Synthesis, crystal structure and antibacterial properties of 6-methyl-2-oxo-4-(quinolin-2-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate

A.E. Huseynzada ${ }^{1 *}$, C. Jelsch ${ }^{2}$, H.N. Akhundzada ${ }^{1,3}$, S. Soudani ${ }^{4}$, C. Ben Nasr ${ }^{4}$, F. Doria ${ }^{5}$, U.A. Hasanova ${ }^{1}$, M. Freccero ${ }^{5}$
${ }^{1}$ Baku State University, ICRL, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan
${ }^{2}$ Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
${ }^{3}$ Institute of Radiation Problems of ANAS, B. Vahabzada 9, Baku, AZ 1143, Azerbaijan
${ }^{4}$ Laboratoire de Chimie des Matériaux, Université de Carthage, Faculté des Sciences de Bizerte, 7021, Zarzouna, Tunisia
${ }^{5}$ Universita di Pavia, V.le Taramelli 10, 27100 Pavia, Italy *corresponding author e-mail: alakbar.huseynzada1117@gmail.com

Abstract

The synthesis and investigation of a new biologically active derivative of dihydropyrimidine are reported. The structure of the synthesized compound was investigated by X-ray single crystal diffraction method. In order to understand the molecular interactions, the Hirshfeld surface and contacts enrichment analyses were performed. The crystal packing is mainly stabilized by strong $\mathrm{N}-\mathrm{H} . . \mathrm{O}$ hydrogen bonds and aromatic cycle stacking. Among the different types of oxygen atoms, the most electronegative had the highest propensity to form H -bonds. Biological activity of the synthesized compound was studied against E.coli, P. aeruginosa and S. aureus bacteria.

Key words: dihydropyrimidine, Biginelli reaction, Hirshfeld surface analysis, crystal structure, bifurcated hydrogen bond, antibacterial activity.

1. Introduction

One-pot multicomponent reactions are a highly powerful synthetic strategy and versatile tool for the construction of various classes of compounds with a wide spectrum of application area. Interest in multicomponent reactions is increasing due to the fact that they provide a synthetic chemist with intrinsic significant advantages over conventional linear-type synthesis mostly including simple operation, simple starting materials, high product complexity and large product diversity [1-3]. Among such type of reactions that found application in the synthesis of heterocycles is a three-component one-pot Biginelli reaction. A combination of aldehyde, urea derivative and methylene active compound leads to the obtaining of dihydropyrimidine - a class of organic compounds which are widely used in medicine due to their broad spectrum of biological activities [4]. The reason of their popularity in medicine is caused by the multicomponent nature
of this reaction allowing introducing various pharmacophoric groups in the structure of dihydropyrimidines [5-8]. Various investigations using molecular manipulations allow determining that this class of compounds demonstrate such activities as antiviral, antifungal [6, 7], anti-leishmanial, antiproliferative [9], antitumor [10-15], antibacterial [16-19], anti-inflammatory [20-22], anti-hypertensive [23-27], anti-HIV [28], antiepileptic [29], antidiabetic, anti-malarial [30], mPGES-1 inhibitors [31], antitubercular [32], miscellaneous [33-35], potassium [36-38] and calcium channels[39] and $\alpha_{1 a}$ adrenergic antagonists [40]. On this basis, different drugs were synthesized and found their application in medicine, such as batzelladine A and B [28], (S)monastrol [10-15], (S)-enastron [10-15], mon-97 [10-15], (R)-fluorastrol [11], terazosin [34]. But the superiority of dihydropyrimidines goes beyond this. They are used as a favorable core for developing heterocyclic compounds with novel optical properties [34]. It is also found that dihydropyrimidines have also been exploited as a design element in the development of functional materials such as dyes [40], polymers [41], adhesive [42] etc. Such broad application of dihydropyrimidines has prompted scientists to develop their chemistry by expanding the list of building blocks in the Biginelli reaction. Analysis of modified compounds as well as structureactivity correlations allow deeper understanding of the stereochemical-conformational requirements for activity, which significantly depend on the presence of various interactions, i.e. hydrogen bonds in the structure [43, 44].

On the other hand, quinoline is mainly used in the production of various speciality chemicals, which provide a wide variety of effects, on which many other industry sectors rely. In addition to this, quinoline has several anti-malarial derivatives, including quinine, chloroquine, amodiaquine and primaquine [45].

Concerning biological activity of quinoline and dihydropyrimidine core, a new dihydropyrimidine was synthesized by Biginelli reaction in microwave condition in the presence of cerium chloride on the basis of quinoline-2-carbaldehyde. As crystals of this compound were obtained, its structure was investigated by X-ray single crystal diffraction. In addition, the Hirshfeld surface and contacts enrichments analysis was done to quantify the molecular interactions and understand their importance in the crystal packing. Due to the fact that dihydropyrimidines demonstrate a wide spectrum of biological activities, their antibacterial activity was analyzed against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) and promising results were obtained.

2. Materials and methods

2.1 General Information

All the solvents and reagents were purchased from commercial suppliers and were of analytical grade and used without further purification. The control of the reactions progress and the determination of the synthesized compounds purity were done by thin layer chromatography (TLC) on Merck silica gel plates (60 F254 aluminium sheets) which were visualized under UV
light. Melting points were recorded in open capillary tubes on a Buchi B-540 apparatus and were uncorrected. Elemental analysis was performed on the Carlo Erba 1108 analyzer.

2.2 Experimental synthesis procedure

Synthesis of 6-methyl-2-oxo-4-(quinolin-2-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate by Biginelli reaction (Scheme 1). 0.5 mmol of quinoline-2-carbaldehyde (1), $0.75 \mathrm{mmol} \quad$ (45 $\mathrm{mg})$ of urea and $0.03 \mathrm{mmol}(0,0118 \mathrm{mg})$ of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ were added to a microwave vial with a magnetic stirrer and dissolved in 1 ml of ethanol. Subsequently, $0.46 \mathrm{mmol}(50 \mu \mathrm{l})$ of methyl acetoacetate were added to a vial, which was sealed and irradiated at $100^{\circ} \mathrm{C}$ in a microwave reactor for 2.5 h at a maximum power of 200W (CEM Discover System).
Purification of compound (4) was performed by the Biotage Isolera One Flash Chromatography System (cyclohexane-ethylacetate-methanol). After purification and removing of the solvent, a yellow precipitate was formed. Single crystals of compound (4) were obtained by crystallization in methanol. Yield 61.1%. M.p. $271-272^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR spectrum: (DMSO- $_{6}, \delta, \mathrm{ppm}$), $2.47 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.39 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.1 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 7.62-7.68 \mathrm{t}\left(2 \mathrm{H}, 2 \mathrm{C}_{\mathrm{Ar}} \mathrm{H}, J=9 \mathrm{~Hz}\right), 7.71-7.75 \mathrm{~m}(2 \mathrm{H}$, $\left.2 \mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 7.83 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH}), 7.96-7.98 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{H}, J=6 \mathrm{~Hz}\right), 8.38-8.41 \mathrm{t}\left(1 \mathrm{H}, \mathrm{C}_{\mathrm{Ar}} \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}\right), 9.34 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathbf{C}$ NMR spectrum: $\left(\mathrm{DMSO}-\mathrm{d}_{6}, \delta, \mathrm{ppm}\right), 17.97\left(\mathrm{CH}_{3}\right), 50.09(\mathrm{CH}), 50.77\left(\mathrm{OCH}_{3}\right)$, $98.08(\mathrm{C}), 122.7\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 123.45\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 124.35\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 126.62\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 126.92\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{H}\right), 129.25$ (C), 129.63 (C_{Ar}), $130.49\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.95\left(\mathrm{C}_{\mathrm{Ar}}\right), 149.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 151.85$ (COO), 165.8 (CO). HRMS (ESI-MS): $298.11\left[\mathrm{M}^{+}+\mathrm{H}^{+}\right], 320.11\left[\mathrm{M}^{+}+\mathrm{Na}^{+}\right]$. Elemental analysis calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}, \%$: C, 64.64; H, 5.09; N, 14.13. Found, \%: C, 64.75; H, 5.02; N, 14.09.

Scheme 1. Synthesis of targeted dihydropyrimidine.

2.3 NMR experiments

The NMR experiments were performed on a BRUKER FT NMR spectrometer AVANCE 300 (Bruker, Karlsruhe, Germany) (300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$) with a BVT 3200 variable temperature unit in 5 mm sample tubes using Bruker Standard software (TopSpin 3.1). Chemical shifts were given in $\mathrm{ppm}(\delta)$ and were referenced to internal tetramethylsilane (TMS). Multiplicities are declared as follow: s (singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet). Coupling constants J are given in Hz . The experimental parameters for ${ }^{1} \mathrm{H}$ are as follows: digital resolution $=0.23 \mathrm{~Hz}, \mathrm{SWH}=7530 \mathrm{~Hz}, \mathrm{TD}=32 \mathrm{~K}, \mathrm{SI}=16 \mathrm{~K}, 90^{\circ}$ pulse-length=10 ms, $P L 1=3 \mathrm{~dB}, n s=1, d s=0, d 1=1 \mathrm{~s}$ and for ${ }^{13} \mathrm{C}$ as follows: digital resolution= $=0.27 \mathrm{~Hz}, \mathrm{SWH}=17985 \mathrm{~Hz}$,
$T D=64 \mathrm{~K}, S I=32 \mathrm{~K}, 90^{\circ}$ pulse-length=9 $\mathrm{ms}, P L 1=1.5 \mathrm{~dB}, n s=300, d s=2, d l=3 \mathrm{~s}$. The NMR-grade DMSO- $\mathrm{d}_{6}\left(99.7 \%\right.$, containing $\left.0.3 \% \mathrm{H}_{2} \mathrm{O}\right)$ was used for the solutions of synthesized compound.

2.4 Mass experiments

High-resolution mass spectrometry (HRMS) was performed using electrospray ionization (ESI) in positive-ion or negative-ion detection mode.

2.5 X-Ray analysis

X-Ray analyses were performed on Bruker SMART APEX II Single Crystal X-ray Diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$) at 298(2) K, respectively. The crystal structure was solved by direct methods and refined on F^{2} by full matrix least-squares using Bruker's SHELXTL-97 [46]. The details of the crystallographic data for synthesized compound are summarized in Table 1. Crystallographic data for the structural analysis have been deposited to the Cambridge Crystallographic Data Center under number CCDC 1988673. H atoms treatment was $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ of the bound atom except for the methyl group for which or $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}} . \mathrm{H}$ atoms bound to carbon were constrained at their standard geometry. H atoms bound to nitrogen were refined freely. Mercury 3.9 was used to obtain the crystalline structure images.

2.6 Biological assay

The antibacterial activity of synthesized dihydropyrimidine against E.coli, P.aeruginosa, S.aureus was assessed by determining minimal inhibitory concentrations (MIC). The MIC, which is the lowest concentration of compound that prevents the growth of bacterial cells after incubation, was determined by the twofold micro-dilution method as described in [48]. The compounds were prepared according to CLSI guidelines and diluted in U-bottom 96 well microtiter plates which contained Muller Hinton Broth (MHB). The freshly prepared bacterial strains at about $10^{5} \mathrm{CFU}$ (colony forming unit) in MHB medium were added to each well of the microplate and incubated at $37^{\circ} \mathrm{C}$ for 24 hours. At the end of the experiment, the concentration of the tested compounds ranged from 256 to $2 \mu \mathrm{~g} / \mathrm{mL}$. The growth of the bacterial cells was determined by resazurin method. The solution of resazurin sodium salt (0.01%) was freshly prepared in sterile distilled water. After incubation, $30 \mu \mathrm{~L}$ of this solution was added in each microplate well and incubated again at the same condition for about 4 h . MIC was represented as the lowest concentration of the compounds which inhibited the color change from blue to pink since pink color indicated the growth of bacteria [48]. MIC of the studied compound was compared with MICs of pristine antibiotics (cefotaxime and ceftriaxone).

In addition to this, the efficiency of the synthesized dihydropyrimidine against the abovementioned bacteria was also tested by disc-diffusion method as described by Mayrhofer [49].In details, the surface of the nutrient medium (meat-peptone agar, Potato Dextrose Agar) was stratified with 1 mL of the diurnal suspension of the test culture $\left(10^{5} \mathrm{CFU} / \mathrm{mL}\right)$, which was used during 15 min after preparation. Previously prepared discs with certain concentrations were
stratified on the surface of the nutrient medium by the sterile tweezers. Dishes were incubated at $37^{\circ} \mathrm{C}$ during 24 h . DMSO ($40 \% \mathrm{~V} / \mathrm{V}$) was used as a solvent. Record of the results was carried out, compared with control dishes without compound and with the known drugs cefotaxime and ceftriaxone. The biological assays were carried out in triplicate. Standard deviations data were also calculated.

3. Results and discussion

3.1 Chemical synthesis.

It is known that a lot of protocols were developed for performing Biginelli reaction, leading to the synthesis of dihydropyrimidines with high yields and simple work-up procedure. Using catalyst types such as $\mathrm{Cu}(\mathrm{OTf})_{2}, \mathrm{InCl}_{3}, \mathrm{InBr}_{3}, \mathrm{CF}_{3} \mathrm{COOH}, \mathrm{Yb}(\mathrm{OTf})_{3}, \mathrm{YbCl}_{3}, \mathrm{HCl}$, acetic acid, CeCl_{3} and others [1-6, 44], it was not possible to perform a Biginelli reaction on the basis of quinoline-2-carbaldehyde (1), urea (2) and methylacetoacetate (3). Only improving the procedure [47] by performing the reaction in microwave conditions allowed us to obtain a targeted dihydropyrimidine (Scheme 1). The structure of synthesized novel dihydropyrimidine was determined by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, mass spectroscopy and elemental analysis. As it can be seen from ${ }^{1} \mathrm{H}$ NMR spectrum, the signals from methyl and methoxy groups are observed at 2.47 and 3.39 ppm correspondingly, whereas CH group position is at 6.1 ppm . Their positions on ${ }^{13} \mathrm{C}$ NMR spectra are at $17.97,50.09$ and 50.77 ppm . The signals from amine groups of dihydropyrimidine core are observed at 7.83 and 9.34 ppm respectively (Supplementary material).

3.2 Structure description.

It was also possible to obtain single crystals of the title compound (Fig. 1). Crystallographic data and details of refinement for the synthesized compound are given in Table 1. The synthesized dihydropyrimidine crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ with $Z=4$ molecules in the unit cell (Table 1). The molecular structure of the 6-methyl-2-oxo-4-(quinolin-2-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate (DHPM) from single crystal X-ray data is shown in Fig. 1. The asymmetric unit of the title compound contains two $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ moieties (Fig. 1). The two molecules have a very different conformation as the dihedral angles on the bond linking the two rings are $\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1=71.1^{\circ}$ and $\mathrm{N} 6-\mathrm{C} 21-\mathrm{C} 20-\mathrm{N} 4=114.4^{\circ}$. The tetrahydropyrimidine ring in both molecules is significantly twisted with twist angles C1-N1-C4-C3 equal to 36.5° and $\mathrm{C} 17-$ N5-C18-C19 equal to -7.4° with the presence of the $\mathrm{C} 2=\mathrm{C} 3$ and $\mathrm{C} 18=\mathrm{C} 19$ double bonds $[\mathbf{5 0} \mathbf{5 1}$]. The tetrahydropyrimidine ring is in twist-boat conformation; the C 4 and N 2 atoms form the flagpole atoms in the first molecule and the C20 and N5 atoms in the second molecule (Fig. 1) [50, 51]. The main bond lengths and bond angles are depicted in Table 2 (Supplementary material). The intermolecular hydrogen bonds observed in the crystal structure are listed in Table 3. The dihedral angles between the planes of the quinoline rings and the six membered rings in both molecules of the title compound are 80.84 and 87.35° respectively, underlining non-orthogonal arrangement of these rings (Fig. $2 \mathbf{a} \& \mathbf{b}$).

Figure 1. View of the two independent molecules of the asymmetric unit in the crystal structure. Thermal ellipsoids are shown 40% probability.

Molecules of the DHPM are interconnected via $\mathrm{N}-\mathrm{H} . . \mathrm{O}=\mathrm{C}$ and $\mathrm{C}-\mathrm{H} . . . \mathrm{O}=\mathrm{C}$ hydrogen bonds giving rise to a sheet-like structure, forming polar sheets involving polar functional groups while the quinoline moieties takes the role of hydrophobic spacer [48, 49]. These polar sheets are extended parallel to the \boldsymbol{c}-axis (Fig. 3, Table 3) [51].

Furthermore, there are two characteristic distances d_{1} and d_{2}, which are defined between the polar sheets in the like-sheet structure. The d_{1} distance represents the special separation between the successive polar sheets including the quinoline moieties (hydrophobic moieties) and d_{2} represents the spatial separation between two consecutive polar sheets. The corresponding distances d_{1} and d_{2} are $10.261 \AA$ and $4.622 \AA$, respectively (Fig. 3) [50].

The crystal packing of the title compound, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ is consolidated by several intermolecular $\mathrm{N}-\mathrm{H} . . . \mathrm{O}$ strong hydrogen bond, involving namely the donors $\mathrm{H} 1 \mathrm{~N}, \mathrm{H} 2 \mathrm{~N}, \mathrm{H} 4 \mathrm{~N}$ and H5N and the four potential acceptors O1, O1, O2, O4 and O5 (Fig. 4a, Table 3). The crystal packing is also stabilized by an intermolecular $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}=\mathrm{C}$ hydrogen bond connecting the quinoline moieties to the carbonyl oxygen $\mathrm{O} 5\left(\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 5^{\mathrm{v}}(\mathrm{v}=x+1, y, z)\right.$ and by intramolecular interaction (C16-H16A $\cdots \mathrm{O} 2$) involving the methyl hydrogen of C 16 with the carbonyl oxygen O 2 to form a S(6) motif (Fig. 4a) [52, 53]. Some of hydrogen bonds are bifurcated on the acceptors (O2, O1, Fig. 4a). A R ${ }_{2}{ }_{2}(8)$ graph-set motif connecting two adjacent molecules is observed within the sheets (Fig. 4a). Previous studies have been performed on the packing motifs of the tetrahydropyrimidine (DHPM) [54, 55]. No aromatic stacking interactions are observed between neighbouring six membered rings and quinoline moieties.

The molecular packing is stabilized by weak C-H... π intermolecular interactions between the quinoline moieties (Fig. 4b). The distances between the hydrogen atoms and the different centroids of the quinoline rings vary between $3.262 \AA$ and $3.788 \AA$.

Figure 2. Dihedral angle between the planes of quinoline rings and tetrahydropyrimidine moieties (a) in the first molecule (b) in the second molecule of the asymmetric unit.

(b)

Figure 3. (a) Crystallographic autostereogram view of a sheet-like structure along the \mathbf{c} axis in $\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}$. Dotted lines indicate $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}$ hydrogen bonds. d_{1} represents the spatial separation between the polar sheets intercalating the hydrophobic quinoline moieties while \underline{d}_{2} represents the spatial separation between two consecutive polar sheets. (b) crystallographic autostereogram of the crystal packing along the c axis.

Figure 4. (a) View of different motifs in the crystalline lattice. The non-participating hydrogen atoms and quinoline moieties have been omitted for clarity. (b) Cristallographic autostereogram illustration of C-H... π intermolecular interactions in the synthesized compound.

Table 1. Crystal data and structure parameters of the title compound.

	Crystal data
Chemical formula	$\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}$
M_{r}	594.62
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	298
$a, b, c(\AA)$	$12.991(3), 29.931(7), 7.4380(18)$
$\beta\left(^{\circ}\right)$	$95.312(5)$
$V\left(\AA^{3}\right)$	$2879.7(12)$
Z, Z^{\prime}	8,2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.10
Crystal size (mm)	$0.43 \times 0.11 \times 0.03$

Data collection

Diffractometer
Bruker-Axs Smart-Apex CCD

Absorption correction
$T_{\text {min }}, T_{\text {max }}$

Multi-scan
$T_{\text {min }}=0.886, T_{\text {max }}=0.997$

No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$

20297, 5063
2938 0.053

Structure Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.058,0.155,1.02$
No. of reflections	5063
No. of parameters	413
No. of restraints	4
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.19,-0.17$

Table 3.Geometric details (distances in \AA, angles in ${ }^{\circ}$) of hydrogen bonds (D-donor; A-acceptor; H-hydrogen) of the synthesized DHPM.

Interactions	$d(\mathrm{D}-\mathrm{H})$	$d(\mathrm{H} \cdots \mathrm{A})$	$d(\mathrm{D} \cdots \mathrm{A})$	$k \mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	Symmetry code
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.89(2)$	$2.05(2)$	2.9333	$173(2)$	$x,-y+1 / 2, z-1 / 2$
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.90(2)$	$2.10(2)$	3.0011	$179(2)$	$x,-y+1 / 2, z+1 / 2$
$\mathrm{~N} 4-\mathrm{H} 4 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.90(2)$	$2.38(2)$	3.1778	$148(2)$	$-x+1,-y,-z+2$
$\mathrm{~N} 5-\mathrm{H} 5 \mathrm{~N} \cdots \mathrm{O} 4^{\mathrm{iv}}$	$0.90(2)$	$1.96(2)$	2.8624	$178(2)$	$-x+1,-y,-z+1$
$\mathrm{C} 9-\mathrm{H} 9 \cdots 5^{\mathrm{v}}$	0.93	2.56	$3.410(5)$	152	$x+1, y, z$
$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O} 2$	0.96	2.20	$2.914(4)$	130	x, y, z

3.3 Hirshfeld surface analysis.

Analysis of intermolecular interactions using the Hirshfeld surface represents a major tool to gain insights into understanding the crystal packing. Crystal Explorer software [56] enables to compute distances of atoms external, d_{e}, and internal, d_{i}, to the surface. The intermolecular distance information on the surface can be condensed into a two-dimensional histogram of d_{e} and d_{i}, which is a unique fingerprint for molecules in a crystal structure (Fig. 5). The spikes in the fingerprint plot at the shortest distance can be attributed to the $\mathrm{O} \cdots \mathrm{H}$ hydrogen bonds. The N5$\mathrm{H} 5 \mathrm{~N} \ldots \mathrm{O} 4=\mathrm{C} 17$ contact is the shortest hydrogen bond with $d(\mathrm{O} \ldots \mathrm{H})==1.96 \AA$. The $\mathrm{N} \ldots \mathrm{H}$ contacts appear at much longer distances in the fingerprint plot, as there is only one $\mathrm{N} . . . \mathrm{H}$ hydrogen bond (N4-H4N...N4) at $d_{\mathrm{HN}}=2.680 \AA$. The $\mathrm{H}^{\cdots} \mathrm{H}$ contacts appear in the middle of the scattered points in the two-dimensional fingerprint map (Fig. 5b) with shortest distance in the packing at ca $2.2 \AA$. C...C contact arise at a minimal distance of ca. $3.4 \AA$ and involve both the aromatic double ring and the non-flat 6 -membered ring.

The different chemical contact types and their enrichment in the crystal packing were also analyzed with MoProViewer software [57]. The enrichment ratio $E_{X Y}$ for a pair of elements (X,Y) is defined as the ratio between the proportion of actual contacts $C_{X Y}$ in the crystal and the theoretical proportion R_{XY} of equi-distributed random contacts [58]. An enrichment ratio larger
than unity reveals that a contact type is over-represented in the crystal, while pairs which tend to avoid contacts with each other should yield an E value lower than unity.

Figure 5. 2D fingerprint $\left(d_{\mathrm{i}}, d_{\mathrm{e}}\right)$ plots of the Hirshfeld surface around the two independent molecules. The areas of main intermolecular contact types are shown and the reciprocal contacts can be deduced from the plots as they are symmetrical.

The nature of the intermolecular contacts and their enrichments in the crystal structure is shown in Table 4 and proportions Cxy of the actual contacts around the two independent molecules are given in Table 5 (Supplementary material). The Hirshfeld surfaces, which highlight the regions of the surface with the strongest electron density, are shown in Fig. 6. The proportion of contact types are 95% correlated on the two independent molecules of the asymmetric unit. Therefore, the contacts statistical analysis was performed on the ensemble of two molecules. Two molecules, not in contact with each other in the crystal were selected in order to obtain integral Hirshfeld surfaces.

More than three quarters of the Hirshfeld surface is associated to hydrophobic atoms Hc and C (Table 4). The contacts involving Hc and C represent 65% of the contacts, of which only C...C is significantly enriched at $E_{\mathrm{cc}}=1.41$ due to several cycle stacking occurring.

Table 4. Analysis of contacts on the Hirshfeld surface. Reciprocal contacts X...Y and Y...X are merged. The second line shows the chemical content on the surface. The $\%$ of contact types between chemical species is given followed by their enrichment ratio. The major contacts as well as the major enriched ones are highlighted in bold characters. The hydrophobic hydrogen atoms bound to carbon (Hc) were distinguished from the more polar one bound to nitrogen (Hn). Three chemically different oxygen types were distinguished: $\mathrm{O}=\mathrm{c}$ (carbonyl), Occ (ether oxygen within ester group) and $\mathrm{O}=\operatorname{coc}$ (carbonyl oxygen within ester group). $\mathbf{e} / \mathbf{\Lambda}^{\mathbf{3}}$

atom	C	Hc	N	Hn	Occ	$\mathrm{O}=\mathrm{coc}$	$\mathrm{O}=\mathrm{c}$
$\%$	31.0	46.6	4.8	6.3	1.7	4.0	5.6
C	$\mathbf{1 2 . 8}$						
Hc	$\mathbf{2 9 . 2}$	$\mathbf{2 3 . 1}$		$C_{\mathrm{XY}} \%$	contacts		
N	1.6	6.3	0.0				
Hn	0.9	2.6	0.4	0.8			
$\mathrm{Occ}=\mathrm{o}$	0.3	2.4	0.1	0.1	0.0		
$\mathrm{O}=\mathrm{coc}$	2.2	4.2	0.2	1.8	0.0	0.0	
$\mathrm{O}=\mathrm{c}$	0.6	4.3	0.5	$\mathbf{5 . 7}$	0.0	0.0	0.0
C	$\mathbf{1 . 4 1}$						
Hc	1.02	1.02		E_{XY}	Enrichment		
N	0.6	$\mathbf{1 . 4 6}$	0				
Hn	0.23	0.41	0.67	$\mathbf{1 . 9}$			
$\mathrm{Occ}=\mathrm{o}$	0.29	$\mathbf{1 . 7 6}$	0.41	0.66	0		
$\mathrm{O}=\mathrm{coc}$	0.86	1.06	0.46	$\mathbf{3 . 3}$	0	0	
$\mathrm{O}=\mathrm{c}$	0.17	0.81	0.98	$\mathbf{7 . 8}$	0.23	0	0

The three kinds of oxygen atoms have differentiated behaviors. The Hn...O=c hydrogen bond with the most electronegative O atom represents the most enriched contact at $E=7$. This is due to a bifurcated hydrogen bond between $\mathrm{C} 1=\mathrm{O} 1$ acceptor and the $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}+\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$ donors of molecule \#1. A similar double hydrogen bond (O4...H5N, H5N...O4) occurs within a dimer of molecule \#2 around an inversion centre.

The Hn... O strong hydrogen bond involving the other carbonyl $\mathrm{O}=$ coc atom type is the next most enriched contact ($E=3.27$), as there is one such interaction: O2 .. H4N-N4.

The ether Occ oxygen atom which is less electronegative prefers to interact with Hc less polar hydrogen atoms ($E=1.76$). The nitrogen N3 and N6 atoms which are potential strong acceptors interact also more with the Hc atoms. This is related to the fact that the molecule has only two strong H -bond donors (Hn) compared to four strong acceptors but there is an abundance of Hc weak donors.

(a)

(b)

Figure 6. View of the Hirshfeld surface around the two independent molecules.(a) The surface is colored according to the inner atom type; blue: nitrogen, red: oxygen, black: carbon, light blue: Hn, grey: Hc. (b) according to the inner electron density value (e/ $/ \AA^{3}$).

3.4 Biological assays

The antibacterial activity of the synthesized dihydropyrimidine was investigated against E. coli, P. aeruginosa and S. aureus bacteria. At first, minimum inhibitory concentration (MIC) for
the investigated compound and pristine antibiotics (cefotaxime and ceftriaxone) was studied by twofold micro-dilution method. As shown in Table 6, the synthesized dihydropyrimidine demonstrated a similar MIC to that of Cefotaxime for all three bacteria. Compound (4) displayed a high activity at the concentration of $2 \mu \mathrm{~g} / \mu \mathrm{l}$ against E. coli and this result was better than that of ceftriaxone $(3 \mu \mathrm{~g} / \mu \mathrm{L})$. MIC in case of P. aeruginosa and S. aureus was a bit weaker ($3 \mu \mathrm{~g} / \mu \mathrm{L}$), but it was better than the effect of ceftriaxone in case of P. aeruginosa $(5 \mu \mathrm{~g} / \mu \mathrm{L})$.
Table 6. Minimum inhibitory concentration (MIC, $\mu \mathrm{g} / \mu \mathrm{L}$) of the studied compounds.

Bacteria	Compound (4)	Cefotaxime	Ceftriaxone
E.coli	2	2	3
P.aeruginosa	3	3	5
S.aureus	3	3	3

Taking into account the MIC of the compounds, antibacterial activity was also investigated by disc-diffusion method. Results were compared with the antibacterial activity of pristine antibiotics. As it can be seen from Table 7, antibacterial activity of the studied compound against E. coli was higher than that of pristine antibiotics, equal to 28,20 and 19 mm inhibition disk radius correspondingly.

Table 7. Antibacterial activity of studied compound.

Escherichia coli	compound (4)						
Concentration $(\mu \mathrm{g} / \mu \mathrm{l})$	2	4	8	16	32	32	32
Inhibition zone (mm)	3 ± 0.5	5 ± 0.44	9 ± 0.47	15 ± 0.5	28 ± 0.38	20 ± 0.32	19 ± 0.48

Pseudomonas aeruginosa			compound (4)		cefotaxime	ceftriaxone	
Concentration $(\mu \mathrm{g} / \mu \mathrm{l})$	3	6	12	24	48	48	48
Inhibition zone (mm)	2 ± 0.46	5 ± 0.4	9 ± 0.4	19 ± 0.5	39 ± 0.5	39 ± 0.45	36 ± 0.48

Staphyloccocus aureus	compound (4)					cefotaxime ceftriaxone	
Concentration ($\mu \mathrm{g} / \mu \mathrm{l}$)	3	6	12	24	48	48	48
Inhibition zone (mm)	2 ± 0.4	4 ± 0.38	7 ± 0.43	16 ± 0.5	35 ± 0.52	35 ± 0.5	35 ± 0.46

The same tendency was not observed in the case of P. aeruginosa (Table 7), where the inhibition zone of dihydropyrimidine was equal to that of cefotaxime and a bit higher than the ceftriaxone one. In case of gram-positive bacteria S. aureus, dihydropyrimidine and both antibiotics demonstrated the same results equal to 35 mm (Table 7). As DMSO was used as a solvent, the record of the results was also carried out with control dishes, without investigated compound. It was determined that DMSO does not influence on the above mentioned gram-positive and gramnegative bacteria.

3. Conclusion.

The new derivative 4 of dihydropyrimidine and quinolone was synthesized by Biginelli reaction in microwave conditions in presence of cerium chloride. The structure of it was investigated by X-ray single crystal diffraction. Along with it, Hirshfeld surface analysis was carried out to gain insight into crystal packing and molecular interactions. The crystal structure is made of an alternation of hydrophobic and hydrophilic layers parallel to the (b,c) plane. The shortest hydrogen bond $\mathrm{N} 5-\mathrm{H} 5 \mathrm{~N} \ldots \mathrm{O} 4=\mathrm{C} 17$ with $d(\mathrm{O} \ldots \mathrm{H})=1.96 \AA$ involves an electronegative carbonyl group. Considering that the proposed substance 4 can have an ability to act as an antibacterial drug, it was tested for the biological activity against E. coli, P. aeruginosa and S. aureus bacteria. In addition, its activity was also compared with that of pristine antibiotics. The results obtained are promising and suggest that the synthesized compound indeed represents interest as it is potential biologically active with antibacterial activity.

Conflict of Interest

The authors declare no conflict of interest.

Funding

This work was supported by the Scientific Fund of SOCAR under grant № 26LR (2019-2020).

References

1. C.O. Kappe. "Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog", Accounts of Chemical Research 33.12 (2000): 879-888. https://doi.org/10.1021/ar000048h
2. N. Honnappa, A. Mukhopadhyay and J.N. Moorthy. "Biginelli reaction: an overview", Tetrahedron Letters 57.47 (2016): 5135-5149. https://doi.org/10.1016/j.tetlet.2016.09.047
3. W. Jie-Ping, Y. Liu. "Synthesis of dihydropyrimidinones and thiones by multicomponent reactions: strategies beyond the classical Biginelli reaction", Synthesis 2010.23 (2010): 3943-3953. DOI: 10.1055/s-0030-1258290
4. E. Woerly. "The Biginelli Reaction: Development and Application", Organic chemistry seminar at the University of Illinois, 2008: 1-8.
http://www.chemistry.illinois.edu/research/organic/seminar_abstracts/seminar_abstracts_2008_2009 .html.
5. C.O. Kappe. "100 Years of the Biginelli Dihydropyrimidine Synthesis", Tetrahedron 1993, 49, 69376963. https://doi.org/10.1016/S0040-4020(01)87971-0
6. S.S. Jagir "Past, present and future of the Biginelli reaction: a critical perspective." ARKIVOC: Online Journal of Organic Chemistry (2012): 66-133. http://dx.doi.org/10.3998/ark.5550190.0013.103
7. A.M. Maharramov, et al. "Synthesis, investigation of the new derivatives of dihydropyrimidines and determination of their biological activity", Journal of Molecular Structure 1141 (2017): 39-43. https://doi.org/10.1016/j.molstruc.2017.03.084
8. K.S. Atwal, B.N. Swanson, S.E. Unger, D.M. Floyd, S. Moreland, A. Hedberg, B.C. O'Reilly. "3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic Acid Esters as Orally Effective Antihypertensive Agents", J. Med. Chem. 1991, 34, 806-811.
9. (a) Zhu, Xuejun, et al. "2, 4-Diaryl-4, 6, 7, 8-tetrahydroquinazolin-5 (1H)-one derivatives as anti-HBV agents targeting at capsid assembly." Bioorganic \& medicinal chemistry letters 20.1 (2010): 299-301. https://doi.org/10.1016/j.bmcl.2009.10.119; (b) Dhumaskar, Kashinath L., et al. "Graphite catalyzed solvent free synthesis of dihydropyrimidin-2 $(1 \mathrm{H})$-ones/thiones and their antidiabetic activity." Bioorganic \& medicinal chemistry letters 24.13 (2014): 2897-2899. https://doi.org/10.1016/j.bmcl.2014.04.099; (c) Treptow, Tamara GM, et al. "Novel hybrid DHPMfatty acids: synthesis and activity against glioma cell growth in vitro." European journal of medicinal chemistry 95 (2015): 552-562. https://doi.org/10.1016/j.ejmech.2015.03.062; (d) Chikhale, Rupesh, et al. "Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides." European journal of medicinal chemistry 96 (2015): 30-46. https://doi.org/10.1016/j.ejmech.2015.04.011; (e) Rashid, Umer, et al. "Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents." European journal of medicinal chemistry 115 (2016): 230-244. https://doi.org/10.1016/j.ejmech.2016.03.022; (f) Singh, Kamaljit, and Tavleen Kaur. "Pyrimidinebased antimalarials: design strategies and antiplasmodial effects." MedChemComm 7.5 (2016): 749768. https://doi.org/10.1039/C6MD00084C
10. Klein, Emmanuel, et al. "New chemical tools for investigating human mitotic kinesin Eg5." Bioorganic \& medicinal chemistry 15.19 (2007): 6474-6488. https://doi.org/10.1016/j.bmc.2007.06.016
11. Kaan, Hung Yi Kristal, et al. "Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol." Journal of medicinal chemistry 53.15 (2010): 5676-5683. https://doi.org/10.1021/jm100421n
12. Wright, Christine M., et al. "Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation." Bioorganic \& medicinal chemistry 16.6 (2008): 32913301. https://doi.org/10.1016/j.bmc.2007.12.014
13. Agbaje, Oluropo C., et al. "Synthesis and in vitro cytotoxicity evaluation of some fluorinated hexahydropyrimidine derivatives." Bioorganic \& medicinal chemistry letters 21.3 (2011): 989992.https://doi.org/10.1016/j.bmcl.2010.12.022
14. Kumar, BR Prashantha, et al. "Novel Biginelli dihydropyrimidines with potential anticancer activity: a parallel synthesis and CoMSIA study." European journal of medicinal chemistry 44.10 (2009): 4192-4198. https://doi.org/10.1016/j.ejmech.2009.05.014
15. Ibrahim, Diaa A., and Amira M. El-Metwally. "Design, synthesis, and biological evaluation of novel pyrimidine derivatives as CDK2 inhibitors." European journal of medicinal chemistry 45.3 (2010): 1158-1166. https://doi.org/10.1016/j.ejmech.2009.12.026
16. (a) Wang, Anqi, et al. "New magnetic nanocomposites of $\mathrm{ZrO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{3} \mathrm{O}_{4}$ as green solid acid catalysts in organic reactions." Catalysis Science \& Technology 4.1 (2014): 71-80. DOI: 10.1039/C3CY00572K ; (b) Ghosh, Barun Kumar, Subhenjit Hazra, and Narendra Nath Ghosh. "Synthesis of Cu@CF@ SBA15: A Versatile catalysts for (i) reduction of dyes, trifluralin, Synthesis of (ii) DHPMs by Biginelli reaction and (iii) 1, 2, 3-triazole derivatives by ‘Click reaction’." Catalysis Communications 80 (2016): 44-48. https://doi.org/10.1016/j.catcom.2016.03.016
17. (a) October, Natasha, et al. "Reversed Chloroquines Based on the 3, 4-Dihydropyrimidin-2 (1H)-one Scaffold: Synthesis and Evaluation for Antimalarial, β-Haematin Inhibition, and Cytotoxic Activity." ChemMedChem: Chemistry Enabling Drug Discovery 3.11 (2008): 1649-1653. https://doi.org/10.1002/cmdc.200800172; (b) Fatima, Seerat, et al. "One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents." European journal of medicinal chemistry 55 (2012): 195-204. https://doi.org/10.1016/j.ejmech.2012.07.018; (c) Kaur, Hardeep, et al. "Primaquine-pyrimidine hybrids: synthesis and dual-stage antiplasmodial activity." European journal of medicinal chemistry 101 (2015): 266-273. https://doi.org/10.1016/j.ejmech.2015.06.045
18. (a) Akhaja, Tarunkumar Nanjibhai, and Jignesh Priyakant Raval. "1, 3-Dihydro-2H-indol-2-ones derivatives: Design, synthesis, in vitro antibacterial, antifungal and antitubercular study." European journal of medicinal chemistry 46.11 (2011): 5573-5579. https://doi.org/10.1016/j.ejmech.2011.09.023; (b) Yadlapalli, Rama Krishna, et al. "Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group." Bioorganic \& medicinal chemistry letters 22.8 (2012): 2708-2711. https://doi.org/10.1016/j.bmcl.2012.02.101
19. (a) Homan, Kristoff T., et al. "Identification and structure-function analysis of subfamily selective g protein-coupled receptor kinase inhibitors." ACS chemical biology 10.1 (2015): 310319.https://doi.org/10.1021/cb5006323; (b) Waldschmidt, Helen V., et al. "Structure-based design, synthesis, and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors." Journal of medicinal chemistry 59.8 (2016): 3793-3807. https://doi.org/10.1021/acs.jmedchem.5b02000
20. Mokale, Santosh N., et al. "Synthesis and anti-inflammatory activity of some 3-(4, 6-disubtituted-2-thioxo-1, 2, 3, 4-tetrahydropyrimidin-5-yl) propanoic acid derivatives." Bioorganic \& medicinal chemistry letters 20.15 (2010): 4424-4426. https://doi.org/10.1016/j.bmcl.2010.06.058
21. Bahekar, Sushilkumar S., and Devanand B. Shinde. "Synthesis and anti-inflammatory activity of some [4, 6-(4-substituted aryl)-2-thioxo-1, 2, 3, 4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives." Bioorganic \& medicinal chemistry letters 14.7 (2004): 1733-1736. https://doi.org/10.1016/j.bmcl.2004.01.039
22. Marathwada, Babasaheb Ambedkar. "Synthesis and anti-inflammatory activity of some [2-amino-6-(4-substituted aryl)-4-(4-substituted phenyl)-1, 6-dihydropyrimidine-5-yl]-acetic acid derivatives." Acta Pharm 53 (2003): 223-229.
23. Atwal, Karnail S., et al. "Dihydropyrimidine calcium channel blockers: 2-heterosubstituted 4-aryl-1, 4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines." Journal of medicinal chemistry 33.5 (1990): 1510-1515. https://doi.org/10.1021/jm00167a035
24. Zorkun, Inci Selin, et al. "Synthesis of 4-aryl-3, 4-dihydropyrimidin-2 (1H)-thione derivatives as potential calcium channel blockers." Bioorganic \& medicinal chemistry 14.24 (2006): 85828589. https://doi.org/10.1016/j.bmc.2006.08.031
25. Chikhale, R. V., et al. "Synthesis and pharmacological investigation of 3-(substituted 1-phenylethanone)-4-(substituted phenyl)-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylates." European journal of medicinal chemistry 44.9 (2009): 3645-3653. https://doi.org/10.1016/j.ejmech.2009.02.021
26. Alam, Ozair, et al. "Antihypertensive activity of newer 1, 4-dihydro-5-pyrimidine carboxamides: Synthesis and pharmacological evaluation." European journal of medicinal chemistry 45.11 (2010): 5113-5119. https://doi.org/10.1016/j.ejmech.2010.08.022
27. Sehon, Clark A., et al. "Potent, selective and orally bioavailable dihydropyrimidine inhibitors of Rho kinase (ROCK1) as potential therapeutic agents for cardiovascular diseases." Journal of medicinal chemistry 51.21 (2008): 6631-6634. https://doi.org/10.1021/jm8005096
28. Patil, Ashok D., et al. "Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV gp120human CD4 binding." The Journal of Organic Chemistry 60.5 (1995): 1182-1188.
29. Lewis, Ryan W., et al. "Dihydropyrimidinone positive modulation of δ-subunit-containing γ aminobutyric acid type A receptors, including an epilepsy-linked mutant variant." Biochemistry 49.23 (2010): 4841-4851. https://doi.org/10.1021/bi100119t
30. (a) Folkers, Karl, and Treat B. Johnson. "Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction1." Journal of the American Chemical Society 55.9 (1933): 3784-3791. https://doi.org/10.1021/ja01336a054; (b) Sweet, Frederick, and John D. Fissekis. "Synthesis of 3, 4-dihydro-2 (1H)-pyrimidinones and the mechanism of the Biginelli reaction." Journal of the American Chemical Society 95.26 (1973): 8741-8749. https://doi.org/10.1021/ja00807a040; (c) Kappe, C. Oliver. "A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-Acyliminium ion intermediate1." The Journal of organic chemistry 62.21 (1997): 7201-7204. https://doi.org/10.1021/jo971010u; (d) De Souza, Rodrigo OMA, et al. "The three-component Biginelli reaction: a combined experimental and theoretical mechanistic investigation." Chemistry-A European Journal 15.38 (2009): 9799-9804. https://doi.org/10.1002/chem.200900470; (e) Ramos, Luciana M., et al. "Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: Evidence for the reactive intermediates and the role of the reagents." The Journal of organic chemistry 77.22 (2012): 10184-10193. https://doi.org/10.1021/jo301806n; (f) Puripat, Maneeporn, et al. "The Biginelli reaction is a urea-
catalyzed organocatalytic multicomponent reaction." The Journal of organic chemistry 80.14 (2015): 6959-6967.https://doi.org/10.1021/jo301806n
31. Terracciano, Stefania, et al. "Structural insights for the optimization of dihydropyrimidin-2 (1 H)-one based mPGES-1 inhibitors." ACS medicinal chemistry letters 6.2 (2015): 187-191. https://doi.org/10.1021/ml500433j
32. Trivedi, Amit R., et al. "Novel dihydropyrimidines as a potential new class of antitubercular agents." Bioorganic \& medicinal chemistry letters 20.20 (2010): 6100-6102. https://doi.org/10.1016/j.bmcl.2010.08.046
33. Singh, Brajesh K., et al. "Synthesis of 2-sulfanyl-6-methyl-1, 4-dihydropyrimidines as a new class of antifilarial agents." European journal of medicinal chemistry 43.12 (2008): 2717-2723. https://doi.org/10.1016/j.ejmech.2008.01.038
34. Barrow, James C., et al. "In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective $\alpha 1 \mathrm{~A}$ receptor antagonists for the treatment of benign prostatic hyperplasia." Journal of medicinal chemistry 43.14 (2000): 2703-2718. https://doi.org/10.1021/jm990612y
35. Zhu, Xuejun, et al. "2, 4-Diaryl-4, 6, 7, 8-tetrahydroquinazolin-5 (1H)-one derivatives as antiHBV agents targeting at capsid assembly." Bioorganic \& medicinal chemistry letters 20.1 (2010): 299-301. https://doi.org/10.1016/j.bmcl.2009.10.119
36. Finlay, H. J., Lloyd, J., Vaccaro, W., Kover, A., Yan, L., Bhave, G., ... \& DiMarco, J. (2012). Discovery of ((S)-5-(Methoxymethyl)-7-(1-methyl-1 H-indol-2-yl)-2-(trifluoromethyl)-4, 7dihydropyrazolo [1, 5-a] pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl) pyrrolidin-1-yl) methanone As a Potent and Selective IKur Inhibitor. Journal of medicinal chemistry, 55(7), 3036-3048. https://doi.org/10.1021/jm201386u
37. Lloyd, John, et al. "Dihydropyrazolopyrimidines containing benzimidazoles as KV1. 5 potassium channel antagonists." Bioorganic \& medicinal chemistry letters 19.18 (2009): 5469-5473. https://doi.org/10.1016/j.bmcl.2009.07.083
38. Lloyd, John, et al. "Pyrrolidine amides of pyrazolodihydropyrimidines as potent and selective KV1. 5 blockers." Bioorganic \& medicinal chemistry letters 20.4 (2010): 1436-1439. https://doi.org/10.1016/j.bmcl.2009.12.085
39. G.C. Rovnyak, K.S. Atwal, A. Hedberg, S.D. Kimball, S. Moreland, J.Z. Gougoutas,
B.C. O'Reilly, J. Schwartz, M.F. Malley. "Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents", J. Med. Chem. 35 (17) (1992) 3254-3263, http://dx.doi.org/10.1021/jm00095a023.
40. Patil, Sharad R., et al. "Synthesis, optical properties, dyeing study of dihydropyrimidones (DHPMs) skeleton: Green and regioselectivity of novel Biginelli scaffold from lawsone." Fibers and Polymers 16.11 (2015): 2349-2358. https://doi.org/10.1007/s12221-015-5233-x
41. Boukis, Andreas C., Audrey Llevot, and Michael AR Meier. "High glass transition temperature renewable polymers via Biginelli multicomponent polymerization." Macromolecular rapid communications 37.7 (2016): 643-649. https://doi.org/10.1002/marc. 201500717
42. Zhao, Yuan, et al. "From drug to adhesive: a new application of poly (dihydropyrimidin-2 (1 H)-one) s via the Biginelli polycondensation." Polymer Chemistry 6.27 (2015): 4940-4945. https://doi.org/10.1039/C5PY00684H
43. Rovnyak, George C., et al. "Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators." Journal of medicinal chemistry 38.1 (1995): 119-129. https://doi.org/10.1021/jm00001a017
44. Kappe, C. Oliver, Walter MF Fabian, and Marcus A. Semones. "Conformational analysis of 4-aryldihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies." Tetrahedron 53.8 (1997): 2803-2816. https://doi.org/10.1016/S0040-4020(97)00022-7
45. Collin, Gerd, and Hartmut Höke. "Quinoline and isoquinoline." Ullmann's encyclopedia of industrial chemistry (2000) 1-5. doi:10.1002/14356007.a22_465.
46. GM. Sheldrick. SHELXTL V5.1, Software reference manual. Madison, Wisconsin: Bruker AXS Inc.; 1997, 1-250.
47. D.S. Bose, F. Liyakat and H.B. Mereyala. "Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3, 4-dihydropyrimidin-2 $(1 \mathrm{H})$-ones by a three-component coupling of one-pot condensation reaction: Comparison of ethanol, water, and solvent-free conditions", The Journal of organic chemistry 68.2 (2003): 587-590. https://doi.org/10.1021/jo0205199
48. A. Martin, H. Takiff, P. Vandamme, J. Swings, J.C. Palomino and F. Portaels. "A new rapid and simple colorimetric method to detect pyrazinamide resistance in Mycobacterium tuberculosis using nicotinamide". J.Antimicrob Chem other., 2006, 58, 327-331. doi:10.1093/jac/dk1231
49. Mayrhofer, Sigrid, et al. "Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members." Appl. Environ. Microbiol. 74.12 (2008): 3745-3748. DOI: 10.1128/AEM.02849-07
50. S.K. Nayak, K.N. Venugopala, D. Chopra, T.N.G. Row. "Effect of substitution on molecular conformation and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylates", CrystEngComm 12 (2010) 1205-1216. https://doi.org/10.1039/B919648J
51. C.O. Kappe, O.V. Shishkin, G. Uray, P. Verdino. "X-Ray Structure, Conformational Analysis, Enantioseparation, and Determination of Absolute Configuration of the Mitotic Kinesin Eg5 Inhibitor Monastrol", Tetrahedron 56 (2000) 1859-1862. https://doi.org/10.1016/S0040-4020(00)00116-2
52. Sallum, Lóide O., et al. "Synthesis, conformational analysis and molecular docking studies on three novel dihydropyrimidine derivatives." Journal of Molecular Structure 1192 (2019): 274-287. https://doi.org/10.1016/j.molstruc.2019.04.100
53. A. Dhandapani, S. Manivarman, S. Subashchandrabose. "Synthesis, single crystal structure, Hirshfeld surface and theoretical investigations on pyrimidine derivative", Chem. Phys. Lett. 655-656 (2016) 17-29. https://doi.org/10.1016/j.cplett.2016.04.009
54. Z.H. Shang, Y. Xiu, Y.Y. Lin. "Ethyl 4-(4-hydroxy-3-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate", ActaCrystallogr. Sect. E Struct.Rep. Online. 63 (2007), o4172-o4172. https://doi.org/10.1107/S1600536807046752
55. G.R. Desiraju. "Supramolecular synthons in crystal engineering a new organic synthesis", Angew Chem. Int. Ed. Engl. 34 (1995) 2311-2327. https://doi.org/10.1002/anie.199523111
56. Spackman, Mark A., and Joshua J. McKinnon. "Fingerprinting intermolecular interactions in molecular crystals." CrystEngComm 4.66 (2002): 378-392. https://doi.org/10.1039/B203191B
57. B. Guillot, E. Enrique, L. Huder, C. Jelsch. "MoProViewer: a tool to study proteins from a charge density science perspective", ActaCryst. A70 (2014) C279.
58. Jelsch, Christian, Krzysztof Ejsmont, and Loic Huder. "The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis." IUCrJ 1.2 (2014): 119-128. https://doi.org/10.1107/S2052252514003327

Supplement: CIF FILE

```
data_DOR24
_publ_contact_author
;
    Filippo Doria
    Dipartimento di Chimica
    University of Pavia
    via Taramelli 12, I-27100 Pavia, ITALY
;
_publ_contact_author_email
;
filippo.doria@unipv.it
;
loop_
_publ_author_name
_publ_author_address
'Boiocchi M.'
'Centro Grandi Strumenti, Univerity of Pavia, Italy'
'Doria F.'
'Dipartimento di Chimica, University of Pavia, Italy'
'??'
'Dipartimento di Chimica, University of Pavia, Italy'
_publ_requested_journal
;
?
;
journal_name_full
;
?
;
```

```
_publ_section_title
;
?
;
_audit_creation_method 'SHELXL-2018/1'
_shelx_SHELXL_version_number '2018/1'
_chemical_name_systematic ?
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety
'2(C16 H15 N3 O3)'
_chemical_formula_sum
'C32 H30 N6 O6'
_chemical_formula_weight 594.62
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
lusmace_group_crystal_system monoclinic
_shelx_space_group_comment
;
The symmetry employed for this shelxl refinement is uniquely defined
by the following loop, which should always be used as a source of
symmetry information in preference to the above space-group names.
They are only intended as comments.
;
loop_
    _space_group_symop_operation_xyz
    'x,y, z'
    '-x, y+1/2,-z+1/2'
    '-x, -y, -z'
    'x, -y-1/2, z-1/2'
_cell_length_a 12.991(3)
_cell_length_b 29.931(7)
_cell_length_c 7.4380(18)
_cell_angle_alpha 90
_cell_angle_beta 95.312(5)
_cell_angle_gamma 90
_cell_volume 2879.7(12)
_cell_formula_units_Z 4
```

```
_cell_measurement_temperature 298(2)
_cell_measurement_reflns_used 2034
_cell_measurement_theta_min 2
_cell_measurement_theta_max 20
_exptl_crystal_description 'BLADED'
_exptl_crystal_colour 'PALE-ORANGE'
_exptl_crystal_density_meas ?
_exptl_crystal_density_method ?
_exptl_crystal_density_diffrn 1.372
_exptl_crystal_F_000 1248
_exptl_transmission_factor_min ?
_exptl_transmission_factor_max ?
_exptl_crystal_size_max 0.430
_exptl_crystal_size_mid 0.110
_exptl_crystal_size_min 0.030
_exptl_absorpt_coefficient_mu 0.097
_exptl_absorpt_correction_type 'multi-scan'
_exptl_absorpt_correction_T_min 0.886
_exptl_absorpt_correction_T_max 0.997
_exptl_absorpt_process_details 'Sadabs (Krause et al., 2015)'
_exptl_absorpt_special_details ?
_diffrn_ambient_temperature 298(2)
_diffrn_radiation_wavelength 0.7107
_diffrn_radiation_type MoК\a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type 'Bruker-Axs Smart-Apex CCD'
_diffrn_measurement_method 'omega scan'
_diffrn_detector_area_resol_mean }8.33
_diffrn_standards_decay_% 0
_diffrn_reflns_number 20297
_diffrn_reflns_av_unetl/netl 0.0491
_diffrn_reflns_av_R_equivalents 0.0528
_diffrn_reflns_limit_h_min -15
_diffrn_reflns_limit_h_max 15
_diffrn_reflns_limit_k_min -34
_diffrn_reflns_limit_k_max 35
_diffrn_reflns_limit_I_min -8
_diffrn_reflns_limit_I_max 8
_diffrn_reflns_theta_min 1.574
_diffrn_reflns_theta_max 25.016
_diffrn_reflns_theta_full 25.016
_diffrn_measured_fraction_theta_max 0.995
_diffrn_measured_fraction_theta_full 0.995
_diffrn_reflns_Laue_measured_fraction_max 0.995
_diffrn_reflns_Laue_measured_fraction_full 0.995
_diffrn_reflns_point_group_measured_fraction_max 0.995
_diffrn_reflns_point_group_measured_fraction_full 0.995
_reflns_number_total 5063
_reflns_number_gt 2938
_reflns_threshold_expression 'l>2\s(I)'
_reflns_Friedel_coverage 0.000
_reflns_Friedel_fraction_max
_reflns_Friedel_fraction_full
_reflns_special_details
;
```

Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.
_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.
;

```
_computing_data_collection 'SMART (Bruker-Axs Inc)'
_computing_cell_refinement 'SAINT (Bruker-Axs Inc)'
_computing_data_reduction 'SAINT (Bruker-Axs Inc)'
_computing_structure_solution 'SIR-97 (Altomare et al., 1999)'
_computing_structure_refinement 'SHELXL-2018/1 (Sheldrick, 2018)'
_computing_molecular_graphics 'Mercury (Macrae et al., 2008)'
_computing_publication_material 'WinGX publication routines (Farrugia, 1999)'
```

_refine_special_details ?
_refine_Is_structure_factor_coef Fsqd
_refine_Is_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
$' w=1 /\left[\backslash s^{\wedge} 2^{\wedge}\left(\mathrm{Fo}^{\wedge} 2^{\wedge}\right)+(0.0649 \mathrm{P})^{\wedge} 2^{\wedge}+0.3048 \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{Fo}^{\wedge} 2^{\wedge}+2 \mathrm{Fc}^{\wedge} 2^{\wedge}\right) / 3^{\prime}$
_atom_sites_solution_primary DIRECT
_atom_sites_solution_secondary DIFMAP
_atom_sites_solution_hydrogens mixed
_refine_Is_hydrogen_treatment mixed
_refine_Is_extinction_method none
_refine_Is_extinction_coef
_refine_Is_number_reflns 5063
_refine_Is_number_parameters 413
_refine_Is_number_restraints 4
_refine_Is_R_factor_all 0.1095
_refine_Is_R_factor_gt 0.0580
_refine_Is_wR_factor_ref 0.1553
_refine_ls_wR_factor_gt 0.1289
_refine_Is_goodness_of_fit_ref 1.017
_refine_ls_restrained_S_all 1.016
_refine_ls_shift/su_max 0.006
_refine_ls_shift/su_mean 0.000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_site_symmetry_order
_atom_site_calc_flag
_atom_site_refinement_flags_posn
_atom_site_refinement_flags_adp
_atom_site_refinement_flags_occupancy
_atom_site_disorder_assembly
_atom_site_disorder_group
C1 C 0.6423(2) 0.21865(9) 0.7971(3) 0.0484(7) Uani 11 d.....
C2 C 0.6646 (2) 0.14834(9) 0.9595(3) 0.0489(7) Uani 11 d.....

C3 C 0.6885(2) 0.12691(9) 0.8108(3) 0.0482(7) Uani 11 d C4 C 0.7109(2) 0.15361(9) 0.6472(3) 0.0485(7) Uani 11 d H4 H 0.6830060 .1369200 .5401600 .058 Uiso 11 calc $R U$. C5 C $0.8245(2) 0.16239(9) 0.6282(4) 0.0506(7)$ Uani 11 d . C6 C 0.9019(3) 0.15703(10) 0.7710(4) 0.0649(8) Uani 11 d H6 H 0.8854040 .1472880 .8835300 .078 Uiso 11 calc R U . . . C7 C 1.0012(3) 0.16626(12) 0.7424(5) 0.0794(10) Uani 11 d H7 H 1.0534230 .1628590 .8355780 .095 Uiso 11 calc R U . . . C8 C 1.0250(3) 0.18088(11) 0.5730(6) 0.0772(10) Uani 11 d C9 C 1.1273 (3) 0.19027 (14) 0.5304(7) 0.1064(15) Uani 11 d H9 H 1.1824920 .1871870 .6184230 .128 Uiso 11 calc R U . . . C10 C $1.1442(5) 0.20364(17) 0.3626(10) 0.128(2)$ Uani 11 d . . H10 H 1.2114210 .2091330 .3349760 .154 Uiso 11 calc R U . . . C11 C 1.0627(5) 0.20927(15) 0.2311(8) 0.1226(19) Uani 11 d..... H11 H 1.0761970 .2189230 .1168160 .147 Uiso 11 calc R U . . . C12 C 0.9630(3) 0.20102(12) 0.2650(5) 0.0957(13) Uani 11 d . H12 H 0.9091390 .2051660 .1752720 .115 Uiso 11 calc R U . . C13 C 0.9430(3) 0.18612(10) 0.4382(5) 0.0691(9) Uani 11 d C14 C 0.6982(2) 0.07843(10) 0.8015(4) 0.0572(8) Uani 11 d C15 C 0.7491(3) 0.01921(10) 0.6162(5) 0.0955(13) Uani $11 \mathrm{~d} . . .$. H15A H 0.8013670 .0078980 .7042700 .143 Uiso 11 calc R U . . . H15B H 0.7702040 .0145200 .4973030 .143 Uiso 11 calc R U . . H15C H 0.6852260 .0038280 .6275430 .143 Uiso 11 calc R U . .
C16 C $0.6468(2) 0.12888(10) 1.1378(4) 0.0636(8)$ Uani 11 d..... H16A H 0.6363110 .0972451 .1254100 .095 Uiso 11 calc R U . . H16B H 0.5867670 .142347 1.181115 0.095 Uiso 11 calc R U . . . H16C H 0.7059360 .134490 1.222099 0.095 Uiso 11 calc R U . . . C17 C 0.4450(3) 0.01905(13) 0.7398(4) 0.0725(10) Uani 11 d..... C18 C 0.4251(2) 0.09564(11) 0.6326(4) 0.0613(8) Uani 11 d C19 C 0.3962 (2) 0.10937 (11) 0.7914(4) 0.0608(8) Uani 11 d C20 C $0.3745(2) 0.07672(11) 0.9378(4) 0.0648(9)$ Uani 11 d H2O H 0.4108110 .0869341 .0517620 .078 Uiso 11 calc R U . . C21 C 0.2609(2) 0.07324(9) 0.9624(4) 0.0547(8) Uani 11 d. C22 C 0.1283(3) 0.07629(9) 1.1458(4) 0.0574(8) Uani $11 \mathrm{~d} \ldots .$. C23 C 0.0959(3) 0.08455(11) $1.3171(5) 0.0761(10)$ Uani $11 \mathrm{~d} . . .$. H23 H 0.1435420 .093597 1.411123 0.091 Uiso 11 calc R U . .
C24 C -0.0059(3) 0.07929(12) 1.3461(6) 0.0874(12) Uani 11 d H24 H -0.027062 0.084865 1.460003 0.105 Uiso 11 calc R U . . . C25 C -0.0778(3) 0.06576(14) 1.2074(7) 0.0956(13) Uani 11 d H25 H -0.146797 0.062417 1.229055 0.115 Uiso 11 calc R U . . . C26 C -0.0486(3) 0.05745(13) 1.0422(6) 0.0887(11) Uani 11 d . H26 H -0.097605 0.048353 0.950382 0.106 Uiso 11 calc R U . . . C27 C 0.0556(3) 0.06235(10) 1.0062(5) 0.0663(9) Uani 11 d C28 C 0.0918(3) 0.05419(12) 0.8375(5) 0.0755(10) Uani 11 d H 28 H 0.0461400 .0448660 .7411100 .091 Uiso 11 calc R U . . C29 C 0.1922(3) 0.05982(11) 0.8150(4) 0.0683(9) Uani 11 d H29 H 0.2162730 .0548820 .7027540 .082 Uiso 11 calc R U . . . C30 C 0.3854(3) 0.15710(14) 0.8299(5) 0.0727(9) Uani 11 d. C31 C 0.3797(3) 0.21141(13) 1.0612(5) 0.1011(13) Uani 11 d H31A H 0.4286530 .229075 1.003090 0.152 Uiso 11 calc R U . . H31B H 0.3942950 .213616 1.189841 0.152 Uiso 11 calc R U . . . H31C H 0.3110880 .2221681 .0270610 .152 Uiso 11 calc R U . . . C32 C 0.4416(3) 0.12310(11) 0.4708(4) 0.0742(9) Uani 11 d H32A H 0.3796810 .123098 0.389576 0.111 Uiso 11 calc R U . . H32B H 0.4974350 .1107220 .4108800 .111 Uiso 11 calc R U . . . H32C H 0.4583070 .1531840 .5074910 .111 Uiso 11 calc R U . . . N1 N 0.65558(18) 0.19595(7) 0.6479(3) 0.0503(6) Uani 11 d D H1N H 0.650(2) 0.2104(8) 0.543(2) 0.060 Uiso 11 d D U . . . N2 N 0.65591(19) 0.19441(8) 0.9549(3) 0.0531(6) Uani 11 d D .

H2N H 0.644(2) 0.2089(8) 1.057(2) 0.064 Uiso 11 d D U . . . N3 N 0.8433(2) 0.17653(8) 0.4672(3) 0.0611(7) Uani 11 d
N4 N 0.4141(2) 0.03260(11) 0.8961(3) 0.0836(9) Uani 11 d D . . . H4N H 0.413(3) 0.0104(8) 0.977(4) 0.100 Uiso 11 d D U . . . N5 N 0.4433(2) 0.05092(10) 0.6069(3) 0.0680(7) Uani 11 d D H5N H 0.468(2) 0.0411(10) 0.505(3) 0.082 Uiso 11 d D U . . . N6 N 0.2316(2) 0.08139(8) $1.1226(3) 0.0598(7)$ Uani 11 d O1 O 0.61772(15) 0.25855(6) 0.7988(2) 0.0578(5) Uani 11 d. . O2 O 0.67849(19) 0.05134(7) 0.9126(3) 0.0832(7) Uani 11 d O3 $00.73508(18) 0.06638(6) 0.6456(3) 0.0740(7)$ Uani 11 d O4 O $0.4736(2)-0.01931(9) 0.7129(3) 0.0943(9)$ Uani $11 d$. O5 O 0.3761(2) 0.18711(9) 0.7216(3) 0.0995(8) Uani $11 \mathrm{~d} \ldots .$. $0600.38749(19) 0.16527(9) 1.0066(3) 0.0865(7)$ Uani 11 d
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
C1 0.0510(18) 0.0514(18) 0.0429(16) 0.0015(14) 0.0052(13) $-0.0054(14)$
C2 0.0481(18) 0.0536(18) 0.0443(16) 0.0060(13) 0.0008(13) -0.0035(13)
C3 0.0521(18) 0.0481(16) 0.0446(15) 0.0041(13) 0.0053(13) $-0.0027(13)$
C4 0.0593(19) 0.0446(15) 0.0416(15) 0.0007(12) 0.0055(13) -0.0015(13)
C5 0.057(2) 0.0471(16) 0.0483(16) 0.0000(13) 0.0089(15) -0.0014(14)
C6 0.064(2) 0.071(2) 0.0590(19) 0.0032(16) 0.0032(17) -0.0040(17)
C7 0.060(2) 0.091(3) 0.086(3) -0.009(2) -0.003(2) -0.0036(19)
C8 $0.065(2) 0.069(2) 0.101(3)-0.015(2) 0.027(2)-0.0127(18)$
C9 $0.071(3) 0.097(3) 0.155(4)-0.035(3) 0.036(3)-0.017(2)$
C10 0.103(4) 0.109(4) 0.185(6) -0.040(4) 0.082(4) -0.035(3)
C11 0.149(5) 0.088(3) 0.145(5) -0.004(3) 0.094(4) -0.027(3)
C12 0.113(3) 0.085(3) 0.097(3) 0.011(2) 0.055(3) -0.012(2)
C13 0.073(3) 0.058(2) 0.080(2) -0.0022(17) 0.026(2) -0.0063(17)
C14 0.059(2) 0.0568(19) 0.0558(18) 0.0020(15) 0.0053(15) -0.0057(15)
C15 0.132(4) 0.047(2) 0.108(3) -0.0131(19) 0.011(3) 0.001 (2)
C16 0.077(2) 0.070(2) 0.0456(17) 0.0106(15) 0.0111(15) -0.0031(17)
C17 0.071(2) 0.095(3) 0.053(2) 0.0185(19) 0.0142(17) 0.019(2)
C18 0.054(2) 0.082(2) 0.0468(17) 0.0088(16) 0.0002(15) -0.0089(16)
C19 0.0509(19) 0.081(2) 0.0499(18) 0.0060(16) 0.0015(15) 0.0018(16)
C20 0.061(2) 0.089(2) 0.0441(17) 0.0083(16) 0.0038(15) 0.0100(18)
C21 0.061(2) 0.0587(18) 0.0441(17) 0.0050(14) 0.0043(15) 0.0086(15)
C22 0.064(2) 0.0499(17) 0.0595(19) 0.0061(14) 0.0116(17) 0.0085(15)
C23 0.086(3) 0.078(2) 0.068(2) $-0.0036(18)$ 0.027(2) 0.0081(19)
C24 0.094(3) 0.077(3) 0.098(3) 0.012(2) 0.045(3) 0.016(2)
C25 0.078(3) 0.090(3) 0.123(4) 0.029(3) 0.034(3) 0.018(2)
C26 0.066(3) 0.093(3) 0.107(3) 0.021(2) 0.007(2) 0.002(2)
C27 0.063(2) 0.065(2) 0.072(2) 0.0144(17) 0.0088(19) 0.0078(16)
C28 0.069(3) 0.089(3) 0.065(2) 0.0021(18) -0.0082(19) -0.0084(19)
C29 0.070(2) 0.086(2) 0.0483(18) $-0.0016(16) 0.0042(17) 0.0043(18)$
C30 0.059(2) 0.101(3) 0.058(2) 0.007(2) 0.0039(17) -0.0024(19)
C31 0.110(3) 0.098(3) 0.096(3) $-0.016(2) 0.018(2) 0.006(2)$
C32 0.078(2) 0.087(2) 0.0586(19) 0.0108(17) 0.0093(17) -0.0152(19)
N1 0.0633(16) 0.0493(14) 0.0387(13) 0.0030(11) 0.0079(12) 0.0018(11)
N2 0.0703(17) 0.0507(15) 0.0392(13) $-0.0005(11) 0.0091(12) 0.0001(12)$
N3 0.0669(18) 0.0603(15) 0.0584(16) 0.0032(12) 0.0182(13) -0.0020(13)
N4 0.088(2) 0.111(2) 0.0552(17) 0.0321(16) 0.0255(15) 0.0446(19)
N5 0.081(2) 0.080(2) 0.0447(15) 0.0114(14) 0.0114(14) 0.0041(15)

```
N6 0.0659(19) 0.0647(16) 0.0493(15) 0.0000(12) 0.0075(13) 0.0035(13)
O1 0.0756(15) 0.0459(12) 0.0520(11) -0.0003(9) 0.0071(10) 0.0028(10)
O2 0.115(2) 0.0566(13) 0.0816(16) 0.0149(12) 0.0258(14) -0.0079(13)
O3 0.1085(19) 0.0471(12) 0.0691(14) -0.0065(10) 0.0221(13) -0.0006(11)
O4 0.116(2) 0.103(2) 0.0688(15) 0.0280(14) 0.0356(14) 0.0485(16)
O5 0.128(2) 0.0909(19) 0.0784(17) 0.0106(15) 0.0063(16) 0.0023(16)
O6 0.098(2) 0.0952(19) 0.0672(15) -0.0072(13) 0.0120(13) 0.0096(14)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
    _geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
C1 O1 1.236(3) . ?
C1 N1 1.326(3) . ?
C1 N2 1.377(3) . ?
C2 C3 1.340(4) . ?
C2 N2 1.384(3). ?
C2 C16 1.486(4) .?
C3 C14 1.459(4) . ?
C3 C4 1.507(3). ?
C4 N1 1.457(3). ?
C4 C5 1.519(4). ?
C4 H4 0.9800 .?
C5 N3 1.314(3) . ?
C5 C6 1.403(4) . ?
C6 C7 1.354(4) . ?
C6 H6 0.9300 . ?
C7 C8 1.395(5). ?
C7 H7 0.9300 . ?
C8 C13 1.402(5) . ?
C8 C9 1.422(5). ?
C9 C10 1.348(7) . ?
C9 H9 0.9300 . ?
C10 C11 1.384(7) . ?
C10 H10 0.9300 . ?
C11 C12 1.364(6) . ?
C11 H11 0.9300.?
C12 C13 1.410(5) . ?
C12 H12 0.9300.?
C13 N3 1.364(4) . ?
C14 O2 1.202(3) . ?
C14 O3 1.345(3) . ?
C15 O3 1.443(3) . ?
C15 H15A 0.9600.?
C15 H15B 0.9600 . ?
C15 H15C 0.9600 .?
C16 H16A 0.9600 . ?
```

```
C16 H16B 0.9600 . ?
C16 H16C 0.9600 . ?
C17 O4 1.229(4) . ?
C17 N4 1.328(4) . ?
C17 N5 1.372(4) . ?
C18 C19 1.337(4) . ?
C18 N5 1.375(4) . ?
C18 C32 1.489(4) . ?
C19 C30 1.466(5) . ?
C19 C20 1.509(4) . ?
C20 N4 1.461(4) . ?
C20 C21 1.508(4) . ?
C2O H2O 0.9800 . ?
C21 N6 1.307(3) . ?
C21 C29 1.406(4) . ?
C22 N6 1.376(4) . ?
C22 C23 1.401(4) . ?
C22 C27 1.401(4) . ?
C23 C24 1.369(5) . ?
C23 H23 0.9300 .?
C24 C25 1.386(5). ?
C24 H24 0.9300 .?
C25 C26 1.343(5) . ?
C25 H25 0.9300.?
C26 C27 1.412(4) . ?
C26 H26 0.9300 . ?
C27 C28 1.402(4) . ?
C28 C29 1.341(4) . ?
C28 H28 0.9300 . ?
C29 H29 0.9300 .?
C3O O5 1.205(4) . ?
C30 O6 1.335(4) . ?
C31 O6 1.446(4) . ?
C31 H31A 0.9600 . ?
C31 H31B 0.9600 . ?
C31 H31C 0.9600.?
C32 H32A 0.9600. ?
C32 H32B 0.9600 . ?
C32 H32C 0.9600. ?
N1 H1N 0.891(10) . ?
N2 H2N 0.898(10) . ?
N4 H4N 0.898(10) . ?
N5 H5N 0.900(10). ?
loop_
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    _geom_angle
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
O1 C1 N1 123.9(2) . . ?
O1 C1 N2 120.9(2) . . ?
N1 C1 N2 115.2(2) . . ?
C3 C2 N2 118.8(2) . . ?
C3 C2 C16 128.1(3) . . ?
N2 C2 C16 113.2(2) . . ?
C2 C3 C14 122.9(2) . . ?
```

C2 C3 C4 119.3(2) . . ?
C14 C3 C4 117.7(2) . . ?
N1 C4 C3 109.0(2) . . ?
N1 C4 C5 109.5(2) . . ?
C3 C4 C5 115.4(2) . . ?
N1 C4 H4 107.6. . ?
C3 C4 H4 107.6 . . ?
C5 C4 H4 107.6 . .?
N3 C5 C6 123.2(3) . . ?
N3 C5 C4 113.8(3) . . ?
C6 C5 C4 123.0(3) . . ?
C7 C6 C5 118.9(3) . . ?
C7 C6 H6 120.5 . . ?
C5 C6 H6 120.5 . . ?
C6 C7 C8 120.0(3) . . ?
C6 C7 H7 120.0 . .?
C8C7 H7 120.0. . ?
C7 C8 C13 117.6(3) . . ?
C7 C8 C9 123.6(4) . . ?
C13 C8 C9 118.8(4) . . ?
C10 C9 C8 120.1(5) . . ?
C10 C9 H9 120.0. . ?
C8 C9 H9 120.0. . ?
C9 C10 C11 120.7(5) . . ?
C9 C10 H10 119.6 . . ?
C11 C10 H10 119.6 . . ?
C12 C11 C10 121.6(5) . . ?
C12 C11 H11 119.2 . . ?
C10 C11 H11 119.2 . . ?
C11 C12 C13 119.0(5) . . ?
C11 C12 H12 120.5.. ?
C13 C12 H12 120.5 . . ?
N3 C13 C8 122.2(3) . . ?
N3 C13 C12 118.0(4) . . ?
C8 C13 C12 119.8(3) . . ?
O2 C14 O3 121.8(3) . . ?
02 C14 C3 127.8(3) . . ?
O3 C14 C3 110.3(2) . . ?
O3 C15 H15A 109.5 . . ?
O3 C15 H15B 109.5 . . ?
H15A C15 H15B 109.5 . . ?
O3 C15 H15C 109.5 . . ?
H15A C15 H15C 109.5 . . ?
H15B C15 H15C 109.5 . . ?
C2 C16 H16A 109.5 . . ?
C2 C16 H16B 109.5 . . ?
H16A C16 H16B 109.5 . . ?
C2 C16 H16C 109.5 . . ?
H16A C16 H16C 109.5 . . ?
H16B C16 H16C 109.5 . . ?
O4 C17 N4 123.2(3) . . ?
O4 C17 N5 121.1(3) . . ?
N4 C17 N5 115.6(3) . . ?
C19 C18 N5 119.2(3) . . ?
C19 C18 C32 128.1(3) . . ?
N5 C18 C32 112.7(3) . . ?
C18 C19 C30 120.8(3) . . ?
C18 C19 C20 121.7(3) . . ?
C30 C19 C20 117.6(3) . . ?

N4 C20 C19 109.8(2) . . ?
N4 C20 C21 109.3(3) . . ?
C19 C20 C21 112.5(2) . . ?
N4 C20 H2O 108.4 . . ?
C19 C2O H2O 108.4 . . ?
C21 C20 H2O 108.4 . . ?
N6 C21 C29 123.2(3) . . ?
N6 C21 C20 118.0(3) . . ?
C29 C21 C20 118.8(3) . . ?
N6 C22 C23 118.2(3) . . ?
N6 C22 C27 122.6(3) . . ?
C23 C22 C27 119.2(3) . . ?
C24 C23 C22 119.9(4) . . ?
C24 C23 H23 120.0 . . ?
C22 C23 H23 120.0 . .?
C23 C24 C25 120.8(4) . . ?
C23 C24 H24 119.6. . ?
C25 C24 H24 119.6 . . ?
C26 C25 C24 120.4(4) . . ?
C26 C25 H25 119.8 . . ?
C24 C25 H25 119.8 . . ?
C25 C26 C27 120.8(4) . . ?
C25 C26 H26 119.6 . . ?
C27 C26 H26 119.6 . . ?
C28 C27 C22 117.2(3) . . ?
C28 C27 C26 123.9(4) . . ?
C22 C27 C26 118.9(3) . . ?
C29 C28 C27 120.0(3) . . ?
C29 C28 H28 120.0 . . ?
C27 C28 H28 120.0 . . ?
C28 C29 C21 119.5(3) . . ?
C28 C29 H29 120.2 . . ?
C21 C29 H29 120.2 . . ?
O5 C30 06 120.9(4) . . ?
O5 C30 C19 127.0(3) . . ?
06 C30 C19 112.1(3) . . ?
O6 C31 H31A 109.5 . . ?
06 C31 H31B 109.5 . . ?
H31A C31 H31B 109.5 . . ?
O6 C31 H31C 109.5 . . ?
H31A C31 H31C 109.5 . . ?
H31B C31 H31C 109.5 . . ?
C18 C32 H32A 109.5 . . ?
C18 C32 H32B 109.5 . . ?
H32A C32 H32B 109.5 . . ?
C18 C32 H32C 109.5 . . ?
H32A C32 H32C 109.5 . . ?
H32B C32 H32C 109.5 . . ?
C1 N1 C4 123.5(2) . . ?
C1 N1 H1N 118.6(18) . . ?
C4 N1 H1N 114.9(18) . . ?
C1 N2 C2 123.4(2) . . ?
C1 N2 H2N 116.6(18) . . ?
C2 N2 H2N 118.6(18) . . ?
C5 N3 C13 118.1(3) . . ?
C17 N4 C20 127.0(3) . . ?
C17 N4 H4N 113(2) . . ?
C20 N4 H4N 120(2) . . ?
C17 N5 C18 124.6(3) . . ?

C17 N5 H5N 113(2) . . ?
C18 N5 H5N 121(2) . . ?
C21 N6 C22 117.6(3) . . ?
C14 O3 C15 117.0(3) . . ?
C30 06 C31 117.1(3) . . ?
_refine_diff_density_max 0.188
_refine_diff_density_min -0.171
_refine_diff_density_rms 0.034
_shelx_res_file
;
TITL DOR24_CCD run in space group P 1 21/c 1
shelx.res
created by SHELXL-2018/1 at 09:40:58 on 05-Mar-2018
CELL 0.710712 .991229 .93057 .438090 .00095 .31290 .000
$\begin{array}{lllllllllll}\text { ZERR } & 4.00 & 0.0031 & 0.0071 & 0.0018 & 0.000 & 0.005 & 0.000\end{array}$
LATT 1
SYMM - X, 1/2 + Y, 1/2-Z
SFAC C H N O
UNIT 1281202424
MERG 2
FMAP 2
PLAN 25
ACTA
BOND \$H
DFIX 0.9 0.01 N1 H1N
DFIX 0.90 .01 N2 H2N
DFIX 0.90 .01 N4 H4N
DFIX 0.9 0.01 N5 H5N
OMIT 020
L.S. 10

TEMP 25.00
SIZE 0.430 .110 .03
WGHT 0.0649000 .304800
FVAR 0.10851
$\begin{array}{lllllllll}C 1 & 1 & 0.642275 & 0.218654 & 0.797081 & 11.00000 & 0.05105 & 0.05136=\end{array}$ $0.042860 .00154 \quad 0.00515-0.00540$
$\begin{array}{llllllll}C 2 & 1 & 0.664616 & 0.148337 & 0.959529 & 11.00000 & 0.04813 & 0.05355=\end{array}$ $\begin{array}{lllll}0.04431 & 0.00597 & 0.00077 & -0.00354\end{array}$
$\begin{array}{lllllllll}C 3 & 1 & 0.688539 & 0.126913 & 0.810821 & 11.00000 & 0.05206 & 0.04814=\end{array}$ $\begin{array}{lllll}0.04461 & 0.00410 & 0.00528 & -0.00267\end{array}$
$\begin{array}{llllllll}C 4 & 1 & 0.710857 & 0.153609 & 0.647151 & 11.00000 & 0.05935 & 0.04462=\end{array}$ $\begin{array}{lllll}0.04155 & 0.00072 & 0.00548 & -0.00149\end{array}$
AFIX 13
$\begin{array}{lllllll}\text { H4 } & 2 & 0.683006 & 0.136920 & 0.540160 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{llllllll}C 5 & 1 & 0.824537 & 0.162392 & 0.628154 & 11.00000 & 0.05728 & 0.04709=\end{array}$ $0.04833-0.00004 \quad 0.00895-0.00139$
C6 $10.9019490 .1570260 .77101111 .000000 .064070 .07103=$ $\begin{array}{lllll}0.05905 & 0.00323 & 0.00319 & -0.00400\end{array}$
AFIX 43
$\begin{array}{lllllll}\text { H6 } & 2 & 0.885404 & 0.147288 & 0.883530 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{lllllllll}\text { C7 } & 1 & 1.001166 & 0.166261 & 0.742354 & 11.00000 & 0.05958 & 0.09056=\end{array}$ $0.08626-0.00930-0.00254-0.00363$
AFIX 43
$\begin{array}{lllllll}\text { H7 } & 2 & 1.053423 & 0.162859 & 0.835578 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{llllllll}C 8 & 1 & 1.024976 & 0.180877 & 0.573012 & 11.00000 & 0.06545 & 0.06850=\end{array}$ $\begin{array}{lllll}0.10112 & -0.01531 & 0.02678 & -0.01273\end{array}$
C9 $1 \begin{array}{llllllll} & 1.127257 & 0.190271 & 0.530420 & 11.00000 & 0.07104 & 0.09742=\end{array}$ $\begin{array}{lllll}0.15540 & -0.03515 & 0.03567 & -0.01654\end{array}$
AFIX 43
$\begin{array}{lllllll}\text { H9 } & 2 & 1.182492 & 0.187187 & 0.618423 & 11.00000 & -1.20000\end{array}$
AFIX 0
C10 $11.1442180 .2036380 .36264811 .000000 .103270 .10915=$ $\begin{array}{lllll}0.18539 & -0.04034 & 0.08234 & -0.03493\end{array}$
AFIX 43
$\begin{array}{lllllll}H 10 & 2 & 1.211421 & 0.209133 & 0.334976 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{llllllll}\text { C11 } & 1 & 1.062706 & 0.209272 & 0.231146 & 11.00000 & 0.14911 & 0.08839=\end{array}$ $0.14535-0.00408 \quad 0.09366-0.02738$
AFIX 43
$\begin{array}{lllllll}\text { H11 } & 2 & 1.076197 & 0.218923 & 0.116816 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{lllllll}\text { C12 } & 1 & 0.963044 & 0.201023 & 0.265026 & 11.00000 & 0.11329\end{array} 0.08479=$ $\begin{array}{lllll}0.09748 & 0.01128 & 0.05451 & -0.01152\end{array}$
AFIX 43
$\begin{array}{lllllll}\text { H12 } & 2 & 0.909139 & 0.205166 & 0.175272 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{lllllll}\text { C13 } & 1 & 0.943024 & 0.186117 & 0.438234 & 11.00000 & 0.07260\end{array} 0.05803=$ $0.08015-0.00223 \quad 0.02630-0.00634$
$\begin{array}{llllllll}C 14 & 1 & 0.698197 & 0.078433 & 0.801482 & 11.00000 & 0.05896 & 0.05676=\end{array}$ $\begin{array}{lllll}0.05580 & 0.00201 & 0.00527 & -0.00570\end{array}$
$\begin{array}{llllllll}C 15 & 1 & 0.749146 & 0.019211 & 0.616213 & 11.00000 & 0.13158 & 0.04678=\end{array}$ $\begin{array}{lllll}0.10820 & -0.01306 & 0.01111 & 0.00121\end{array}$

AFIX 137
$\begin{array}{llllll}\text { H15A } 2 & 0.801367 & 0.007898 & 0.704270 & 11.00000 & -1.50000\end{array}$
$\begin{array}{llllll}\text { H15B } 2 & 0.770204 & 0.014520 & 0.497303 & 11.00000 & -1.50000\end{array}$
$\begin{array}{lllllll}H 15 C & 0.685226 & 0.003828 & 0.627543 & 11.00000 & -1.50000\end{array}$
AFIX 0
$\begin{array}{llllllll}C 16 & 1 & 0.646834 & 0.128884 & 1.137810 & 11.00000 & 0.07675 & 0.06952=\end{array}$ $\begin{array}{lllll}0.04560 & 0.01056 & 0.01108 & -0.00310\end{array}$

AFIX 137
$\begin{array}{llllll}\text { H16A } 2 & 0.636311 & 0.097245 & 1.125410 & 11.00000 & -1.50000\end{array}$
$\begin{array}{llllll}\text { H16B } 2 & 0.586767 & 0.142347 & 1.181115 & 11.00000 & -1.50000\end{array}$
$\begin{array}{lllllll}H 16 C & 0.705936 & 0.134490 & 1.222099 & 11.00000 & -1.50000\end{array}$
AFIX 0
C17 $10.4449610 .0190500 .73976511 .000000 .071330 .09536=$ $\begin{array}{llll}0.05250 & 0.01847 & 0.01420 & 0.01874\end{array}$

C18 $10.4250980 .0956370 .63255911 .000000 .054310 .08178=$ $\begin{array}{llllll}0.04684 & 0.00881 & 0.00022 & -0.00888\end{array}$
C19 $10.3961940 .1093670 .79144211 .000000 .050870 .08097=$ $\begin{array}{llll}10.04989 & 0.00596 & 0.00149 & 0.00178\end{array}$
$\begin{array}{lllllllll}C 20 & 1 & 0.374499 & 0.076718 & 0.937809 & 11.00000 & 0.06072 & 0.08933=\end{array}$ $\begin{array}{llll}0.04412 & 0.00834 & 0.00378 & 0.01000\end{array}$
AFIX 13
$\begin{array}{lllllll}\text { H2O } & 2 & 0.410811 & 0.086934 & 1.051762 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{lllllll}\text { C21 } & 1 & 0.260865 & 0.073242 & 0.962413 & 11.00000 & 0.06118\end{array} 0.05865=$ $\begin{array}{llll}0.04408 & 0.00500 & 0.00425 & 0.00856\end{array}$
C22 $10.1283420 .0762861 .14579311 .00000 \quad 0.06388 \quad 0.04986=$ $\begin{array}{lllll}0.05953 & 0.00611 & 0.01159 & 0.00848\end{array}$
$\begin{array}{llllllll}C 23 & 1 & 0.095925 & 0.084548 & 1.317109 & 11.00000 & 0.08605 & 0.07770=\end{array}$ $\begin{array}{lllll}0.06817 & -0.00363 & 0.02681 & 0.00808\end{array}$
AFIX 43
$\begin{array}{lllllll}\text { H23 } & 2 & 0.143542 & 0.093597 & 1.411123 & 11.00000 & -1.20000\end{array}$

AFIX 0
C24 1-0.005899 0.079293 1.346054 11.00000 0.09384 0.07716= $\begin{array}{lllll}0.09793 & 0.01234 & 0.04535 & 0.01598\end{array}$
AFIX 43
$\begin{array}{lllllll}\text { H24 } & 2 & -0.027062 & 0.084865 & 1.460003 & 11.00000 & -1.20000\end{array}$
AFIX 0
C25 1-0.077845 $0.0657601 .20744411 .000000 .078070 .09035=$ $\begin{array}{lllll}0.12296 & 0.02889 & 0.03380 & 0.01781\end{array}$
AFIX 43
$\begin{array}{lllllll}\mathrm{H} 25 & 2 & -0.146797 & 0.062417 & 1.229055 & 11.00000 & -1.20000\end{array}$
AFIX 0
$\begin{array}{lllllll}\text { C26 } & 1 & -0.048625 & 0.057447 & 1.042199 & 11.00000 & 0.06592\end{array} 0.09294=$ $\begin{array}{llll}0.10695 & 0.02066 & 0.00655 & 0.00184\end{array}$
AFIX 43
$\begin{array}{lllllll}\text { H26 } & 2 & -0.097605 & 0.048353 & 0.950382 & 11.00000 & -1.20000\end{array}$
AFIX 0
C27 $10.0556380 .0623541 .00621311 .000000 .062720 .06508=$ $\begin{array}{llll}10.07165 & 0.01437 & 0.00878 & 0.00779\end{array}$
$\begin{array}{llllllll}C 28 & 1 & 0.091796 & 0.054190 & 0.837495 & 11.00000 & 0.06903 & 0.08937=\end{array}$ $\begin{array}{llll}0.06526 & 0.00213 & -0.00820 & -0.00844\end{array}$
AFIX 43
$\begin{array}{lllllll}H 28 & 0.046140 & 0.044866 & 0.741110 & 11.00000 & -1.20000\end{array}$
AFIX 0
C29 $10.1922130 .0598180 .81500111 .000000 .070350 .08595=$ $\begin{array}{lllll}0.04832 & -0.00161 & 0.00419 & 0.00432\end{array}$
AFIX 43
$\begin{array}{lllllll}\mathrm{H} 29 & 2 & 0.216273 & 0.054882 & 0.702754 & 11.00000 & -1.20000\end{array}$
AFIX 0
C30 $100.3853830 .1571000 .82985711 .000000 .05878 \quad 0.10131=$ $\begin{array}{llllll}0.05764 & 0.00683 & 0.00391 & -0.00240\end{array}$
C31 $10.3797300 .2114061 .06124211 .000000 .110260 .09843=$ $\begin{array}{lllll}0.09605 & -0.01613 & 0.01800 & 0.00647\end{array}$
AFIX 137
$\begin{array}{llllll}\text { H31A } 2 & 0.428653 & 0.229075 & 1.003090 & 11.00000 & -1.50000\end{array}$
H31B $20.3942950 .2136161 .18984111 .00000-1.50000$
$\begin{array}{lllllll}\text { H31C } 2 & 0.311088 & 0.222168 & 1.027061 & 11.00000 & -1.50000\end{array}$
AFIX 0
C32 $10.4415960 .1231000 .47075011 .000000 .077960 .08666=$ $\begin{array}{llll}0.05859 & 0.01084 & 0.00927 & -0.01521\end{array}$
AFIX 137
$\begin{array}{llllll}\text { H32A } 2 & 0.379681 & 0.123098 & 0.389576 & 11.00000 & -1.50000\end{array}$
$\begin{array}{lllllll}\text { H32B } 2 & 0.497435 & 0.110722 & 0.410880 & 11.00000 & -1.50000\end{array}$
$\begin{array}{lllllll}\text { H32C } 2 & 0.458307 & 0.153184 & 0.507491 & 11.00000 & -1.50000\end{array}$
AFIX 0
$\begin{array}{lllllll}\text { N1 } & 3 & 0.655583 & 0.195949 & 0.647950 & 11.00000 & 0.06334\end{array} 0.04934=$ $\begin{array}{llll}0.03869 & 0.00299 & 0.00793 & 0.00184\end{array}$
$\begin{array}{lllllll}H 1 N & 0.649837 & 0.210423 & 0.542772 & 11.00000 & -1.20000\end{array}$
$\begin{array}{llllllll}\text { N2 } & 3 & 0.655911 & 0.194409 & 0.954900 & 11.00000 & 0.07034 & 0.05066=\end{array}$ $0.03920-0.00045 \quad 0.00911 \quad 0.00014$
H2N $20.6443230 .2088651 .05692811 .00000-1.20000$
$\begin{array}{lllllll}\text { N3 } & 3 & 0.843266 & 0.176532 & 0.467194 & 11.00000 & 0.06692\end{array} 0.06029=$ $\begin{array}{llll}0.05845 & 0.00322 & 0.01821 & -0.00200\end{array}$
$\begin{array}{lllllll}\text { N4 } & 3 & 0.414073 & 0.032595 & 0.896149 & 11.00000 & 0.08777 \\ 0.11118=\end{array}$ $\begin{array}{llllll}0.05522 & 0.03214 & 0.02546 & 0.04464\end{array}$
H4N $20.4127620 .0104300 .97734711 .00000-1.20000$
N5 $30.4433170 .0509200 .60693411 .000000 .08068 \quad 0.07974=$ $\begin{array}{lllll}0.04466 & 0.01138 & 0.01145 & 0.00415\end{array}$
$\begin{array}{llllllll}H 5 N & 0.467559 & 0.041068 & 0.504617 & 11.00000 & -1.20000\end{array}$
$\begin{array}{llllllll}\text { N6 } & 3 & 0.231575 & 0.081387 & 1.122610 & 11.00000 & 0.06590 & 0.06471=\end{array}$
$0.049270 .00003 \quad 0.007530 .00354$
$\begin{array}{lllllll} & 01 & 4 & 0.617720 & 0.258549 & 0.798811 & 11.00000 \\ 0.07558 & 0.04595=\end{array}$ $0.05204-0.000260 .00706 \quad 0.00275$
$\begin{array}{lllllll}02 & 4 & 0.678493 & 0.051336 & 0.912614 & 11.00000 & 0.11456\end{array} 0.05664=$ $\begin{array}{llllll}0.08161 & 0.01490 & 0.02580 & -0.00793\end{array}$
$\begin{array}{lllllll}03 & 4 & 0.735083 & 0.066381 & 0.645551 & 11.00000 & 0.10854\end{array} 0.04706=$ 0.06908 -0.00650 $0.02212-0.00060$
$\begin{array}{llllllll}04 & 4 & 0.473592 & -0.019314 & 0.712851 & 11.00000 & 0.11627 & 0.10303=\end{array}$ $\begin{array}{llll}0.06879 & 0.02799 & 0.03558 & 0.04849\end{array}$
$\begin{array}{lllllll}05 & 4 & 0.376087 & 0.187114 & 0.721629 & 11.00000 & 0.12847\end{array} 0.09094=$ $\begin{array}{llll}0.07836 & 0.01064 & 0.00633 & 0.00230\end{array}$
$\begin{array}{lllllll}06 & 4 & 0.387489 & 0.165270 & 1.006634 & 11.00000 & 0.09790\end{array} 0.09515=$ $\begin{array}{lllll}0.06720 & -0.00716 & 0.01197 & 0.00957\end{array}$
HKLF 4

REM DOR24_CCD run in space group P 1 21/c 1
REM R1 $=0.0580$ for 2938 Fo $>4 \operatorname{sig}(F o)$ and 0.1095 for all 5063 data
REM 413 parameters refined using 4 restraints

END
WGHT 0.05950 .3676

