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Abstract: Bioinformatics regularly poses new challenges to algorithm engineers and theoretical
computer scientists. This work surveys recent developments of parameterized algorithms and
complexity for important NP-hard problems in bioinformatics. We cover sequence assembly and
analysis, genome comparison and completion, and haplotyping and phylogenetics. Aside from
reporting the state of the art, we give challenges and open problems for each topic.
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1. Introduction

With the dawn of molecular biology came the need for biologists to process and analyze data
way over human capacity, implying the need for computer programs to assemble sequences, measure
genomic distances, spot (exceptions to) patterns, and build and compare phylogenetic relationships, to
name only few examples. While many of these problems have efficient solutions, others are inherently
hard. In this work, we survey selected NP-hard problems in genome comparison and completion
(Section 2), sequence assembly and analysis (Section 3), haplotyping (Section 4), and phylogenetics
(Section 5), along with important results regarding parameterized algorithms and hardness. While
trying to be accessible to a large audience, we assume that the reader is somewhat familiar with
common notions of algorithms and fixed-parameter tractability, such as the O∗(.)-notation, giving
only exponential parts of a running time, ignoring polynomial factors (for details about parameterized
complexity, we refer to the recent monographs [1,2]). In a nutshell, parameterized complexity
exploits the fact that the really hard instances are pathological and real-world processes generate data
which, although enormous in size, are very structured and governed by simple processes. It seems
straightforward that biological datasets abide by this “law of low real-world complexity”.

While excellent surveys of fixed-parameter tractable (FPT) problems in bioinformatics exist [3–6],
this work tries to present an update, summarizing the state of the FPT-art as well as reporting on some
additional “hot topics”. We further aim at: 1. iterating that parameterized algorithms are a viable
and widespread tool to attack NP-hard problems in the context of biological data; and 2. supplying
engineers and problem-solvers with computational problems that are actually being solved in practice,
inspiring research on concrete open questions. Herein, we focus on problems that are particular
for bioinformatics, avoiding more universal and general problems such as the various versions of
CLUSTERING which, while important for bioinformatics, have applications in many areas.

Generally, each topic has a problem description, a results section, some open problems and,
possibly, an assortment of notes, giving additional information about less popular variants, often only
mentioning results or problems related to the main topic without going into details. Finally, we want
to apologize for the limited coverage of relevant work but, as our colleague Jesper Jansson wrote,
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“Writing a survey about bioinformatics-related FPT results sounds like a monumental task!”

2. Genome Comparison and Completion

This section considers genetic data at its largest scale, i.e. as a sequence of genes, independent
of their underlying DNA sequences. At this scale, long-range evolutionary events occur, cutting and
pasting whole segments of chromosomes (“chromosomal rearrangement”) [7]. The number of such
rearrangements between the genomes of two species can be used to estimate their “genetic distance”
which, in turn, allows for phylogenetic reconstruction. Further, we consider the problems of identifying
genes with a common ancestor after duplications, and filling the gaps in an incomplete genome.

In the most general setting, a genome G may be represented as a collection of strings and circular
strings, where each string represents a chromosome and each character represents a gene or gene
family. However, for ease of representation, most models use a single-sequence representation of the
genome (which generalizes easily to multi chromosomal inputs in most cases). There is however an
important distinction between the string model, allowing gene repetitions (also called duplicates, or
paralogs), and the permutation model enforcing that each gene appears exactly once. Many problems
in the following sections can be formulated in both models. The string model is obviously the most
general in practice, but often comes with a prohibitive algorithmic cost. Parameterized algorithms
can offer a good solution, using the fact that most genes only have a small number of occurrences.
Thus, the maximum number of occurrences of any character in an input string, denoted occ in this
paper, is a ubiquitous parameter. In both models, a genome is signed if each gene is given a sign (+ or -)
representing its orientation along the DNA strand.

In the following, a string s′ is called substring of a string s if s′ = s or s′ is the result of removing
the first or last character of some substring of s. Further, s′ is called subsequence of s if s′ = s or s′ is the
result of removing any character from a subsequence of s. We say that two strings are balanced if each
character appears with the same number of occurrences in both.

2.1. Genomic Distances

The problems in this section aim at computing a distance between genomes, reflecting the
“amount of evolution” that occurred since the last common ancestor. Among the most basic distances
for the permutation model is the breakpoint distance, counting the number of pairs of genes that occur
consecutively in one genome but not in the other (a pair ab is considered to be identical to ba in the
unsigned model, however +a+b is identical only to +a+b and -b-a in the signed model). Its complement
is a measure of similarity, the number of common adjacencies (the number of pairs of consecutive genes
that occur in both genomes). Common adjacencies can easily be generalized in the string model:
adjacencies of each genome are seen as a multi-set, and the number of common adjacencies is the size
of the intersection of these multi-sets.

More advanced genomic distances are rearrangement distances. A rearrangement acts on the
genome by reordering some genes in a certain way, mimicking a large-scale evolutionary event.
The core question in rearrangement distances is to compute the minimum number of rearrangements
transforming a genome into another. These distances are more precise—in the sense that they directly
describe parsimonious evolutionary scenarios—but in most cases significantly more difficult to compute
than the breakpoint distance. Note that balanced genomes are usually considered, i.e., any character
appears with the same number of occurrences in every genome. See the work of Fertin et al. [8] for an
extensive survey on rearrangement distances.

2.1.1. Double-Cut and Join Distance

Problem Description. The double-cut and join distance needs the most general genome model as
intermediary steps, that is, a multi-set of strings and circular strings. A double-cut and join operation
splits the genome in two positions and joins the four created endpoints in any way (see Figure 1). For
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signed genomes, this operation is required to maintain consistent orientation of each gene. We focus on
the case where the source and target genomes have a single chromosome (i.e. strings or permutations).

a b c d e f g h x y z

a b c x y z
d

ef

g h

a b c x y z g h d e f

Figure 1. Two DCJ operations turn abcdefghxyz into abcxyzghdef (breakpoints are gray arcs): 1. split
cd and hx and join cx and dh, and 2. split fg and join zg.

Input: genomes G1, G2 (balanced strings or permutations), and some k ∈ N
Question: Can G1 be transformed into G2 with a series of ≤k double-cut and join operations?

DOUBLE CUT AND JOIN DISTANCE (DCJ)

Results. The DCJ distance can be computed in linear time in the signed permutations model [9,10].
However, it is NP-hard in the unsigned permutation or string models [11]. On the positive side, it
admits an O(22kn)-time algorithm for unsigned permutations [12].

An issue with the DCJ distance is that the solution space might be very large, as many different
scenarios may yield the same distance. Thus, more precise models have been designed to “focus” the
solution towards the most realistic scenarios. Fertin et al. [13] introduced the wDCJ distance, where
intergene distances are added to the genome model and must be accounted for in the DCJ scenario
(when breaking between consecutive genes, the number of intergenomic bases must be shared among
both sides). This variant makes the problem NP-hard for signed permutations, but fixed-parameter
tractable for the parameter k. Another constraint focuses on common intervals, which are segments
of the genomes that have exactly the same gene content, but in different orders. A DCJ scenario is
perfect if it never breaks a common interval. Bérard et al. [14] showed that finding a perfect scenario
with a minimum number of operations is FPT for a parameter given by the common interval structure.

2.1.2. Reversal Distance

Problem Description. A reversal [15] is a rearrangement reversing the order of the characters in any
substring of the genome. When considering signed genomes, a reversal additionally switches all the
signs in the reversed substring (see Figure 2).

+a -b +c +d -e +f

+a -b -d -c -e +f

+a +e +c +d +b +f

Figure 2. A signed genome +a-b+c+d-e+f turned into +a+e+c+d+b+f by a signed reversals on +c+d
followed by one on -b-d-c-e.

Input: genomes G1, G2 (balanced strings or permutations), and some k ∈ N
Question: Can G1 be transformed into G2 with a series of at most k reversals?

SORTING BY REVERSALS (SBR)

Results. SORTING BY REVERSALS is polynomial-time solvable in the signed-permutations model [16].
However, it is NP-hard for unsigned permutations [17] and for strings, even when occ = 2 [18] and
for binary signed strings [19]. For unsigned permutations, SORTING BY REVERSALS is easily FPT
for k, using the fact that reversals never need to cut at positions that are not breakpoints [20]. For
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balanced strings, a possible parameter, bmax, is the number of blocks of the input strings, where a block
is a maximal factor of the form an for some character a. SORTING BY REVERSALS can be solved in
O∗
(

bO(bmax)
max

)
time in both the signed and unsigned variants. [21]. As for DCJ, the variant restricting

scenarios to reversals preserving common intervals is also NP-hard, and FPT for a parameter given by
the common interval structure [22].

Notes. Other rearrangements can be considered, such as transpositions (two consecutive factors are
swapped), and the prefix and/or suffix variants of reversals and transpositions (that is, reversals and
transpositions affecting the first or last character of the sequence, respectively) (see, e.g., [23]).

No polynomial-time algorithm is known for computing these rearrangement distances, although
NP-completeness is still open, notably on permutations for signed prefix reversals and prefix
transpositions. Fixed-parameter tractability results may be achieved in the permutation model using
the relationship between these rearrangements and breakpoints [24], and in the string model using the
number of blocks bmax as a parameter [21,25].

2.2. Common Partitions

Two strings S1 and S2 have a common string partition S if S is a (multi-)set of strings called blocks
such that both S1 and S2 can be seen as the concatenation of the blocks of S. Furthermore, S is a common
strip partition if each of its blocks has length at least two. Note that any two balanced strings have a
common string partition, but may not have a common strip partition. Common strings or common
strips may be used to identify syntenic regions between two genomes. Intuitively, most genes from the
genomes of two close species should have a simple common string partition.

2.2.1. Minimum Common String Partition

Problem Description. The most natural partition problem is MINIMUM COMMON STRING

PARTITION [18] (see Figure 3), which admits slightly different formulations [26,27]. It can be seen as a
generalization of the breakpoint distance on balanced strings. Indeed, a common string partition may
be seen as a mapping between the characters of both strings, i.e. a permutation, whose breakpoints
correspond to the limits between consecutive blocks. Rather than a genomic distance, it can also be
seen as a method for assigning orthologs across two genomes, assuming that all duplication events
happened before their last common ancestor. For example, depending on how orthologs are matched,
genomes abacd and acdab may be seen as permutations 12345 and 34512 (i.e., matching two blocks
ab and acd), or 12345 and 14532 (matching four blocks a, b, a, and cd). Gene sequences alone may not
be sufficient to distinguish both cases: in such a situation, the first option presumably reflects better
the evolutionary history of these species, since it involves fewer large-scale events in the genome.

a bc d abca ed

d a ed bc abca

Figure 3. A minimum common string partition for the strings abcdabcaed and daedbcabca.

Input: genomes G1, G2 (balanced strings), and some k ∈ N
Question: Do G1 and G2 admit a common string partition of size at most k?

MINIMUM COMMON STRING PARTITION (MCSP)

Results. MCSP is FPT for several combinations of parameters, depending on the relative size of the
blocks, the size k of the partition and/or the maximum number occ of occurrences of a character [28,29].
It can also be solved in kO(k2) time [30], although this is too slow to be of practical interest. Finally,
MCSP admits a more practical algorithm for the parameter k + occ, running in O(occ2kkn) time [31].
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This last algorithm also applies to unbalanced strings where the problem is extended as follows:
excessive characters may be removed from their respective input strings, but only between consecutive
blocks.

Another possible parameter is the number of preserved duos, k′ = |G1| − k. Note that MCSP is
denoted Maximum-Duo Preserving String Mapping in the context of approximations and parameterized
algorithms maximizing k′. This version is FPT as well, and admits a kernel of size O(k′8) [32].

2.2.2. Maximal Strip Recovery

Problem Description. In the MAXIMAL STRIP RECOVERY problem [33] (see Figure 4), the goal is again
to identify common blocks between two genomes. But here, we may remove characters (genes) from
the input strings so that the resulting subsequences can be partitioned into common strips. Only the
number of deleted genes is counted in the objective function, rather than the number of strips.

a bcd ef g hij mpr x yz

hij bd g yz ef a mcpr x

Figure 4. Illustration of the CMSR problem, recovering the strips bd, ef, hij, mpr, and yz by deleting
k = 4 characters in the strings abcdefghijmprxyz and hijbdgyzefamcprx.

Input: genomes G1, G2 (balanced strings or permutations), and some k ∈ N
Question: Are there subsequences G′1 of G1 and G′2 of G2 that admit a common strip partition

with |G1| − |G′1| ≤ k?

COMPLEMENTARY MAXIMAL STRIP RECOVERY (CMSR)

Results. In the permutation model, this problem admits a linear kernel [34] and an O∗(2.36k) FPT
algorithm [35]. The picture is less simple for parameter |G′1| (i.e., the MAXIMAL STRIP RECOVERY

problem) in the permutation model. The generalization to four strings instead of two is W[1]-hard [36].
On the other hand, it is FPT for parameter |G′1|+ δ, where δ is the maximum number of consecutive
characters deleted within any strip [35]. The main case (MSR with two strings and parameter |G′1|
only) is still open.

Open Problems. Very little is known about MSR and CMSR in the string model. Both are NP-hard, and
MSR is polynomially solvable for constant parameter values (by enumerating all possible subsequences
of a given size and their strip partitions), but no other parameterized result is known. In particular, is
CMSR NP-hard on strings for k = 0? In other words, is there a polynomial-time algorithm finding any
common strip partition of two balanced strings?

2.3. Genome Completion

In both problems in this section, the goal is no longer to compare two genomes (either by building
a rearrangement scenario or identifying conserved regions), but to generate a complete genome, based
on incomplete data and/or genomic sequences of close species.

2.3.1. Scaffold Filling

Problem Description. A scaffold is a partial representation of the genome, obtained after creating
and ordering contigs from reads. Errors during DNA sequencing, low coverage, or sequence
repetitions yield unavoidable gaps in the genome assembly (see Section 3). One solution to obtain
an approximation of the original genome is to use a better-known genome to infer the missing genes.
A completion of genome G1 with respect to G2 is a supersequence G′1 of G1 such that G′1 and G2 are
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balanced. The quality of the completion is evaluated by a genomic distance (DCJ, breakpoints, etc.)
denoted by d in the following.

Input: genomes G1, G2 (strings or permutations), and some k ∈ N
Question: Is there a completion G′1 of G1 wrt. G2, such that d(G′1, G2) ≤ k?

d-SCAFFOLD FILLING (d-SF)

Results. In the signed permutations model, d-SF can be solved in polynomial time when the considered
distance d is the DCJ distance [37]. On the other hand, for the string model, only weaker distances
have been considered: the problem turns out to be NP-hard even for the common adjacencies measure,
but is FPT for this measure as parameter [38]. The string algorithms can be generalized to the variant
where one seeks extensions of both input genomes at the same time (the “two-sided” case).

Open Problems. What is the parameterized complexity of MCSP-SF on strings? As MCSP is NP-hard,
this problem must be too, but it may admit efficient algorithms parameterized by the MCSP distance
and/or the parameter occ. Another open question is the DCJ algorithm can be fully generalized to the
two-sided case.

2.3.2. Breakpoint Median

Problem Description. In the BREAKPOINT MEDIAN problem, the goal is to build a most-likely
common ancestor from three genomes, which can in turn be used to recreate all ancestral genomes in a
phylogenetic tree [39].

Input: genomes G1, G2, G3 (signed permutations), some d ∈ N
Question: Is there a genome G with ∑3

i=1 dbp(G, Gi) ≤ d?

BREAKPOINT MEDIAN (BM)

Results. The problem can be seen as a special case of TRAVELING SALESMAN [39] and can be solved in
O(2.15dn) time.

3. Genome Assembly and Sequence Analysis

Producing the genetic code (sequence of bases A, C, G, and T) present in a sample lies at the
core of almost all research in molecular biology. This, however, requires solving an intricate puzzle
with millions of pieces (“reads”), involving many computational problems on sequences, such as the
SCAFFOLDING problem [40].

Moreover, to draw conclusions from sequences, they have to be analyzed and compared. Such
comparisons are made difficult, at the most basic level, by the amount of genetic variation and errors
that can appear all along the sequences. A central task is to detect character insertions, deletions,
and substitutions within a set of strings representing “similar” DNA or peptide sequences, thereby
identifying a common structure [41].

3.1. Multiple Sequence Alignment

Problem Description. MULTIPLE SEQUENCE ALIGNMENT is the central alignment problem in
bioinformatics, used to align DNA sequences along one another, taking insertions, deletions, and
substitutions into account (see Figure 5). An extension of a string s is a string obtained from s by
inserting any number of gap characters, denoted -. An alignment of strings s1, . . . , sk is obtained by
creating an extension s′1, . . . , s′k of each input string, all of the same size. Column i of an alignment is
the tuple (s′1[i], . . . , s′k[i]). A cost function is any function assigning a positive cost to a column. The unit
cost function counts the total number of mismatches in a column, i.e. the number of pairs (j, j′) such
that sj[i] 6= sj′ [i].
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A T T C - G T A A C T G - A G

A A T - - G - C A C T C T A G

A T T C G G T - A - T - T - G

A - T - - G T G A C T C T A -

0 5 0 4 3 0 3 6 0 3 0 5 3 3 3

Figure 5. A multiple sequence alignment for k = 4 strings with unit costs (shown below each column).

Input: Strings s1, . . . , sk, and some m ∈ N
Question: ∃ an alignment s′1, . . . , s′k such that the sum of the cost of each column is ≤ m?

MULTIPLE SEQUENCE ALIGNMENT with cost function φ (MSA)

Results. MULTIPLE SEQUENCE ALIGNMENT can be solved by a straightforward dynamic programming
in time `O(k) for any cost function (where ` is an upper-bound on the input string length). It is NP-hard
for a wide range of cost functions, including all metric cost functions (even on binary strings), and in
particular the unit cost function [42–44]. Due to its central position in DNA analysis, this problem has
been the subject of over 100 heuristics over the last decades (this was already said in 2009 [45]), but
there does not seem to be any success so far in terms of exact parameterized algorithms.

Open Problems. Does MULTIPLE SEQUENCE ALIGNMENT admit an FPT algorithm for parameter k? If
not, can `o(k) be achieved?

3.2. Identifying Common Patterns

3.2.1. Closest String (and variants)

Problem Description. In CLOSEST STRING, the goal is to find, given a set of strings, a center string
that is close enough to all others (counting the number of mismatches, i.e. the Hamming distance,
denoted by Ham). This problem and many variants have been widely studied under the point of view
of parameterized algorithms: we only highlight some prominent results, and refer the reader to the
work of Bulteau et al. [46] for a more exhaustive review.

Input: strings s1, . . . , sk, all of length `, and some dr ∈ N
Question: Is there a string s∗ such that ∀i Ham(s∗, si) ≤ dr?

CLOSEST STRING (CS)

Results. CLOSEST STRING is NP-hard, even for binary alphabets [47]. On the other hand, it is FPT for
any of the following parameters: dr, k, and ` [48]. However, the algorithm for k makes use of an integer
linear program with at most 2k variables, implying a mostly impractical combinatorial explosion. An
easier (actually trivial) variant, denoted CONSENSUS STRING, aims at minimizing the sum (or average)
of the hamming distances to the center, rather than the worst-case distance.

Closest Substring. A common generalization of CS called CLOSEST SUBSTRING asks for a common
pattern in all input strings, i.e. it allows trimming input strings until they reach a desired given
length m. In this case, the consensus variant, optimizing the sum of distances, is no longer trivial
and is denoted CONSENSUS PATTERN. Although these problems become much harder than
CLOSEST STRING and are W[1]-hard for any single parameter among `, k, d, and m, they still
admit FPT algorithms for several combinations of these parameters [49–52].

Closest String with Outliers. Another noteworthy variant allows ignoring a small number t of outliers
from the input set of strings [53]. Interestingly, all parameterized algorithms for CLOSEST STRING

extend to this variant when t is considered as an additional parameter.
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Radius or sum. A generalization for CLOSEST STRING (that also applies to the variants above)
considers both a constraint on the maximum hamming distance (the radius, dr) and on the
sum of hamming distances (denoted ds). Indeed, the radius constraint only focuses on worst-case
strings, and the sum constraint tends to overfit large sets of clustered strings, so taking both
constraints can help reduce those problems. All algorithms mentioned for the radius-only version
can be extended, in one way or another, to take both constraints into account without additional
parameters [54].

Another point of view consists in seeing the radius and sum measures as the L1 and L∞ norms,
respectively, of the vector (d(s∗, s1), . . . , d(s∗, sk)). Thus, a possible compromise consists in
optimizing the Lp norm of this vector for any rational p, 1 < p < ∞. Chen et al. [55] studied
CLOSEST STRING under these norms on binary alphabets, proved its NP-hardness, and gave an
FPT algorithm for parameter k.

3.2.2. Longest Common Subsequence

Problem Description. The LONGEST COMMON SUBSESQUENCE problem in its simplest version asks
for a string of maximal length that is a subsequence of two input strings (see Figure 6(left)). It admits a
classical dynamic programming algorithm, with complexity O(n2). However, the problem becomes
NP-hard when we increase the number of strings, as follows.

a b c d a b c d

c a b a c d a a b c b a d

a b a c b d a b b b c d

c d a b c a d a b b c d

a c b c d d a d b c d

a b c d a b c d a b c d

a d a c a c d

a b c d c d a b d

b d b d a b c

b c d b c d b c d

Figure 6. Illustration of a longest common subsequence of length m = 8 (left) and of a shortest common
supersequence of length m = 12 (right), each on a set of k = 4 strings.

Input: Strings s1, . . . , sk, all of length at most `, and some m ∈ N
Question: ∃ string s∗ of length at least m such that for all i, s∗ is a subsequence of si?

LONGEST COMMON SUBSESQUENCE (LCS)

Results. The foremost parameters for LONGEST COMMON SUBSESQUENCE are k, `, m, and the alphabet
size denoted |Σ|. However, it is W[1]-hard (or worse) for all combinations of these parameters that do
not yield a simple brute-force enumeration algorithm, i.e. k+m with any |Σ|, and k with |Σ| = 2 [56,57].

Omitted letters. Another possible parameter is the number of omitted letters, ` − m: LONGEST

COMMON SUBSESQUENCE is FPT for parameters `−m and k [58], and the complexity is open for
parameter `−m only.

Sub-quadratic time? (k = 2) For two strings, there is no sub-quadratic algorithm unless the strong
exponential time hypothesis fails [59]. However, parameterized algorithms can help subdue this
lower bound to some extent: Bringmann and Künnemann [60] proposed an extensive study of
the possible combinations of parameters yielding “FPT in P” algorithms (also sometimes referred
to as “fully polynomial FPT”, see [61–63]), with matching lower-bounds in each case.

Constrained LCS. (k = 2) In this variant, the solution must contain each of a given set of f restriction
strings as subsequences. The problem is in P for f = 1 [64], NP-hard in general, and W[1]-hard
for parameter f [65]. Finally, it is FPT for the total size of the restriction strings [66].
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Restricted LCS. Here, the restriction strings are forbidden subsequences (rather than mandatory). The
problem is FPT for the parameter `+ k + f [67], as well as for the total size of restriction strings
(with k = 2) [66].

Open Problems. What is the complexity of LONGEST COMMON SUBSESQUENCE parameterized by
`−m, i.e., the maximal number of letters deleted in any string?

3.2.3. Shortest Common Supersequence

Problem Description. In SHORTEST COMMON SUPERSEQUENCE, we now want to find a larger string
of which every input string is a subsequence (see Figure 6(right)).

Input: Strings s1, . . . , sk, all of length at most `, and some m ∈ N
Question: ∃ string s∗ of length at most m such that each si is a subsequence of s∗?

SHORTEST COMMON SUPERSEQUENCE (SCS)

Results. As for LCS, SHORTEST COMMON SUPERSEQUENCE is W[1]-hard for parameter k even on
binary alphabets [56], and does not admit an `o(k) algorithm [68]. It does admit an FPT algorithm for
the number of repetitions, m− |Σ|when occ = 1 (each character appears at most once in any string) [69].

Open Problems. Can the FPT algorithm for occ = 1 be extended to more general strings?

3.2.4. Center and Median Strings

Problem Description. In the problems described so far in this section, the goal is to find a string
minimizing the distance to all input strings, where the distance counts the number of substitutions
(CLOSEST STRING and CONSENSUS STRING), deletions (LONGEST COMMON SUBSESQUENCE) or
insertions (SHORTEST COMMON SUPERSEQUENCE). Each problem has its own applications, depending
on the input data and allowed operations. A more generic variant allows for all three operations,
i.e., uses the edit distance (also referred to as the Levenshtein distance, denoted Lev) to measure the
similarity to the solution string.

Input: Strings s1, . . . , sk, and some d ∈ N
Question: ∃ string s∗ with the following property?

(CENTER STRING) ∀i Lev(s∗, si) ≤ d
(MEDIAN STRING) ∑k

i=1, Lev(s∗, si) ≤ d

CENTER STRING and MEDIAN STRING

Results. Both problems are NP-hard and W[1]-hard for k, even on binary strings [70]. On the other
hand, CENTER STRING is FPT for parameter d + k [71].

Open Problems. Are these problems FPT when parameterized by d only, or by the string length?

3.3. Scaffolding

Problem Description. As mentioned previously, overlapping reads usually does not lead to a fully
reconstructed (that is, one sequence per chromosome) genome. Instead, assembly algorithms usually
produce fairly long and correct substrings called contigs that cannot be extended by overlapping reads.
However, current sequencing techniques (“Next-Generation Sequencing” (NGS)) yield additional
information about reads. Indeed, NGS-produced reads come in pairs (“mate pairs”) and a rough
estimate about the number of base-pairs between the two reads of a pair is known. Thus, it is possible
that a read r of a pair (r, r′) aligns well with parts of some contig c while r′ aligns well with parts
of contig c′. This presents evidence that, in the target genome, contig c is followed by contig c′ and
gives us an approximation of the distance between them (see Hunt et al. [72] for more details). To
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represent this information, we can construct a scaffold graph by representing contigs as pairs of vertices
connected by a perfect matching, and connecting contig extremities u and v with an edge weighted by
the number of mate-pairs indicating that u is followed by v in the chromosome. In this graph, we are
looking for a cover of all matching edges using a small number of paths and cycles (corresponding to
linear and circular chromosomes in the genome).

Input: graph G with edge-weights ω, perfect matching M in G, some σp, σc, k ∈ N
Question: Is there a collection C of ≤ σp paths and ≤ σc cycles covering M in G of total

weight ≥ k?

SCAFFOLDING (SCA)

Huson et al. [73] considered G as multigraph in which each non-contig edge has an approximate
length. This makes for more realistic modeling since two hypotheses involving different gap-sizes
between contigs should be incompatible. The authors showed NP-completeness for this problem.

To better support repetitions, (Chateau et al. [74] unpublished) added multiplicities to the contig
edges, which can be roughly estimated from coverage numbers. Then, a solution is a set of ≤ σp open
and ≤ σc closed walks in G. They presented an ILP solving a slight generalization of this problem, but
no parameterized algorithms are known in this case. However, the multiplicity-supporting version
of SCAFFOLDING gives rise to another problem: optimal solutions are much less likely to be unique
and each individual optimal solution is thus likely to correspond to chimeric sequences (a genomic
sequence is called chimeric if it contains material from different chromosomes or from unrelated parts
of one chromosome). This gives rise to the problem of removing inter-contig edges such as to extract
the sub-walks that are shared by all decompositions of a solution into walks [75].

Input: graph G with edge-weights ω and multiplicities m, perfect matching M in G, k ∈ N
Question: Is there a set X ⊆ E(G) \M of total cost ≤ k s.t. G− E can be uniquely decomposed

into walks?

SCAFFOLD LINEARIZATION (LIN)

Results. Gao et al. [76] presented an O(|V(G)|w|E(G)|)-time algorithm for SCA where w is the
maximum number of contigs spanned by any inter-contig edge in the solution ordering. SCA is known
to be W[1]-hard for k [75] but solvable in O∗((tw!)2) time [77], where tw denotes the treewidth of G. A
simple reduction from HAMILTONIAN PATH proves SCA NP-hard even on bipartite planar graphs
with constant edge weights and σp + σc = 1 [75]. For a variation of this problem, they proved a kernel
for a parameter involving the feedback edge set number of G. Finally, SCAFFOLD LINEARIZATION has
been shown to be NP-hard under multiple cost-measures for the solution X [78], but can be solved in
O∗(ctw) time for different c ≤ 5, depending on the cost-measure [79].

Notes. Donmez and Brudno [80] approached scaffolding by first computing an orientation of the
contigs, formulated as ODD CYCLE TRANSVERSAL (the problem of removing few vertices from
a graph such that the result is bipartite), and then ordering them in the scaffold graph using a
formulation as FEEDBACK ARC SET. Note further that advances in engineering resulted in so-called
“third-generation sequencing” techniques that allow researchers to read large chunks of DNA from
a single chromosome [81]. Since these “long reads” have an elevated error rate, focus has recently
shifted to detecting and correcting these errors with short reads instead of scaffolding paired reads.

Open Questions. Dallard et al. [82] observed that a simple, fast greedy heuristic often produces good
scaffolds. It would be interesting to know if those scaffolds are generally similar to optimal scaffolds
and, if so, consider parameters measuring this distance.

4. Haplotyping

Cells of diploid (or, more generally, polyploid) species have two (multiple) copies of each
chromosome. These copies are imperfect in that they can differ in a tiny percentage of their positions
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(“sites”) and such positions are called Single-nucleotide polymorphisms (SNPs). When sequencing a
diploid genome (see Section 3 for more on sequencing), each read comes from one of the copies of some
chromosome but, a priori, there is no way of knowing whether two reads came from the same copy or
not. Thus, an assembled diploid genome of an individual contains SNPs where both chromosomes
agree (“homozygous sites”) and SNPs where they disagree (“heterozygous sites”). Since the vast
majority of SNPs exist in only two states (“biallelic SNPs”) [83,84], the SNPs of a chromosome can be
represented as a string over the alphabet {0, 1} called a haplotype and the SNPs of a diploid individual
can be represented as a string over the alphabet {0, 1, 2} called the genotype, where 0 and 1 mean that
the two chromosomes agree on one of the biallelic states, whereas 2 means that the chromosomes
disagree. Now, experimentally determining the genotype of an individual is (relatively) cheap and easy
while experimentally determining the haplotypes of the chromosomes is expensive [85,86]. For many
applications, however, knowledge of the haplotypes is required and, thus, computational methods
have been developed to infer haplotype data (“haplotyping” or “phasing”). In Section 4.1, we consider
the problem of inferring the haplotypes by overlapping reads from a diploid genome, similar to the
reconstruction of DNA sequences (see Figure 7). In Section 4.2, we consider the problem of inferring
the haplotypes of a population, given its genotypes (see Figure 8). This requires assuming that the
distribution of haplotypes follows a parsimony criterion. Although most parsimonious solutions often
do not reflect the truth [87], they can form the basis for more precise algorithms in the future.

For surveys on both variants of haplotyping, refer to the works in [88–95].

4.1. Haplotype Assembly

Problem Description. A matrix M with m length-n rows (“fragments”) over {0, 1, -} is called in
conflict if there are rows r and r′ and a position i < n such that r[i], r′[i] and - are pairwise distinct
(that is, - 6= r[i] 6= r′[i] 6= -) and conflict-free (or 1-conflict-free), otherwise. For all p ≥ 1, M is called
p-conflict-free if its rows can be partitioned into p conflict-free sets of rows. While we prefer stating the
general (“polyploid”) version of this problem, the special case that p = 2 (“diploid” genome) is by far
the most commonly considered.

01101---00101--

010001--1101001

-11010---0101--

--001----001---

--101000--111--

----111-110----

-----1111111001

Figure 7. A matrix of reads from two chromosomes, condensed to known SNPs of the species. Flipping
the underlined (red) entries allows a bipartition into two conflict-free sets (gray and black). Note that
not all SNPs exhibit both possible states.

Input: matrix M, integer k
Question: can M be turned p-conflict-free with k operations?

p-(SINGLE) INDIVIDUAL HAPLOTYPING (also referred to as HAPLOTYPE ASSEMBLY) (p-IH)

p-IH can be interpreted as a clustering problem that finds p consensus strings such as to minimize
the sum of the radii needed to capture all input strings (rows), where the distance function depends
on the nature of allowed “operations”. Most of the results are for diploid genomes, that is, for the
2-IH problem. In the following, a row r is called active in position j if there are i and ` such that
i ≤ j < ` and r[i] 6= - 6= r[`], the set of positions in which r is active is called α(r) and a gap in a row r
is any position i ∈ α(r) with r[i] = -. We let g denote the maximum number of gaps in any row of
M, we let ` := maxr |α(r)| denote the maximum number of active positions of any row, and we let
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c := maxj α−1(j) denote the “coverage”, that is, the maximum over all positions j of the number of
rows r that are active in j. Note that gapless rows can still contain chains of -at the beginning and end.

Results. The complexity of 2-IH depends on the type of operations allowed on the matrix. Mainly,
three operations have been considered in the literature:

Deleting rows. The problem of turning M 2-conflict-free by row-deletions is known as MINIMUM

FRAGMENT REMOVAL (MFR). It is equivalent to turning the “conflict graph” bipartite by
removing vertices (this problem is called ODD CYCLE TRANSVERSAL or VERTEX BIPARTIZATION

in the literature). Herein, the vertices of the conflict graph are the rows of M and rows u and v
have an edge if they cannot be assigned to the same chromosome, that is, - 6= u[i] 6= v[i] 6= -
for some position i. MFR is NP-hard even if each row has at most one gap [96], but becomes
polynomial-time solvable for gapless M [96,97]. It can be solved in O(22gm2n + 23gm3) time [97]
and in O(nc3c + m log m + m`) time [98]. Of course, results for ODD CYCLE TRANSVERSAL

apply to MFR: it admits O∗(3k)-time [99,100] and O(2.32k)-time [101] algorithms as well as a
randomized kernel of size O(k4.5) [102].

Deleting columns. The problem of turning M 2-conflict-free by column-deletions is known as
MINIMUM SNP REMOVAL (MSR). It has been shown to be NP-hard even if each row has at most
two gaps [96], but polynomial-time solvable for gapless M [96,103]. Bafna et al. [97] showed an
O(2gmn2)-time algorithm.

Flipping values. By far the most studied approach is turning M 2-conflict-free by flipping values, that
is, turning a 1 into a 0 or vice versa. This problem is known as MINIMUM ERROR CORRECTION

(MEC) or MINIMUM LETTER FLIP in the literature and it is has been shown to be NP-hard,
even on gapless inputs [104]. A simple reduction from EDGE BIPARTIZATION [105] further
shows that MEC is still NP-hard if each row contains at most three non-(-) characters and each
column contains at most two non-(-) characters, thus excluding parameterized algorithms, even
for the combined parameter. A parameterized algorithm with running time O∗(2m) is trivial
(assign each row to one of the two partitions/chromosomes) and an O∗(2n)-time algorithm
was presented by Wang et al. [106]. Further research focused on the coverage c, which is very
small in practice. O∗(2c)-time algorithms with various polynomial factors were presented by
Xie et al. [107], Deng et al. [108], Patterson et al. [109], Pirola et al. [110], and Garg et al. [111].
MEC can be linearly reduced to ODD CYCLE TRANSVERSAL [105], implying that results for ODD

CYCLE TRANSVERSAL carry over to MEC as well (O∗(3k) time [99,100], O∗(2.32k) time [101], and
O(k4.5)-size randomized kernel [102]).

On gapless inputs, MEC can be solved in O(2`mn) time [112] (assuming that all positions in the
corrected matrix are “heterozygous”, that is, contain both 0 and 1) or in O(3``m) time [105].

Notes. A variant of MFR in which rows are to be removed such as to make M 2-conflict-free
and to maximize the number of SNPs covered by the solution, called LONGEST HAPLOTYPE

RECONSTRUCTION, has been shown to be NP-hard but solvable in O(n2(n + m)) time [104] for gapless
M. A more practical variant of MEC, incorporating the aspect of sequencing that each position in a
read is given as four probabilities (probability for C, G, A, and T (or U)) instead of a single character was
considered by Xie et al. [107], who included a “GenoSpectrum” in the input and give an algorithm
running in O(nc2c + m log m + m`) time. Another version of MEC, constraining output matrices by
a “guide-genotype” was considered by Zhang et al. [113], showing that this version can be solved in
O(4`m) time. A slight modification of the MEC problem, asking for two haplotypes h1 and h2 and a
bipartition (R1, R2) of the rows such that hi is at most k flips away from the reads in Ri for i ∈ {1, 2}, was
considered by Hermelin and Rozenberg [114]. Their algorithm solves this problem in O(2gkkmn) time.

Since diploid species usually inherit one chromosome from each of their parents, it seems plausible
that knowledge of the pedigree of a group of species helps infer their haplotypes. In this context,
Garg et al. [115] considered a set I of individuals and a set T of mother–father–child relations, given in
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addition to the fragment-matrices of each individual, and ask for a set of flips in each fragment-matrix
such as to minimize the cost of the flips plus a cost function penalizing unlikely inheritance scenarios.
They solved this modified problem in O∗(24|T|+|I|+c) time.

Finally, regarding polyploidy (that is, p > 2), Li et al. [116] showed that p-ploid MFR can be
solved in O(22gnm2 + 2t(2m)p+1) time and in O(nm2 + mp+1) time if the input matrix M is gapless.
Further, p-ploid MEC can be solved in O∗(2p(`+1)) time and in O∗(pc) time [105].

Open Questions. Parameterizations for the IH problem focus mainly around the number g of gaps per
row and the coverage c. While the coverage c was reasonably estimated with 10–30 for past sequencing
projects, future technology is expected to increase this number. Even today, whole-exome-sequencing
uses coverages of at least 100 [117]. Quoting Garg [118],

“developing a parameterized algorithm for this integrative framework and deciding
parameters that work well in practice is very important.”

Thus, a future challenge will be to find more relevant parameters and exploit them to design
parameterized algorithms. We suspect that graph-measures of the conflict graph might come to the
rescue here, using the known reductions to bipartization problems [105]. Indeed, a more thorough
investigation into the multivariate complexity of ODD CYCLE TRANSVERSAL would certainly yield
important consequences for the presented variants of (SINGLE) INDIVIDUAL HAPLOTYPING.

A second challenge for (SINGLE) INDIVIDUAL HAPLOTYPING is the development of efficient
preprocessing strategies. While some effective reduction rules for variants of IH are known [119–121],
many of them are formulated and tuned for ILP formulations—kernelization results, whether positive
or negative, have been amiss.

Finally, an obvious open question is to extend the results for the polyploid case, where only little is
known in terms of parameterized complexity. Indeed, algorithms deciding the vertex-deletion distance
into p-colorable graphs would be a good starting point to attack this problem.

4.2. Haplotype Inference

Problem Description. A genotype g is a string over the alphabet {0, 1, 2} and a haplotype is a string
over the alphabet {0, 1}. Two haplotypes h and h′ resolve a genotype g if, for each position i, g[i] = h[i]
if h[i] = h′[i] and g[i] = 2, otherwise. Then, a list of haplotypes resolves a list of genotypes if, for each
genotype on the list, there are two haplotypes on the list that resolve it.

00000110 h0
01101101 h1
11001011 h2
11011001 h3
10101100 h4

g0 02202122
g1 22002210
g2 21221201
g3 22101202
g4 12201222
g5 12221202

Figure 8. Six genotypes gj resolved by five haplotypes hi.

Input: n length-m genotypes gj, integer k
Question: find 2n length-m haplotypes resolving the gj whose total cost is ≤ k

HAPLOTYPE INFERENCE (alias HAPLOTYPE PHASING, POPULATION HAPLOTYPING) (HI)

Results. The literature considers two major variants of the HI problem.

Pure Parsimony. In the PURE PARSIMONY HAPLOTYPING problem, the cost is the number k of different
haplotypes needed to explain the given genotypes. This problem is NP-hard [122–126], even
for three letters 2 per genotype and three letters 2 per position in the genotypes, but becomes
polynomial-time solvable if each genotype has at most two letters 2 [104,127] or each position has
at most one letter 2 [126,128]. Further special cases were considered by Sharan et al. [125] who also
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presented an O(kk2+km)-time algorithm for the general case [125]. A variant where haplotypes
can only be picked from a prescribed pool H′ was considered by Fellows et al. [129] who showed
a O(kO(k2)n2m)-time algorithm. Fleischer et al. [130] later presented an O(k4k+3m)-time algorithm
for the unconstrained version that can also solve the constraint version in O(k4k+3m|H′|2) time
(indeed, these running times can be decreased to O(k4k+2m) and O(k4k+2m|H′|) on average using
perfect hashing) as well as a size-O(2kk2) kernel. Their algorithm can also output all optimal
solutions.

Perfect Phylogeny. In the HAPLOTYPING BY PERFECT PHYLOGENY problem, haplotypes are required
to fit a “perfect phylogeny”, that is, a tree whose leaves are labeled by the haplotypes resolving
the input genotypes such that, for each position i, the subtrees induced by the leaves with 0 and
1 at position i do not intersect. Gusfield [131] introduced this problem for k = ∞ and showed an
almost-linear-time algorithm, which was later improved to linear time [132,133]. Otherwise, the
problem is NP-hard [126] but admits some polynomial-time solvable special cases based on the
number of 2s in the genotypes [126].

Notes. A variant of PURE PARSIMONY HAPLOTYPING is XOR-HAPLOTYPING, where genotypes do not
contain the letter 2 and two haplotypes resolve a genotype if it is the result of the bitwise XOR of the
haplotypes. While not known to be NP-hard, this variant can be solved in O(m(2k2

k + n)) time [120].
Note that the O∗(k4k)-time algorithm of Fleischer et al. [130] can be adapted for this problem.

Another problem called SHARED CENTER that aims at identifying SNPs that correlate with certain
diseases was considered from the viewpoint of parameterized complexity by Chen et al. [134] who
showed hardness and tractability for it.

Open Questions. A prominent open question is whether PURE PARSIMONY HAPLOTYPING can be
solved in polynomial time when the number of 2s per position is bounded by two [125,135,136].
For parameterized complexity, one of the most important questions is whether PURE PARSIMONY

HAPLOTYPING admits a single-exponential-time algorithm or a polynomial-size kernel when
parameterized by k. Further, parameterizations for this problem have mostly focused on the “natural
parameter” k but, in practice, other parameters may be more relevant and promising. Some measure
of how convoluted the given genotypes are may be a promising avenue for future research. From a
biological point of view, a parameter related to the number of 2s may be promising, but the known
results suggest that such a parameter can only lead to FPT-results if combined with others. Finally,
from a practical point of view, it may be interesting to combine the HAPLOTYPE INFERENCE and
(SINGLE) INDIVIDUAL HAPLOTYPING problems. For example, it would be interesting to find a set of
few haplotypes that explain the given genotypes modulo few errors or to infer few haplotypes given a
set of genotypes along with a pedigree indicating their inheritance.

5. Phylogenetics

To put sequences of different species in perspective and to understand historical evolution, as well
as try to predict future directions of the development of life on Earth, a “phylogeny” [137] (evolutionary
tree or network) needs to be constructed. Indeed, some see the reconstruction and interpretation of a
species phylogeny as the pinnacle of biological research [138]. A likely evolutionary scenario can be
constructed from a multiple alignment, a character-state matrix, or a collection of sub-phylogenies,
and methods for this are plentiful [139,140]. In the scope of this survey, however, we focus on recent
results for NP-hard problems surrounding phylogenetic trees and networks.

5.1. Preliminaries

An evolutionary (or phylogenetic) network N is a graph whose degree-one nodes L(T) (“leaves”)
are labeled (by “taxa”). A rooted phylogenetic network N is a rooted acyclic directed graph whose
non-root nodes either have in-degree one or out-degree one and whose out-degree-zero nodes L(T)
(“leaves”) are labeled (by “taxa”). A (rooted) phylogenetic tree is a (rooted) phylogenetic network
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whose underlying undirected graph is acyclic. In the context of this section, we drop the prefix
“phylogenetic” for brevity and sometimes refer to networks as “phylogenies”. Some works consider
trees in which each leaf-label may occur more than once. These objects are called multi-labeled trees (or
MUL trees). For a set T of networks, we abbreviate

⋃
T∈T L(T) =: L(T ). An important parameter of

networks is their level, referring to the largest number of reticulations in any biconnected component
of the underlying undirected graph (see [141]).The restriction of T to L, denoted by T|L, is the result
of removing all leaves not in L from T and repeatedly removing unlabeled leaves and suppressing
(that is, contracting any one of its incident edges/arcs) degree-two nodes. A network N displays a
network T if T is a topological minor of N, respecting leaf-labels, that is, N contains a subdivision of
T as a subgraph. Herein, a directed edge can only be subdivided in accordance to its direction, that
is, the subdivision of an arc uv creates a new node w and replaces uv by the arcs uw and wv. This
notion can be generalized to the case that N is the disjoint union of some networks (see Section 5.2.3).
For non-binary networks, there are two different notions of display: the “hard”-version is defined
analogously to the binary case, while we say that a network N “soft”-displays a network T if any
binary resolution of N displays any binary resolution of T, where a binary resolution of a network N is
any binary network that can be turned into N by contracting edges/arcs. “Soft” and “hard” versions
of display are derived from the concept of “soft” and “hard” polytomies, meaning high degree nodes
that represent either a lack of knowledge of the correct evolutionary history leading to the children
taxa (“soft”) or a large fan-out of species due to high evolutionary pressure (“hard”).

Note that many kernelization results in phylogenetics bound only on the number of labels in a
reduced instance. If the input contains many trees or an intricate network, kernelization results should
more fittingly be described as “partial kernel” (see [142]). We thus usually refer to such results as
“kernel with . . . taxa”.

5.2. Combining and Comparing Phylogenies

Problem Description. An approach to reconstruct a phylogeny from the genomes of a set of species
is to first reconstruct the phylogenies of the genes (using multiple alignments and after clustering
them together into families) into so-called “gene trees” and then to combine these trees into a tree
representing the evolutionary history of the set of species called the “species tree” (see also Section 5.3
for more on the divergence between gene trees and species trees). In general, given trees Ti each on the
taxon-set Xi, we want to “amalgamate” the trees into a single tree T, which, since it agrees with and
contains all the Ti, is called an agreement supertree. This problem is known as TREE CONSISTENCY (and,
sometimes TREE COMPATIBILITY).

Input: trees T1, T2, . . . , Tt on X1,X2, . . ., respectively
Question: Is there a tree T∗ on X :=

⋃
i Xi with ∀i T∗|Xi= Ti?

TREE CONSISTENCY (TCY)

For surveys about the combination of phylogenies (“consensus methods”) we refer to Bryant [143] and
Degnan [144].

Results. For unrooted trees, TCY can be solved in polynomial time if all Ti share a common taxon [145]
but is NP-complete in general, even if all input trees contain four taxa [145] (such a “quartet” is
the smallest meaningful unrooted tree since unrooted trees with at most three taxa do not carry
any phylogenetic information). This restricted problem is also known as QUARTET INCONSISTENCY.
TCY can be solved in polynomial-time for two unrooted (non-binary) trees [146]. More generally,
using powerful meta-theorems [147,148] (problems formulatable in “Monadic Second Order Logic”
(MSOL) are FPT for the treewidth of the input structure), TCY is fixed-parameter tractable for the
treewidth of the display graph [149,150] (that is, the result of identifying all leaves of the same label
in the disjoint union of the input trees), which is smaller than the number t of trees. Baste et al. [151]
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improved the impractical running time resulting from the application of the meta-theorems, showing
an O∗(2O(t2))-time algorithm.

For rooted trees, TREE CONSISTENCY can be solved in polynomial time [152,153] (even for
non-binary trees) but, due to noisy data and more complicated evolutionary processes, practically
relevant instances are not expected to have an agreement supertree [154,155]. Thus, derivations
of the problem arose, asking for a smallest amount of modification to the input such that an
agreement supertree exists. The most prominent modification types are removing trees (ROOTED

TRIPLET INCONSISTENCY), removing taxa (MAXIMUM AGREEMENT SUPERTREE), and removing edges
(MAXIMUM AGREEMENT FOREST), which we discuss in the following.

5.2.1. Consensus by Removing Trees

When reconstructing a species tree from gene trees, we may hope that the gene trees of most of the
sampled gene families actually agree with the species phylogeny and only few such families describe
outliers that developed nonconformingly. In this case, we can hope to recover the true phylogeny by
removing a small number of gene trees.

Input: triplets T1, T2, . . . on X1,X2, . . ., respectively, and some k ∈ N
Question: Is there a tree T∗ on X :=

⋃
i Xi such that T∗|Xi 6= Ti for at most k of the Ti?

ROOTED TRIPLET INCONSISTENCY (RTI)

Results. ROOTED TRIPLET INCONSISTENCY is NP-hard [156–158], even on “dense” triplet sets [159] (a
triplet set T is called dense or complete if for each leaf-triple {a, b, c}, T contains exactly one of ab|c, ac|b
and bc|a). While the general problem is W[2]-hard for k [159], the dense version admits parameterized
algorithms. Indeed, Guillemot and Mnich [160] showed parameterized algorithms running in O(4kn3)

and in O∗(2O(k1/3 log k)) time, as well as an O(n4)-time computable, sunflower-based kernel containing
O(k2) taxa (see [161] for details on the sunflower kernelization technique). Their result has recently
been improved to linear size by Paul et al. [162].

Notes. Generalizing RTI to ask for a level-` network displaying the input trees yields a somewhat
harder problem, which can be solved for dense inputs in O(|T|`+1n4`/3+1) time [163] and in O(|T|`+1)

time for a particular class of networks [164].
The unrooted-tree version of dense RTI (where the input consists of quartets) is known to be

solvable in O(4kn + n4) time [165].

5.2.2. Consensus by Removing Taxa

In many sciences, the most interesting knowledge can be gained by looking more closely to
the non-conforming data points. In this spirit, biologists are particularly interested in taxa causing
non-compatibility, that is, whose removal allows for an agreement supertree. In the spirit of parsimony,
we are thus tempted to ask for a smallest number of taxa to remove from the input trees such that
an agreement supertree exists.

Input: trees T1, T2, . . . , Tt on X1,X2, . . ., respectively, and some k ∈ N
Question: Is there a tree T∗ on X such that |⋃i Xi \ X | ≤ k and ∀i T∗|Xi= Ti|X ?

MAXIMUM AGREEMENT SUPERTREE (MASP (also SMAST or MLI in the literature))

Results. While MASP can be solved in O(n1.5) time for two rooted trees [166–168] (n denoting the
total number of labels in the input), it is NP-hard for t > 2, even if all Ti are triplets [166,169], and
the NP-hardness persists for fixed t [166] (but large trees). Guillemot and Berry [170] showed that,
on dense, binary, rooted inputs, MASP can be solved in O(4kn3) and O(3.12k + n4) time by reduction
to 4-HITTING SET. They further improved an O(t(2n2)3t2

)-time algorithm of Jansson et al. [166] for
binary Ti to O((8n)t) time [170], which was subsequently improved to O((6n)t) time by Hoang and
Sung [171]. The latter also gave an O((t∆)t∆+3(2n)t)-time algorithm for general rooted inputs (∆
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denoting the maximum out-degree among the input trees). MASP is W[2]-hard for k, even if the input
consists of rooted triplets [169], and W[1]-complete in the rooted case for the dual parameter n− k,
even if we add t to it [170]. On the positive side, the problem can be solved in O((2t)ktn2) time for
binary trees [170] which has been generalized to arbitrary trees by Fernández-Baca et al. [172]. For
completeness, we want to point out that many of the results for MASP also hold for MASP’s sister
problem MAXIMUM COMPATIBLE SUPERTREE (MCSP), in which equality with the restricted agreement
supertree T∗ is relaxed to being a contraction of T∗ (with the notable exception that MCSP can be
solved in O(22t∆nt) time in both the rooted and unrooted case [171]).

Notes. The special case of MASP in which X1 = X2 = . . . is called MAXIMUM AGREEMENT

SUBTREE (MAST) and has been studied extensively. While still NP-hard for t = 3 non-binary
trees [173], MAST can be solved in O(kn3 + n∆) [157,174], in which time we can also compute a
“kernel agreement subtree”, denoting the intersection of all leaf-sets of all optimal maximum agreement
subtrees [175]. MAST is fixed-parameter tractable for k with parameterized algorithms running in time
O(min{3ktn, 2.18k + tn3}) [176–178] (by reduction to 3-HITTING SET).

More fine-grained versions of MAST that allow removal of different taxa from each Ti were
introduced by Chauve et al. [179]. In AGREEMENT SUBTREE BY LEAF-REMOVAL (AST-LR), the objective
is to minimize the total number q of removed leaves and, in AST-LR-d, the objective is to minimize
the maximum number d of leaves that have to be removed from any of the trees. Both versions are
NP-hard [179] but can be solved in O((4q− 2)qt2n2) (AST-LR) and O(cdd3d(n3 + tn log n)) time for
some constant c (AST-LR-d) [179,180].

Lafond et al. [181] considered MAST for multi-labeled trees showing that it remains NP-hard and
can be solved in O∗((2n)tkkt) time.

Finally, Choy et al. [141] showed that a “maximum agreement subnetwork” for two binary
networks of level `1 and `2, respectively, can be computed in O∗(2`1+`2) time.

5.2.3. Consensus by Removing Edges—Agreement Forests and Tree Distances

An important biological phenomenon that governs the discordance of gene trees are non-tree-like
processes such as hybridization and horizontal gene transfer (HGT) (see also Section 5.3). If a branch
in a gene tree corresponds to a horizontal transfer, then we expect that deleting this branch results in
a forest, which is in agreement with the other gene trees. This gives rise to the idea of “agreement
forests”, resulting from the deletion of branches in the input phylogenies.

Input: rooted or unrooted trees T1, T2, . . . on X and some k ∈ N
Question: Is there a forest F with L(F) =

⋃
i L(Ti), F has ≤ k trees and each Ti displays F?

MAXIMUM AGREEMENT FOREST (MAF)

Maximum agreement forests come in three major flavors: unrooted maximum agreement forests
(uMAFs), rooted maximum agreement forests (rMAFs), and maximum acyclic agreement forests
(MAAFs). Herein, “acyclic” makes reference to the constraint that the “inheritance graph is acyclic”
(see Figure 9). Formally, the inheritance graph of an agreement forest F for two trees T1 and T2 has the
trees of F as nodes and an arc uv if and only if the root of u is an ancestor of the root of v in T1 or in
T2. Demanding acyclicity of this graph forbids, for example, that a tree u of F is “above” another tree
v in T1 but “below” v in T2. This definition generalizes straightforwardly to more than two trees Ti.
In the following, the size of an agreement forest F is the number of trees in F and it is equal to the
number of branches to remove in each input tree to form (a subdivision of) F and F is called maximum
if it minimizes this number. For surveys about tree distances and agreement forests, we refer to
Shi et al. [182] and Whidden [183].
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Figure 9. Illustration of (acyclic) agreement forests.

Results. Evidently, results heavily depend on the type of agreement forest we are looking for.
Interestingly, each of the three versions corresponds to a known and well-studied distance measure
between trees and we thus also include results stated for the corresponding distance-measure.

Unrooted Agreement Forest. The size of a uMAF of two binary trees T1 and T2 is exactly equal to the
minimum number of “TBR moves” necessary to turn T1 into T2 [184,185] (and vice versa; indeed,
this defines a metric and it is called the “TBR distance” between T1 and T2). Herein, a TBR (tree
bisection and reconnection) move consists of removing an edge uv from a tree (“bisecting” the
tree) and inserting a new edge between any two edges of the resulting subtrees (“reconnecting”
the trees), that is, subdividing an edge in each of the subtrees and adding a new edge between
the two new nodes.

For two trees, deciding uMAF is NP-hard [184], but fixed-parameter tractable in k. More
precisely, the problem can be solved in O∗(kO(k)) time [185], O(4kk5 + nO(1)) time [186], and
O(4kk + nO(1)) time [187]. These results make use of the known kernelizations with 15k [185,188]
and 11k taxa [189]. For t > 2 binary trees, Shi et al. [190] presented an O(4knt)-time algorithm.
Chen et al. [191] considered the uMAF problem on multifurcating trees, showing that it still
corresponds to the TBR problem and can be solved in O(3kn) time.

Rooted Agreement Forest. The size of an rMAF of two rooted binary trees T1 and T2 is exactly one
more than the minimum number of “rSPR moves” necessary to turn T1 into T2 [192,193] (and
vice versa; indeed, this defines a metric and it is called the “rSPR distance” between T1 and T2).
Herein, an rSPR (rooted subtree prune and regraft) move consists of removing (“pruning”) an arc
uv from a tree and “regrafting” it onto another arc xy, that is, subdividing xy with a new node z
and inserting the arc zv.

The problem is known to be NP-hard and algorithms parameterized by k have been extensively
studied and improved. An initial O(4kn4)-time algorithm [187,194] was improved to O(3kn)
time [187], O(2.42kn) time [195], O(2.344kn) time [196], and the current best O(2kn)-time
algorithm by Whidden [183]. In contrast, a kernel with 28k taxa [193] has stood since 2005.
For t > 2 trees, rMAF can be decided in O∗(6k) time [197] and O(3knt) time [190].

Collins [198] showed that using “soft”-display, rMAFs still correspond to computing the rSPR
distance between two multifurcating trees. This problem can be solved in O∗(4k) time [199] and
in O(2.42kn) time [183,200] and admits a kernel with 64k taxa [198,201]. For t > 2 trees, the
multifurcating rMAF problem is solvable in O(2.74kt3n5) time [202]. Notably, Shi et al. [202] also
considered the “hard” version of the problem and presented an O(2.42kt3n4)-time algorithm for it.

Acyclic Agreement Forest. The size of a MAAF of two rooted binary trees T1 and T2 is exactly one
more than the minimum number of reticulations found in any phylogenetic network displaying
both T1 and T2 [192] and this relation holds also if T1 and T2 are non-binary [203].

Deciding this number is known as the HYBRIDIZATION NUMBER (HN) problem and it has been
shown to be NP-hard by Bordewich and Semple [204]. The problem can be solved in O(3nn) time



Algorithms 2019, 12, 256 19 of 33

by crawling a bounded search-tree [205]. In 2009, Whidden and Zeh claimed an O(3kn log n)-time
algorithm, which they later retracted and replaced by an O(3.18kn)-time algorithm [183,195]. For
t = 3 binary trees, HN can be decided in O∗(ck) time, where c is an “astronomical constant”[206].

Concerning preprocessing, a kernel with at most 9k taxa is known [188,201] and this kernelization
result has been generalized to the case of deciding HN for t > 2 binary trees (in which case HN
and MAAF no longer coincide) by van Iersel and Linz [207], showing a kernel with 20k2 taxa
for this case, which has again been generalized to t > 2 non-binary trees by van Iersel et al. [208],
showing a kernel with at most 20k2(∆− 1) (and at most 4k(5k)t) taxa [208]. For MAAF with
t = 2 non-binary trees, Linz and Semple [203] showed a linear bikernel (that is, a kernelization
into a different problem, see [209]) with 89k taxa, which implies a quadratic-size classical kernel.
For this setting, algorithms running in O∗(6kk!) [210] and O∗(4.83k) [211] time are also known.

Notes. Any algorithm for binary uMAF, rMAF, and MAAF with running time f (k)nO(1) can be
turned into an algorithm running in f (`)nO(1), where ` is the level of any binary network displaying
the two input trees [212]. Furthermore, all three agreement forest variants are fixed-parameter
tractable for the treewidth of the display graph of the input trees [213] (see corresponding results
for unrooted TREE CONSISTENCY [149,150]). The rSPR distance has been generalized to a distance
measure for phylogenetic networks called SNPR and its computation is fixed-parameter tractable [214]
parameterized by the distance. Variations of the discussed distance measures include: (1) the uSPR
distance, which does not have an agreement-forest formulation, is NP-hard to decide [215], admits
a kernel with 76k2 taxa [216] (in a preprint, Whidden and Matsen [217] claimed an improvement to
28k taxa), and can be calculated in O∗((28k)!!16k) time [218] (using the mentioned preprint-kernel);
(2) its close sibling, the replug distance, which admits a formulation as “maximum endpoint agreement
forest”, is conjectured to be NP-hard to decide but admits an O∗(16k)-time algorithm [218]; (3) the
“temporal hybridization number”, denoting the smallest amount of reticulation required to explain
trees with a temporal network, which was shown to be NP-hard for two trees [219] but admits an
O∗((9k)9k)-time algorithm [220]; and (4) the parsimony distance, which is NP-hard [221,222] but can
be solved in O∗(1.61838dTBR) time [223], where dTBR is the TBR distance between the input trees.

Open Questions. Consensus methods in phylogenetics can profit from a wide range of parameters,
describing the particularities of likely set of inputs. While we would indeed expect that the consensus
has a small distance to the input trees, a lot depends on how we choose to measure this distance. More
general distance measures make for stronger parameters and, while the HYBRIDIZATION NUMBER

problem can be solved in single-exponential time for the “standard parameter” k, it would be interesting
to parameterize by a stronger parameter, such as the rSPR radius in which the input trees lie.

Inspired by the groundbreaking results of Bryant and Lagergren [149], research into the display
graph and its treewidth has been conducted with some success [150,224]. However, we have yet to
design concrete, practical algorithms for consensus problems parameterized by the treewidth of the
display graph. As this would potentially yield very fast, practical algorithms, we suspect that this
would be a fruitful topic in the coming years. Another interesting parameter is the “book thickness” of
the display graph, that is, the minimum number of edge-colors needed to color the display graph such
that each color class permits an outerplanar drawing. For obvious reasons, this parameter is smaller
than the number t of input trees. Can the results for t be strengthened to work with the book thickness
instead?

5.3. Reconciliation

Problem Description. In practice, trees depicting the evolutionary history of families of genes sampled
from a set of species do not agree with the evolutionary history of the species themselves; hybridization,
horizontal gene transfer, and incomplete lineage sorting being only few known causes for such
discrepancies. In theory, even gene duplication and gene loss are enough to explain gene trees
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differing arbitrarily from the corresponding species tree. To better understand how a family of genes
developed in the genome of a concurrently developing set of species, we can compute an “embedding”
of the gene tree nodes to the edges of the species phylogeny called a reconciliation (see Figure 10).
Reconciliations also allow drawing conclusions when comparing phylogenies of co-evolving species
such as hosts/parasites or flowers/pollinators. More formally, a DL-reconciliation of a (gene-)phylogeny
G with a (species-)phylogeny S is a pair (G′, r) where G′ is a subdivision of G and r : V(G)→ V(S) is
a mapping such that:

(a) for all arcs uv of G, either r(u) = r(v) (in which case u is called “duplication”) or r(v) is a child of
r(u) (in which case u is called “speciation”);

(b) for arcs uv and uw in G, we have r(u) = r(v) ⇐⇒ r(u) = r(w) (that is, no node of G can be a
speciation and a duplication at the same time); and

(c) if u is a leaf in G, then r(u) is a leaf labeled with the contemporary species that r(u) was sampled in.

We can then define the number of losses in (G′, r) as the sum over all speciations u of the outdegree of
r(u) in S minus the outdegree of u in G′. If horizontal transfers are allowed, Condition (a) is replaced by
(a’) for all arcs uv of G, either r(u) = r(v) (in which case u is called “duplication”) or r(v) is a child of

r(u) (in which case u is called “speciation”), or r(v) is incomparable to r(u) (in which case u is
called a “transfer” and uv is called a “transfer arc”),

and Condition (b) is restricted to non-transfer arcs, and each transfer with out-degree one causes
an additional loss. In this case, we call r a DTL-reconciliation. Since, in reality, transfers occur only
between species existing at the same time, Condition (a’) introduces further restrictions. In particular,
a reconciliation r is called time-consistent if G can be “dated”, that is, there is a mapping t : V(G)→ N
such that, for all arcs uv of G, we have 1. t(u) ≤ t(v); and 2. t(u) = t(v) if and only if uv is a transfer
arc of G under r.

A DTL-reconciliation may be time-inconsistent if, for example, there are transfer arcs uv and xy
such that u and x are ancestors of y and v, respectively, in G.

Now, the parsimonious principle is used to define an optimization criterion. To this end, each
evolutionary event is given a cost such as to reflect how unlikely it is to see a certain event. By the
biological setup, it is usually assumed that speciations have cost zero.

××

×

×

a a′ b b′ c c′

×

×

a a′ b b′ c c′

Figure 10. Two different reconciliations of the same gene tree with the same species tree. A small node
u drawn in an edge xy of the species tree (large outer tree) indicates that the reconciliation maps u
to y. Boxes, triangles, circles, and hexagons represent leaves, duplications, speciations, and transfers,
respectively, while crosses are losses. The left reconciliation has three duplications and four losses,
while the right has two duplications, two losses, and one transfer.

Input: species tree S, gene tree G, mapping σ : L(G)→ L(S), costs λ, δ, τ ∈ N, some k ∈ N
Question: Is there an embedding of G in S with cost at most k?

RECONCILIATION (REC)
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We specify the allowed type of embedding by prepending “DL”, “DTL”, etc. to the problem name. The
study of the formal reconciliation problem was initiated by Ma et al. [225] and Bonizzoni et al. [226]
and is surveyed in [227–230].

Results. Optimal binary DL-reconciliations can be computed—independently of the costs—by the
LCA-mapping, which maps each node of G to the LCA of the nodes that its children are mapped to [231].
Thus, this problem can be solved in linear time [232,233] using O(1)-time LCA queries [234,235]. The
non-binary variant, while not quite as straightforward, can still be solved in polynomial time [236,237].

The complexity of computing DTL-reconciliations depends heavily on their time-consistency. If
we allow producing time-inconsistent reconciliations or the given species tree already comes with a
dating function, then optimal DTL-reconciliations can be computed in polynomial time [238–240]. In
general, however, the problem is NP-hard [238,241], but can be solved in O(3k|G|+ |S|) time [238].
Hallett and Lagergren [242] showed that DTL-reconciliations with at most α speciations mapped to
any one node in the species tree is FPT in α + τ.

Duplication, transfer, and loss are not the only evolutionary events shaping a gene tree. Hasić
and Tannier [243,244] recently introduced “replacing transfers” (TR) and “gene conversion” (C)
which model important evolutionary events and showed that DLC-reconciliations can be decided in
polynomial time [243] while deciding TR-reconciliations is NP-hard and FPT for k [244]. Finally, the
concept of “incomplete lineage sorting” (ILS) is an important factor influencing discrepancies between
gene and species phylogenies, especially when speciation occurs in rapid succession [245]. Roughly,
ILS refers to the possibility that an earlier duplication or transfer does not pervade a population at
the time a speciation occurs. Thus, one branch of a speciation may carry a gene lineage while the
other does not (see Figure 11 for an illustration). In DL-reconciliation, this scenario requires a loss, but
this would not reflect the true evolutionary history. Unfortunately, no particular mathematical model
of ILS is widely accepted, so the following results might be incomparable. In 2017, Bork et al. [246]
showed that incorporating ILS into DL-reconciliation makes the problem NP-hard, even for dated
species trees. Furthermore, DTL-reconciliation for dated, non-binary species trees allows ILS to be
computed in O∗(4∆) time [247,248].

To and Scornavacca [249] started looking into the problem of reconciling rooted gene trees with
a rooted species network, showing that, for the DL model, this problem is NP-hard, but solvable in
O∗(2k) time.

cba

A B C

Figure 11. Illustration of incomplete lineage sorting (ILS). Each row of dots represents a generation
and each dot stands for a number of individuals. The ancestral lineages of genes a, b and c, sampled in
individuals of the respective extant species A, B, and C are drawn in black. When the speciation splits
A from C, all three alleles a, b, and c exist in the population, but are not “fixated”. This is necessary
to observe ILS and gets more likely the shorter the branch to the ancestor species. The resulting gene
phylogeny differs from the species phylogeny.

Open Questions. There are three major challenges for bioinformatics concerning reconciliation. The
first and more obvious task is to include all known genomic players in the reconciliation game, meaning
to establish a standard model incorporating duplication, transfer, loss, replacing transfers, conversion,
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and incomplete lineage sorting. While Hasić and Tannier [243,244] made good progress towards this
goal, their model seems too clunky and lacks ILS support. The second challenge is to remove the need
to provide δ, τ, etc. in the input for the RECONCILIATION problem. In practice, some biologists using
implementations of algorithms for reconciliations just “play around” with these numbers until the
results roughly fit their expectations, which is understandable since nobody knows the correct values.
Indeed, in all likelihood, there are no “correct values” because the underlying assumption that the
rates of genetic modification is constant throughout a phylogeny is invalid [250]. A more realistic
approach might define expected frequencies of events for each branch and combine them with the
length of this branch in order to dynamically price duplication, transfer, loss, etc. in this branch.

5.4. Miscellaneous

Given a phylogeny T, the parsimony score of T with respect to a labeling c of its nodes is the number
of arcs in T whose extremities have a different label under c. In the SMALL PARSIMONY problem, we
are given a phylogeny T and a leaf-labeling cL and have to extend cL to a labeling of all nodes of T such
as to minimize the parsimony score. If T is a network, aside from the above definition (“hardwired”),
the “softwired” version exists, asking for the minimum parsimony score of any tree T∗ (on the same
leaf-set as T) displayed by T. While SMALL PARSIMONY is polynomial for trees [251], the problem is
NP-hard in the softwired case, even for binary T and cL, as well as in the hardwired case, unless cL is
binary [252,253]. Fischer et al. [253] also showed that hardwired SMALL PARSIMONY is FPT for the
solution parsimony score and softwired SMALL PARSIMONY is FPT for the level of the input network.

The problem of deciding whether a phylogeny T is displayed by another phylogeny N is
called TREE CONTAINMENT and it is NP-hard, even if T is a tree [254]. TREE CONTAINMENT has
polynomial-time algorithms for many special cases of N [254–261] and can be solved in O∗(1.62`)
time [262] (where ` denotes the level of N; the authors also showed an algorithm for the related
CLUSTER CONTAINMENT problem) and in O∗(3t) time [261], where t is the number of “invisible tree
components” (that is, the number of tree-nodes u whose parent v is a reticulation that is not ”visible“ in
N (that is, for each leaf a, there is a root-a-path avoiding v)). TREE CONTAINMENT stays NP-hard even
if the arcs of both T and N are annotated with “branch lengths”, but admits an O∗(2`)-time algorithm
in this case [263].

Recent research into the problem of rooting an unrooted network was conducted by Huber et al. [264],
showing that orienting an undirected binary network as a directed network of a certain class is FPT for
the level ` for some classes of N.
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