
TKIs are the largest class of targeted therapies approved by the Food

and Drug Administration (FDA). In particular, GIST commonly

shows activating mutations in the receptor tyrosine kinases KIT and

PDGFRA. While physiological KIT or PDGFRa signaling are involved
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in cell differentiation and survival, activating mutations in both

genes results in constitutive ligand-independent receptor activation,

leading to GIST tumorigenesis. TKIs are the standard of care in the

primary treatment of GIST, and imatinib is the most commonly used

compound (Casali et al, 2018). The resistance toward TKIs in GIST

is mainly related to secondary mutations of KIT (Li & Raut, 2019;

Napolitano & Vincenzi, 2019), but can also be triggered by PDGFRA

mutations (Lim et al, 2008; Kalfusova et al, 2019).

In non-GIST STSs, the currently approved targeted therapies are

limited to the multi-target TKI pazopanib, which targets VEGFR-1,

VEGFR-2, and VEGFR-3, PDGFRa and PDGFR-b; and KIT (Lee et al,

2019). It has been demonstrated that anti-angiogenic TKIs, including

pazopanib, do not succeed in targeting sarcoma stem cells (Canter

et al, 2014), whereas treatment with pazopanib in a human SS

model promotes the development of resistance (Lanzi et al, 2019).

Despite a strong inhibition of the main target of pazopanib,

PDGFRa/b, the activation of the AKT and ERK signaling pathways

was only partially impaired, possibly due to the over activation of

other tyrosine kinase receptors, including the insulin-like growth

factor receptor type 1 (IGF1R) and insulin receptor (IR). Similarly,

in another SS cell line, the presence of an NRAS mutation sustained

ERK activation and caused resistance to pazopanib treatment (Lanzi

et al, 2019). Thus, a combination treatment with either an IGF1R/IR

inhibitor or a MEK inhibitor has been suggested to restore the inhi-

bition of the PDGFRa/b pathways and effectively promote apoptosis

(Lanzi et al, 2019). Phosphoproteomic profiling of pazopanib-resis-

tant cells identified the inhibition of HSP90 as a therapeutic route to

overcome resistance (Vyse et al, 2018).

These findings highlight the importance of patient-specific tumor

profiling to identify the underlying activated signaling pathways,

thereby avoiding the “one-size-fits-all” paradigm and moving

toward personalized, multi-line, and patient-specific treatment regi-

mens (Wilding et al, 2019). Biomarker-guided basket trials, such as

the CREATE trial, which evaluates multiple disease types with a

common oncogenic driver matched to a specific targeted therapy,

may be considered in this respect (Péron et al, 2019). Moreover,

characterization of interpatient pharmacokinetic variability will be a

valuable tool to predict and overcome the development of resistance

(Cardoso et al, 2020).

Other types of resistances
Several other indirect mechanisms of drug resistance in sarcoma

have been identified, such as the formation of abnormal TME,

hypoxia, and acidosis. Elevated levels of hypoxia and hypoxia-indu-

cible factor 1a (HIF1a) in human sarcomas correlate with tumor

progression and radiation resistance (Kim et al, 2013b). In particu-

lar, in STS, HIF1a expression was found in 25.5% of tumors and

was associated with both shorter overall survival and progression-

free survival (Kim et al, 2015). Moreover, translational activation of

HIF1a by YB-1 was found to promote metastasis in preclinical

models of EwS, OS, and RMS (El-Naggar et al, 2015). Similarly, in

OS, hypoxia was responsible for the induction of the Wnt/b-catenin
signaling pathway and resulted in 6–13 times more cell resistance to

doxorubicin-mediated toxicity than under normoxic conditions

(Roncuzzi et al, 2014; Scholten et al, 2014). In EwS, hypoxia has

been found to protect tumor cells against anticancer drugs, while

suppression of HIF1a enhanced drug-induced apoptosis (Kilic et al,

2007). Accordingly, metabolic characterization, including hypoxic

phenotypes, may help to identify specific treatment modalities in

OS, other bone sarcomas, and STSs (Eary et al, 2011; Campanile

et al, 2013). Along these lines, a recent pilot study characterized dif-

ferent metabolic parameters in a small group of STS patients using

specific positron emission tomography (PET) agents to assess the

individual risk associated with biological characteristics of the

tumors (Wolsztynski et al, 2018).

Tumor acidosis is a metabolic adaptation observed in cancers

and characterized by the fermentation of glucose to lactic acid. This

process occurs in the presence of oxygen and is called aerobic

glycolysis or Warburg effect. This adaptative mechanism modulates

the drug sensitivity and leads to drug resistances by intrinsic (e.g.,

modulation of the mutational profile driven by a cell adaptation to

stress) or extrinsic (e.g., structural/functional modulation of drugs

induced by the local pH modifications) mechanisms (Kolosenko

et al, 2017). Indeed, the pH of the local microenvironment regulates

the passive diffusion of small molecules such as cancer drugs across

biological barriers by modulating charged components of cell

membranes, process named ion trapping or pH-partitioning (Scott

et al, 2017). Many cancer drugs are ionizable molecules containing

weak bases or acids in their structure and are subjected to pH-parti-

tioning resistance (Zhitomirsky & Assaraf, 2016). That is the case

for doxorubicin (weak base compound) in OS, which is trapped in

the acidic extracellular microenvironment and consequently cannot

target cancer cells (Avnet et al, 2016). On the contrary, the cytotoxic

effects of cisplatin (weakly acidic drug) are increased in OS by the

local tumor acidosis, which favors its neutral form and then facili-

tates its passive diffusion across the cell membranes (Avnet et al,

2016). In the cytoplasm, cisplatin is ionized by the low alkaline pH

and trapped in the cell. A similar phenomenon was described in

RMS, and the diffusion of weak base drugs across cell membranes

and their sequestration in the lysosomal compartment are facilitated

by ion trapping (Salerno et al, 2014; Zhitomirsky & Assaraf, 2016).

Molecular signatures of sarcomas: Effects on diagnosis
and prognosis

In past decades, an unbiased and systematic search for gene fusions

combined with unsupervised gene expression and (epi)genetic anal-

yses of different sarcoma subtypes led to better classification

systems (WHO Classification of Tumours: Soft Tissue and Bone

Tumours, 2020). In addition, these molecular signatures provide

information about the biology of these tumors, reflecting both the

characteristics of the sarcoma’s cell of origin and the activated path-

ways driving the malignant phenotype (Taylor et al, 2011).

Genomic and transcriptomic alterations
The Cancer Genome Atlas (TCGA) Research Network reported a

recent analysis of 206 adult STSs representing six major subtypes

(Cancer Genome Atlas Research Network, 2017). Here, the authors

showed that common sarcomas (except for SS) are characterized by

a high number of copy-number variations (CNVs) and recurrent

point mutations in relatively few genes, such as TP53, ATRX, and

RB1. Importantly, specific genomic and transcriptomic alterations

also define molecular subtypes, which are associated with patient

outcome (Cancer Genome Atlas Research Network, 2017). Other

studies have identified whole-genome duplication as a cause of the
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structural complexity of UPS (Steele et al, 2019), and CDKN2A alter-

ations as a predictor of worse overall survival across sarcoma

subtypes (Bui et al, 2019). Integrated analysis of genomic and tran-

scriptomic data confirmed the mutational profiles of STSs and iden-

tified PDGFRa as a putative target in complex karyotype STSs (Kim

et al, 2018). Indeed, a PDGFRa-blocking antibody (olaratumab) in

combination with doxorubicin showed promising results for non-

GIST STS treatment (Klug & Heinrich, 2017). Given the widespread

presence of CDK4-amplification/high expression and CDKN2A loss

across sarcomas subtypes, CDK4 inhibitors such as palbociclib are

also a promising strategy in RB-positive tumors (Dickson et al,

2013). It is noteworthy that ATRX has been shown to be required

for response to CDK4 inhibitors in LPS, providing a potential

biomarker for upcoming clinical trials (Kovatcheva et al, 2015;

Cancer Genome Atlas Research Network, 2017). Integration of

genomic and transcriptome analysis has also uncovered a “BRCA-

ness” mutational signature in LMS, which confers sensitivity to

DNA double-strand break-inducing drugs (Helleday, 2011; Chuda-

sama et al, 2018) and sensitivity toward the combination of the poly

(ADP-ribose) polymerase (PARP) inhibitor olaparib and cisplatin

(Chudasama et al, 2018). Olaparib combined with trabectedin (an

alkylating drug) showed manageable toxicities at active dose levels

and encouraging anti-tumor activity in STS (Grignani et al, 2018). A

phase 2 study on this topic is ongoing (ClinicalTrials.gov No.

NCT04076579).

Exome sequencing has revealed a combination of single-base

substitutions, loss of heterozygosity events, and/or large-scale

genome instability involving 14 driver genes (ATM, ATRX, BAP1,

BRCA2, FANCA, MDC1, MUTYH, NUMA1, PTEN, RB1, RECQL4,

RET, TP53, and WRN) and many additional genes that define a

“BRCAness” signature in > 80% of OS (Kovac et al, 2015). In fact,

OS is characterized by a very complex altered genomic landscape

explained by chromothripsis-generating driver mutations and multi-

ple genomic rearrangements (Behjati et al, 2017). However, in some

cases, OS tumorigenesis is associated with germline alterations in

TP53, RB1, and RECQL1/2/3 predisposing patients to the accumula-

tion of high numbers of somatic mutations (Smida et al, 2017;

Baumhoer et al, 2019; Sayles et al, 2019). In addition, two recent

publications hypothesized that specific somatic CNV profiles of OS

can be used for outcome prediction and for identification of altered

genes and associated pathways as potential therapeutic targets

(Smida et al, 2017; Sayles et al, 2019). Similar preliminary findings

have been reported for EwS and RMS (Cheng et al, 2019). Olaparib

combined with ceritinib (ALK inhibitor) in OS showed limited toxic-

ity and should be further evaluated (Beck et al, 2020). A clinical

trial assessing olaparib combined with ceralasertib (ATR inhibitor)

is currently in progress in the context of OS (ClinicalTrials.gov No.

NCT04417062).

In contrast to OS and most sarcomas of adulthood, translocation-

driven pediatric sarcomas, such as EwS, SS, or fusion-positive

ARMS, exhibit much lower rates of single-nucleotide variants and

CNVs, and, instead, appear to be driven by marked epigenetic and

transcriptomic perturbations induced by the fusion oncoproteins

(Shern et al, 2014; Tirode et al, 2014; Cancer Genome Atlas

Research Network, 2017). In fact, through the integration of tran-

scriptomic and genetic data, a recent study found that EWSR1-FLI1

hijacks the developmental transcription factor SOX6 and thus

promotes proliferation of EwS cells, which provides opportunities

for targeted therapeutic intervention for the oxidative stress inducer

elesclomol (Marchetto et al, 2020). New molecular studies have also

shed light on the role of the interplay between germline variants

and somatic mutations in interindividual tumor heterogeneity in

EwS (Musa & Grünewald, 2020). Musa et al recently showed that

EWSR1-FLI1 binds to a polymorphic enhancer-like GGAA-microsa-

tellite, through which it regulates the expression of the oncogenic

transcription factor MYBL2 (Musa et al, 2019). Importantly, vari-

ability at this MYBL2-associated GGAA-microsatellite is inherited

via the germline and linked to intertumoral variation in MYBL2

expression (Musa et al, 2019). As MYBL2 is phosphorylated and

activated by CDK2 (Musa et al, 2017), high MYBL2 expression

sensitizes EwS cells to CDK2 inhibition, indicating the potential for

using MYBL2 as a biomarker in anti-CDK2 therapy (Musa et al,

2019).

While oncogenic gene fusions involving transcription factors

remain largely undruggable (Knott et al, 2019), clinical trials

using larotrectinib, a kinase inhibitor targeting gene fusions

involving NTRK1/2/3, have shown promising results and could

offer a strategy for the treatment of NTRK-fusion-positive sarco-

mas (Doebele et al, 2015; Fig 3). In addition, DNA minor groove-

binding agents in DNA, such as trabectedin or mithramycin, have

been described as potent inhibitors of EWSR1-FLI1-mediated tran-

scription with anti-tumor potential (Bailey et al, 2019; Harlow

et al, 2019). A recent clinical trial showed that mithramycin was

too toxic at the dose required to inhibit EWSR1-FLI1 (Grohar

et al, 2017). However, the development of less toxic second-

generation mithramycin analogs, such as EC-8042, opens the

possibility of using this compound clinically (Osgood et al, 2016;

Tornin et al, 2016; Fig 3).

Epigenetic alterations
Mutations in chromatin remodeler components have recently been

recognized as oncogenic drivers in adult and pediatric sarcomas

(Nacev et al, 2019). Recurrent somatic missense mutations in

histone H3 at lysine 36 impair the mesenchymal differentiation

program and promote the initiation of UPS (Fang et al, 2016; Lu

et al, 2016). These mutations result in hypomethylation of H3K36

and a gain in H3K27 methylation that leads to the de-repression

and redistribution of polycomb repressive complex 1 (PRC1) asso-

ciated with a blockade of mesenchymal differentiation. K36M

mutations in H3F3B have also been detected in most chondroblas-

tomas (Behjati et al, 2013). The detection of histone mutations

could help in therapeutic choices as recently evidenced by an

instructive case of a patient diagnosed with a histiocytic neoplasm

harboring a histone H3K36I mutation. This patient did not

respond to multiple histiocytosis treatments, but showed a stable

therapeutic response after chemotherapy and radiation therapy

used for STS (Snuderl et al, 2019). Similarly, mutations in chro-

matin remodeling genes, including ATRX, DOT1L, and H3F3A,

have been identified in 14 UPS cases highlighting the potential

involvement of deregulated chromatin remodeling pathways in

tumorigenesis (Ali et al, 2019).

Epigenetic alterations and signatures have also been extensively

explored in EwS. In fact, EwS has been defined as an “enhancer

disease” with substantial levels of epigenetic heterogeneity (Toma-

zou et al, 2015; Sheffield et al, 2017). In contrast to many other

cancers, inter-tumor epigenetic heterogeneity did not uncover
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discrete subgroups in EwS, but, rather, defined a continuous spec-

trum along two distinct and biologically interpretable dimensions

(“Ewing-like” and “mesenchymal versus stem-like”; Sheffield et al,

2017). Although the clinical relevance of this epigenetic heterogene-

ity in sarcoma remains to be clarified, recent studies have high-

lighted the potential of epigenetic therapies in OS and EwS:

Selective inhibition of BET bromodomain epigenetic signaling inter-

feres with the bone-associated tumor’s vicious cycle in OS and inhi-

bits the oncogenic transcription factor EWSR1-FLI1 in EwS

(Lamoureux et al, 2014; Jacques et al, 2016; Baud’huin et al, 2017).

Super-enhancers (SEs), which are large genomic regions enriched in

active enhancers, have been identified as regulators of cellular iden-

tity (Whyte et al, 2013). In pediatric fusion-positive ARMS, PAX3-

FOXO1 was shown to establish a miswired myoblastic SE landscape,

creating a dependency on BET bromodomains (Gryder et al, 2017,

2019, 2020). BET inhibitors ablate PAX3-FOXO1 function, providing

a rationale for their use in the treatment of fusion-positive ARMS

patients (Gryder et al, 2017, 2019, 2020).

Deregulation of epigenetic programs also plays key roles in other

sarcoma subtypes, such as SS, an STS that often occurs in young

adults. The defining genetic event present in all histological variants

of SS is the translocation of the SS18 gene on chromosome 18q11 to

an SSX gene (mainly SSX1 or SSX2) located on chrXp11 (Clark et al,

1994). A recent RNA interference screen to find specific epigenetic

vulnerabilities created by the SS18-SSX oncoprotein identified a crit-

ical role for KDM2B, a member of the non-canonical polycomb

repressive complex 1 (PRC1.1) in sustaining SS cell proliferation

(Banito et al, 2018). PRC1.1 is required for the recruitment of SS18-

SSX and the mSWI/SNF complex to unmethylated CpG islands,

which enables the fusion to activate genes that would otherwise be

repressed (Banito et al, 2018). In addition, two recent studies found

a dependency of SS on the mSWI/SNF subunit BRD9 (Brien et al,

2018; Michel et al, 2018). However, further work should determine

whether these results pinpoint a requirement of BRD9 for the SS18-

SSX-driven expression program (Brien et al, 2018) and whether this

constitutes a synthetic lethal interaction by regulation of fusion-

independent genomic sites (Michel et al, 2018).

Apart from their roles in sarcomagenesis, specific epigenetic

alterations can be used to improve bone sarcoma and STS classifi-

cation, diagnosis, and patient stratification (Fig 1; Koelsche et al,

2018a; Weidema et al, 2020). The promising results of brain tumor

DNA methylation-based classification (Capper et al, 2018) fostered

adaptation of this principle to the decision-making process in

sarcoma diagnostics, which is often clinically equally challenging

(Koelsche et al, 2018a). Analyses of more than 1,000 mesenchymal

tumor samples comprising more than 50 STS and bone sarcoma

subtypes of pediatric and adult patients by array-based methylation

profiling suggested that methylation signatures can be used to accu-

rately predict sarcoma entities such as “small round blue” cell

tumors (Koelsche et al, 2018a). Furthermore, this allows for defin-

ing novel subgroups within the sarcoma subtypes, for example, in

angiosarcoma (Weidema et al, 2020). Methylation profiling also

provides evidence for defining novel entities, such as the recently

described primary intracranial sarcoma subtype with highly recur-

rent DICER1 mutations (Koelsche et al, 2018b). Thus, array-based

DNA methylation analysis will be a major step forward to quickly

and reliably discriminate between mesenchymal tumor subtypes,

thus increasing diagnostic accuracy. A free access classifier tool

currently under development will allow sarcoma subtypes to be

predicted using array-generated DNA methylation data

(www.molecularsarcomapathology.org). These molecular signa-

tures will continue to improve the knowledge and classification of

mesenchymal tumors, as well as patient outcome through more

personalized therapies.

Recent developments in functional assessment of sarcoma
biology through imaging

Imaging plays a critical role in the diagnosis, staging, and monitor-

ing of therapeutic response in sarcomas as well as in assessment of

recurrence. Routine imaging modalities include plain radiography;

despite limitations in contrast resolution, this modality is low cost,

widely available, and useful in detecting mineralization and distin-

guishing ossification from calcification for diagnostic purposes

(Kransdorf & Meis, 1993). Computed tomography (CT) is of limited

utility in evaluating STSs due to radiation concerns and poor

contrast resolution, but the ability to provide three-dimensional

information is mainly exploited to guide biopsy procedures and

detect lung metastases (Casali et al, 2018). Magnetic resonance

imaging (MRI) is the modality of choice for evaluating sarcomas,

given its excellent tissue contrast and lack of ionizing radiations,

particularly to determine tumor size and delineation of mass extent

and to identify invasion of the compartments and occasionally for

histological classification using conventional T1-weighted, T2-

weighted, and fluid-sensitive sequences (Fayad et al, 2012).

In addition to these common imaging modalities, novel tech-

niques are emerging for the functional characterization of tumors,

including metabolism and the microenvironment, and for a reliable

estimation of treatment response by complementing functional

assessments with anatomical evaluation. PET, in combination with
18F 2-fluoro-2-deoxy-D-glucose (FDG), is a valuable tool for the

characterization of cancer metabolism, since the uptake of FDG—a

non-metabolizable derivative of native glucose—correlates with the

pathological grade and can be used to discriminate between benign

lesions and STSs (Ioannidis & Lau, 2003). Moreover, it can be used

to detect metastases for the follow-up of treatments and to identify

the target regions for biopsy (Kubo et al, 2016; Harrison et al,

2017).

Magnetic resonance imaging has taken a lead in the functional

characterization of tumors, since it has the capability to provide

multiparametric analysis of biological features of sarcoma by

exploiting a variety of approaches, including chemical shift imaging

(CSI), diffusion-weighted imaging (DWI), magnetic resonance spec-

troscopy (MRS), and quantitative dynamic contrast-enhanced

(DCE)-MRI (Subhawong & Wilky, 2015). DCE-MRI provides infor-

mation on tissue vascularization, perfusion, and permeability that

can be exploited for differentiating STS from benign soft tissue

tumors (Tuncbilek et al, 2005; Pepin et al, in press), or in monitor-

ing tumor response by revealing early perfusion changes (Amit

et al, 2014; Crombé et al, 2019), or in cell proliferation assessment

(Lee et al, 2020). DWI provides measurements of tissue cellularity

and membrane integrity by assessing the Brownian motion of water

molecules in tissues. Malignant lesions are usually more cellular

than benign lesions, leading to modified Brownian motion (Amit

et al, 2014). DWI may be particularly suited for assessing treatment
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response, with an increase in water diffusion that is usually associ-

ated with a positive therapeutic response (Dudeck et al, 2008). MRS

can provide the metabolic profile of tumors and is frequently used

in sarcoma to evaluate the concentration of the membrane phospho-

lipid choline, which may serve as a marker of malignancy in muscu-

loskeletal STSs (Fayad et al, 2007, 2012). The quantitative

parameters of CSI, DWI, MRS, and DCE-MRI have also shown

promising potential as biomarkers for osseous tumors (e.g., differen-

tiation of tumor from edema, determination of biological aggressive-

ness) (Fukuda et al, 2019).

Tumor acidosis is considered a major player in promoting tumor

angiogenesis, progression, invasion, and resistance to chemo-radio-

therapy (Pillai et al, 2019). In OS, the acidic microenvironment

strongly affects the activation of MSCs by inducing clonogenicity

and invasion, in addition to promoting multidrug resistance (de-

scribed above) (Avnet et al, 2016, 2017). Indirect measurements of

acidic regions in the TME have been obtained in canine OS samples

by immunohistochemistry (IHC) analysis (Avnet et al, 2017).

Consequently, non-invasive imaging approaches are needed to

provide accurate in vivo measurements of tumor acidosis (Anemone

et al, 2019; Consolino et al, 2020). Previous MRS approaches

reported intratumoral acidosis in murine fibrosarcoma models, but

lacked the ability to assess the spatial distribution (Vaupel et al,

1989, 1994). Recently, a novel MRI-based approach has been

proposed for in vivo imaging of extracellular tumor pH with high

accuracy and spatial resolution by exploiting iopamidol, an FDA-

approved X-ray contrast medium that allows potential clinical trans-

lation (Longo et al, 2014; Anemone et al, 2019). Preclinical studies

have shown the capability of this pH mapping method to assess the

correlation between dysregulated glycolysis and tumor acidosis

(Longo et al, 2016) and monitor the treatment response to anti-

cancer therapies targeting glycolysis (Anemone et al, 2017). This

novel tumor pH imaging approach may be of particular importance

for investigating tumor acidosis in the field of sarcomas.

It is interesting to note that advances in imaging technology have

paved the way for imaging modalities that are capable of defining

drug response at earlier stages of treatment. As an example, the use

of FDG-PET after 2 weeks of treatment with pazopanib was able to

correctly classify 42% of STS patients as non-responders (Vlenterie

et al, 2019).

Novel biomarkers of sarcomas

Traditionally, histomorphological assessment of sarcoma samples in

conjunction with clinical and imaging features (See section “Recent

developments in functional assessment of sarcoma biology through

imaging”) has led to the establishment of diagnosis. In addition, the

identification of fusion gene products or overexpressed oncogenes

by IHC has enriched the clinical practice (Heymann, 2014; WHO

Classification of Tumours: Soft Tissue and Bone Tumours, 2020).

However, sarcomas often do not express specific IHC markers. In

contrast to studies on tumor biopsies, the discovery of circulating

tumor cells (CTCs), cell-free circulating tumor DNA (cfDNA), and

tumor-derived extracellular vesicles (EVs), as well as the advent of

new technologies to detect, quantify, and analyze these biological

entities in peripheral blood, hold great promise for developing mini-

mally invasive methods to improve patient care. Indeed, liquid

biopsies may enable longitudinal monitoring of treatment response,

early detection of relapse, and the identification of druggable driver

mutations. Although IHC markers remain important tools for diag-

nostics in sarcomas (as reviewed in ref. Wei et al, 2017), the aim of

this section is to focus on recent advances in the field of liquid biop-

sies in sarcoma.

Circulating cytokines as markers associated with prognosis
Deregulated levels of cytokines and their receptors can be detected

in cancer patients both locally and systemically, and they may be of

a high prognostic value in several tumor types (Kumar et al, 1998;

Belluco et al, 2000; Kawashima et al, 2000), including sarcomas.

Increased serum levels of cytokines and their soluble receptors that

are involved in bone degradation (e.g., IL-6 and IL-8) and bone

formation (e.g., tumor necrosis factor receptor I [TNFRI]) are posi-

tively correlated with tumor size and local tumor extent, which is

associated with worse overall survival in adult bone sarcoma

patients (Rutkowski et al, 2003). Several studies have recognized

the negative prognostic significance of various chemokines or

cytokines, such as CXCL4/CXCL6 (Li et al, 2011), CXCL10 (Flores

et al, 2017), IL-17A (Wang et al, 2013), IL-6, IL-8, and TNF-a (Xiao

et al, 2014) in OS patients. IL-6 levels were also elevated in serum

of a subgroup of EwS patients with poor prognosis (Lissat et al,

2015) and constitute an indicator of poor overall survival and event-

free survival in STS, suggesting a possible association with aggres-

sive tumor behavior (Hagi et al, 2017). Besides IL-6, other cytokine

signaling components including IL-8, TNF-R, sIL-2R, and M-CSF

have been shown to correlate with tumor grade and size in STS

patients, and the serum levels of some of these proteins were associ-

ated with the prognosis (Rutkowski et al, 2003). To date, the identi-

fication of specific cytokine components involved in sarcoma

progression is far from being complete, and future studies are essen-

tial for generating innovative prognostic tools and facilitating ther-

apy and risk-stratification.

Extracellular vesicles (EVs) and micro RNAs (miRNAs)
EVs are intercellular messengers where cargo (nucleic acids,

proteins, lipids, and metabolites) can be characterized and poten-

tially used as new or supplementary biomarkers in liquid biopsy

approaches (Mader & Pantel, 2017). EVs isolated from peripheral

blood samples derive not only from tumor cells but also from cells

of the TME (See section “The complex biology of sarcoma: How

current knowledge may affect therapy”). Thus, EVs can be represen-

tative of the interaction between cells in the TME and may bring

useful information to follow disease progression (Baglio et al, 2017;

Mannerström et al, 2019). One major advantage of EVs in the liquid

biopsy approaches is their membranous structure that protects their

cargo and gives them enough stability to allow EV sample storage

before analysis, which facilitates their clinical use (Jeyaram & Jay,

2017).

In 2013, Miller et al initiated the study of EVs’ diagnostic poten-

tial for sarcoma by demonstrating the efficient isolation of EVs

derived from EwS and containing EwS-specific transcripts, including

EWSR1-FLI1, in a pre-clinical model for patient plasma (Miller et al,

2013). Since then, only few clinical studies have been conducted in

limited patient cohorts exploring sarcoma-derived EVs as biomark-

ers. Circulating EV-associated transforming growth factor b (TGF-b)
levels were elevated in OS patients compared with healthy
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individuals (Baglio et al, 2017), and circulating vesicular miR-25-3p

and miR-92a-3p were elevated in LPS patients (Casadei et al, 2017).

Moreover, miR-25-3p and miR-92a-3p modulated macrophages in

the local TME, which in turn released IL-6, increasing the prolifera-

tion, migration, and invasion of cancer cells. EVs secreted by dedif-

ferentiated LPSs were also carriers of MDM2 DNA transferable to

preadipocytes, which acquired oncogenic properties (e.g., impaired

TP53) (Casadei et al, 2019). In addition, miR-642a, miR-1260b, and

miR-4286 were significantly higher in serum collected from

myxofibrosarcoma patients compared with healthy controls, and

miR-1260b expression was associated with tumor burden and the

infiltrative nature of sarcoma (Morita et al, 2020). Moreover, EVs

derived from the plasma of GIST patients expressed activated KIT,

which was undetectable in samples from healthy donors (Atay &

Godwin, 2014). Promising data were also obtained for SS, where

serum miR-92b-3p constituted a robust marker for discriminating

patients with SS from other STS patients and was elevated in EVs

compared with AGO2-positive fractions (Uotani et al, 2017). miR-

761 released in EVs enhanced pazopanib resistance in SS (Shiozawa

et al, 2018) and correlated with increased resistance. Such resis-

tance may be explained by the modulation of NAD-dependent

protein deacetylase sirtuin-3 (SIRT3) expression. Interestingly, pazo-

panib regulated the protein contents of EVs released by SS (Shio-

zawa et al, 2018), more specifically proteins from the Wnt pathway,

which is crucial for SS (Baird et al, 2005). RMS also secreted EVs,

which upregulated the proliferation of RMS cells and fibroblasts of

the TME, and initiated the migration/invasion of tumor-associated

fibroblasts through promotion of angiogenesis (Ghayad et al, 2016).

EVs secreted by cancer cells appeared as key regulators of bone

sarcoma biology. A pilot study analyzing RNA isolated from

plasma-derived EVs of OS patients found a higher tumor mutational

burden in patients with metastatic disease than in OS patients with-

out metastases (Bao et al, 2018). The response to chemotherapy can

be monitored by the identification of dysregulated levels of miRNAs

(miR-124, miR-133a, miR-135b, miR-148a, miR-199a-3p, miR-27a,

miR-385, and miR-9) and mRNAs (ANNEXIN2, CDC5L, CDKN1B,

CIP4, MTAP, PEDF, SMAD2, and WWOX) in EVs isolated from the

serum of OS patients with a poor chemotherapeutic response when

compared with good responders (Xu et al, 2017). However, before

being incorporated into routine clinical practice, a careful optimiza-

tion and standardization of EVs isolation protocols from blood

samples and validation studies in larger patient cohorts are

required. In particular, the position paper recently published by the

International Society for Extracellular Vesicles stresses the impor-

tance of a variety of critical parameters (pre-analytical parameters,

such as time to processing, type of container(s), and choice of anti-

coagulant) (Théry et al, 2018).

Circulating tumor cells (CTCs)
Circulating tumor cells are cells released from primary and meta-

static tumor foci and migrating in secondary organs through the

peripheral blood. The biological value of CTCs was assessed by

comparing the molecular profiles of CTCs and primary tumors

(Keller & Pantel, 2019). Controversial conclusions showed that CTCs

only partly reflect the spectrum of mutations in the primary and

metastatic tumors (Paoletti et al, 2018; Wu et al, 2018; Brown et al,

2019; Keller & Pantel, 2019). CTCs may be considered a snapshot of

tumor tissue heterogeneity at a given time and could have strong

implications for longitudinal patient monitoring (Brown et al, 2019;

Tellez-Gabriel et al, 2019). In contrast to studies in carcinomas

(Pantel & Alix-Panabières, 2019), studies of CTCs in sarcomas are

currently limited (Tellez-Gabriel et al, 2016). The restricted number

of patients, the high heterogeneity of sarcoma subtypes, and the

absence of specific markers expressed by most sarcoma cells contri-

bute to the limited advances in this field. Despite the absence of

specific markers, various methods of cell isolation based on physical

specificity (e.g., higher size and higher cell deformability of tumor

cells) or biological properties (e.g., immunomagnetic isolation) have

been proposed with success (Gabriel et al, 2016; Hayashi et al,

2017; Li et al, 2017). CTCs are detectable in bone sarcomas (Chinen

et al, 2014; Benini et al, 2018) and STS patients (Braun et al, 2018;

Mihály et al, 2018; Przybyl et al, 2019). To improve the sensitivity

and specificity of detection and isolation of CTCs across sarcoma

subtypes, investigators have been looking for universal sarcoma

markers (Satelli et al, 2014; Li et al, 2018). Cell-surface Vimentin

was expressed in CTCs isolated from 24 sarcoma patients compris-

ing OS, EwS, angiosarcoma, LMS, and UPS (Satelli et al, 2014).

More recently, a new class of CD45� CTCs expressing macrophage

markers CD14 and CD68, cell-surface Vimentin, and specific GIST

markers (DOG1 and KIT) have been identified (Li et al, 2018). This

CTC subset was more abundant in patients with metastatic disease

than with localized GIST. In contrast, cell-surface Vimentin-positive

cells that did not express macrophage markers failed to predict GIST

metastasis (Li et al, 2018). These studies underlined the potential

clinical interest in CTCs as prognostic or predictive markers,

although longitudinal clinical trials with a large series of patients

may be required.

Cell-free circulating tumor DNA (cfDNA)
cfDNA is composed of DNA fragments released into the bloodstream

by healthy and cancer tissues alike, as a result of cell death (e.g.,

apoptosis, necrosis) or active release (Volckmar et al, 2018; Chen &

Zhao, 2019). The cfDNA fraction released from tumor tissues, called

circulating tumor DNA (ctDNA), may reflect the genetic aberrations

of cancer cells at a given time. cfDNA was recently detected in

plasma of bone sarcoma (Gutteridge et al, 2017; Shukla et al, 2017;

Barris et al, 2018) and STS patients (Boonstra et al, 2018; Eastley

et al, 2018; Namløs et al, 2018; Ogino et al, 2018; Shulman et al,

2018). In these studies, total cfDNA levels were frequently increased

in the plasma of sarcoma patients compared with the cancer-free

controls. Cancer-associated mutations, such as in TP53, PIK3CA,

and IDH1 or fusion oncogenes (e.g., SS18-SSX1/2), were also

detected. In patients affected by GIST, mutations of KIT and

PDGFRA were detected, and the amount of mutant cfDNA correlated

with clinical progression (Maier et al, 2013). Interestingly, the

usefulness of cfDNA analysis was demonstrated to identify TKI-

resistant mutations (Yoo et al, 2014). In a series of CHSs, ctDNA

levels detected by mutated IDH1 correlated with tumor grade and

prognosis (Gutteridge et al, 2017). Patient-specific somatic alter-

ations in cfDNA were observed in OS (Barris et al, 2018) and were

associated with inferior outcomes in EwS and OS patients (Shulman

et al, 2018). Individual genomic EWSR1-ETS fusion sequences can

be quantified from cfDNA in EwS patients’ plasma, and as such

represent suitable serum markers for therapy assessment (Krumb-

holz et al, 2016). Indeed, copy numbers of cell-free EWSR1-ETS

fusion sequences correlate with patients’ risk factors such as tumor
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volume, pelvic tumor, and metastatic status, and most EwS patients

show a fast reduction of cfDNA levels during treatment, while recur-

rence of increasing cfDNA levels indicates relapse (Krumbholz et al,

2016). In addition to somatic mutations and DNA methylation,

recent studies have reported the detection of circulating nucleo-

somes in blood, showing that cfDNA retains at least some features

of nuclear chromatin. Most importantly, whole-genome sequencing

of cfDNA was shown to yield a dense, genome-wide map of nucleo-

some occupancy that enables identification of the cell types that

contribute to circulating cfDNA (Snyder et al, 2016; Ulz et al, 2016).

This is highly relevant to EwS as it supports the idea of monitoring

the chromatin state of EwS-specific enhancer elements (Riggi et al,

2014; Tomazou et al, 2015; Sheffield et al, 2017) over time and

during the treatment course, enabling the development of enhancer-

based minimally invasive assays for live monitoring of therapy

response.

Overall, the detection and characterization of cfDNA and ctDNA

in sarcomas show promising results, and efforts are now needed to

profile larger biological cohorts with complete clinical annotations

to validate their clinical value.

Recent therapeutic developments

Precision medicine in sarcoma: General considerations
The ultimate goal of personalized medicine is to be able to integrate

clinical, genomic, transcriptomic, and epigenomic data to increase

the accuracy of diagnosis and prognosis, and to identify the most

effective therapy for treatment (Burdach et al, 2018; Salgado et al,

2018; Gargallo et al, 2020). Recent advances in machine learning-

based methods for analysis of histology and radiography imaging

may also play an increasingly important role (Blackledge et al,

2019; Wang et al, 2019; Malinauskaite et al, 2020). For instance,

clinical investigations into immune checkpoint therapy have desig-

nated UPS, myxofibrosarcoma, and similar genomically complex

histotypes as “UPS” (Que et al, 2017), making comparisons with

other studies difficult. However, the inclusion of genomic analyses

led to the re-classification of 13% of sarcoma cases and would have

resulted in changes to the clinical treatment pathway or prognosis

in 11% of cases, demonstrating the importance of including molecu-

lar and computational tools for classification and risk-stratification

of sarcomas (Italiano et al, 2016).

Several recent studies have identified therapeutically targetable

mutations in sarcoma patients and have used this knowledge to

guide treatment (Groisberg et al, 2017). Yet, not all attempts were

successful (Demetri et al, 2013; Perry et al, 2014), indicating that

genomic data alone are not sufficient for the accurate prediction of

response to therapy.

The clinical trial MULTISARC (ClinicalTrials.gov No. NCT03784014)

should provide the first glimpse into the successes and potential

pitfalls of personalized medicine in sarcoma. Based on a retrospec-

tive survey of genomic alterations that could be therapeutically

actionable (Lucchesi et al, 2018), MULTISARC is a two-arm,

randomized trial aiming to prospectively evaluate their potential as

predicative biomarkers for response to therapy. STS patients will be

randomized to receive standard therapy or undergo genomic profil-

ing for suitability for therapy with 16 different agents. Sarcomas

were identified as a priority for the 100,000 genomes project in the

United Kingdom with 500 to be sequenced as part of the study,

although it will focus on LMS, myxofibrosarcoma, SS, and rare

histotypes such as alveolar soft part sarcoma (ASPS). In addition to

collecting both genomic and clinical data from patients, the project’s

Genomics England Clinical Interpretation Partnerships (GeCIPs),

including the Sarcoma GeCIP, will also identify training and stan-

dardization of practice needed to bring personalized medicine

toward routine clinical practice.

Likewise, genomic analyses in combination with screening

cancer cell lines against libraries of drugs have the potential to

improve the correlation between genomic biomarkers and response

to therapy. Such an approach has been used to identify biomarkers

for response to therapy of several sarcomas using cell lines, patient-

derived samples, and canine sarcoma as proof of principle (Berlow

et al, 2019). This approach is challenging for studying sarcoma, due

to the limited number of cell lines available, although isolation of

new cell lines (Salawu et al, 2016) and sarcoma PDX models is

improving (Stebbing et al, 2014). The next step will be to take

advantage of combining molecular information gained through

next-generation sequencing (NGS) technologies with functional drug

screening using primary organoid cultures that include both stromal

cells and cancerous cells to improve prediction of response to ther-

apy, as observed in other cancers (Tiriac et al, 2018; Vlachogiannis

et al, 2018).

Photodynamic therapy
An interesting approach, based on photo- and radiodynamic therapy

following acridine orange administration, has been extensively

investigated and successfully applied for the treatment of sarcomas

(Matsubara et al, 2013; Kusuzaki et al, 2018; Martano et al, 2019).

Photodynamic therapy with hematoporphyrin prevented local recur-

rence following minimally invasive surgery in preclinical models

(Duchi et al, 2016) as well as in clinical settings (Hourigan et al,

1993). Acridine orange has the advantage of selectively binding to

tumor tissue due to the acidic microenvironment specific to malig-

nant cells (Matsubara et al, 2006) and to specifically exert a strong

cytotoxic activity on tumor cells, which is further enhanced by

photo- and radioactivation (Matsubara et al, 2013; Kusuzaki et al,

2018). Therefore, following marginal or even intralesional gross

removal of the tumor, it is possible to selectively target residual

sarcoma and spare the surrounding normal tissues, with a satisfac-

tory functional result (Martano et al, 2019). The procedure is safe,

without local or systemic complications (Martano et al, 2019).

Systemic administration of acridine orange with low-dose radiation

therapy is currently under evaluation in Japan for non-resectable

sarcomas (Kusuzaki et al, 2018). This procedure appears to be safe,

and the preliminary results are encouraging.

Immune-based therapies
Sarcomas are highly heterogeneous, including the TME, which

might dictate their heterogeneous response to different immunother-

apeutic approaches (section “The complex biology of sarcoma: How

current knowledge may affect therapy”, Figs 2 and 3). While check-

point inhibitor immunotherapies have already been introduced for

the first-/second-line treatment of several carcinomas, their efficacy

in sarcoma treatment is currently unclear, and clinical trials are

ongoing (Thanindratarn et al, 2019). Unfortunately, the first results

showed only sporadic therapeutic responses in STSs and bone
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sarcomas, highlighting the need for further investigations (Merchant

et al, 2016).

Some STS subtypes (e.g., myxofibrosarcoma and UPS) are char-

acterized by a high mutational burden, which may constitute a

biomarker for response to immune checkpoint blockade (Pollack

et al, 2017). In addition, recent profiling studies of immune check-

points expression in STSs and bone sarcomas revealed their correla-

tion with poor clinical outcomes and provide rationales for their

targeting (Dancsok et al, 2019; Orth et al, 2020). In fact, a new

study revealed a positive correlation between immune infiltration

and response to anti-PD-L1 therapy in sarcoma (Keung et al, 2020).

Similarly, a gene expression study in 608 tumors across STS

subtypes established a classification between immune-low,

immune-high, and vascularized phenotypes (Petitprez et al, 2020).

The phenotype with the highest immune cell infiltration featured

tertiary lymphoid structures with T cells, dendritic cells, and B cells.

Interestingly, B cells were the strongest prognostic factor, and they

were associated with improved survival and high response rates to

PD-1 blockade (Petitprez et al, 2020).

Therapeutic strategies based on (genetically modified) T cells are

currently underway. Their main objectives are to enhance T-cell

infiltration into tumor tissues and identify specific tumor target anti-

gens only expressed by malignant cells (Baldauf et al, 2018b). Some

encouraging results have been described, such as the therapeutic

benefit observed in SS upon inoculation of autologous T cells engi-

neered to express an affinity-enhanced T-cell receptor (TCR) recog-

nizing the NY-ESO-1-derived peptide (D’Angelo et al, 2018).

Similarly, chimeric antigen receptor (CAR) T cells characterized by

the expression of a chimeric receptor (fusion of specific antibody-

derived single-chain variable fragments with the signaling domain

of a T-cell receptor) are capable of inducing conventional activation

signals from TCRs in a non-MHC restricted manner (Majzner &

Mackall, 2018; Pollack et al, 2018). Although some sarcomas

subtypes express tumor epitopes, such as HER2, GD2, ROR2, or

EGFRvIII, B7-H3 (Majzner et al, 2019), or oncofetal glycosaminogly-

cans (Salanti et al, 2015), these tumor epitopes are often only

expressed at low levels. CAR T cells may overcome the low levels of

tumor antigen expression, and several clinical trials are currently in

progress to evaluate their therapeutic benefit (Majzner & Mackall,

2018; Pollack et al, 2018). Interestingly, a first completed phase I/II

trial with HER2-CAR T cells showed that cells can persist for 6

weeks without evident toxicities, setting the stage for studies that

combine CAR T cells with other immunomodulatory approaches to

enhance their expansion and persistence (ClinicalTrials.gov No.

NCT00902044; Ahmed et al, 2015). OS (Théoleyre et al, 2005;

Koirala et al, 2016), EwS (Machado et al, 2018), and CHS (Simard

et al, 2017; Richert et al, 2019) are moderately infiltrated by

lymphocytes with moderate functional impact (Heymann et al,

in press). However, the number of T lymphocytes appeared to be

significantly higher in metastatic foci than in primary tumors and in

local relapses, suggesting the potential benefit of TIL-based

immunotherapy in metastatic clinical situation (Sundara et al, 2017;

Shi et al, 2020). T lymphocyte infiltration has also been described in

STS (Dancsok et al, 2019; Que et al, 2019; Shi et al, 2020). Two

phase 2 clinical trials have recently been set up for treating sarcoma

patients with autologous TIL expanded ex vivo (ClinicalTrials.gov

No. NCT03449108 & NCT03935893). Similarly, adoptive immune

cell therapy options based on infusion of NK cells were assessed in

preclinical models of bone sarcomas and STS (Thiel et al, 2013;

Fernández et al, 2015). Case reports including ERMS and EwS

showed a beneficial anti-tumor activity of allogeneic hematopoietic

stem cell transplantation (Pérez-Martı́nez et al, 2009). A pilot phase

1/2 clinical study named “NKEXPSARC” will assess the clinical

potential of activated haploidentical natural killer cell infusions in

sarcomas (ClinicalTrial.gov No. NCT02409576).

Oncolytic viruses
The approval of the Herpes virus Talimogene Laherparepvec (T-

VEC; Imlygic) by the FDA and EMA for recurrent melanoma con-

firms that virotherapy has emerged as a feasible therapeutic strategy

in oncology (Andtbacka et al, 2015; Ribas et al, 2017). Oncolytic

viruses have been assessed in bone sarcomas and STSs (Lacroix

et al, 2018; MacNeill et al, 2018; Smith et al, 2019; Tazawa et al,

2020). They are tumor selective, destroy cancer cells, and trigger an

anti-tumor immune response (Garcia-Moure et al, 2017; Varela-

Guruceaga et al, 2018). Table 2 summarizes the main potential ther-

apeutic viruses for the treatment of sarcomas.

In the group of DNA viruses, Adenovirus, Herpes virus, and

Vaccinia virus are commonly employed. These three types of viruses

have advanced to clinical trials. For example, Telomelysin, a human

telomerase reverse transcriptase (hTERT) promoter-driven modified

oncolytic Adenovirus, was tested in a phase I clinical trial to assess

its clinical safety in patients with advanced solid tumors (Nemu-

naitis et al, 2010). Herpes virus HSV1716 was tested in pediatric

patients with non-central nervous system solid tumors (ClinicalTri-

als.gov No. NCT00931931), including two patients with OS (Streby

et al, 2017). This virus was delivered as a single dose of 105–107

infectious units via CT-guided intratumoral injection, and tumor

response was measured by imaging. HSV1716 was safe in the pedi-

atric population, with minimal toxicities reported; however, no clin-

ical responses were observed in this phase I trial (Streby et al,

Table 2. Summary of main oncolytic viruses applied in sarcoma
treatment.

Virus Disease Trial

DNA

Adenovirus (Ad) Respiratory and gastrointestinal
infections

Preclinical
phase I

Herpes simplex virus
(HSV)

Oral and genital ulcerations Preclinical
phase I

Vaccinia virus Flu Preclinical

RNA

Reovirus Respiratory and gastrointestinal
infections

Preclinical
phase I

Semliki forest virus
(SFV)

Non-pathogenic in humans /
encephalitis in mice

Preclinical

Vesicular stomatitis
virus (VSV)

Non-pathogenic Preclinical

Measles virus (MeV) Measles Preclinical

Poliovirus Neurological disorders
(poliomyelitis)

Preclinical

Newcastle disease
virus (NDV

Respiratory and gastrointestinal
infections

Preclinical
phase I/II
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2017). Finally, the Vaccinia virus, armed with GM-CSF (JX-594), has

also been tested in a phase I clinical trial in pediatric solid tumors

(ClinicalTrials.gov No. NTC01169584) but did not include sarcomas.

This virus did not show toxicity, but exhibited biological activity in

the pediatric population (Cripe et al, 2015). The group of RNA

viruses, including Semliki Forest Virus, Poliovirus, Newcastle Disease

Virus, Measles, or Reovirus (Table 2), have also transitioned to clini-

cal trials (Schneider et al, 2018). However, only the Reovirus

Reolysin has been tested in OS (Kolb et al, 2015). Twenty-four

patients were treated in this trial, including OS and other extracra-

nial pediatric tumors, to establish virus safety. The virus was well

tolerated and showed a safe profile, but no response was observed

(Kolb et al, 2015).

The therapeutic effect of several oncolytic viruses in STSs (Led-

don et al, 2015; Siurala et al, 2015; Wilkinson et al, 2016; Chen

et al, 2017) and bone sarcomas (Witlox et al, 2004; Graat et al,

2006; Hingorani et al, 2014; Martı́nez-Vélez et al, 2016; Martinez-

Velez et al, 2014) was tested in various preclinical studies. Due to

their versatility and lack of toxicity, oncolytic Adenoviruses are

commonly used (Fig 4). Because the Rb pathway is frequently

mutated in sarcomas, oncolytic Adenoviruses based on selective

replication conditional to Rb pathway deregulation have been

developed. VCN-01 (Martı́nez-Vélez et al, 2016) and Delta-24-RGD

(Martinez-Velez et al, 2014) are Adenoviruses that showed in vitro

and in vivo anti-sarcoma activity. Delta-24-RGD is a replication-

competent Adenovirus that harbors a 24-bp deletion in the E1A

region (responsible for binding Rb protein) that triggers tumor

selectivity. The addition of an RGD-4C motif in the fiber H1 loop

allows enhanced infectivity through integrins that are widely

expressed in cancer cells (Suzuki et al, 2001). VCN-01 is an onco-

lytic Adenovirus where the E1A gene also contains deletions in the

pRb binding site, thus rendering its selective replication in Rb-defi-

cient tumor cells (Rodrı́guez-Garcı́a et al, 2015). Importantly, both

viruses have shown efficacy not only against the primary tumor

but also against lung metastases (Martinez-Velez et al, 2014;

Martı́nez-Vélez et al, 2016). It should be noted that most of the

oncolytic Adenoviruses are amenable to be used in combination

with standard chemotherapy, small molecules, nanoparticles,

immunotherapy with immune checkpoint inhibitors, and CAR T

cells.

Conclusions

Sarcomas comprise relatively rare but diverse cancer entities

affecting patients of all ages. Bone sarcomas are more frequent in
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Figure 4. Main features and functional aspects of oncolytic virus.

(A) Characteristics of oncolytic Adenoviruses Delta-24-RGD and VCN-01. These two Adenoviruses harbor different modifications (black for Delta-24-RG (D24-RGD) and dashed

blue for VCN-01) that render themwith tumor specificity and enhanced infectivity. (B) Schematic representation of the virus’mechanism of action. (1) The viruses are able to

infect both normal and tumor cells. (2) However, due to their tumor specificity they only replicate and lyse the tumor cells. (3) They exert a potent cytolytic effect, and they are

able to trigger an anti-tumor immune response, which is crucial to successfully eliminate the tumors.
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adolescents and young adults, and the frequency of STS increases

with age. Most sarcomas exhibit a high cellular, molecular, and

genetic/epigenetic heterogeneity, which makes identification of

single therapeutic targets more difficult. Fortunately, in some

instances, identification of new targets has revolutionized the ther-

apeutic management of sarcoma patients, as illustrated by the use

of imatinib mesylate targeting receptor tyrosine kinases in GIST

even if secondary resistance is observed (Napolitano & Vincenzi,

2019), which can be overcome with other, rationally designed TKIs

(Blay et al, 2020). The TME plays a key role in the pathogenesis of

sarcomas, not only for tumor initiation but also in the metastatic

process. Like other cancers, sarcomas are now in the era of

immunotherapy (e.g., PD-L1 inhibitors, CAR T-cell therapy) and

numerous clinical trials are currently ongoing. Epigenetic profiles

emerge as useful tools to improve diagnostic accuracy in sarcomas

and to discover or better delineate new sarcoma subtypes. In addi-

tion, epigenetic events occurring during sarcomagenesis have been

identified as new, promising opportunities for treating sarcomas.

Innate or acquired resistances of sarcomas are the principal obsta-

cles to treatment efficacy, and a better understanding of these

cellular/molecular processes will help to define better therapeutic

lines. Tackling MDR, CSCs, and/or cell dormancy are all tracks

for progress. Finally, the high heterogeneity of sarcoma requires

better classification of sarcoma subtypes based on (epi)genetic

characteristics (e.g., CTCs, circulating RNA/DNA, immune infil-

trates) to identify the best therapeutic option for each patient.

Thus, future advances in the field of molecular biology related

to sarcomas hold great promise to overcome treatment resistance

and treatment-related toxicity through individualized precision

medicine approaches.
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For more information
Societies and Network for health scientists and professionals

• EuSARC (European network for SARComa): https://eusarc.com/

• NIH website for information to health professional, related to bone cancer:

https://www.cancer.gov/types/bone/hp

• World sarcoma network: http://www.worldsarcomanetwork.

com/

Patient associations

• UK patient association on sarcoma: https://sarcoma.org.uk/about-sarcoma/

understanding-sarcoma-0

• The Liddy Shriver sarcoma initiative: http://sarcomahelp.org/sarcoma-cente

rs.html#tpm1_1

• Sarcoma patients Euronet: https://www.sarcoma-patients.eu/it/sarcoma-re

search/research-networks

OMIM site

• Ewing sarcoma: https://www.omim.org/entry/612219search=sarcoma&high

light=sarcoma

• GastroIntestinal Stromal Tumor: https://www.omim.org/entry/606764searc

h=GIST&highlight=gist

• Kaposi sarcoma: https://www.omim.org/entry/148000search=sarcoma&high

light=sarcoma

• Osteosarcoma: https://www.omim.org/entry/259500search=osteosarcoma

&highlight=osteosarcoma

• Synovial sarcoma: https://www.omim.org/entry/300813search=sarcoma

&highlight=sarcoma

Database

• Surveillance, Epidemiology, and End Results (SEER) database: https://see

r.cancer.gov/statfacts/html/bones.html

• National Program of Cancer Registries (NPCR): https://www.cdc.gov/cancer/

npcr/index.htm

• National Cancer Database (NCDB): https://www.facs.org/quality-programs/

cancer/ncdb

• ClinicalTrials.gov: https://clinicaltrials.gov/

Reference book

• WHO Classification of Tumours, 5th Edition, Volume 3. Soft Tissue and Bone

Tumours WHO Classification of Tumours Editorial Board. IARC publication

Ed. (Lyon, FR) 2020: https://www.iarc.fr/news-events/publication-of-the-

who-classification-of-tumours-5th-edition-volume-3-soft-tissue-and-bone-

tumours/

Pending issues

• Identification of unknown extrinsic factors that may have a

role in sarcoma progression and response to therapy and that

may derive from the following: (i) the tumor microbiome, (ii)

immune infiltrates, and (iii) other cells of the tumor-asso-

ciated stroma (including neurons).

• Development of novel and more representative 3D preclinical

models to be used in place of animal models to develop new

therapeutic options.

• Further generation of immunocompetent and bona fide

GEMMs for all sarcoma subtypes for a better understanding

of sarcomagenesis.

• Elucidation of the mechanisms that lead to resistance toward

TKIs in non-GIST STS.

• Elaboration of non-invasive assays for the monitoring of drug

response and for early detection of drug resistance.

• Development of compounds that enhance tumor antigen

presentation and of therapeutic protocols based on

immunotherapies for the treatment of sarcoma.

• Investigation of the use of photodynamic therapies for

limb-preserving surgery.

• Optimization and clinical translation of oncolytic virus

therapies for sarcomas.
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Diagnostic sarcoma classifier

• DNA methylation-based classification: https://www.molecularsarcomapa

thology.org
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