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Abstract
We consider the (parameterized) complexity of a cop and robber game on periodic, temporal graphs
and a problem on periodic sequences to which these games relate intimately. In particular, we show
that it is NP-hard to decide (a) whether there is some common index at which all given periodic,
binary sequences are 0, and (b) whether a single cop can catch a single robber on an edge-periodic
temporal graph. We further present results for various parameterizations of both problems and show
that hardness not only applies in general, but also for highly limited instances. As one main result
we show that even if the graph has a size-2 vertex cover and is acyclic in each time step, the cop
and robber game on periodic, temporal graphs is NP-hard and W[1]-hard when parameterized by
the size of the underlying input graph.
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1 Introduction

A cops and robbers game in graph theory is a pursuit-evasion game with two teams of
players, the cops and the robbers, moving from vertex to vertex along the edges of a
graph. The cops try to move onto the vertices where the robbers are positioned, thereby
“catching” them, while the robbers try to evade such capture. Cops and robbers games
with varying rules have been popular in graph theory as, on the one hand, they model a
range of applications of pursuit-evasion games (see, for example [9]), on the other hand,
they relate to useful graph parameters, such as path-width and tree-width [7, 27], directed
path-width [4], directed tree-width [21], DAG-width [5] or Kelly-width [19] (for surveys,
see Amiri et al. [3], Fomin and Thiliko [16] and Nisse [23], who considers the problem of
“cleaning” a graph with mobile agents which is equivalent to a cops and robber game in
which the robbers location is unknown to the cops). The special case of one robber trying to
evade one cop has been fully characterized and is shown to be solvable in polynomial time by
Nowakowski and Winkler [25] in the 80s using the concept of “dismantlable” graphs (see also
[8]). With the recent rise of dynamic graphs (“temporal graphs”), the cop and robber game
regains traction. In particular, the one-cop one-robber version was recently reconsidered on
“edge-periodic temporal graphs” by Erlebach and Spooner [13]. Temporal graphs exist in
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so-called time-steps, in which every edge may or may not appear. To this end, each edge is
labeled with a set of integers corresponding to the time-steps this edge appears in [22]. Such
graphs have recently received increased attention in the graph-theory community due to their
versatility in modeling relations that evolve in time (see [1, 2, 12, 15]). Considering time as
infinite yields inputs of infinite size, unless we assume that the relation repeats periodically.
This is modeled by “edge-periodic” temporal graphs, where each edge additionally has a
number indicating the length of the period after which its occurrences repeat. This setting
can also be modeled by assigning each edge a sequence x ∈ {0, 1}∗, where x has a 1 at
position p if and only if the edge exists in the time-steps p, p+ |x|, p+ 2|x|, . . .

In their paper, Erlebach and Spooner [13] consider the one-cop one-robber variant on
edge-periodic temporal graphs (called Cop-Win Periodic Cop and Robber, for short
PCnR), characterizing strategies for both cops and robbers on edge-periodic cycles and
showing how to solve the one-cop one-robber variant on any edge-periodic temporal graph in
O(lcm(L)n3), where L is the set of lengths of sequences occurring in the input and n is the
number of vertices in the underlying static graph. Prominently, they leave open (and state as
explicit open question) whether deciding the winner of their cop and robber game is NP-hard.
We resolve this open question by reducing an arithmetic problem of independent interest to
PCnR. Indeed, introducing this periodic temporal concept makes the problem much harder
than one would expect from the results on static graphs [25, 8]. To introduce the arithmetic
problem from which we derive hardness of PCnR, let x[j] denote the jth symbol (starting
with 0) of a sequence x ∈ {0, 1}∗ and let us abbreviate x[j]◦ := x[j mod |x|].

Input: A finite set X ⊆ {0, 1}∗ and k ∈ N.
Question: Is there some i ∈ N such that |{x ∈ X | x[i]◦ = 0}| ≥ k?

Periodic Character Alignment (PCA)

The special case where k = |X| is called Periodic Full Character Alignment.

Input: A finite set X ⊆ {0, 1}∗.
Question: Is there some i ∈ N such that, for all x ∈ X, we have x[i]◦ = 0?

Periodic Full Character Alignment (PFA)

We assume that |x| > 1 for all x ∈ X, since otherwise the instance is either a trivial
no-instance (for PFA) or the sequences of length one can be removed. Likewise, we can
assume for PFA that no two sequences, in X have the same length since we can replace two
sequences x, y ∈ X of same length with the sequence resulting from the “bitwise-or” of x
and y. Moreover, we abbreviate

∑
x∈X |x| =: n.

Interestingly, PFA and PCA are closely related to the well-known Intersection problem
for deterministic finite automata over the (unary) alphabet {1} (called Tally-DFAs, see [18]
for a survey). Being deterministic and over a unary alphabet, each state of a Tally-DFA
can only transition into at most one other state. Thus, any q-state Tally-DFA A can be
represented as a rooted, directed graph GA with q vertices of out-degree one, some of which
are marked as accepting states. Thus, A consists of a path plus one arc from the last vertex of
the path to some other vertex of the path. Then, a word of length more than q is accepted by
A if and only if it consists of a prefix 1q followed by any number of repetitions of 1cA (where
cA is the number of vertices spanned by the last arc) followed by a suffix 1sA (depending
on which states on the path are accepting). Now, the Tally-Intersection problem asks
whether some word is accepted by each of t given Tally-DFAs Ai, that is,

⋂
i L(Ai) 6= ∅.

Clearly, Periodic Full Character Alignment is a special case of Tally-Intersection
and they coincide if cAi = qi (that is, GAi is a cycle) for all i. We can achieve that cAi = qi
for all i by simulating each automaton for qmax := maxi qi steps, checking whether the
automata accept a common word of length at most qmax.
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I Corollary 1. Periodic Full Character Alignment is polynomial-time equivalent to
Tally-Intersection.

Regarding previous work, Fernau and Krebs [14] show that Tally-Intersection for k au-
tomata, each with at most q states, cannot be solved in 2o(min{k

√
log q,√q})nO(1) time (unless

the Exponential Time Hypothesis fails), but can be solved in qknO(1) and 2.9qnO(1) time.
The main relevance of PFA and PCA for this study are their strong relation to edge-

periodic temporal graphs: PCA is equivalent to the question whether there is a time-step
in which a given edge-periodic temporal graph misses at least k edges and consequently
PFA is equivalent to asking whether there is a time-step in which the graph is edgeless.
We show that PFA is NP-complete (implying that PCA is) and reduce it to PCnR on
temporal graphs that are acyclic in all time steps. Note that due to 1, the NP-hardness of
Periodic Full Character Alignment is already clear but we present a new reduction
from Multi-Colored Clique to Periodic Full Character Alignment (and, thus,
to Tally-Intersection) which gives new insights into the parameterized complexity of
both problems. We further prove that this hardness holds for the modification of PCnR
where the robber moves first. We initiate the study of the parameterized complexity of
PCA, PFA, and PCnR, proving positive and negative results for various parameterizations.
The parameterized landscape for these problems seems surprisingly desolate, with W[1]-
hardness for most of the (single) parameters, culminating in the W[1]-hardness of PCnR
when parameterized by the size of the underlying input graph even for extremely restricted
instances. A corollary that may be of independent interest is that Multi-Colored Clique
is W[1] hard when parameterized by the size k of the sought clique, even if the induced
subgraph between any pair of distinct color classes is the union of vertex-disjoint bicliques.

Due to lack of space, some proofs are deferred to an appendix (statements marked as
corollaries or observations do not have separate proofs).

2 Preliminaries

For a, b ∈ N, we abbreviate {a, a+ 1, a+ 2, . . . , b− 1, b} =: [a, b]. We assume the reader to
be familiar with parameterized complexity basics (see [11, 10]) and we refer to [28] for an
overview of graph parameters considered in this work.

2.1 Sequences and Temporal Graphs

Let w ∈ {0, 1}∗ be a sequence and let j ∈ N. Then the length of w is denoted by |w| and
the jth symbol (starting with 0) of w is denoted by w[j]. For a set X of sequences, we let
L(X) := {|x| | x ∈ X} denote the set of lengths of sequences occurring in X and we let
L(X) := max(L(X)) denote the maximum length of a sequence in X. If X is clear from the
context, we may only write L and L. We often consider the infinite, periodic sequence resulting
from repeating a sequence w indefinitely. In this case, we write w[j]◦ := w[j mod |w|]. For
two periodic sequences w and q, we define w& q as the “bitwise-and” of w and q, that is,
w& q has length lcm(|w|, |q|) and (w& q)[i]◦ = w[i]◦ · q[i]◦. A run of a sequence w is a
consecutive part of w consisting only of 1s. Runs can be represented by the pair of their
first and last index in w. We let Bl1(w) denote the set of runs in the sequence w, encoded
as such pairs. For c ∈ N, we define the c-fold blow up of w as the sequence c × w with
(c × w)[i] = w[bi/cc] for all i ∈ [0, c|w| − 1]. Moreover, for a set of sequences X we denote
with c×X := {c× w | w ∈ X} the c-fold blow up of X.

MFCS 2020
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An (edge-) periodic (temporal) graph Gτ = (V,E, τ) (see also [13]) consists of a graph
G = (V,E) (called the underlying graph) and a function τ : E → {0, 1}∗ where τ maps each
edge e to a sequence τ(e) ∈ {0, 1}∗ such that e exists in a time step t ≥ 0 if and only if
τ(e)[t]◦ = 1. Every edge e exists in at least one time step, that is, for each edge e there is
some te ∈ [0, |τ(e)| − 1] with τ(e)[te] = 1.

2.2 Number Theory
We assume that the reader is familiar with the concepts of modulo arithmetic, the greatest
common divisor (gcd), the least common multiple (lcm) and the extended Euclidean algorithm.

Note that congruence modulo any integer q is an equivalence relation. In particular,
given a ≡ b (mod q) and a ≡ c (mod q), we also have b ≡ c (mod q). Further, the modulo
operation is linear, that is, for integers a, b, c ∈ Z, we have ac mod bc = c(a mod b). The
Chinese Remainder Theorem (see for example [20]) roughly states that the congruence system
x ≡ ai (mod ni) with ni ∈ N pairwise coprime and ai ∈ Z always has a solution x ∈ Z and
all solutions are congruent modulo N :=

∏
i ni. In this work, we use a slightly more general

version of the Chinese Remainder Theorem, proved as Lemma 4.

I Lemma 2. Let x, y, p0, p1, . . . ∈ Z. Then, x ≡ y (mod lcm(p0, p1, . . .)) if and only if
x ≡ y (mod pi) for all i.

Proof. (⇒) Since pi divides lcm(p0, p1, . . .) which in turn divides x − y, we know that pi
divides x− y. (⇐) x− y is clearly a common multiple of all pi, so it is divided by their least
common multiple. J

I Lemma 3. Let x, y, a, b ∈ Z. Then, ax ≡ by (mod gcd(a, b)).

Proof. Since gcd(a, b) divides a and b, it divides ax and by and thus ax− by. J

I Lemma 4. Let m ≥ 1, let a0, a1, . . . , am ∈ Z, let p0, p1, . . . , pm ∈ N. Then there is some
j ∈ N with j ≡ ai (mod pi) for all i ∈ [0,m] if and only if ai ≡ ai′ (mod gcd(pi, pi′)) for
all i, i′ ∈ [0,m], i < i′.

Proof. The proof is by induction on m starting with m = 1.
(⇐) For the induction base, let u0, u1 ∈ Z such that gcd(p0, p1) = u0p0 + u1p1 be the

Bézout coefficients [6] of p0 and p1. Let z ∈ Z such that a0 = z(u0p0 + u1p1) + a1. Then,
a0 − zu0p0 = a1 + zu1p1 =: i and a0 − zu0p0 ≡ a0 (mod p0) and a1 + zu1p1 ≡ a1 (mod p1).
For the induction step, we replace am and am−1 by some j′ with j′ ≡ am (mod pm) and
j′ ≡ am−1 (mod pm−1), which exists by induction hypothesis, and we replace pm and pm−1 by
` := lcm(pm, pm−1). Then, for all i ∈ [0,m−1], as am ≡ ai (mod gcd(pm, pi)) and am−1 ≡ ai
(mod gcd(pm−1, pi)), Lemma 2 implies j′ ≡ ai (mod lcm(gcd(pi, pm), gcd(pi, pm−1))) which,
by distributivity of gcd and lcm, implies j′ ≡ ai (mod gcd(lcm(pm, pm−1), pi)), that is,
j′ ≡ ai (mod gcd(`, pi)). Thus, we can apply the induction hypothesis, granting existence of
j ∈ N with j ≡ ai (mod pi) and j ≡ j′ (mod `). By Lemma 2, j ≡ j′ (mod pm) and j ≡ j′
(mod pm−1), implying j ≡ am (mod pm) and j ≡ am−1 (mod pm−1).

(⇒) For all i ∈ [0,m], let ui ∈ Z such that uipi + ai = j. Then, for all i, i′ ∈ [0,m], we
have ai − ai′ = (j − uipi)− (j − ui′pi′) = ui′pi′ − uipi and, since ui′pi′ − uipi is divisible by
gcd(pi, pi′) (see Lemma 3), so is ai − ai′ . J

To compute a solution for a system of congruences x ≡ ai (mod ni), assuming ai < ni for
all i, we replace pairs of congruences by one, equivalent congruence using Lemma 2. Since
this can be done using the extended Euclidean algorithm in O(logni · lognj) ⊆ O(log2 N)
time, the whole congruence system can be solved in time O(m log2 N) = O(m (

∑
i logni)2),

where m is the number of input congruences, which is polynomial in the input size,
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3 Complexity of PFA and PCA

While the NP-hardness of PFA already follows from its equivalence to Tally-Intersection
(see Corollary 1), we present here another reduction with implications on parameterized
complexity, which can then be transferred to Cop-Win Periodic Cop and Robber. As a
side note, we remark that PCA is in NP since the input sequences can easily be verified to
be 0 at a given common index.

Input: An integer k and an undirected k-partite graph G = (V1 ] V2 ] . . . ] Vk, E).
Question: Is there a clique of size k in G?

Multi-Colored Clique (MCC)

I Lemma 5. Periodic Full Character Alignment is NP-hard.

Proof. Given an instance (G = (V,E), k) of MCC with k-partition (V1, . . . , Vk) of V , we
construct an equivalent instance X of PFA in polynomial time such that |X| =

(
k
2
)
. To this

end, we compute distinct prime numbers p1, . . . , pk in polynomial time1 such that |Vi| ≤ pi
for all i ∈ [1, k]. Let Vi := {vi1, . . . , vi|Vi|}. We define a sequence wi,j ∈ {0, 1}pi·pj for
all i, j ∈ [1, k], i < j to represent all edges in the induced subgraph G[Vi ∪ Vj ]. We set for
every r ∈ [0, |wi,j | − 1],

wi,j [r] := 0 if and only if {vir mod pi
, vjr mod pj

} ∈ E. (1)

Finally, we set X := {wi,j | 1 ≤ i < j ≤ k}.

B Claim 6. Let i, j ∈ [1, k], i < j and let t ∈ N. Then, wi,j [t]◦ = 0 if and only if
{vit mod pi

, vjt mod pj
} ∈ E.

Proof. By construction of wi,j , we have |wi,j | mod pi = |wi,j | mod pj = 0 and thus (t mod
|wi,j |) mod pi = t mod pi and (t mod |wi,j |) mod pj = t mod pj . Then, by (1), wi,j [t mod
|wi,j |] = 0 ⇐⇒ {vit mod pi

, vjt mod pj
} ∈ E. C

Next, we show that (G, k) is a yes-instance of MCC if and only if X is a yes-instance of PFA.
(⇒) Assume that (G, k) is a yes-instance of MCC. Then, there is a clique S ⊆ V such

that S ∩ Vi = {viai
} for all i ∈ [1, k]. By construction, pi and pj are coprime for all i, j ∈

[1, k], i < j. Hence, the Chinese Remainder Theorem implies that the congruence system
∀i∈[1,k]t ≡ ai (mod pi) has a solution t ∈ N. We show wi,j [t]◦ = 0 for all i, j ∈ [1, k], i < j.
Since S is a clique, {viai

, vjaj
} ∈ E and therefore by Claim 6, wi,j [t]◦ = 0.

(⇐) Let X be a yes-instance of Periodic Full Character Alignment. Then, there
is an index t ∈ N with w[t]◦ = 0 for all w ∈ X. Let ai := t mod pi for all i ∈ [1, k]. We
set S := {viai

| i ∈ [1, k]}. Since wi,j [t]◦ = 0 for all i, j,∈ [1, k], i < j, Claim 6 implies
that {viai

, vjaj
} ∈ E. Hence, S is a clique of size k in G. J

Note that it is possible to “blow up” the input sequences for PCA by any factor c ∈ |X|O(1)

without changing the answer to the instance.

I Observation 7. Let c, j ∈ N, let X ⊆ {0, 1}∗ such that X = c×X ′ for some X ′, and let
x ∈ X. Then, x[j]◦ = x[c · bj/cc]◦.

1 Since, by the Prime Number Theorem, the kth prime pk is in O(k log k), these can be computed in
O(k2 log k) time.

MFCS 2020
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We show for every c ∈ |X|O(1) with c ≥ 1 that PFA (and, thus, PCA) remains NP-complete
even if X = c×X ′ for some X ′.

I Proposition 8. Let (X ′, k) be an instance of PFA and let c ∈ |X ′|O(1). Then, (X ′, k) is a
yes-instance of PFA if and only if (X, k) is a yes-instance of PFA where X = c×X ′.

Proof. Let S′ ⊆ X ′. We show that S′ is a yes-instance of PFA if and only if S = c×S′ ⊆ X
is a yes-instance of PFA.

(⇒) Let j ∈ N such that for all x′ ∈ S′ we have x′[j]◦ = 0. Then cj ∈ N and for all x ∈ S

x[cj mod |x|] = x[cj mod c|x′|] = (c× x′)[c(j mod |x′|)] = x′[j mod |x′|] = 0.

(⇐) Let j ∈ N such that, for all x ∈ S, it holds that x[j]◦ = 0. By Observation 7, we
also have x[c · bj/cc]◦ = 0. Then, bj/cc ∈ N and, for all x′ ∈ S′,

x′[bj/cc mod |x′|] = x′[bj/cc mod |x|/c]
= x[c · (bj/cc mod |x|/c)]
= x[c · bj/cc mod |x|] = x[j]◦ = 0. J

I Theorem 9. For every c ∈ |X|O(1)
, c ≥ 1, Periodic Full Character Alignment and

Periodic Character Alignment are NP-complete even if X = c×X ′ for some X ′.

3.1 Parameterized Complexity of PFA and PCA
The quest for finding a good parameterization is one of the main challenges of every pa-
rameterized analysis. However, seeing that the input consists of a set of sequences over a
size-2 alphabet, options are limited. An immediate choice might be the total number of
sequences |X| in the input, but a closer inspection of Lemma 5 reveals that Periodic Full
Character Alignment (and, thus Periodic Character Alignment) is W[1]-hard with
respect to this parameter. It is thus natural to combine |X| with other structural parameters
capturing the complexity of the input sequences. One way that the input sequences might
be “well-behaved” is that they may all be short, but combining |X| with maxL already
bounds the input size and is therefore not interesting. Motivated by the observation that
an instance of PFA is trivially yes if the lengths of sequences in X are pairwise prime, we
can parameterize by the “distance to this triviality”, by considering the maximum pairwise
GCD d of the input lengths. Indeed, we show that even PCA is tractable for the parameter
|X|+ d. Another trivial special case is that each input sequence contains at most one letter 1
or one letter 0. This can be generalized to the condition that the input sequences have a
small number of “runs” of 1s and we show that already PCA is tractable with respect to this
parameter.

A different approach would be to restrict the lengths of the sequences instead of their
number. Since, by Lemma 2, it suffices to consider solutions j ∈ N with j < lcm(L), implying
that PCA can trivially be solved in LL · nO(1) time (recall that L = maxL). It turns out,
however, that the stronger parameter |L| does not lead to fixed-parameter tractability.

3.1.1 Parameter |X|
The next corollary follows directly by the fact that Multi-Colored Clique is W[1]-hard
when parameterized by k [11, 10] and |X| =

(
k
2
)
in the construction of the proof of Lemma 5.

I Corollary 10. PFA is W[1]-hard when parameterized by |X|.
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The equivalence with Tally-Intersection (see Corollary 1) implies the following.

I Corollary 11. Determining whether k Tally-DFAs accept a common word is W[1]-hard
wrt. k.

To solve PFA, we can construct a graph whose vertices are all positions of sequences in
X and two such positions are adjacent if and only if they will eventually coincide. Then,
PFA becomes equivalent to solving Multi-Colored Clique on this particular graph. In
order to check if two positions will eventually coincide, we use Lemma 4.

Now, we formally define an |X|-partite graph GX := (V,E) with V := {(x, j) | x ∈
X ∧ x[j] = 0} and there is an edge between (x, j) and (y, `) in GX if and only if x 6= y and
j ≡ ` (mod gcd(|x|, |y|))}. For Y ⊆ X let G[Y ] denote the |Y |-partite subgraph induced
by {(x, j) | x ∈ Y ∧ 0 ≤ j < |x|}. Note that G[{x, y}] consists of at most gcd(|x|, |y|)
vertex-disjoint bicliques (one for each congruence class modulo gcd(|x|, |y|)). We prove the
correctness of our reduction to Multi-Colored Clique.

I Lemma 12. Let k ∈ N. Then, G has a size-k clique if and only if there is some j ∈ N
and some Y ⊆ X with |Y | = k and x[j]◦ = 0 for all x ∈ Y .

Proof. (⇒) Let C be a size-k clique in G. Let ai denote its vertices and let xi ∈ X denote
the sequence in X that contains ai. Then, for each edge {ai, ai′} in C, we have ai ≡ ai′

(mod gcd(|xi|, |xi′ |)) and, by Lemma 4, there is some j ∈ N with j ≡ ai (mod |xi|) for
each ai ∈ V (C). Thus, xi[j]◦ = xi[ai]◦ = 0 for all ai ∈ V (C).

(⇐) Let j ∈ N and let Y ⊆ X be a size-k set of sequences with x[j]◦ = 0 for all x ∈ Y .
For each x ∈ Y , let ax := j mod |x|. Then, by Lemma 4, we have ax ≡ ay (mod gcd(|x|, |y|))
for all distinct x, y ∈ Y , implying that the edge {(x, ax), (y, ay)} exists in E. J

Lemma 12 can also be used to reduce PCA to a version of Multi-Colored Clique that
allows more color classes than vertices in the target colorful clique.

A straight-forward method of solving Multi-Colored Clique on instances produced
by Lemma 12 is to guess one of the at most gcd(|x|, |y|) bicliques for each pair of color classes
of the vertex |X|-partition.

I Corollary 13. PCA can be solved in d|X|
2
nO(1) time where d = maxx,y∈X,x 6=y gcd(|x|, |y|).

Note that in the worst case, this algorithm is not faster than the known algorithm for
Tally-Intersection but our algorithm works even for Periodic Character Alignment
and might be much faster on instances where d has a small value.

Since the number of color classes in the constructed Multi-Colored Clique instance is
|X| and PFA is W[1]-hard by Corollary 10, Lemma 12 implies that MCC remains W[1]-hard,
even on such restricted instances. While this has no further consequences for the problems at
hand, we found this to be a noteworthy fact, in particular given the central role that MCC
plays in many W[1]-hardness proofs.

I Corollary 14. Multi-Colored Clique is W[1] hard with respect to k even if the induced
subgraph between any pair of distinct color classes is a union of vertex-disjoint bicliques.

3.1.2 Parameter #runs
We present an ILP formulation that will set a variable i to the index we are looking for. We
further use variables zj to indicate which sequences xj have a 1 at position i and variables rj
indicating how many times xj is repeated before reaching position i. Thus, for each xj , either
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zj = 1 or, for each run (sj , tj), we have i < sj or i > tj (herein, we use another variable yj,st
to indicate which of the two applies).

zj ∈ {0, 1}, rj ∈ N for all xj ∈ X
yj,st ∈ {0, 1} for all xj ∈ X and (s, t) ∈ Bl1(xj)

i ∈ N

minimize
∑
zj subject to

rj |xj | ≤ i < (rj + 1)|xj | for all xj ∈ X (2)
i− rj |xj |+ (1− yj,st)|xj | > t for all xj ∈ X, (s, t) ∈ Bl1(xj) (3)
i− rj |xj | − (yj,st + zj)|xj | < s for all xj ∈ X, (s, t) ∈ Bl1(xj) (4)

Note that i−rj |xj | denotes the position ij := i mod |xj | in xj . If this position is in the interval
[s, t] for any (s, t) ∈ Bl1(xj), then yj,st = 0 (since, otherwise ij + (1 − yj,st)|xj | = ij ≤ t

contradicting (3)) and zj = 1 (since, otherwise, ij − (0 + zj)|xj | = ij ≥ s contradicting (4)).

I Proposition 15. PCA and PFA can be solved in bO(b) ·nO(1) time, where b =
∑
x∈X Bl1(x).

Note that, while seemingly natural, guessing the correct run for each sequence in X (plus
one for “not in the solution”) is not enough to solve PCA since, by Proposition 16, the
problem remains NP-hard, even if each sequence contains a single 0. However, this hardness
breaks down for PFA (corresponding to prepending an 2|X|-way guessing step for PCA).
We consider it an interesting open question whether PFA is fixed-parameter tractable with
respect to the maximum number of runs in any input sequence. A possible hint that PFA
might also be hard for a constant number of runs per sequence is given by Lemma 2 which
could be used to represent a multi-run sequence by a set of single-run sequences.

3.1.3 Parameter #lengths |L|
While PCA is fixed-parameter tractable for L = maxL, the stronger parameter |L| is not
enough to yield tractability results even if every x ∈ X contains exactly one 0.

I Proposition 16. PCA is W[1]-hard with respect to k+ |L(X)| even if every x ∈ X contains
exactly one 0.

Proof. Let X be an instance of PFA and let Zx := {z | x[z] = 0} denote the set of positions
where x has a 0 for each x ∈ X. We set k := |X| and X ′ := {xz | x ∈ X, z ∈ Zx}
where |xz| := |x| and xz[t] := 0 if and only if t = z for all t ∈ [0, |x| − 1]. We show that X is
a yes-instance of PFA if and only if (X ′, k) is a yes-instance of PCA.

(⇒) If X is a yes-instance of PFA, there is some i ∈ N such that, for all x ∈ X, we have
x[i]◦ = 0 and, by construction, xi mod |x|[i]◦ = 0. Thus, (X ′, k) is a yes-instance of PCA.

(⇐) If (X ′, k) is a yes-instance, then there are Y ⊆ X ′ and k ∈ N with |Y | ≥ k and
y[i]◦ = 0 for all y ∈ Y . By construction (and no two sequences in X have the same length),
Y contains exactly one sequence of length |x| for each x ∈ X. Thus, for each x ∈ X there
is some z ∈ Zx such that xz ∈ Y . Hence, xz[i]◦ = 0 and therefore x[i]◦ = 0 for all x ∈ X.
Consequently, X is a yes-instance of PFA.

Since, by Corollary 10, PFA is W[1]-hard when parameterized by |X|, PCA is W[1]-hard
when parameterized by k + |L(X)| even if every x ∈ X contains exactly one zero. J
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4 Periodic Cop and Robber

We consider a cops and robbers game with rules identical to those introduced in [26, 24]
(variant with one cop and one robber), which has been defined on edge-periodic graphs
by Erlebach and Spooner [13]. There are two players, a cop C and a robber R. First C,
then R (in knowledge of C’s choice) choose a start vertex on a given edge-periodic graph
Gτ = (V,E, τ). Then for each time step t ≥ 0, both players take alternating turns, either
remaining on their current vertex or moving to a vertex that is adjacent to their current
vertex in time step t. In every time step, C moves first, knowing R’s position and R moves
second, knowing the move C just made. The game terminates whenever C moves onto
a vertex on which R resides in that moment. If there is a strategy for C such that the
game terminates, then Gτ is called cop-win and this strategy is a winning strategy for C.
Otherwise, Gτ is called robber-win and the strategy for R that enables infinite evasion of C
is called winning strategy for R.

Input: An edge-periodic graph Gτ = (V,E, τ).
Question: For the above defined cop and robber game, is there a winning strategy for

C, that is, is Gτ cop-win?

Cop-Win Periodic Cop and Robber (PCnR)

We will show NP-hardness of this problem by reducing from PFA.

I Theorem 17. Cop-Win Periodic Cop and Robber is NP-hard even on edge-periodic
temporal graphs Gτ whose underlying graph is K2,n for some n ∈ N and Gτ consists of
two disjoint stars in each time step. Further, Cop-Win Periodic Cop and Robber is
W[1]-hard when parameterized by |G| = |V |+ |E| in this setting.

Proof. Given an instance X of PFA which is the 3-fold blow up of some X ′, we construct a
K2,2|X|+1 on the vertex set V1 ] V2 with V1 = {`, r} and V2 = {m} ∪ {vj , wj | 0 ≤ j < |X|}

τ({`,m}) := 100 ∀xj∈X τ({`, wj}) := τ({r, vj}) := xj & 010
τ({m, r}) := 010 ∀xj∈X τ({`, vj}) := τ({r, wj}) := xj & 101

Note that Gτ consists of two disjoint stars in each time step. To show that X is a yes-instance
of PFA if and only if the constructed Gτ is cop-win, we use the following claim.

` r

v0
x0 & 010x0 & 101

w0

x0 & 010 x0 & 101
v|X|−1

w|X|−1

m

010100

..
.

B Claim 18. At the start of a time step t with t mod 3 = 0, the cop has a winning strategy if
C is on vertex ` and R is on any of the vertices {vj | 0 ≤ j < |X|} or
C is on vertex r and R is on any of the vertices {wj | 0 ≤ j < |X|}.
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Proof. Suppose that C is on ` and R is on vj for some j ∈ [0, |X| − 1]. By definition, there
is a time step t′ ≥ t such that the edge {`, vj} exists in time step t′ but not in any time step
between t and t′ − 1. Hence, C can stay on the vertex ` until the beginning of time step t′
and move onto vj in step t′. To show that this is a winning strategy, it remains to show that
R must stay on vj in all time steps between t and t′ − 1. By construction, if {`, vj} does
not exist in some time step t′′ with t′′ mod 3 = 0, then the edge {vj , r} does not exist in
the time steps t′′, t′′ + 1, and t′′ + 2. Thus, R must stay on vj until the beginning of time
step t′ since {vj , r} is the only other edge adjacent to vj . The case for C is on r and R is
on wj , j ∈ [0, |X| − 1] is symmetric. C

(⇒) Suppose that X is a yes-instance of PFA. We describe a winning strategy for the cop
in Gτ . Choose vertex ` as the start position. Since X is a yes-instance of Periodic Full
Character Alignment, Observation 7 implies that there is some i ∈ N with i mod 3 = 0
and xj [(i+ p)]◦ = 0 for all xj ∈ X and p ∈ [0, 2]. Thus, in time steps i, i+ 1 and i+ 2, no
edge except {`,m} and {m, r} exists. The strategy for C is thus to stay on ` for the first i−1
time steps. By Claim 18 we can assume that at the beginning of time step i, the robber is
not on any vertex of {vj | 0 ≤ j < |X|} as, otherwise, C has a winning strategy. In time
step i, the cop moves to m which is a valid move since i mod 3 = 0 and τ({`,m})[0] = 1. If
R is currently on m then C wins immediately. Otherwise, the robber is on r or on any of
the vertices {wj | 0 ≤ j < |X|}. As no edge incident with any of these vertices exists in time
step i, the robber can only stay on his current vertex. Since τ({m, r})[1] = 1, the cop can
move to r in time step i + 1 and thus win the game if R is on r. Otherwise, R has to be
on wj for some j ∈ [0, |X| − 1] and can only stay on this vertex on the time steps i, i+ 1,
and i+ 2. Thus, C can stay on r until the beginning of time step i+ 3. Due to Claim 18, C
has winning strategy. Hence, C has a winning strategy in all cases.

(⇐) We show the contraposition. Supposing that X is a no-instance of Periodic Full
Character Alignment, we show that the robber has a winning strategy on Gτ , that is,
Gτ is a no-instance of Cop-Win Periodic Cop and Robber. Since X is a no-instance,
for each time step t, there is some index i(t) such that xi(t)[t]◦ 6= 0 and i(t) = i(t− 1) unless
t mod 3 = 0. In the following, we call a vertex ur safe for a vertex uc 6= m if (a) ur 6= m,
(b) uc and ur are at distance two in the underlying graph G and (c) uc ∈ {vj , wj} implies
ur ∈ {vj , wj} \ {uc} for all j ∈ [0, |X| − 1]. Further, we also call ur safe for m in time step t
if (a) ur = wi(t) and t mod 3 6= 2 or (b) ur = r and t mod 3 = 2.

B Claim 19. Let the cop move onto (or stay on) a vertex uc in time step t. Then, the robber
can move onto a vertex ur that is safe for uc in step t.

Proof. The proof is by induction on t. For t = 0, note that r and ` are safe with respect to
each other, vi(0) is safe for all vertices except m, r, `, and vi(0) and wi(0) is safe for m and
vi(0). Thus, no matter the start position of the cop, the robber can move onto a safe vertex.
For the induction step, we know that, in step t− 1, the robber was on a safe vertex u′r with
respect to the vertex u′c of the cop.

Case 1: uc = m. If t mod 3 = 0, then u′c ∈ {m, `} by construction of Gτ , implying
u′r = r (by induction hypothesis), and the robber can move to wi(t), which is safe for m
in step t. If t mod 3 = 1 then, by construction of Gτ , we have u′c ∈ {r,m}, implying
u′r ∈ {`, wi(t−1) = wi(t)} and the robber can move to wi(t), which is safe for m in step t. If
t mod 3 = 2 then, u′c = m by construction of Gτ , implying u′r = wi(t−1) = wi(t) and the
robber can move to r which is safe for m in time step t.

Case 2: uc 6= m and u′c = m. Then, by construction of Gτ , either t mod 3 = 0 and
uc = ` and u′r = r (by induction hypothesis), which is also safe for uc, or t mod 3 = 1 and
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uc = r and u′r = wi(t−1) = wi(t) (by induction hypothesis), implying that the robber can
move to ` which is safe for r in step t.

Case 3: uc 6= m and u′c 6= m. If u′c = uc, then u′r is still safe for uc so the robber
can stay put. Thus, suppose u′c 6= uc. If uc = r, then u′c ∈ {vj , wj} for some j ∈ N by
construction of Gτ and u′r = {vj , wj} − u′c (by induction hypothesis) and, since the edge
{r, u′c} exists in time step t, so does {`, u′r}, and the robber can move to `. The case that
uc = ` is symmetric. Finally, if uc = vj for some j ∈ N, then u′c ∈ {`, r} and u′r ∈ {`, r} − u′c
(by induction hypothesis). Since the edge {u′c, vj} exists in G[t], so does {u′r, wj} and, thus,
the robber can move to wj . The case that uc = wj is symmetric. C

Now, if uc = m, ur = r in time step t with t mod 3 = 2, then the cop cannot catch
the robber in time step t + 1. Otherwise, being safe implies being at distance two in the
underlying graph and the cop cannot catch the robber in time step t+ 1. Thus, Claim 19
implies a winning strategy for the robber.

The W[1]-hardness for Cop-Win Periodic Cop and Robber when parameterized
by |G| in this setting now follows directly by Corollary 10 and the fact that |G| ∈ O(|X|). J

A quick inspection of the proof of Theorem 17 allows us to also exclude polynomial compres-
sions, even when combining structural parameters with L(τ(E)).

I Proposition 20. Cop-Win Periodic Cop and Robber does not admit a polynomial
compression when parameterized by the sum of L(τ(E)), the maximum degree of the underlying
graph, and the treedepth, unless NP ⊆ coNP/poly.

Sketch. Given k instances Gτi of PCnR as constructed in the proof of Theorem 17 (where
we assume that k is a power of 2), construct a binary tree T (whose edges are labeled with 1)
with k leaves, which we identify with the `-vertices in the instances Gτi . The cop chooses the
root of T as its start vertex and follows the robber into one of the Gτi -subgraphs. At this
point, the winning strategies of the cop and robber, respectively, hold2 as in the proof of
Theorem 17. Thus, the cop wins if and only if all input instances are cop-win, implying that
PCnR is AND-composable, which implies the result (see [10, Section 15]). J

Note that Theorem 17 excludes any kind of graph-structural parameterization as the hardness
relies entirely on the hardness of the underlying algebraic problem. However, since the problem
can be solved trivially if the underlying graph G is a tree or a clique, we might still hope
that restricting G (and Gτ ) to be either very sparse or very dense yields tractability. It turns
out that such restrictions would have to be severe.

I Theorem 21. Cop-Win Periodic Cop and Robber is NP-hard, even if (a) for all
t ∈ N, there are at most two edges in G[t] and (b) the underlying graph is bipartite, planar,
and has a max-leaf number of four. Further, Cop-Win Periodic Cop and Robber is
W[1]-hard when parameterized by |G| = |V |+ |E| in this setting.

I Corollary 22. Cop-Win Periodic Cop and Robber is NP-hard even on edge-periodic
temporal graphs whose underlying graph can be turned into a clique by deleting four vertices.
Further, Cop-Win Periodic Cop and Robber is W[1]-hard when parameterized by |G| =
|V |+ |E| in this setting.

2 Recall that the cop wins by staying on ` until the point where he can win in 3 moves using m. Thus,
the robber cannot escape the chosen Gτ

i in this scenario.
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It seems thus that the intrinsic hardness of the underlying algebraic problem can hardly be
overcome by structural limitations of the temporal graph. therefore, we investigated parame-
ters of the τ -function leading to tractability for PFA, such as the number of lengths |L(τ(E))|
and the number of 1s in each τ(e). For PCnR, however, we are met with hardness again.

I Theorem 23. Cop-Win Periodic Cop and Robber is W[1]-hard when parameterized
by the sum of |L(τ(E))| and the vertex cover number of the underlying graph, even if (a) the
underlying graph is bipartite and planar, (b) at most two edges exist in each time step, and
(c) τ(e) contains a single 1 for each e ∈ E.

I Theorem 24. Unless NP ⊆ coNP/poly, there is no polynomial compression for Cop-Win
Periodic Cop and Robber parameterized by the sum of L(τ(E)) and the number of
vertices to delete to turn the underlying graph into a clique.

For the parameter L := |L(τ(E))|, we can use the O(lcm(L(τ(E))) ·n3)-time algorithm of
Erlebach and Spooner [13] (as lcm(L(τ(E))) < LL). Together with Theorem 24, we obtain
the following corollary.

I Corollary 25. Cop-Win Periodic Cop and Robber is solvable in O(LLn3) time and
does not admit a polynomial compression when parameterized by L, unless NP ⊆ coNP/poly.

Curiously, by extending standard techniques [17, 10, 11], kernelization can be pushed to
any root of lcm(L(τ(E))) but not to its logarithm.

I Proposition 26. For every d ∈ N, Cop-Win Periodic Cop and Robber admits
a kernel of size d

√
lcm(L(τ(E))) but does not admit a kernel whose size is polynomial

in log(lcm(L(τ(E)))), unless NP ⊆ coNP/poly.

With dynamic graphs, the modification of the cop and robber game in which the robber
moves first in each round makes sense (contrary to the “static” case, where this modification
has no effect on the game).

Input: An edge-periodic graph Gτ = (V,E, τ).
Question: For the periodic cop and robber game where in every time step R moves

first and C moves second, is there a winning strategy for C?

Robber-First Cop-Win Periodic Cop and Robber (RfPCnR)

Unsurprisingly, this modification does little to change the complexity of the problem.

I Theorem 27. Robber-First Cop-Win Periodic Cop and Robber is NP-hard even
on edge-periodic temporal graphs whose underlying graph is K2,n for some n ∈ N. Further,
Robber-First Cop-Win Periodic Cop and Robber is W[1]-hard when parameterized
by |G| = |V |+ |E| in this setting.

5 Conclusion

In this paper we showed that, unless P = NP, there is no polynomial-time algorithm for the
pursuit-evasion game with one cop and one robber on edge-periodic temporal graphs, thereby
answering an open question of Erlebach and Spooner [13]. We analyzed the parameterized
complexity of deciding this game and showed that it is W[1]-hard, even if the parameter
is the size of the underlying input graph. Thus, unless FPT = W[1], there is no graph
parameter for which Cop-Win Periodic Cop and Robber is fixed-parameter tractable.
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This hardness even applies for severely restricted instances. The open question remains
whether PCnR is in NP (and is thus NP-complete) or maybe even harder.

Our hardness results are based on intuitive algebraic problems called Periodic Charac-
ter Alignment and Periodic Full Character Alignment, asking whether a given set
of periodic sequences over {0, 1} is unanimously 0 at any index or, equivalently, whether all
of a given set of Tally-DFAs accept a common word.

As a side node, we showed that Multi-Colored Clique remains W[1]-hard when
parameterized by the size k of the sought clique, even if the induced subgraph between any
pair of distinct color classes is the union of vertex-disjoint bicliques.
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