
HAL Id: hal-03004260
https://hal.science/hal-03004260

Submitted on 13 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Exact Dynamic Time Warping on Run-Length
Encoded Time Series

Vincent Froese, Brijnesh Jain, Maciej Rymar, Mathias Weller

To cite this version:
Vincent Froese, Brijnesh Jain, Maciej Rymar, Mathias Weller. Fast Exact Dynamic Time Warping on
Run-Length Encoded Time Series. Algorithmica, 2023, 85, pp.492-508. �10.1007/s00453-022-01038-3�.
�hal-03004260�

https://hal.science/hal-03004260
https://hal.archives-ouvertes.fr

Fast Exact Dynamic Time Warping on Run-Length Encoded

Time Series

Vincent Froese1, Brijnesh Jain∗2, Maciej Rymar†1, and Mathias Weller3

1Technische Universität Berlin, Faculty IV, Institute of Software Engineering and Theoretical
Computer Science, Algorithmics and Computational Complexity.

vincent.froese@tu-berlin.de
2Technische Universität Berlin, Faculty IV, Distributed Artificial Intelligence Laboratory.

brijnesh.jain@dai-labor.de
3CNRS, LIGM, Université Paris Est, Marne-La-Vallée.

mathias.weller@u-pem.fr

April 21, 2020

Abstract

Dynamic Time Warping (DTW) is a well-known similarity measure for time series. The
standard dynamic programming approach to compute the DTW distance of two length-n
time series, however, requires O(n2) time, which is often too slow for real-world applica-
tions. Therefore, many heuristics have been proposed to speed up the DTW computation.
These are often based on lower bounding techniques, approximating the DTW distance, or
considering special input data such as binary or piecewise constant time series.

In this paper, we present a first exact algorithm to compute the DTW distance of two
run-length encoded time series whose running time only depends on the encoding lengths
of the inputs. The worst-case running time is cubic in the encoding length. In experiments
we show that our algorithm is indeed fast for time series with short encoding lengths.

Keywords: Time Series Similarity, Dynamic Programming, Block Matrices, Sparse Data

1 Introduction

Time series data is ubiquitous appearing in essentially all scientific domains. Comparing time
series requires a measure to determine the similarity of two time series. Dynamic Time Warping
(DTW) [23] is an established method which is used in numerous time series mining applica-
tions [1, 4, 6, 26].

The quadratic time complexity, however, is considered to be a major drawback of DTW
on very long time series even in optimized nearest neighbor search applications that apply
sophisticated pruning and lower-bounding techniques [25]. Note that in general there is not
much hope to find strongly subquadratic algorithms since it has been shown that DTW cannot
be computed in O(n2−ε) time for any ε > 0 [2, 7] even on time series over an alphabet of size
three [21] (assuming the Strong Exponential Time Hypothesis1). Long time series of length

∗Supported by the DFG project JA 2109/4-2.
†Supported by the DFG project TORE (NI 369/18-1).
1The SETH asserts that SAT cannot be solved in (2 − ε)n · (n +m)O(1) time for any ε > 0, where n is the

number of variables and m is the number of clauses [18].

1

ar
X

iv
:1

90
3.

03
00

3v
5

 [
cs

.D
S]

 1
8

A
pr

 2
02

0

Table 1: Overview of some DTW algorithms and their characteristics. n: maximum input
length, m1, m2: number of non-zero entries in inputs, k, `: number of runs in inputs.

Algorithm Running Time Domain Exactness

AWarp [22] O(m1m2) arbitrary binary
SDTW [15] O((m1 +m2)n) arbitrary arbitrary
BSDTW [17] O(m1m2) binary binary
BDTW [12, 24] O(k`) arbitrary binary

n� 10, 000 occur, for example, when measuring electrical power of household appliances with
a sampling rate of a few seconds collected over several months, twitter activity data sampled
in milliseconds, and human activities inferred from a smart home environment [22]. All these
time series have in common that they contain long constant segments.

Recently, several algorithms have been devised to cope with long time series that contain
constant segments (called runs) [12, 15, 16, 17, 22, 24]. The basic idea of these algorithms is
to exploit the repetitions of values within a time series to speed up computation of the DTW
distance. We briefly summarize some of these algorithms (see also Table 1).

• AWarp [22]: This algorithm is exact for binary time series (a formal proof is missing) and
exploits repetitions of zeros. The running time is O(m1m2), where m1 and m2 are the
numbers of non-zero entries in the two input time series.

• Sparse DTW (SDTW) [15]: This algorithm yields exact DTW distances for arbitrary time
series in O((m1 + m2)n) time, where m1 and m2 are the numbers of non-zero entries in
the two input series (assuming both have length n).

• Binary Sparse DTW (BSDTW) [17]: This algorithm computes exact DTW distances
between two binary time series in O(m1m2) time, where m1 and m2 are the numbers of
non-zero entries in the two input time series. In practice it is often faster than AWarp.

• Blocked DTW (BDTW) [24] (earlier introduced as Coarse-DTW [12]): This algorithm
operates on run-length encoded time series. The run-length encoding represents a run of
identical values (constant segment) by storing only a single value together with the length
of the run. BDTW yields an upper and a lower bound on the DTW distance and is exact
on binary time series (a formal proof is missing). The running time is O(k`), where k
and ` are the numbers of runs in the two input time series (note that k` ∈ O(m1m2)).
BDTW is faster than AWarp in practice.

Clearly, AWarp, BDTW and BSDTW are limited in that they only yield exact DTW dis-
tances for binary time series. There are several recent (theoretical) results regarding exact
DTW computation. Abboud et al. [2] gave an algorithm which computes exact DTW distances
on binary length-n time series in O(n1.87) time. Gold and Sharir [14] showed a subquadratic
O(n2 log log log n/ log logn)-time algorithm and Kuszmaul [21] developed an O(n · dtw(x, y))-
time algorithm assuming that the minimum non-zero local cost is one.

Notably, specialized algorithms for other string problems on run-length encoded strings
have also been studied recently, for example, for Longest Common Subsequence [5, 27] and Edit
Distance [9, 10], which have applications in sequence alignment in bioinformatics.

Our Contributions. We develop an algorithm that computes exact DTW distances for arbi-
trary run-length encoded time series. Let x and y be two time series of length m and n, where x

2

contains k runs and y contains ` runs. Then, our algorithm (Theorem 3.4) computes the DTW
distance in O(κ) time,2 where κ is a number depending on the individual lengths of the runs
in x and y (see Section 3 for details). For κ, the following upper bound holds:

κ ∈

{
O(k2`+ k`2) : if k ∈ O(

√
m) and ` ∈ O(

√
n)

O(kn+ `m) : otherwise
.

That is, the running time is at most cubic in max(k, `) and is asymptotically faster than O(mn)
if k ∈ o(m) and ` ∈ o(n). To the best of our knowledge, this is the first exact algorithm whose
running time only depends on the lengths of the run-length encodings of the inputs.

In addition, we show that if all runs in both time series have the same length, then our
algorithm even runs in O(k`) time (Corollary 3.6) and is in fact equivalent to BDTW. That is,
we prove that BDTW is exact in this case.

In experiments we compare our algorithm with the previously mentioned alternatives (Ta-
ble 1) and show that it is indeed the fastest exact algorithm on time series with short run-length
encodings.

2 Preliminaries

We give some preliminary definitions and introduce notation.

Notation. Let [n] := {1, . . . , n} and [a, b] := {a, a+ 1, . . . , b}. An m×n table T consists of m
rows and n columns, where T [i, j] denotes the entry in the i-th row and j-th column.

Time Series. A time series is a finite sequence x = (x1, . . . , xn) of rationals. The run-length
encoding of a time series x is the sequence x̃ = ((x̃1, n1), . . . , (x̃k, nk)) of pairs (x̃i, ni) where ni
is a positive integer denoting the number of consecutive repetitions (run length) of the value x̃i
in x. Note that

∑k
i=1 ni = n. We call n the length of x and we call k the coding length of x.

Dynamic Time Warping. The dynamic time warping distance is a distance measure be-
tween time series using non-linear alignments defined by warping paths [23].

Definition 1. A warping path of order m× n is a sequence p = (p1, . . . , pL), L ∈ N, of index
pairs p` = (i`, j`) ∈ [m]× [n], 1 ≤ ` ≤ L, such that

(i) p1 = (1, 1),
(ii) pL = (m,n), and

(iii) (i`+1 − i`, j`+1 − j`) ∈ {(1, 0), (0, 1), (1, 1)} for each ` ∈ [L− 1].

The set of all warping paths of order m× n is denoted by Pm,n. A warping path p ∈ Pm,n
defines an alignment between two time series x = (x1, . . . , xm) and y = (y1, . . . , yn) in the
following way: A pair (i, j) ∈ p aligns element xi with yj incurring a local cost of (xi − yj)2.
The cost of a warping path p is C(p) =

∑
(i,j)∈p(xi− yj)2. The DTW distance between x and y

is defined as
dtw(x, y) := min

p∈Pm,n

√
C(p).

It can be computed via dynamic programming in O(mn) time based on an m× n table [23].

3

b1 b2 b3 b4

a1

a2

a3

1 1 1 1 0 0 0 2 2 2 2 2 1 1 1 1 1
0
0
1
1
1
1
2
2
2
2
2
2
2
2
2
2
x

y

Figure 1: Example of a DTW matrix for two time series x and y with run-length encodings x̃ =
((0, 2), (1, 4), (2, 10)) and ỹ = ((1, 4), (0, 3), (2, 5), (1, 5)). Colors indicate the local costs (xi−yj)2
of blocks (white = 0, light gray = 1, dark gray = 4). It is sufficient to compute the bold-framed
entries in order to determine dtw(x, y) since there exists an optimal warping path moving only
along boundaries of blocks (rows a1, a2, a3 and columns b1, b2, b3, b4) and the indicated block
diagonals L.

3 The Algorithm

In the following, let x = (x1, . . . , xm) and y = (y1, . . . , yn) be two time series with run-length
encodings x̃ = ((x̃1,m1), . . . , (x̃k,mk)) and ỹ = ((ỹ1, n1), . . . , (ỹ`, n`)). We define a0 := 0,
ai :=

∑i
j=1mj for i ∈ [k] and b0 := 0, bi :=

∑i
j=1 nj for i ∈ [`]. Consider the m × n DTW

matrix D, where D[i, j] = dtw((x1, . . . , xi), (y1, . . . , yj))
2. Note that D can be structured into k`

blocks Bi,j = [ai−1 + 1, ai]× [bj−1 + 1, bj], i ∈ [k], j ∈ [`], where each step inside Bi,j has local
cost ci,j := (x̃i − ỹj)2. The right boundary of Bi,j corresponds to column bj of D and the top
boundary is formed by row ai of D (see Figure 1).

We show that it is sufficient to compute only certain entries on the boundaries of blocks
instead of all mn entries in D. To this end, we analyze the structure of optimal warping paths.
We begin with the following simple observation.

Observation 3.1. There exists an optimal warping path p such that the following holds for
every block B: If p moves through B, then p first moves diagonally through B until it reaches a
boundary of B.

This is true since every step inside a block costs the same. Hence, it is optimal to maximize
the number of diagonal steps (which minimizes the overall number of steps to reach a boundary
of a block). Observation 3.1 implies that there exists an optimal warping path which is an alter-
nation of diagonal and horizontal (or vertical) subpaths where the horizontal (vertical) subpaths
are always on top (right) boundaries of blocks. Note that this implies an easy O(kn+ `m)-time
algorithm which only computes the entries on the boundaries via dynamic programming.

Now, we restrict the possible diagonals along which such an alternating optimal warping
path might move. To this end, let Li,j , (i, j) ∈ [k]× [`], denote the diagonal in D going through

2Throughout this work we neglect running times for arithmetical operations.

4

L L′

ai

ai′

Figure 2: Example of a warping path moving diagonally in between two neighboring diagonals L
and L′. Block boundaries are framed in thick lines. Note that there cannot be an upper right
block corner anywhere in between L and L′. Hence, when shifting the warping path to the right
from L to L′, the cost changes monotonically (linearly).

the upper right corner of block Bi,j (that is, through the entry (ai, bj)) and let L0,0 be the
diagonal (corresponding to (a0, b0)) going through (1, 1). We denote the set of all these block
diagonals by L (see Figure 1). Now, our key lemma states that there always exists an optimal
warping path which only moves along block boundaries and block diagonals (we call such a
warping path diagonal-conform).

Lemma 3.2. There exists an optimal warping path which is diagonal-conform.

Proof. By definition, every warping path initially starts in (1, 1) on the diagonal L0,0 ∈ L.
Let p be an optimal warping path which alternates between diagonals and block boundaries as
described in Observation 3.1. Assume that p does not only move along diagonals in L. Then,
by assumption, p leaves some diagonal L ∈ L on a boundary (wlog horizontally on the top
boundary ai) of a block Bi,j and (diagonally) enters the neighboring block Bi+1,j before the
next intersection of a diagonal L′ ∈ L with ai. It then proceeds diagonally in between L and L′

until reaching some block boundary where it moves horizontally or vertically again. Note that p
has to move horizontally or vertically again at some point since it has to reach a diagonal in L
again (this holds because every warping path eventually ends up on Lk,` ∈ L). Assume that p
moves diagonally only until reaching the top boundary ai′ of a block Bi′,j′ , i

′ > i, j′ ≥ j, where
p moves horizontally (analogous arguments apply if p moves vertically on a right boundary of a
block in between L and L′). See Figure 2 for an example. Observe that a warping path can only
enter blocks from bottom (that is, from the top boundary of the block below) or left (that is,
from the right boundary of the block to the left) and exit blocks from top or right boundaries.

Let hi ≥ 1 denote the number of horizontal steps of p on ai and let hi′ ≥ 1 be the number of
horizontal steps on ai′ . Let q denote the diagonal subpath of p from ai to ai′ . Now, consider the
warping path p′ obtained from p by “shifting” q to the right, that is, p′ takes hi + 1 horizontal
steps on ai and only hi′ − 1 horizontal steps on ai′ . Let q′ be the shifted diagonal subpath
and note that q′ crosses the same blocks as q. This is true since there cannot be an upper

5

right corner of any block anywhere in the region between L and L′ (since they are neighboring
diagonals from L).

Let us now consider the number of steps taken by p′ within each block from Bi,j to Bi′,j′ .
Clearly, p′ takes one more step inside Bi,j than p. Regarding Bi′,j′ , if q enters Bi′,j′ from bottom,
then q′ takes one step less inside Bi′,j′ . Otherwise, if q enters Bi′,j′ from the left, then q′ takes
the same number of steps inside Bi′,j′ as q. For every block B in between Bi,j and Bi′,j′ which
is crossed by q, the following holds:

• If q crosses B from left to top, then q′ takes one more step.

• If q crosses B from bottom to right, then q′ takes one step less.

• If q crosses B from bottom to top (or from left to right), then q′ takes the same number
of steps.

The above holds since q cannot pass through an upper right corner of a block in between L
and L′. Note that the number of steps taken by p and p′ through any block differs by at most
one.

Now, let B be the set of blocks where p takes more steps than p′ and let B′ be the set of
blocks where p′ takes more steps than p. Let C =

∑
Bi,j∈B ci,j and C ′ =

∑
Bi,j∈B′ ci,j . Then,

the cost difference between p and p′ is C −C ′. By optimality of p, we have C −C ′ ≤ 0, that is,
C ≤ C ′.

If C = C ′, then also p′ is an optimal warping path. Thus, by analogous arguments, shifting
hi′ times to the right yields an optimal warping path that does not move horizontally on ai′

anymore. If this warping path now already moves diagonally along L′ (as it would be the case
in Figure 2 when shifting four times to the right), then this proves the claim. If this is not
case, then analogous arguments apply again for the next occurrence of a horizontal (or vertical)
subpath in between L and L′. This finally yields an optimal warping path moving along L′ (or
L) proving the claim.

If C < C ′, then we can analogously shift q to the left to obtain a warping path p′′. Clearly,
the blocks where p′′ takes one more step than p are exactly the blocks B, and the blocks where p
takes one more step than p′′ are exactly the blocks B′. Hence, the cost difference between p′′

and p is also C − C ′ < 0, which contradicts the optimality of p.

Clearly, an optimal diagonal-conform warping path can be computed from only those entries
in D which are an intersection of a block boundary and a block diagonal in L (in Figure 1 these
intersections are framed in bold). In the following, we denote the number of these intersections
by κ. Note that

k` ≤ κ ≤ (k + `)|L| ≤ (k + `)(k`+ 1),

that is, κ ∈ O(k2` + k`2). We need to compute optimal diagonal-conform warping paths to
these intersections. From the proof of Lemma 3.2, we can actually infer the following corollary
about optimal diagonal-conform warping paths to any intersection.

Corollary 3.3. Let Bi,j be a block and consider an intersection z of its top or right boundary
with a diagonal L ∈ L. There is an optimal diagonal-conform warping path to z whose diagonal
subpaths are only on diagonals from {L} ∪ {Li′,j′ | i′ ≤ i, j′ ≤ j}.

Corollary 3.3 essentially follows from the same shifting argument as in the proof of Lemma 3.2.
Consider an optimal diagonal-conform warping path to z that contains a diagonal subpath q on
a block diagonal Li′,j′ 6= L, where i′ > i or j′ > j. Note that we can actually shift the diagonal
subpath q (without increasing the cost) until it lies on L or goes through an upper right corner

6

Algorithm 1: Exact DTW for run-length encoded time series.

Input: Run-length encodings ((x̃1,m1), . . . , (x̃k,mk)) and ((ỹ1, n1), . . . , (ỹ`, n`)) of time
series x and y.

Output: DTW distance between x and y.
1 foreach (i, j) ∈ [k]× [`] do ci,j := (x̃i − ỹj)2 // compute local block costs

2 a0 := 0
3 foreach i ∈ [k] do ai := ai−1 +mi // compute indices of top boundaries

4 b0 := 0
5 foreach j ∈ [`] do bj := bj−1 + nj // compute indices of right boundaries

6 diagonals← doubly-linked list of diagonals
7 add dummy diagonal −∞ with offset −∞ containing entry (−∞,−∞) with cost ∞
8 add dummy diagonal ∞ with offset ∞ containing entry (∞,∞) with cost ∞
9 insert an empty diagonal L0,0 with offset 0 between −∞ and ∞

10 add entry (0, 0) with cost 0 to L0,0

11 foreach i ∈ [k] do
12 L← first diagonal in diagonals // L = −∞ with offset −∞
13 foreach j ∈ [`] do
14 if L ≤ Li,j−1 then L← diagonals.next(L)
15 while L < Li,j do // diagonals intersecting top boundary of Bi,j

16 appendentry(L, i, j)
17 L← diagonals.next(L)

18 L′ ← L
19 while L′ < Li−1,j do L′ ← diagonals.next(L′)
20 L′ ← diagonals.previous(L′)
21 while L′ > Li,j do // diagonals intersecting right boundary of Bi,j

22 appendentry(L′, i, j)
23 L′ ← diagonals.previous(L′)

24 if L > Li,j then // insert new diagonal Li,j

25 insert empty diagonal Li,j with offset bj − ai into diagonals before L
26 trace(Li,j , i, j, last entry on diagonals.previous(Li,j), last entry on L)

27 else appendentry(L, i, j) // diagonal Li,j exists already

28 return cost of last computed entry

of some block, that is, the shifted subpath is on the diagonal of this block. Clearly, this is a
block Bi∗,j∗ with i∗ ≤ i and j∗ ≤ j.

We are now ready to prove our main result.

Theorem 3.4. The DTW distance between time series x and y can be computed from x̃ and ỹ
in O(κ) time, where κ is the number of intersections between block boundaries and block diago-
nals in the DTW matrix.

Proof. The algorithm builds an optimal diagonal-conform warping path “block-by-block” via
dynamic programming (iterating over blocks Bi,j for i = 1, . . . , k and j = 1, . . . , `) using optimal
diagonal-conform warping paths to intersections of block boundaries with block diagonals (see
Algorithm 1 for the pseudocode). Whenever a block Bi,j is added, the corresponding block
diagonal Li,j is inserted (if it does not already exist) in a sorted doubly-linked list (diagonals)
of previously encountered block diagonals. Then, the costs of optimal diagonal-conform warp-
ing paths to all intersections of previously encountered diagonals with the boundaries of Bi,j

7

Function appendentry(L, i, j)

Input: A diagonal L and block indices i, j such that L intersects a boundary of Bi,j .
Output: Compute intersection of L and the boundary of Bi,j and add this entry to L

with the cost of an optimal diagonal-conform warping path.
zL ← last entry on L
(a, b)← (ai, bj)
c←∞
if L ≤ Li,j then // L intersects top boundary of Bi,j

b← ai + offset(L) // column of intersection

z′ ← last entry on diagonals.previous(L)
c← min{z′.cost + ci,j · (b− z′.col), zL.cost + ci,j · (b− zL.col)}

if L ≥ Li,j then // L intersects right boundary of Bi,j

a← bj − offset(L) // row of intersection

z′ ← last entry on diagonals.next(L)
c← min{c, z′.cost + ci,j · (a− z′.row), zL.cost + ci,j · (a− zL.row)}

add (a, b) with cost c to the end of L

are computed (using appendentry) as well as the costs for the intersections of Li,j with the
boundaries of blocks Bi′,j′ , i

′ ≤ i, j′ ≤ j (trace). Before we prove correctness, we introduce
some preliminary definitions.

In our algorithm, a diagonal Li,j ∈ L (going through the upper right corner of block Bi,j) is
a sorted list of its intersections with block boundaries. The offset of Li,j is bj − ai. We define
a linear order on diagonals as follows: Li,j is “to the left of” Li′,j′ (denoted Li,j < Li′,j′) if and
only if bj − ai < bj′ − ai′ , that is, its offset is smaller.

For the correctness, we show that after a block Bi,j is handled, all intersections between
block boundaries and block diagonals of blocks Bi′,j′ with i′ ≤ i and j′ ≤ j are correctly
determined and stored on the corresponding diagonals (sorted with increasing row and column
indices) together with the cost of an optimal diagonal-conform warping path.

To this end, consider block Bi,j and assume that for all previous blocks Bi′,j′ with i′ < i
or j′ < j the above claim holds (this is trivially true before the first block B1,1 is handled).
Moreover, we assume that diagonals is sorted with increasing offset (which initially holds
before Line 11, where it only contains the diagonals −∞, L0,0, and∞ in that order). Note that,
by Corollary 3.3, we only need to consider new intersections, that is, intersections of previous
block diagonals with the boundaries of Bi,j and intersections of Li,j with previously handled
block boundaries (if Li,j does not yet exist). For all other previously computed intersections,
there exists an optimal diagonal-conform warping path which does not use Li,j , hence, we do
not need to update them.

As regards the intersections on the boundaries of Bi,j , observe that a diagonal L intersects
the top boundary ai if Li,j−1 < L ≤ Li,j . If this is the case, then clearly the intersection
is (ai, ai + σ), where σ is the offset of L. Now, by definition, there are two options for a
diagonal-conform warping path to reach this intersection: either diagonally on L (from the last
intersection stored on L) or from the left on the boundary ai. For the latter option, a diagonal-
conform warping path has to go over the intersection of the diagonal that is directly to the left
of L (that is, the predecessor of L in diagonals) with ai. By assumption, this intersection
is the last one stored on the predecessor of L in diagonals. The optimum of these two cases
can easily be determined (see minimum computation in appendentry which is called in Line 16
of Algorithm 1). The intersections on the right boundary of Bi,j are handled analogously in
Line 22 (using the successor of L in diagonals). Note that if there already exists a diagonal

8

Function trace(L, i, j, zp, zn)

Input: A diagonal L, block indices i, j such that L intersects the boundary of Bi,j , and
entries zp on the previous and zn on the next diagonal of L.

Output: Cost of an optimal diagonal-conform warping path to the intersection of L
with a boundary of Bi,j . Recursively fills the diagonal L with all intersections
of L with previous block boundaries.

Lp ← diagonals.previous(L)
Ln ← diagonals.next(L)
while zp 6= ⊥ and zp.row > ai do zp ← Lp.previous(zp)
while zn 6= ⊥ and zn.col > bj do zn ← Ln.previous(zn)
if zp 6= ⊥ and zn 6= ⊥ and i, j ≥ 1 then

(a, b)← (ai, bj)
c←∞
if L ≤ Li,j then // L intersects top boundary ai

b← ai + offset(L)
c← min(c, zp.cost + ci,j · (b− zp.col))

if L ≥ Li,j then // L intersects right boundary bj
a← bj − offset(L)
c← min(c, zn.cost + ci,j · (a− zn.row))

if L ≥ Li−1,j−1 then // L intersects top boundary ai−1 of Bi−1,j

c← min(c, trace(L, i− 1, j, zp, zn) + ci,j · (a− ai−1))
else // L intersects right boundary bj−1 of Bi,j−1

c← min(c, trace(L, i, j − 1, zp, zn) + ci,j · (b− bj−1))
add (a, b) with cost c to the end of L
return c

else return ∞

with the same offset as Li,j , then its intersection with the boundary of Bi,j (which is the upper
right corner of Bi,j) is added in Line 27.

If Li,j does not yet exist, then it is newly inserted into diagonals in Line 25 before the first
diagonal in diagonals with a larger offset. Hence, diagonals is correctly sorted. Then, all
intersections of Li,j with block boundaries are recursively added via trace in Line 26. This is
done as follows: Consider an intersection of Li,j with a boundary of a block Bi′,j′ , i

′ ≤ i, j′ ≤ j.
Again, by definition, an optimal diagonal-conform warping path only has the options to reach
this intersection via Li,j or via the boundary. For the boundary option, we can again use the
previously computed intersections on the neighboring diagonals of Li,j in diagonals. For the
diagonal option, we need to compute the preceding intersection of Li,j with a previous block
boundary first. This is done recursively. Note that the previous intersection of Li,j is on the
top boundary of Bi′−1,j′ if Li,j > Li′−1,j′−1, and it is on the right boundary of Bi′,j′−1 if L <
Li′−1,j′−1 (note that Li,j = Li′−1,j′−1 is not possible since Li,j is a new diagonal). Moreover,
this intersection can easily be determined (as described above) and an optimal diagonal-conform
warping path to this intersection can again be determined using only the neighboring diagonals
of Li,j in diagonals. The recursion terminates when there exists no intersection of Li,j with a
previous block boundary (that is, the border of the DTW matrix D is reached). In this case, a
diagonal-conform warping path to the current intersection can only come from the corresponding
boundary. If there is no intersection on this boundary with one of the neighboring diagonals
of Li,j , then this intersection cannot be reached by any diagonal-conform warping path. Hence,
its cost can be set to ∞. This completes the correctness of Algorithm 1.

9

For the running time, note that each intersection is computed exactly once (either by appen-
dentry or by trace). Moreover, the computation required to handle a single intersection takes
constant time. Thus, the overall running time is linear in the total number κ of intersections.

As regards the value of κ, note that κ ≤ kn+ `m− k` clearly holds since this is the overall
number of entries on all block boundaries. Hence, a (tight) worst-case upper bound is

κ ∈ O(min(k2`+ k`2, kn+ `m)).

In practice, κ might be smaller since not every block diagonal will intersect every boundary
(depending on the specific block sizes) and some block diagonals might even be identical (for
example, if square blocks appear). Such beneficial block sizes can be achieved, for example,
when using piecewise aggregate approximation [20, 28] as preprocessing where the time series
are approximated by piecewise constant series with a fixed run length. For the case that all
blocks have equal sizes, the following improved upper bound on κ holds.

Lemma 3.5. Let x and y be two time series such that x consists of k runs of length m′ and y
consists of ` runs of length n′, where n′ ≤ m′. Then, the number κ of intersections between
block diagonals and block boundaries is in O(k` ·M/n′), where M is the least common multiple
of m′ and n′.

Proof. Let m = km′ be the length of x and n = `n′ be the length of y. Let M be the least
common multiple of m′ and n′ and let α = M/m′ and β = M/n′. Clearly, for every α < i ≤ k
and β < j ≤ `, the block diagonal Li,j is the same diagonal as Li−α,j−β. Thus, the set L of
block diagonals can be written as

L = A ∪ B ∪ {L0,0},

where A = {Li,j | i ∈ [α], j ∈ [`]} and B = {Li,j | i ∈ [k], j ∈ [β]}.
Let us consider the intersections of boundary ai with a diagonal Li′,j ∈ L. There are two

cases: For i < i′, there exists an intersection if bj − (i′ − i)m′ ≥ 1. For i ≥ i′, there exists an
intersection if bj + (i− i′)m′ ≤ n. Since m′ ≥ n′, boundary ai can thus only have intersections
with diagonals Li′,j where i− ` ≤ i′ ≤ i+ `. Hence, there are at most 2` · β intersections with
diagonals in B and at most α · ` intersections with diagonals in A on ai. Overall, there are at
most k`(2β + α) ≤ k` · 3β intersections on all top boundaries.

Analogously, for boundary bj , there exists an intersection with Li,j′ ∈ L if ai− (j′− j)n′ ≥ 1
(for j′ > j) or if ai + (j − j′)n′ ≤ m (for j ≥ j′). Thus, there are at most β · k intersections
with diagonals in B and at most α ·m/n′ intersections with diagonals in A on bj . This yields
at most k`(β +α ·m′/n′) = k` · 2β intersections on all right boundaries. Thus, altogether there
are at most O(k` ·M/n′) many intersections.

Note that if M ∈ O(n′) holds in Lemma 3.5 (for example, if m′ = αn′ for a constant integer α ≥
1), then this implies κ ∈ O(k`). Hence, we obtain the following.

Corollary 3.6. Let x and y be two time series such that x consists of k runs of length m′ and y
consists of ` runs of length n′ ≤ m′. If the least common multiple of m′ and n′ is in O(n′), then
the DTW distance between x and y can be computed from x̃ and ỹ in O(k`) time.

If m′ = n′ (that is, all blocks are squares), then there are κ = k` intersections which are
exactly the upper right block corners. In this special case the following holds: If an optimal
warping path moves through a block Bi,j , then it takes exactly m′ steps through Bi,j without loss
of generality. The algorithm Blocked DTW UB [24, Algorithm 1] (and accordingly also Coarse-
DTW [12, Algorithm 2] with φmax) uses the value max(m′, n′) ·ci,j (which clearly equals m′ ·ci,j)

10

Table 2: Characteristics of the datasets we used in our experiments. Type refers to the problem
domain, size to the overall number of time series in the dataset, and length to the number of
elements of a time series.

dataset type size length

HandOutlines IMAGE 1370 2709
InlineSkate MOTION 650 1882
CinCECGtorso ECG 1420 1639
Haptics MOTION 463 1092
Mallat SIMULATED 2400 1024
StarLightCurves SENSOR 9236 1024
Phoneme SOUND 2110 1024

for the cost of crossing block Bi,j . Hence, these algorithms are equivalent to our algorithm in
this case. That is, we proved the following.

Corollary 3.7. Blocked DTW [24] and Coarse-DTW [12] are exact if all blocks are squares.

We close with remarking that, in practice, the computation of intersections can be done
only once if the block sizes are identical for all pairs of time series in a data set.

4 Experiments

We conducted experiments to empirically evaluate our algorithm comparing it to alternatives.

Data. We considered all seven datasets from the UCR repository [11] whose time series have a
length of at least n ≥ 1000 (time series within the same dataset have identical length). Table 2
lists the selected datasets and their characteristics.

Setup. We compared our run-length encoded DTW algorithm (RLEDTW) with the following
alternatives3 (see Table 1 for descriptions):

• DTW (standard O(n2)-time dynamic program) [23],

• AWarp [22],

• SDTW [15],

• BDTW [12, 24].

To compare the algorithms, we applied the following procedure: From each of the seven UCR
datasets, we randomly sampled a subset D of 100 time series (of length n). Then, for a specified
encoding length k < n, we transformed the subset D into a subset Dk by compressing the time
series to consist of k runs. The compression is achieved by computing a best piecewise constant
approximation with k constant segments minimizing the squared error (also called adaptive
piecewise constant approximation). This can be done using dynamic programming [8, 13, 19].

The encoding length k was controlled by the space-saving ratio ρ = 1 − k/n. We used
the space-saving ratios ρ ∈ {0.1, 0.5, 0.75, 0.9, 0.925, 0.95, 0.975, 0.99}. Thus, we generated eight
compressed versions of each subset D in run-length encoded form. For every compressed dataset,
we computed all pairwise DTW distances using the five different algorithms.

3C++ implementations are available at www.akt.tu-berlin.de/menue/software/.

11

www.akt.tu-berlin.de/menue/software/

Figure 3: Average speedup factor as a function of the space-saving ratio.

Results. Figure 3 shows the average speedup factors of the algorithms compared to the DTW
baseline as a log-function of the space-saving ratio ρ. The speedup of an algorithm A for
computing a DTW distance between two time series is defined by σA = tDTW/tA, where tA is
the computation time of A and tDTW is the computation time of the standard dynamic program.
That is, for σA > 1 (σA < 1), algorithm A is faster (slower) than the baseline method.

The results show that the speedup factors of AWarp and SDTW are independent of the
space-saving ratio and less than one. Hence, both algorithms are actually slower than standard
dynamic programming. This is due to the fact that both algorithms have been designed for
time series with runs of zeros. The results indicate that AWarp and SDTW are of limited
use for the general case of time series having only few runs of zeros. In contrast, the speedup
factors of the BDTW heuristic and our exact RLEDTW grow superexponentially with increasing
space-saving ratio. For all but the smallest space-saving ratios, BDTW is faster than all other
algorithms. In the best case, BDTW is up to more than 1000 times faster than DTW. Our
algorithm is the slowest for all but the highest space-saving ratios. At the lowest space-saving
ratios, RLEDTW is nearly 100 times slower than DTW. This is caused by the overhead of
computing the intersections. In fact, the number κ of intersections always attained the upper
bound of 2kn − k2 for k ≥ 0.1n (that is, ρ ≤ 0.9). Hence, the simple O(kn)-time dynamic
program (mentioned in Section 3) might be faster here. For k < 0.075n (ρ > 0.925), RLEDTW
is the fastest exact algorithm and up to 100 times faster than DTW.

While all other algorithms returned exact solutions (AWarp yields exact solutions if there
are no runs of zeros), the speedup of BDTW is at the expense of solution quality. Figure 4 shows
the average absolute error percentage of the lower and upper bound of BDTW as a log-function
of the space-saving ratio. The absolute error percentage of an approximated DTW distance
d(x, y) between two time series x and y is defined by

E = 100 · | dtw(x, y)− d(x, y)|
dtw(x, y)

.

12

Figure 4: Average error percentage of the BDTW bounds as a function of the space-saving
ratio.

The general trend is that BDTW becomes increasingly inaccurate with increasing space-saving
ratio with error percentages by more than 10% on average. In addition, the upper bound better
approximates the DTW distance than the lower bound for all but the highest space-saving
ratios.

5 Conclusion

We developed an asymptotically fast algorithm to compute exact DTW distances between run-
length encoded time series. The running time is cubic in the maximum coding lengths of
the inputs. This is actually the first exact algorithm whose running time only depends on
the input coding lengths. Experiments indicate that our method yields improved performance
for time series with short coding lengths (which could be achieved, for example, when using
preprocessings such as piecewise aggregate approximation [8, 13, 20, 28]).

An immediate question is whether there exists anO(max(k, `)3−ε)-time algorithm for any ε >
0 or whether we can exclude such an algorithm assuming the SETH. Finally, studying the
complexity of DTW with respect to other compressions (as has been done for other string
problems [3]) might lead to interesting results.

References

[1] A. Abanda, U. Mori, and J. A. Lozano. A review on distance based time series classification.
Data Mining and Knowledge Discovery, pages 1–35, 2018.

[2] A. Abboud, A. Backurs, and V. V. Williams. Tight hardness results for LCS and other
sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS ’15), pages 59–78, 2015.

13

[3] A. Abboud, A. Backurs, K. Bringmann, and M. Künnemann. Fine-grained complexity
of analyzing compressed data: Quantifying improvements over decompress-and-solve. In
Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science
(FOCS ’17), pages 192–203. IEEE, 2017.

[4] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah. Time-series clustering–a decade
review. Information Systems, 53:16–38, 2015.

[5] S. B. Ahsan, S. P. Aziz, and M. S. Rahman. Longest common subsequence problem for
run-length-encoded strings. Journal of Computers, 9(8):1769–1775, 2014.

[6] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series classifica-
tion bake off: a review and experimental evaluation of recent algorithmic advances. Data
Mining and Knowledge Discovery, 31(3):606–660, 2017.

[7] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string problems
and dynamic time warping. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS ’15), pages 79–97, 2015.

[8] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive dimensionality
reduction for indexing large time series databases. ACM Transactions on Database Systems,
27(2):188–228, 2002.

[9] K. Chen and K. Chao. A fully compressed algorithm for computing the edit distance of
run-length encoded strings. Algorithmica, 65(2):354–370, 2013.

[10] R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznanski. RLE edit
distance in near optimal time. In Proceedings of the 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS ’19), volume 138 of LIPIcs, pages
66:1–66:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[11] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanama-
hatana, Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, and Hexagon-ML.
The UCR time series classification archive, October 2018. https://www.cs.ucr.edu/

~eamonn/time_series_data_2018/.

[12] M. Dupont and P.-F. Marteau. Coarse-DTW for sparse time series alignment. In
First ECML PKDD Workshop on Advanced Analysis and Learning on Temporal Data
(AALTD ’15), pages 157–172, 2016.

[13] C. Faloutsos, H. Jagadish, A. Mendelzon, and T. Milo. A signature technique for similarity-
based queries. In Proceedings of the Compression and Complexity of Sequences 1997 (SE-
QUENCES ’97), pages 11–13. IEEE, 1997.

[14] O. Gold and M. Sharir. Dynamic time warping and geometric edit distance: Breaking the
quadratic barrier. ACM Transactions on Algorithms, 14(4):50:1–50:17, 2018.

[15] Y. Hwang and S. B. Gelfand. Sparse dynamic time warping. In Proceedings of the 13th
International Conference on Machine Learning and Data Mining in Pattern Recognition
(MLDM ’17), pages 163–175, 2017.

[16] Y. Hwang and S. B. Gelfand. Constrained sparse dynamic time warping. In 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA ’18), pages
216–222, 2018.

14

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

[17] Y. Hwang and S. B. Gelfand. Binary sparse dynamic time warping. In Proceedings of the
15th International Conference on Machine Learning and Data Mining in Pattern Recogni-
tion (MLDM ’19), 2019.

[18] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer System Sciences, 63(4):512–530, 2001.

[19] B. J. Jain, V. Froese, and D. Schultz. An average-compress algorithm for the sample mean
problem under dynamic time warping. CoRR, abs/1909.13541, 2019.

[20] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases. Knowledge and Information Systems, 3(3):
263–286, 2001.

[21] W. Kuszmaul. Dynamic time warping in strongly subquadratic time: Algorithms for
the low-distance regime and approximate evaluation. In Proceedings of the 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP ’19), volume
132 of LIPIcs, pages 80:1–80:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[22] A. Mueen, N. Chavoshi, N. Abu-El-Rub, H. Hamooni, and A. Minnich. AWarp: Fast
warping distance for sparse time series. In 2016 IEEE 16th International Conference on
Data Mining (ICDM ’16), pages 350–359, 2016.

[23] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49,
1978.

[24] A. Sharabiani, H. Darabi, S. Harford, E. Douzali, F. Karim, H. Johnson, and S. Chen.
Asymptotic dynamic time warping calculation with utilizing value repetition. Knowledge
and Information Systems, 57(2):359–388, 2018.

[25] D. F. Silva, R. Giusti, E. Keogh, and G. Batista. Speeding up similarity search under
dynamic time warping by pruning unpromising alignments. Data Mining and Knowledge
Discovery, 32(4):988–1016, 2018.

[26] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance measures for time series data. Data
Mining and Knowledge Discovery, 26(2):275–309, 2013.

[27] K. Yamada, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Faster STR-EC-LCS
computation. In Proceedings of the 46th International Conference on Current Trends in
Theory and Practice of Informatics, (SOFSEM ’20), volume 12011 of LNCS, pages 125–
135. Springer, 2020.

[28] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary Lp norms. In Pro-
ceedings of the 26th VLDB Conference, pages 385–394, 2000.

15

	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Experiments
	5 Conclusion

