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1. Introduction
The ocean plays host to three carbon “pumps” that redistribute climatically significant quantities of carbon 
dioxide (CO2) from the atmosphere to the ocean interior and seafloor (Volk & Hoffert, 1985). These ocean 
carbon pumps—biological, carbonate, and solubility—influence Earth's climate over timescales ranging 
from decades to millions of years (e.g., Khatiwala et al., 2019; Sigman et al., 2010; Volk & Hoffert, 1985). 
The biological pump refers specifically to the production of particulate organic carbon (POC) within the 
sunlit surface ocean (euphotic zone) and export of POC to the intermediate and deep ocean, where POC is 

Abstract Phytoplankton productivity and export sequester climatically significant quantities 
of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed 
the biological pump. Constraining how the biological pump operated in the past is important for 
understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, 
reconstructing the history of the biological pump requires proxies. Due to their intimate association 
with biological processes, several bioactive trace metals and their isotopes are potential proxies for 
past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, 
chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional 
archives for these nine metals and their isotopes based on GEOTRACES-era datasets. We offer an 
assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects 
of past ocean productivity and identify priorities for future research. This assessment reveals that 
cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, 
whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident 
determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track 
other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, 
and ocean redox state. These complementary sensitivities suggest new opportunities for combining 
perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine 
paleoproductivity, biogeochemical cycles, and Earth's climate history.

HORNER ET AL.

© 2021. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Bioactive Trace Metals and Their Isotopes as 
Paleoproductivity Proxies: An Assessment Using 
GEOTRACES-Era Data
T. J. Horner1,2 , S. H. Little3 , T. M. Conway4 , J. R. Farmer5,6 , J. E. Hertzberg7,8 , 
D. J. Janssen9 , A. J. M. Lough10,11 , J. L. McKay12 , A. Tessin13 , S. J. G. Galer6 , 
S. L. Jaccard14 , F. Lacan15 , A. Paytan16 , K. Wuttig17,18 , and 
GEOTRACES–PAGES Biological Productivity Working Group Members19

1NIRVANA Labs, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 2Department of Marine Chemistry 
& Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 3Department of Earth Sciences, 
University College London, London, UK, 4College of Marine Science, University of South Florida, FL, USA, 
5Department of Geosciences, Princeton University, Princeton, NJ, USA, 6Max-Planck Institute for Chemistry, Mainz, 
Germany, 7Department of Ocean Earth & Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA, 8Now 
at: International Ocean Discovery Program, Texas A&M University, College Station, TX, USA, 9Institute of Geological 
Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland, 10University of 
Southampton, National Oceanography Centre, Southampton, England, 11Now at: School of Geography, University 
of Leeds, Leeds, England, 12College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, 
OR, USA, 13Department of Geology, Kent State University, Kent, OH, USA, 14Institute of Earth Sciences, Université 
de Lausanne, Lausanne, Switzerland, 15LEGOS, University of Toulouse, CNRS, CNES, IRD, UPS, Toulouse, France, 
16Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, USA, 17Antarctic Climate and 
Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia, 18Now at: Federal Maritime 
and Hydrographic Agency (BSH), Hamburg, Germany, 19A Full list of working group members and their affiliations 
appears at the Appendix A section

Key Points:
•  Distributions, drivers, and 

depositional archives described 
for iron, zinc, copper, cadmium, 
molybdenum, barium, nickel, 
chromium, and silver

•  Cadmium, barium, nickel, and 
chromium isotopes offer the most 
promise as paleoproductivity tracers, 
but key uncertainties remain

•  Future priorities include 
quantification of “missing” flux 
terms, constraining circulation 
influences, and identifying 
sedimentary archives

Correspondence to:
T. J. Horner, S. H. Little, T. M. Conway, 
and J. R. Farmer,
Tristan.Horner@whoi.edu;
susan.little@ucl.ac.uk;
tmconway@usf.edu;
jesse.farmer@princeton.edu

Citation:
Horner, T. J., Little, S. H., Conway, 
T. M., Farmer, J. R., Hertzberg, J. E., 
Janssen, D. J., et al. (2021). Bioactive 
trace metals and their isotopes 
as paleoproductivity proxies: An 
assessment using GEOTRACES-era 
data. Global Biogeochemical Cycles, 
35, e2020GB006814. https://doi.
org/10.1029/2020GB006814

Received 2 SEP 2020
Accepted 20 MAY 2021

10.1029/2020GB006814
REVIEW ARTICLE

1 of 86

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1784-0391
https://orcid.org/0000-0002-9957-2636
https://orcid.org/0000-0002-3069-9786
https://orcid.org/0000-0001-5200-6429
https://orcid.org/0000-0001-6437-5977
https://orcid.org/0000-0002-9091-8936
https://orcid.org/0000-0002-8095-9064
https://orcid.org/0000-0003-4548-2819
https://orcid.org/0000-0001-8657-8484
https://orcid.org/0000-0003-0545-9497
https://orcid.org/0000-0002-5793-0896
https://orcid.org/0000-0001-6794-2279
https://orcid.org/0000-0001-8360-4712
https://orcid.org/0000-0003-4010-5918
https://doi.org/10.1029/2020GB006814
https://doi.org/10.1029/2020GB006814
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020GB006814&domain=pdf&date_stamp=2021-11-23


Global Biogeochemical Cycles

HORNER ET AL.

10.1029/2020GB006814

2 of 86

largely (but not wholly) regenerated. The biological pump is of particular interest as it connects the cycles 
of C to those of dissolved O2, nutrients, and marine biology, and today accounts for as much as 70% of the 
carbon concentration gradient between the euphotic zone and the deep ocean (Sarmiento & Gruber, 2006).

The biological pump acts to redistribute CO2 from the atmospheric/surface ocean carbon reservoir to the 
deep ocean and sediment carbon reservoirs via two steps. First, phytoplankton, photoautotrophic microbes, 
use sunlight (represented here by hv) to transform ambient dissolved inorganic carbon (DIC) into POC, 
represented here by CO2 and a simple sugar (CH2O), respectively, by the simplified reaction:

   2 2 2 2CO H O CH O O ,hv (1)

The second step requires that some fraction of the newly formed POC sinks into the ocean interior through 
a combination of biological and physical aggregation processes (e.g., Alldredge & Silver, 1988), where ul-
timately some POC may be buried in marine sediments. The resulting surface ocean DIC deficit promotes 
dissolution of atmospheric CO2 into seawater to maintain air–sea CO2 equilibrium, driving an overall re-
duction in the partial pressure of atmospheric CO2 (pCO2). Note that this definition of the biological pump 
neglects dissolved organic carbon export, which is comparatively understudied, though may account for 
as much as one-third of C export (e.g., Carlson et al., 2010; Giering et al., 2014). Importantly, Reaction (1) 
requires sunlight and can only occur in the euphotic zone of the ocean. In contrast, aerobic heterotrophic 
respiration can occur wherever POC and O2 are present:

  2 2 2 2CH O O CO H O. (2)

There are also a number of O2-independent respiration pathways that are reviewed in detail elsewhere (e.g., 
Froelich et al., 1979).

While the representation of all POC as a simple sugar (CH2O) is instructive for illustrating an important 
biotic transformation in the ocean, it is also simplistic; microbial biomass consists of dozens of bioactive 
elements that serve many essential functions (e.g., da Silva & Williams, 1991). The elemental stoichiometry 
of POC can thus be expanded to include a number of major and micronutrient elements, as illustrated by 
the extended Redfield ratio reported by Ho et al. (2003):

124,000 16,000 1,000 1,300 1,700 560 500 5.0 7.5 0.8 0.38 0.19 0.21 0.03C N P S K Mg Ca Sr Fe Zn Cu Co Cd Mo . (3)

With this extended stoichiometry in mind, it is clear that Reactions (1) and (2)—the production and regener-
ation of organic matter, respectively—will not only generate gradients in the dissolved concentration of DIC 
and O2, but will act on any bioactive element associated with POC cycling. These gradients will be steepest 
for those elements possessing shorter residence times and where biological uptake and regeneration are 
the most important processes driving their marine cycling. Likewise, such gradients may be almost absent 
for elements that possess long residence times or are primarily cycled by processes other than productivity.

For those bioactive metals where biological processes are dominant, the implication of Reactions (1) and 
(2) is that many of the elements listed in (3) may, in turn, be used as proxies of POC cycling and, potentially, 
paleoproductivity. Indeed, aspects of past ocean productivity that impact carbon and nutrient cycling are 
routinely reconstructed using the stable isotope compositions of carbon and macronutrient elements (N 
and Si; see Farmer et al., 2021). It thus follows that the abundance and isotopic compositions of bioactive 
trace metals cycled along with POC could also provide valuable information on past ocean productivity. 
However, in order to use bioactive trace elements and their isotopes (TEIs) as proxies for productivity, it is 
necessary to develop a comprehensive understanding of the marine behavior of these elements, including: 
mapping their distribution in the ocean; elucidating the drivers of their distribution; characterizing sources, 
sinks, and transformations associated with biological, physical and chemical (notably redox) reactions; and, 
recognizing if (and how) a given element is incorporated and preserved in marine sediments.

The wealth of new trace element and isotope data from the GEOTRACES program (e.g., Figure 1) now per-
mits an assessment of whether certain bioactive TEI metals may serve as proxies for past ocean productivity. 
This contribution represents such an assessment. Our study synthesizes what is known about the processes 
governing the cycling of nine bioactive metals in seawater, explores the level of development and readiness 
of each isotope system to inform on aspects of past ocean productivity, and identifies areas where further 
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research is most needed to improve our understanding of the geochemistry of trace metals in the past and 
present ocean. We base our assessment on publicly available results from the international GEOTRACES 
program (e.g., Mawji et al., 2015; Schlitzer et al., 2018). Our study is not intended to be a thorough review of 
all available techniques used to reconstruct paleoproductivity. Instead, we focus on bioactive metal isotope 
systems that are either recognized as micronutrients (such as those in Equation 3) or exhibit nutrient-like 
dissolved profiles in seawater, regardless of their nutritional status to phytoplankton (e.g., Ba, Cr, and Ag). 
This will not be the last word on the topic; our understanding of many of these metal isotope systems has 
rapidly evolved in recent years, and will continue to evolve as new data are generated.

2. Key Concepts
In this section, we introduce several key concepts to which we refer throughout the review. First, we pro-
vide definitions for reporting bioactive metal concentrations and isotope variations, and for the concept of 
paleoproductivity itself (Section 2.1). Second, we describe an idealized framework for reconstructing paleo-
productivity based on the coupled cycling of bioactive trace metals and their isotopes (Section 2.2). Finally, 
we introduce a number of additional trace metal cycling processes that are important considerations when 
applying bioactive trace metal isotope systems to reconstruct productivity (Section 2.3).

The review sections are structured such that each bioactive metal isotope system is described similarly and 
systematically. The order in which metals are reviewed follows the extended Redfield ratio—Fe (Section 3), 
Zn (Section 4), Cu (Section 5), Cd (Section 6), and Mo (Section 7)—before describing the nonessential el-
ements Ba (Section 8), Ni (Section 9), Cr (Section 10) and Ag (Section 11) in order of decreasing dissolved 
concentration in seawater. The review of each metal isotope system is organized around four questions:

1.  What is the modern marine distribution of this trace metal isotope system?
2.  Which biological, chemical, and physical processes are most important for maintaining this distribution?
3.  Do any marine sediments capture the distirbution of this trace metal isotope system?
4.  What are the priorities for improving the utility of this trace metal isotope system to track paleoproductivity?

This structure results in some repetition of the main distributions, drivers, and sedimentary archives be-
tween individual isotope systems. This redundancy is deliberate: each section can be read independently 
without reference to the other bioactive trace metals. We close our review by assessing the “maturity” of 
each system based on a comparison to more established productivity proxies, offer suggestions for future 
studies, and discuss prospects for productivity reconstructions using bioactive trace metal isotope systems.

2.1. Definitions

2.1.1. Data Reporting Conventions

The isotope literature abounds with isotope notations (e.g., ε, δ), reference materials (e.g., IRMM, JMC, and 
NIST), and isotope ratio pairs (e.g., 57Fe/54Fe vs. 56Fe/54Fe; 137Ba/134Ba vs. 138Ba/134Ba). There are merits to 
each of these choices and we do not intend to review these here. However, we believe that the sheer number 
of ways in which trace metal isotope data have been reported can be confusing to scientists in other disci-
plines and this ultimately diminishes the reach and utility of isotope-based research. To avoid furthering 
this confusion, we have adopted a number of conventions that apply throughout this review, regardless of 
how literature data were originally reported. First, we use a single isotope notation throughout: “δ” (i.e., 
the delta notation; Equation 4). Second, we express all data relative to the most widely accepted standard 

Figure 1. Overview of bioactive dissolved trace metal concentration distributions discussed in this review. A map showing locations of the representative depth 
profiles shown in both the lower panels and discussed throughout this review (Sections 3–11). The specific station (bold) and cruise identifier are given for each 
location; circles, squares, and triangles denote stations in the Pacific, Atlantic, and Southern Oceans, respectively. The lack of exemplar stations from the Indian 
Ocean reflects the current paucity of GEOTRACES-compliant campaigns in this basin. Two stations sampled from the Atlantic Sector of the Southern Ocean 
share the same symbol (St. S5 of GIPY4 at 57.55 S, 0.04 W; PS71-138 of GIPY5 at 61.00 S on the Zero Meridian), as do two stations from the Eastern Tropical 
North Atlantic (St. 18 of GA06 at 12.03 N, 28.98 W and CTD002 of JC094 at 9.28 N, 21.63 W). (b–j) Depth profiles of bioactive trace metal concentrations for Fe 
(b), Zn (c), Cu (d), Cd (e), Mo (f), Ba (g), Ni (h), Cr (i), and Ag (j). Profiles are shown in semi-log space to illustrate variations in the epi- and mesopelagic realm. 
Originators are cited in the Data Sources section. Map created using Ocean Data View (Schlitzer, R., https://odv.awi.de, 2018).
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for each isotope system. For many isotope systems, the most widely accepted standard may have since been 
exhausted (e.g., JMC-Lyon for Zn). In those cases, there are usually cross-calibrated secondary materials 
that can be used to report new isotope data in terms of legacy materials (e.g., AA-ETH for Zn, Archer 
et al., 2017). Third, we report trace metal isotope data using the same isotope ratio pairs and reference mate-
rials as used in the GEOTRACES data products (e.g., Mawji et al., 2015; Schlitzer et al., 2018). We note that 
isotope data are a unitless ratio quantity (Coplen, 2011), though are commonly reported with “units” of ‰ 
(i.e., parts per one thousand):

   sample

standard
δ Me ‰ 1,i R

R (4)

where δiMe and R are listed for each element in Table 1. For clarity, all isotopic data reviewed here have 
been calculated using notation in Equation 4, and renormalized to the standards listed in Table 1, regardless 
of how the data originators reported their results.

We denote the concentrations of different species using square brackets (i.e., [ ]). Unless specifically stated, 
all concentrations refer to dissolved species; for example, [Fe] denotes dissolved Fe concentrations, and 
[Me] denotes the concentration of a metal “Me” in a general case. Salient features of each trace metal iso-
tope system are summarized in Table 1.

2.1.2. Paleoproductivity

We define paleoproductivity as the productivity of an ecosystem that contributes to the sequestration of 
atmospheric CO2 as POC in the ocean interior and on the seafloor. Our definition of paleoproductivity is 
therefore analogous to that of net ecosystem productivity (NEP), which is defined as gross primary produc-
tion minus autotrophic and heterotrophic respiration, and where gross primary production is the total auto-
trophic production of POC (or O2; Equation 1; Sigman & Hain, 2012). If considering only the euphotic zone, 
NEP is equivalent to export production, which is an important component of the biological carbon pump 
(Boyd et al., 2019); indeed, changes in export production have been implicated as a major driver of varia-
tions in glacial–interglacial pCO2 and hence climate (e.g., Berger et al., 1989; Boyle, 1988b; Broecker, 1982; 
Paytan, 2009). Many of these changes in past export production were inferred on the basis of variations in 
the cycling of major nutrients and their isotopes (e.g., N, Si; Farmer et al., 2021). The net consumption of 

Element

Dissolved 
concentration range 

(nmol kg−1) δiMe and R Standard used for δiMe

Mean upper 
continental crust 

δiMe (‰)

Mean deep 
ocean δiMe 

(‰)
Range of deep 

ocean δiMe (‰)

Residence 
time estimates 

(kyr)

Fe 0.01–100a δ56Fe, 56Fe/54Fe IRMM-014e +0.1m Variablet −2.4 to +1.5t 0.004–0.6aa

Zn 0.01–10a δ66Zn, 66Zn/64Zn JMC-Lyonf +0.3f ≈+0.5u −0.2 to +0.6u 1–11aa

Cu 0.5–4a δ65Cu, 65Cu/63Cu NIST SRM 976f +0.1f ≈+0.7v +0.6 to +0.8v 2–5aa

Cd 0.00003–1.2a δ114Cd, 114Cd/110Cd NIST SRM 3108g 0.0n ≈+0.3w +0.2 to +0.4w 22–105aa

Mo 100b δ98Mo, 98Mo/95Mo NIST SRM 3134 + 0.25‰h ≤0.4o ≈+2.3x Homogeneousx 440ab

Ba 35–160a δ138Ba, 138Ba/134Ba NIST SRM 3104ai 0.0p ≈+0.3y +0.2 to +0.4y 8ac

Ni 1.5–11a δ60Ni, 60Ni/58Ni NIST SRM 986j +0.1q ≈+1.3z +1.2 to +1.5z 10–30ad

Cr 1–7c δ53Cr, 53Cr/52Cr NIST SRM 979k −0.12r ≈+0.8c 0.6–1.2c 6ae

Ag 0.0002–0.1d δ109Ag, 109Ag/107Ag NIST SRM 978al 0.0s Unknown Unknown 0.4af

aSchlitzer (2019); bMorris (1975); cSection 10 and references therein; dGallon and Flegal (2015); eDauphas et al. (2017); fMoynier et al. (2017) and references 
therein; gAbouchami et al. (2013); hNägler et al. (2014); iHorner, Kinsley, and Nielsen (2015); jElliott & Steele (2017); kEllis et al. (2002); lWoodland et al. (2005); 
mGong et al. (2017); nSchmitt et al. (2009a); oWillbold & Elliott (2017); pNan et al., 2018; qCameron et al. (2009); rSchoenberg et al. (2008); sUSGS reference 
material SCO-1 (Cody Shale) is used given paucity of representative data; Schönbächler et al. (2007); tSection 3 and references therein; uSection 4 and references 
therein; vSection 5 and references therein; wSection 6 and references therein; xData from Nakagawa et al. (2012) renormalized to NIST SRM 3134 + 0.25 ‰ based 
on Goldberg et al. (2013); ySection 8 and references therein; zYang et al. (2020); aaHayes et al. (2018) and references therein; abMiller et al. (2011); acDickens 
et al. (2003); adCameron & Vance (2014) and references therein; aeWei et al. (2018); afBroecker and Peng (1982).

Table 1 
Summary of Oceanic Dissolved Concentrations, Isotope Notation, Standards, and Isotopic Compositions, and Mean Ocean Residence Times for Trace Metals 
Discussed in This Review
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nutrients can be interpreted in terms of export production by assuming 
a fixed proportionality between the major nutrients and C. This propor-
tionality provides the connection linking major nutrient cycles to the se-
questration of atmospheric CO2 via biological productivity. In the next 
section, we outline how such a framework can be similarly applied to 
interpret the distributions of bioactive metals and their isotopes in terms 
of export productivity.

2.2. From Nutrients to Productivity

The cycling of nutrients is intimately connected with productivity; along 
with sunlight, nutrients are the fuel that powers the biological pump. In 
turn, the biological pump renders systematic changes in the concentra-
tion and isotopic composition of nutrients throughout the oceans. As-
suming that these changes follow certain known rules, we can use bi-
oactive metals and their isotopes as tracers of biological productivity in 
Earth's past. In this section, we describe how nutrient uptake can gener-
ate isotope variations in seawater and develop a framework for linking 
nutrients with productivity that applies to several of the isotope systems 
reviewed here.

2.2.1. The Isotope Reactor Model

Here we use an example whereby an hypothetical micronutrient metal 
“Me” is supplied to, and consumed within, an isotope reactor (Figure 2). 

Though a simple, non-dimensional representation of myriad oceanographic processes, isotope reactor mod-
els have found utility in describing the marine behaviors of macro- (e.g., N; Sigman et al., 1999; Si, Reynolds 
et al., 2006) and micronutrients (e.g., Ba; Horner, Kinsley, & Nielsen, 2015; Cd, Abouchami et al., 2011; Cr, 
Scheiderich et al., 2015; Ni, Yang et al., 2020). Reactor models assume that a Me is only consumed within 
the reactor, and that consumption occurs as a single reaction with a fixed isotope separation factor, ΔP−R, 
defined as:

 P–R P RΔ δ Me δ Me ,i i (5)

where δiMeP and δiMeR are the stable isotope compositions of the product (phytoplankton) and reactant 
(dissolved nutrient), respectively (see Equation 4 for definition of δiMe).

Following reaction, there may be a fraction of the initial micronutrient Me that remains unused, which we 
term f:


Unused nutrient ,

Nutrient supplied
f (6)

where the nutrient terms represent quantities and f is unitless. (It follows that the fraction of nutrient con-
sumed by phytoplankton equals 1−f.) In systems where most nutrients are consumed, f will be close to zero. 
However, when productivity is limited by some other resource, such as another nutrient or light, systems 
will exhibit f that can approach the theoretical maximum of one.

The isotope composition of the residual nutrients and product phytoplankton will evolve over the course 
of a reaction. The precise nature of their evolution depends on three factors: The progress of the reaction, 
quantified in terms of the fraction of the initial reactant remaining (i.e., f); the magnitude and sign of ΔP–R; 
and, whether the system is “open” or “closed.” If the system remains open during the course of reaction, 
with the addition of new reactants balanced by the removal of product plankton and residual reactant, 
the system will follow Steady State behavior (SS). Alternatively, if the system is closed before and dur-
ing the reaction, the system will follow Rayleigh Distillation (RD). We illustrate the effect of open-versus 

Figure 2. Overview of a single-process reactor with an isotope separation 
factor ΔP–R. The reactor is assumed to follow the principles of isotope mass 
balance, in that the isotope composition of the residual unused nutrient 
(δiMeR) and consumed nutrient (δiMeP) sum to the isotope composition of 
metal initially supplied to the reactor (δiMeR,0).
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closed-system behavior using an example in which a reactant metal, 
possessing an initial isotope composition, δiMeR,0, of +0.3‰ is reacted to 
form a product assuming ΔP–R = −0.5‰ (Figure 3).

If Me supply and removal from the system are continuous, the system is 
considered open and will follow the lines marked SS (Figure 3). The SS 
scenario applies if the residual reactant Me is exported along with Me con-
sumed by plankton, and that the sum of these removal terms are exactly 
balanced by Me resupply to the reactor. To define SS behavior, we draw 
on the simplifying approximations described by Johnson et  al.  (2004), 
whereby the the isotope composition of the SS product follows:

 P R,0 P–Rδ Me δ Me Δ ,i i f (7)

Because of this simplification, the isotope composition of the SS reac-
tants, δiMeR, at any value of f is simply:

 R P P–Rδ Me δ Me Δ ,i i (8)

and thus the reactant isotope composition will not exceed δiMeR,0−ΔP–R.

If the reactor is closed before and during reaction, the system will follow 
the lines marked RD (Figure 3). We define RD using the simplifying ap-
proximations of Mariotti et al. (1981). These approximations are unlikely 
to introduce significant systematic errors for the metals discussed here 
since they exhibit modest isotope variations (see Hayes,  2004). Unlike 
SS, the RD residual reactant isotope composition can evolve to extremely 
fractionated isotope compositions as f→0:

 R P–R R,0δ Me Δ ln δ Me ,i if (9)

The RD product formed at any point in the reaction is always offset from 
the reactant by −0.5‰. This is termed the instantaneous product, δiMeIP 
(Figure 3), defined as:

 IP R P–Rδ Me δ Me Δ .i i (10)

The RD Accumulated Product, δiMeAP, represents the integration of the instantaneous products formed up 
until that point in the reaction, given by:

 


P–R i
AP R,0

Δ ln
δ Me δ Me .

1
i f f

f (11)

Regardless of whether the system follows SS or RD behavior, the first product formed will exhibit δiMeP 
offset from δiMeR,0 by ΔP−R (double-ended arrow in Figure 3). Likewise, at f = 0, δiMeP = δiMeR,0.

2.2.2. From Reactors to Relative Nutrient Utilization

The isotope reactor models may be used to interpret metal isotope variations in the geological record in 
terms of Me supply and demand in the surface ocean. This is possible if one considers the reaction pro-
gress term in the reactors as being analogous to the fraction of initially supplied nutrient left unconsumed 
by phytoplankton (i.e., f). A benefit of this approach is that it does not require the initial concentration of 
metal supplied to the reactor ([MeR,0]) to be known, only its initial isotope composition, δiMeR,0. Howev-
er, the models do require assuming that the isotope separation factor during Me removal from seawater 
(ΔP−R) and δiMeR,0 have remained constant over time. If these assumptions are justified, the reactor frame-
work enables estimation of f from the Me isotope composition of either the residual reactants (seawater) or 
products (exported Me). For example, if a sedimentary archive were to accurately capture δiMeR (the isotope 

Figure 3. Isotopic evolution of an hypothetical metal (Me) in a reactor as 
a function of initial reactant remaining. The metal is supplied to a reactor 
with an initial composition, δiMeR,0, of +0.3‰, where it is reacted with an 
isotope separation factor, ΔP–R, of −0.5‰. The evolution of the reactants 
and products are shown for open-system behavior at SS (Steady State, solid 
lines; Equations 7 and 8) and closed-system RD (Rayleigh Distillation, 
dashed lines; Equation 9) for both the Instantaneous (Equation 10) and 
Accumulated Products (Equation 11). This example illustrates that the 
isotope evolution of the residual reactant is strongly dependent on whether 
the system is open or closed during the course of the reaction.
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composition of a metal following reaction), f can be calculated assuming 
RD using:

 


R R,0

P–R

δ Me δ Me
ln ,

Δ

i i

f (12)

or, if the reaction follows SS, using:

  


R P–R R,0

P–R

δ Me Δ δ Me
.

Δ

i i

f (13)

Likewise, f can be estimated from the isotope composition of exported 
products, δiMeP, assuming SS behavior using:

 


P R,0

P–R

δ Me δ Me
,

Δ

i i

f (14)

There is no equivalent approximation for computing f from δiMeAP as-
suming Rayleigh Distillation.

Equations 12–14 illustrate how metal isotope compositions can be used 
to calculate f. However, f is a measure of the relative utilization of nutri-
ents in a system, and does not confer direct information about the size 
and thus total productivity of that system. This point is illustrated in the 
example shown in Figure 4, where we plot the demand for a nutrient by 
phytoplankton in a reactor against the initial quantity of nutrient sup-
plied to the reactor (i.e., both axes represent quantities), with contours 
representing various f. These lines illustrate that a wide range of possible 
nutrient consumptions—and thus net ecosystem production—are pos-
sible for any value of f. Put another way, if all that was known about a 
system was f, it would be difficult to determine the productivity of that 
system.

Interpreting f in terms of ocean productivity requires an independent constraint on the nutrient supply, 
unused nutrient, or consumed nutrient (Figure 4). A common and powerful approach is to use the flux of 
bioactive metals to sediments as an indicator of past nutrient consumption (e.g., Brumsack, 2006; Eagle 
et al., 2003; Tribovillard et al., 2006). By assuming a fixed Me:C stoichiometry, bioactive metal fluxes can 
then be interpreted in terms of C export productivity. The isotope composition of Me is then used as an indi-
cator of the balance between supply and demand for Me in that system (i.e., f), which is sensitive to factors 
such as ocean circulation and ecosystem structure (e.g., François et al., 1997). These approaches are espe-
cially powerful when the constraints on export and f are derived from the same Me system—barite mass 
accumulation rates and δ138Ba (e.g., Bridgestock et al., 2019), [Cd] and δ114Cd (e.g., Georgiev et al., 2015), 
[Zn] and δ66Zn (e.g., Kunzmann et al., 2013)—since this minimizes potential confounding influences from 
other metal cycling processes, discussed next.

2.3. Other Trace Metal Cycling Processes

The framework outlined in Section 2.2 represents an idealized situation that implicitly assumes that phyto-
plankton productivity dominates the marine cycling of a trace metal. As we show in subsequent sections, 
many other processes cycle the bioactive trace metals and their isotopes in the marine realm; indeed, de-
pending on the metal and the type of process, other factors—not directly related to productivity—may even 
dominate the cycling of that metal. Below, we introduce a number of these processes, which we group into 
three broad categories: biological, chemical, and physical. While these three categories of cycling processes 
may appear as insurmountable obstacles to the reliable application of a metal isotope system to reconstruct 
paleoproductivity, there are two reasons to be optimistic. First, that so many cycling processes are now 

Figure 4. Relationships between nutrient demand, supply, and 
consumption. The y- and x-axes represent combinations of nutrient 
demand and supply, respectively. The total nutrient consumed by 
phytoplankton for each combination is illustrated by the shading; 
productive systems exist in the upper-right portion of the figure, where 
nutrient supply and demand are high, and unproductive systems are 
found close to the figure axes, where supply and demand are mismatched. 
Between these two extremes are moderately productive systems. The 
fraction of nutrients unused in these systems, f, is shown by the contour 
lines. This figure illustrates that f cannot be used in isolation to estimate 
productivity.
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recognized highlights how far our understanding of trace metal geochemistry has evolved in recent years. 
Second, the multiple sensitivities of these metal systems to various ocean processes means that bioactive 
metals and their isotopes may be applied in concert to constrain multiple aspects of past ocean chemistry. 
Multi-proxy approaches are a familiar feature of the paleoredox landscape and are likely to become increas-
ingly common for constraining paleoproductivity (e.g., Cd and Zn, John et al., 2017, Sweere et al., 2020; Cd 
and Cr, Frei et al., 2020).

2.3.1. Biological

Biological processes exclusive of productivity can play an important role in marine trace metal behavior. 
The example in Section 2.2 assumes that organisms exhibit inflexible Me:C stoichiometries, whereas in re-
ality many marine microbes appear to have wide tolerances for the intracellular proportions of certain trace 
elements compared to those of C, N, and P. The physiological mechanisms enabling these wide tolerances, 
and the feedback interactions that drive them, are beyond the scope of this review, and are discussed in 
detail elsewhere (e.g., Morel et al., 2020; Sunda, 2012). From a proxy perspective, this flexibility may cause 
uncertainty in paleoproductivity estimates; the more variable the Me:C stoichiometry of organisms within 
an ecosystem, the more uncertain the paleoproductivity estimate derived from that Me. (The corollary being 
that the more rigid the stoichiometry, the more robust the paleoproductivity estimate.) An extreme example 
concerns nonessential elements (e.g., Ag, Ba), or metals that are only essential for certain groups of organ-
isms within an ecosystem (e.g., Mo for nitrogen fixers). Productivity estimates derived from the export of 
these nonessential elements are potentially most susceptible to decoupling from productivity cycles as their 
export is not intrinsically tied to the overall functioning of an ecosystem.

Similarly, the reactor models assume that nutrient uptake is well described by a single and fixed isotope 
separation factor, ΔP−R. A number of studies showed that this assumption is violated for Zn; different phy-
toplankton (e.g., Köbberich & Vance, 2017, 2019) and—depending on environmental conditions—even a 
single organism (e.g., John et al., 2007; Köbberich & Vance, 2017) can an exhibit a range of ΔP−R. Whether 
such behavior is also seen for other metal isotope systems is unknown, but could be important given that 
calculation of f is dependent on ΔP−R (Equations 12–14).

Biological processes can potentially exert an additional control on bioactive metal isotope distributions 
through remineralization—the regeneration of POC to inorganic nutrients. In the case of a scarce nutrient, 
such as Fe, individual organisms (e.g., Saito et al., 2011) and even entire ecosystems (e.g., Rafter et al., 2017) 
have evolved mechanisms to retain certain nutrients. Likewise, macro- and micronutrients may be regener-
ated by heterotrophic organisms at different rates (e.g., Ohnemus et al., 2019; Twining et al., 2014), which 
could affect the Me:C stoichiometry of exported POC and thus the accuracy of Me-derived C export fluxes. 
Even less is known about the role of heterotrophs in fractionating POC-associated metal isotope composi-
tions, which could be significant for some metals (e.g., Cd, Janssen et al., 2019).

Lastly, many of the metals reviewed here form complexes with organic ligands. For some metals, such as 
Fe and Cu, almost the entire oceanic inventory is bound to organic ligands. The effect of ligands on trace 
metal cycling is an area of active research, and is potentially important from the perspective of modulating 
isotope fractionation during uptake by plankton and into secondary Me sinks. Where known, these effects 
are discussed in the relevant sections.

2.3.2. Chemical

There are several chemical transformations that can modulate marine trace metal distributions without 
affecting C, such as scavenging and precipitation–dissolution reactions. Scavenging, meaning adsorption 
and desorption, can alter Me:C relationships by redistributing metals, but not C. Originally developed in 
the context of dissolved and particulate thorium isotopes (Bacon & Anderson, 1982), reversible scavenging 
is now suggested to play a role in the vertical cycling of other metals, including Cu (e.g., Little et al., 2013), 
Fe (e.g., Abadie et al., 2017), and Zn (e.g., Weber et al., 2018). Reversible scavenging is a continuous process 
that occurs between particle surfaces and dissolved species. While this process can occur at any depth, 
scavenging intensity is positively correlated with the quantity of particles, and so is typically most impor-
tant in the upper water column. Likewise, while dissolved metals may be scavenged by any class of particle 
(e.g., opal, lithogenics), certain particle types may preferentially scavenge certain elements (e.g., Lerner 
et al., 2018). Scavenging may even affect trace metals cycled predominantly by organic matter; secondary 
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phases may scavenge metals during remineralization, which can affect trace metal distributions in the up-
per water column (e.g., Zn, John & Conway, 2014; Co, Hawco et al., 2018; Fe, Tagliabue et al., 2019).

Precipitation and dissolution of minerals is also a consideration for certain trace metals. The relative im-
portance of mineral cycling depends on the metal and the redox environment. For example, Ba is primarily 
cycled by the mineral barite, rather than POC, and the thermodynamics of precipitation vary throughout 
the ocean (e.g., Rushdi et  al.,  2000). Changes in the ambient redox environment, such as in an oxygen 
minimum zone (OMZ), may even enhance dissolved–particulate transformations for certain trace metals. 
Some metals, such as Fe, may have large sources in OMZs associated with the reductive dissolution of 
particulate Fe–Mn oxides. Other metals may experience enhanced removal in OMZs via precipitation into 
sulfide minerals (e.g., Zn, Cu, Cd, Mo, Ni, Ag; Bianchi et al., 2018; Helz et al., 1996; Guinoiseau et al., 2019; 
Janssen et al., 2014; Kramer et al., 2011; McKay & Pedersen, 2008; Vance et al., 2016). The net effect of these 
non-POC-associated transformations is that processes other than POC cycling may redistribute trace met-
als, but not C, within the ocean interior. If significant, these processes could drive the ocean to a different 
Me:C stoichiometry and/or dissolved metal isotope composition that could impact calculations of export 
and f, respectively, when using the nutrient utilization framework described in Section 2.2.

2.3.3. Physical

The physical circulation of the ocean exerts a major control on many oceanic TEI distributions and we 
describe this influence on our nine trace metals in detail in later sections. In addition to circulation, there 
are also scale dependencies that can affect trace metal-based productivity estimates at both small and large 
scales, as well as other, non-productivity metal sinks. At the local to regional scale, Me point sources may be 
significant if they mask any POC-related Me drawdown. While perhaps less significant for C, point sourc-
es—rivers, dust, desorption from particles, sediments, and hydrothermalism—may be significant terms in 
local and regional trace metal budgets if the magnitude is comparable to the dissolved supply from ocean 
circulation. Examples include dust-derived Cu to surface planktonic communities (e.g., Paytan et al., 2009) 
and hydrothermally derived Fe to the deep ocean (e.g., Resing et al., 2015). Consideration of these external 
sources is particularly important when productivity estates are derived close to such point sources and for 
metals with residence times that are less than (or similar to) the mixing time of the ocean (∼1 kyr).

At the basin scale, the location of a site can influence the calculation of f. Close to an upwelling source of 
metal, such as in the modern Southern Ocean, f is, by definition, close to one and decreases downstream 
into the low latitudes. Given this dependence, it follows that a change in ocean circulation geometry could 
influence the spatial pattern of f without any net changes in productivity. This is particularly important to 
consider from a paleoceanographic perspective, since records are typically generated from fixed locations 
(i.e., sediment cores), making it challenging to determine if variations in f originated from overlying chang-
es in ocean circulation or productivity. One solution to this challenge is to obtain an independent constraint 
on ocean circulation, such as from another isotope system or using a model. Alternatively, the spatial pat-
tern of f could be discerned from multi-site reconstructions of Me isotope distributions.

On a global scale, the assumption of steady state can affect how productivity is estimated from Me reactor 
models. The input and output fluxes of a metal through the ocean should balance, regardless of produc-
tivity. Likewise, the flux-weighted metal isotope composition of inputs and outputs should also balance. 
Thus, at large scales, the isotopic composition of a sedimented Me should reflect the average input δiMe, 
regardless of mean ocean f. Such a situation is possible because the flux terms interact. As an example, 
we return to the metal in Figure 3. We will assume that this metal follows SS behavior and that biological 
productivity is the only sink of this metal from seawater. If the mean marine input of this metal possessed 
δiMe = −0.1‰, the system would only be in steady state if, on a global basis, f = 0.8. However, if mean global 
f were to decrease to 0.2 (i.e., a smaller fraction of this nutrient Me is left unused), mean global δiMeP would 
increase from −0.1‰ to +0.2‰, which no longer matches the input δiMe of −0.1‰. Such an imbalance 
cannot be sustained indefinitely, since the ocean would be losing more “heavy” Me than is being added. As 
such, the ocean would gradually compensate by a lowering of δiMeR,0 to 0.0‰. In turn, mean ocean δiMeP 
would return to values ≈ −0.1‰, even if f remained at 0.2. This example illustrates how ocean-scale pro-
cesses can influence the relationship between trace metals and productivity, even if productivity is the main 
sink of a metal from a system.
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Lastly, the relationship between Me and productivity—δiMeR,0, and potentially, [MeR,0]—can also be influ-
enced by non-productivity Me sinks. Indeed, non-productivity sink terms are of considerable significance 
for many of the trace metals reviewed here. The significance of these terms may offer another, indirect 
means to constrain paleoproductivity: If non-productivity Me sinks possess different ΔP−R and/or Me:C to 
productivity-related sinks, mean deep ocean δiMe and/or [Me] will be sensitive to the relative balance of 
Me burial between the various sink terms, analogous to the canonical C cycle mass balance (e.g., Berner 
et al., 2000). For example, if assuming fixed Me inputs over time and that whole-ocean productivity abruptly 
decreased, the relative significance of non-productivity Me sinks would increase to compensate for the de-
crease in productivity. This compensation could drive deep ocean δiMe and/or [Me] to new values that are 
sensitive to the balance between productivity and Me burial by other sinks. This multi-sink framework un-
derpins the use of many TEI-based redox proxies (e.g., Tl, Owens et al., 2017; U, Montoya-Pino et al., 2010), 
though this approach is relatively unexplored in the context of reconstructing paleoproductivity.

The review of each metal isotope system follows.

3. Iron
Iron plays a key role within phytoplankton as an electron carrier for photosynthesis and respiration pro-
cesses, as well as within enzymes necessary for photosynthesis and nitrogen fixation (Morel & Price, 2003). 
However, in oxygenated seawater, Fe(II) is rapidly oxidized to Fe(III), which is highly insoluble (Liu & Mil-
lero, 2002). Low Fe solubility coupled to intense biological demand generally results in sub-nanomolar [Fe] 
throughout the oceans, approaching the low picomolar range in some surface regions far from Fe sources, 
such as the vast Southern Ocean and North Pacific (e.g., Figure 5; Chever et al., 2010; Klunder et al., 2011; 
Schlitzer et al., 2018). Consequently, biological production in about 30% of the modern surface ocean is 
thought to be limited primarily by Fe (Moore et al., 2013), principally in upwelling regions where deep water 
is depleted in Fe relative to the macronutrients nitrate (NO3

−) and phosphate (PO4
3−; e.g., Boyd et al., 2017; 

Moore, 2016). By limiting primary productivity (e.g., Martin & Fitzwater, 1988), inadequate Fe supply can 

Figure 5. Representative profiles of dissolved Fe concentrations ([Fe]); (a) and Fe isotopic compositions (δ56Fe); (b). 
Data from the Eastern Tropical North Atlantic (squares, dashed line; Conway & John, 2014a), Northeast Pacific (circles, 
solid line; Conway & John, 2015a), and Southern Oceans (triangles, dotted line; Abadie et al., 2017). Station locations 
as per Figure 1. This comparison illustrates that despite possessing similar dissolved concentration profiles, the isotopic 
behavior of Fe is markedly different between basins.
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potentially influence the exchange of carbon between the ocean and atmosphere. Changing supplies of Fe 
from sources such as atmospheric dust, hydrothermal venting, or sedimentary release to the surface oceans 
through geological time can exert a significant control on both the distribution of primary productivity in 
the oceans and thus the global carbon cycle. For example, changes in supply of atmospheric dust to the 
Fe-limited Southern Ocean has been shown to correlate with climate variability on millennial time scales 
and has also been invoked to explain at least part of the dramatic sawtooth glacial–interglacial shifts in at-
mospheric carbon dioxide (Martin, 1990; Martínez-Garcia et al., 2011, 2014; Sigman & Boyle, 2000).

The strong link between Fe supply and primary productivity suggests that ratios of Fe to other elements 
and/or Fe isotope ratios (δ56Fe) might be useful proxies for paleoproductivity. However, in the vast majority 
of settings, δ56Fe and Fe flux records do not reflect paleoproductivity; instead, the influence of the major Fe 
sources and their redox-driven cycling exert far stronger controls over marine Fe geochemistry compared 
to biological productivity. Thus, a simple reactor framework, as outlined in Section 2.2.1, cannot be applied 
to δ56Fe. However, we note that there are a number of promising archives of past Fe isotope chemistry, 
particularly for the deep ocean, and we anticipate that these records will prove most valuable as context for 
interpreting other proxy records, or for generating novel hypotheses regarding the connections between Fe 
sources, biological productivity, and global climate.

3.1. Marine Distribution

The distribution of dissolved Fe in seawater is driven by a mixture of competing processes, including: bio-
logical uptake and regeneration; distinct sources of Fe at shallow, intermediate, and deep depths; adsorp-
tion–desorption processes onto organic and lithogenic particles; dissolution and precipitation processes; 
and, complexation with organic ligands (Figure 6; e.g., Boyd & Ellwood, 2010; Labatut et al., 2014; Tagliabue 
et al., 2017). As a result, [Fe] display what has historically been termed a hybrid-type depth profile in the 
open ocean, which exhibits a number of similarities between different ocean basins (Figure 5). Dissolved 

Figure 6. Processes driving Fe isotope variations in modern seawater. The ocean's internal cycle of Fe is perhaps the 
most complex of the trace metals discussed here, exhibiting several significant sources, sinks, and transformations not 
directly associated with biological productivity.
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Fe is drawn down in surface waters by biological uptake, and [Fe] can even be as low as 0.01 nmol kg−1 in 
Fe-limited regions (Schlitzer et al., 2018). In comparatively “dustier” regions of the oceans, such as the North 
Atlantic, surface [Fe] can be as high as 2 nmol kg−1 following dust deposition events (Sedwick et al., 2005). 
Below the surface mixed layer, regeneration of biogenic material, reversible particle scavenging, and com-
plexation by organic ligands act to keep the background deep ocean [Fe] between 0.4–0.6 nmol kg−1 (e.g., 
Lauderdale et  al.,  2020). Against this background, however, it has been known for decades that [Fe] in 
deeper waters are elevated near point sources such as sedimentary margins (Johnson et al., 1997). Recently, 
a range of studies, including those conducted as part of the GEOTRACES program, have illuminated this 
picture, showing that deep sources of Fe—such as sedimentary and hydrothermal release—are widespread, 
may have distinct traceable δ56Fe source signatures, and that this Fe can be transported over large distances 
through the ocean interior (e.g., Conway & John, 2014a; Radic et al., 2011; Resing et al., 2015; Nishioka 
et al., 2020; Saito et al., 2013). Despite exhibiting well-defined maxima close to point sources, [Fe] distri-
butions at shallow and intermediate depths are extremely variable and models have struggled to reproduce 
these variations (e.g., Tagliabue et al., 2016). The extent to which deeply sourced Fe is supplied to surface 
seawater is thus equivocal (e.g., Roshan et al., 2020; Tagliabue et al., 2010).

The origin of [Fe] variability in the shallow and intermediate ocean is thought to reflect local differences 
in the competition between uptake, regeneration, sources, and scavenging. The same processes influence 
δ56Fe; however, unlike the modest variations in [Fe], δ56Fe exhibits dramatic variability between—and even 
within—ocean basins (Figure 5; Schlitzer et al., 2018). Such water column variability in δ56Fe, from isotope 
compositions as light as −4‰ (Charette et al., 2020), to as heavy as +2‰ (Ellwood et al., 2020), is thought to 
be driven by an interplay between different Fe sources with distinct Fe isotope compositions, biological up-
take, Fe complexation to organic ligands in surface waters, and non-reductive release of dissolved Fe from 
particles (notably lithogenic particles) during desorption and/or ligand-promoted dissolution (e.g., Abadie 
et al., 2017; Conway & John, 2014a; Ellwood et al., 2020; Figure 6). These processes can render remarkably 
different δ56Fe profiles, even when profiles of [Fe] are similar, such as in the examples from the Northeast 
Pacific, Eastern Tropical North Atlantic, and the Weddell Sea of the Southern Ocean (Figure  5). In the 
North Pacific and North Atlantic examples, the deep distribution of δ56Fe is considered to be most strongly 
influenced by the dominant regional Fe source—dust in the Atlantic and the continental margins in the 
Pacific (Conway & John, 2014a; 2015b). In the Weddell Sea, the deep δ56Fe distribution has been attributed 
to regeneration of isotopically light biogenic Fe at depth (Abadie et al., 2017), or, more recently, to the ad-
dition of isotopically light Fe from regional sedimentary release (Sieber et al., 2021). Thus, δ56Fe appears to 
provide the most insight into the relative contributions of various Fe sources at the basin scale (e.g., Conway 
& John, 2014a), as well as for internal Fe-cycling processes such as uptake and regeneration.

Despite synthesis of numerous studies of both small- (e.g., Coale, 1991; Coale et al., 2003; Martin et al., 1990) 
and large-scale iron fertilization events (e.g., de Baar et al., 2005; Boyd & Ellwood, 2010; Boyd et al., 2007; 
Urban et al., 2020), there are still uncertainties in how changing Fe supply to the surface ocean may af-
fect phytoplankton growth in Fe-limited regions, and/or nitrogen fixers under NO3

− limitation. These un-
certainties have led to several gaps in our ability to link Fe cycling directly to climate change (Misumi 
et al., 2014). One major challenge is assessing what portion of the dissolved Fe pool is available for uptake 
by different microbes, termed “bioavailable” Fe. Such uncertainties on Fe supply, speciation, and bioavaila-
bility in the surface ocean are compounded by limitations in our ability to constrain the supply of dissolved 
Fe in upwelled deep waters. For example, while the ratio of C to macronutrients such N and P in the deep 
ocean is well known and the residence time and distribution can be accurately reproduced based on appar-
ent oxygen utilization (AOU), this is not the case for Fe. Only around 10%–15% of cellular Fe (Fe:C = 18–
33 μmol:mol) appears to be regenerated in the deep ocean (Fe:C 4–6 μmol:mol; Twining & Baines, 2013). 
This lack of regeneration leads to a much weaker correlation between [Fe] and AOU, even in regions far 
from Fe sources (Rijkenberg et al., 2014) and to upwelled deep waters being relatively depleted in dissolved 
Fe relative to macronutrients (e.g., Moore, 2016). Since incubation experiments show that Fe associated 
with sinking organic matter from the subsurface is efficiently regenerated (Velasquez et al., 2016), much of 
the released Fe must be rapidly scavenged (Tagliabue et al., 2019). Despite this scavenging, vertical trans-
port is still thought to be the major source of dissolved Fe for phytoplankton in most Fe-limited regions, 
highlighting the complex interplay between Fe supply (sources, stabilization, and transport) and demand 
(biological uptake, scavenging).



Global Biogeochemical Cycles

HORNER ET AL.

10.1029/2020GB006814

14 of 86

3.2. Driving Processes

3.2.1. Biological

Initial studies of processes that fractionate Fe isotopes were optimistic that δ56Fe would make for a power-
ful proxy of physiological “biosignatures” (Beard et al., 1999), especially once measurement of δ56Fe was 
extended to seawater by Lacan et al. (2008). However, much of this early optimism faded once it was found 
that other factors were also important in setting dissolved δ56Fe, such as external Fe sources (e.g., John 
et al., 2012; Radic et al., 2011; Section 3.2.2). Moreover, organisms exhibit significant variability in Fe:C 
ratios (e.g., Twining & Baines, 2013), suggesting that Fe cycling may be partially decoupled from ecosystem 
productivity. Despite this more complicated picture, there is a growing body of evidence suggesting that phy-
toplankton preferentially incorporate light Fe isotopes from seawater and, in some circumstances, render 
detectable changes in dissolved δ56Fe. For example, studies from isolated eddies, the Mertz Polynya, and the 
open Southern Ocean showed that surface δ56Fe, at picomolar [Fe], are isotopically heavy (>+1‰), which 
has been attributed to the combination of surface uptake, regeneration, and organic complexation (Ellwood 
et al., 2015, 2020; Sieber et al., 2021). Estimates for the magnitude of fractionation due to biological uptake, 
ΔP−R, ranges between −0.1 (Radic et al., 2011) and −1.0‰ (Ellwood et al., 2020; Sieber et al., 2021). The 
magnitude and direction of any Fe isotope fractionation during uptake may depend on the phytoplankton 
species, uptake mechanism, and Fe species consumed. Additional research is required on all three fronts.

Below the surface, dissolved δ56Fe primarily reflects the isotope composition of regional Fe sources, and is 
not substantially influenced by the remineralization of organic matter (Figure 6; e.g., Abadie et al., 2017; 
Conway & John, 2014a; John, Helgoe, Townsend, Weber et al., 2018; Labatut et al., 2014; Sieber et al., 2021). 
These results indicate that there remains the possibility for using δ56Fe of surface seawater to reconstruct 
productivity in some oceanographic settings, though any such reconstructions would need to consider the 
role of other Fe-cycling processes and the degree to which they might erase any diagnostic productivity 
signatures, discussed next.

3.2.2. Chemical

The chemical behavior of Fe in seawater is complex and has the potential to decouple Fe cycling from 
macronutrients and therefore productivity. Unlike the macronutrients, which are present as aqueous ions 
in solution, Fe is scarcely soluble in seawater, and much of what constitutes “dissolved” Fe—operationally 
defined as that which can pass through a 0.2 or 0.4 μm filter—is in actuality a ‘soup’ of organic complexes, 
nanoparticles, colloids, and a small fraction of truly ionic Fe. The controls governing, and the extent to 
which exchange occurs between these forms of dissolved Fe, are areas of focused interest (e.g., Fitzsimmons 
& Boyle, 2014; Fitzsimmons et al., 2015). Additionally, dissolved Fe is subject to strong removal via scaveng-
ing, which lowers the Fe:macronutrient ratio of waters returned to the surface via upwelling (Moore, 2016). 
Chemical processes can also exert a significant influence over the isotopic composition of Fe in seawater, 
such as through redox transformations, exchange reactions (e.g., complexation, particle interactions), and 
by authigenic precipitation, discussed below.

Redox transformations drive large Fe isotope effects (e.g., Anbar et al., 2005; Johnson et al., 2002; Skulan 
et al., 2002; Welch et al., 2003). Indeed, much of the Fe isotope variation in Earth's ancient, more-reducing 
past likely derives from fractionations associated with redox transformations (see e.g., Johnson et al., 2008; 
Rouxel et al., 2005 and references therein). While the role of redox relative to other processes is somewhat 
diminished in today's mostly oxygenated ocean, redox remains an important mediator of Fe isotope source 
compositions, particularly within the ocean interior. This is neatly illustrated using the example of sediment 
dissolution, which can occur with or without a change in the redox state of Fe (Figure 6). Bulk marine 
sediments typically possess a composition similar to the crustal composition of +0.1‰ (Beard et al., 2003; 
Poitrasson, 2006). However, dissolved Fe(II) derived from bacterially mediated reductive dissolution in sed-
iments has been characterized by δ56Fe between −1‰ and −3‰ (Bergquist & Boyle, 2006, 2010; Henkel 
et  al.,  2018; Homoky et  al.,  2009,  2013; Klar, Homoky et  al.,  2017; Severmann et  al.,  2006), whereas Fe 
derived from non-reductive dissolution processes is thought to be considerably heavier, between +0.1‰ 
and +0.3‰, and also likely to be present in the colloidal phase (Homoky et al., 2009, 2013; 2021; Radic 
et  al.,  2011). Further modification of reductive endmember compositions is possible upon contact with 
oxidizing seawater, potentially masking true source signatures. Oceanic water column dissolved δ56Fe 
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compositions attributed to either non-reductive (+0.1‰ to +0.4‰) or reductive (−0.3‰ to −4‰) release 
of Fe from sediments have now been observed in all ocean basins (Abadie et al., 2017; Charette et al., 2020; 
Chever et  al.,  2015; Conway & John,  2014a,  2015a; Fitzsimmons et  al.,  2016; John, Helgoe, Townsend, 
Weber et al., 2018; John et al., 2012; Labatut et al., 2014; Klar, Homoky et al., 2017; Klar et al., 2018; Radic 
et al., 2011; Rolison et al., 2018; Staubwasser et al., 2013).

Exchange reactions can also fractionate primary Fe isotope compositions. For example, natural lithogenic 
dust is thought to possess a relatively narrow range of Fe isotope compositions (i.e., δ56Fe ≈ +0.1‰ ± 0.2‰; 
Chen et al., 2020; Conway et al., 2019; Mead et al., 2013; Waeles et al., 2007), reflecting the overall homo-
geneity of the upper continental crust. However, dissolved Fe in seawater attributed to dissolving dust par-
ticles is isotopically heavy, around +0.7‰ (Figure 6; Conway & John, 2014a). This fractionation is thought 
to reflect dissolution in concert with, and complexation by, strong organic ligands (Fishwick et al., 2014), 
which have been experimentally shown to preferentially bind heavy Fe isotopes (Dideriksen et al., 2008; 
Morgan et al.,  2010). Fractionation effects may also arise during exchange of Fe between dissolved and 
particulate forms, though the magnitude of the effect depends on whether the exchange is primarily phys-
ical (negligible fractionation; e.g., Fitzsimmons et al., 2017) or chemical (from ≈+0.3 up to +1‰; Labatut 
et al., 2014; Fitzsimmons et al., 2015).

Lastly, authigenic precipitation can control the isotopic composition of Fe released by large point sources, 
such as hydrothermal vents and margin sediments (Figure 6). Iron in hydrothermal vent fluids possesses 
endmember compositions ranging from −0.7‰ to +0.1‰ (Beard et al., 2003; Bennett et al., 2009; Rouxel 
et al., 2008, 2016, 2018; Nasemann et al., 2018; Severmann et al., 2004; Sharma et al., 2001). However, pre-
cipitation of Fe into authigenic minerals can render significant changes in dissolved δ56Fe (e.g., Bennett 
et al., 2009; Severmann et al., 2004). The direction of fractionation depends on—and may thus be diag-
nostic of—the specific transformations occurring (e.g., Horner, Williams et al., 2015; Lough et al., 2017): 
Fe sulfides and oxides preferentially incorporate isotopically light and heavy Fe, respectively (e.g., Rouxel 
et al., 2008; Skulan et al., 2002). Mineral precipitation can drive δ56Fe of residual Fe stabilized in seawater 
to values ranging between −2.4‰ and +1.5‰, depending on the authigenic mineral produced (Conway & 
John, 2014a; Ellwood et al., 2015; Fitzsimmons et al., 2016, 2017; Klar, James et al., 2017; Lough et al., 2017; 
Rouxel et al., 2018). Analogous processes appear to operate along continental margins, whereby “light” Fe, 
mobilized by reductive dissolution, encounters oxidizing seawater and forms precipitates that are heav-
ier than the source Fe (though overall still considerably lighter than background seawater; e.g., Marsay 
et al., 2018; Figure 6).

Additionally, the importance of local point sources on dissolved δ56Fe continue to emerge, including from 
anthropogenic aerosol dust (e.g., Mead et al., 2013; Kurisu, Sakata et al., 2016; Kurisu, Takahashi, et al., 2016; 
Conway et al., 2019; Pinedo-González et al., 2020), glaciers and meltwater (e.g., Zhang et al., 2015; Steven-
son et al., 2017), and rivers (e.g., Akerman et al., 2014; Bergquist & Boyle, 2006; Chen et al., 2014; Escoube 
et al., 2015, 2009; Fantle & DePaolo, 2004; Ilina et al., 2013; Ingri et al., 2006; Mulholland et al., 2015; Poi-
trasson et al., 2014). These local point sources can vary dramatically over short spatial and temporal scales 
and with in situ chemical conditions. The importance of different Fe sources on dissolved δ56Fe is so signif-
icant that any fractionation arising from biological uptake in the Fe-depleted surface layer, even if it were 
recorded in a sedimentary archive, is likely to be overprinted by even a small addition of new Fe from either 
above or below. Thus, records of surface seawater δ56Fe are more likely to reflect the influence of different 
Fe sources and associated chemical transformations than productivity.

3.2.3. Physical

The residence time of Fe in seawater is substantially less than the mixing time of the global ocean (Ta-
ble 1). Local and regional Fe sources can thus drive large differences in [Fe] and dissolved δ56Fe between 
ocean basins (Figure 5). However, local source signatures—[Fe], δ56Fe, and perhaps Fe speciation—can be 
transported and retained over the scale of individual ocean basins (Figure 7; Abadie et al., 2017; Conway & 
John, 2014a). The discovery of significant long-range intra-basin Fe transport is arguably one of the mar-
quee findings of the GEOTRACES program, and underpins the utility of sedimentary δ56Fe to reconstruct 
past marine Fe sources, discussed next.
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3.3. Marine Archives

3.3.1. Surface Ocean

A requirement of the application of any paleoproxy is the availability of suitable sedimentary archives. 
These archives must have both a high fidelity for the signal of interest and be robust to post-depositional 
alteration. Archives most relevant to reconstructing paleoproductivity should capture surface ocean δ56Fe; 
however, there are few—if any—reliable archives. The lack of surface water archives reflects two related 
challenges. First, most archives for surface seawater are derived from biominerals, such as foraminifera, 
diatoms, sponges, and corals. These archives possess vanishingly low Fe content compared to Ca or Si, such 
that Fe isotopic analysis of these substrates has proven difficult. Second, following burial, many biominerals 
will act as substrates for authigenic mineral formation. Many of these secondary authigenic minerals, such 
as clays (e.g., Badaut & Risacher, 1983) and Fe–Mn oxides (e.g., Boyle, 1981), possess Fe contents far in 
excess of those in the underlying biomineral, necessitating significant physical and chemical cleaning (e.g., 
Cheng et al., 2000).

Despite these obstacles, there are three positive signs that reconstructing past surface seawater δ56Fe is pos-
sible. First, biogenic opal may contain Fe at concentrations in the μg g−1 range (Ellwood & Hunter, 2000; Lal 
et al., 2006; Shemesh et al., 1988; Sun et al., 2016), which is tractable for δ56Fe analysis. Second, the Fe con-
tent of diatoms is correlated with ambient [Fe] (Twining & Baines, 2013). Lastly, the positive relationship 
between the Fe content of diatoms and corresponding seawater appears to hold through sinking and sedi-
mentation (Pichevin et al., 2014), indicating that diatoms are a potential window into past surface ocean Fe 
chemistry. Whether these relationships also extend to δ56Fe remains to be seen, and will require additional 
core-top calibrations, incubation experiments, and detailed assessment of the efficacy of chemical cleaning.

3.3.2. Deep Ocean

There are several studies examining Fe sources and fluxes in the meso- and bathypelagic ocean using sed-
imentary archives. Given the considerable spatial variability in modern δ56Fe, it is likely that sedimen-
tary reconstructions will reflect, at most, a regional view of the past Fe cycle. This means that multiple, 

Figure 7. Three-dimensional scene depicting dissolved Fe concentrations in the Atlantic Ocean (Schlitzer, 2019). This 
perspective illustrates the density of GEOTRACES data in the region as well as the influence of multiple Fe “hot spots”, 
such as mid-ocean ridges and continental margins. Data are available in the GEOTRACES Intermediate Data Product 
2017 (Schlitzer et al., 2018); names of data originators appear in the figure. Three-dimensional scenes for other trace 
element and isotope (TEIs) are available from https://eGEOTRACES.org/.
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contemporaneous records will be required to diagnose whole-ocean 
changes in Fe cycling, but that individual records will have utility in of-
fering basin-scale perspectives. To constrain Fe sources, researchers have 
examined the Fe isotope composition of Fe-rich sediments, including red 
clays (Dunlea et  al.,  2021), polymetallic nodules (Marcus et  al.,  2015), 
and Fe–Mn crusts (Chu et  al.,  2006; Horner, Williams et  al.,  2015; Le-
vasseur et al., 2004; Liu et al., 2020; Zhu et al., 2000). Ferromanganese 
crusts are currently the best studied for Fe isotopes (Figure 8); Fe–Mn 
crusts are slowly accumulating deposits (∼mm Myr−1) that record am-
bient seawater δ56Fe with a spatially invariant offset of −0.77 ± 0.06‰ 
(Levasseur et al., 2004; Horner, Williams et al., 2015). The constancy of 
the offset between crusts and seawater implies that the Fe isotope com-
position of individual Fe–Mn crust layers can be interpreted in terms of 
past dissolved δ56Fe, and thus past Fe sources. Iron is effectively immobile 
in Fe–Mn crusts, with a calculated effective diffusivity <10–12 cm2 yr−1 
(Henderson & Burton, 1999), implying that post-depositional diffusion of 
Fe is unlikely to reset primary δ56Fe (Horner, Williams et al., 2015; Mar-
cus et al., 2015). Curiously, however, the Fe isotopic variability of Fe–Mn 
deposits recovered from the central Pacific—particularly layers formed 
before ∼20 Ma—exceed the range of modern deep ocean δ56Fe (though 
only in the positive direction; Figure 8). The reasons for elevated δ56Fe 
in the past are debated. Horner, Williams et al. (2015) report that heavy 
δ56Fe could arise through widespread secondary modification of large Fe 
sources through authigenic reactions, such as sulfide precipitation. In 
contrast, Johnson et  al.  (2020) contend that the elevated δ56Fe reflects 
extensive biological modification of dissolved Fe, driven by large-scale 
Fe fertilization. Regardless, the variation in these records points to a dy-
namic and enigmatic Fe cycle in Earth's past, and indicates that Fe–Mn 
crusts have a largely untapped potential to reconstruct spatiotemporal 
variations in this cycle.

Other approaches are also showing promise to study Fe fluxes to the deep 
ocean through time. For example, researchers have constrained the rate 

of sedimentary accumulation of hydrothermally derived Fe and Cu using constant flux proxies such as 
extraterrestrial helium-3 (e.g., Middleton et al., 2016) or thorium-230 (Costa et al., 2017). These studies re-
port that hydrothermal activity may be coherent with sea level changes on Quaternary glacial–interglacial 
cycles, suggesting a potentially remarkable set of connections between the solid Earth, ocean chemistry, and 
global climate (e.g., Cullen & Coogan, 2017). Reconstruction of hydrothermal metal fluxes over million-year 
timescales may also be possible using the geochemistry of pelagic clays (e.g., Dunlea et al., 2015; 2021), 
though such approaches are still in their infancy.

3.4. Prospects

While the marine Fe cycle is complex, Fe isotopes are proving valuable tool for untangling the many pro-
cesses involved. Detailed study of the Fe cycle reveals that it is driven by a multitude of biological, physical, 
and chemical processes, among which productivity is but one small part. In our view, this means that it is 
unlikely that δ56Fe can be developed as a paleoproductivity tracer. However, this does not preclude δ56Fe 
from emerging as a powerful tracer for studying the dynamics of the Fe cycle in the modern and past oceans. 
Such a tracer would be especially powerful given the important connections between Fe supply and the 
biological productivity of the ocean.

Exploiting δ56Fe will require resolving and refining several ambiguities. First, there is a clear need to bet-
ter constrain the Fe isotope fractionation factor associated with biological uptake (in variable conditions 
and from different species) and to diagnose locations where dissolved δ56Fe is most affected by productivi-
ty. Second, the fractionation factors for remineralization and scavenging are essentially unknown, though 

Figure 8. Ferromanganese crust records of central Pacific δ56Fe since 
the Late Cretaceous. Records from CD29-2, 28DSR9, and METG-03 from 
Horner, Williams et al. (2015), Chu et al. (2006), and Liu et al. (2020), 
respectively. The record from CD29-2 was interpreted by Horner, Williams 
et al. (2015) as evidencing the importance of deep (non-eolian) Fe sources 
to central Pacific Fe budgets throughout much of the Cenozoic and Late 
Cretaceous. In contrast, the δ56Fe recorded by three central Pacific Fe–Mn 
crusts have been similar since the late Miocene, consistent with a regional 
Fe source derived largely from non-reductive sediment dissolution and/or 
eolian deposition.
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field data suggests that the net result of these effects is relatively small (e.g., Labatut et al., 2014; Radic 
et al., 2011). Constraining these fractionation factors will be particularly important for developing novel 
archives of the past Fe cycle, such as pelagic clays (e.g., Dunlea et al., 2021). Third, any sedimentary recon-
struction of past Fe isotope chemistry will need to consider the high degree of spatial variability in modern 
δ56Fe. This will necessitate spatially distributed core sampling, similar to the approach used to constrain 
basin-scale patterns of dust deposition over glacial–interglacial timescales (e.g., Costa et al., 2016; Winckler 
et al., 2016). Addressing these priorities will provide valuable constraints on the extent to which the Fe cycle 
has influenced primary productivity over recent geological history, and provide key insights into the poten-
tial sensitivity of Earth's climate to perturbations in marine trace element cycles.

4. Zinc
After Fe, Zn is the second most abundant transition metal in marine phytoplankton (e.g., Twining & 
Baines, 2013) and is involved in many cellular processes ranging from RNA synthesis to nutrient acqui-
sition (e.g., Maret, 2001). Consistent with its importance to organisms and relatively short residence time 
(Table 1), [Zn] exhibits a nutrient-type distribution in the ocean most similar to that of [Si] (e.g., Bruland 
et al., 1978). The dissolved distribution of [Zn] is faithfully captured by certain sedimentary archives, no-
tably those formed in the deep ocean (e.g., Marchitto et al., 2000). In contrast, there remains considerable 
debate surrounding the influence of biological productivity on dissolved δ66Zn compared to other processes 
such as scavenging, ligand binding, non-productivity sinks, and anthropogenic contamination. This com-
plexity prevents the modeling of Zn uptake via a simple reactor framework (as outlined in Section 2.2), and 
at present, it seems unlikely that there is a direct link between δ66Zn and paleoproductivity. Despite the lack 
of a clear connection to productivity, there are a number of promising sedimentary archives of past seawater 
δ66Zn that may inform on the myriad other processes that cycle Zn in seawater.

4.1. Marine Distribution

Typical surface ocean [Zn] are 0.01–0.5 nmol kg−1, compared to deep water [Zn] of ∼2.5 nmol kg−1 in the 
north Atlantic and ∼10 nmol kg−1 in the north Pacific (Figure 9). The [Zn] distribution in the ocean gener-
ally closely follows that of the macronutrient Si (Bruland, 1980), at least partially due to the similar behavior 
of both elements in the Southern Ocean (de Souza et al., 2018; Middag et al., 2019; Roshan et al., 2018; 
Vance et al., 2017; Weber et al., 2018). The largest decouplings of [Zn] from [Si] are observed in regions re-
mote from Southern Ocean influence, such as the north Pacific (Janssen & Cullen, 2015; Vance et al., 2019) 
or north Atlantic (Conway & John, 2014b).

Given the importance of Zn to organisms and the nutrient-like distribution of [Zn], it was initially expect-
ed that Zn isotope ratios would be similarly sensitive to biological processes. Indeed, culture studies con-
sistently showed that phytoplankton assimilated isotopically light Zn from their environment (e.g., John 
et al., 2007; Köbberich & Vance, 2017; Samanta et al., 2018). It was therefore thought that dissolved pro-
files of δ66Zn would exhibit profiles similar to those of the macronutrients (e.g., δ13C, δ15N, δ30Si; Farmer 
et al., 2021) and certain micronutrient metals (e.g., δ114Cd, δ138Ba; Sections 6 and 8, respectively), whereby 
Zn-depleted surface waters exhibit isotopically heavy compositions relative to deeper waters. In contrast, 
the first Zn isotope profile for seawater, obtained by Bermin et al. (2006) in the Northeast Pacific, showed 
that surface and deep waters exhibited Zn isotope equivalence, with a slight decrease in δ66Zn just below the 
euphotic zone. Recent methodological improvements (e.g., Conway et al., 2013; Takano et al., 2017) have 
permitted detailed investigations of this surprising pattern in a number of ocean basins.

A consistent picture of the distribution of δ66Zn in the ocean has since emerged. The deep ocean is almost 
homogeneous for δ66Zn, with a composition of about +0.45‰ (Figure 9; Conway & John, 2014b, 2015a; 
John, Helgoe, & Townsend,  2018; Lemaitre et  al.,  2020; Liao et  al.,  2020; Samanta et  al.,  2017; Takano 
et al., 2017; Sieber et al., 2020; Vance et al., 2019; R. M. Wang et al., 2019; Zhao et al., 2014). The deep ocean 
is thus slightly isotopically heavier than the upper continental crust (UCC), which possesses δ66Zn = +0.3‰ 
(Moynier et al., 2017). We note that Zn isotope data are reported relative to JMC-Lyon, though since this 
standard is now exhausted, most data are measured relative to AA-ETH or IRMM-3702 and reported rela-
tive to JMC-Lyon by means of a fixed offset of ≈+0.3‰ (see Archer et al., 2017; Moeller et al., 2012).
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Though most of the deep ocean is characterized by δ66Zn = +0.45‰, there are some deviations to values 
as light as −0.2‰ close to Zn point sources, such as margin sediments or hydrothermal vents (Conway & 
John, 2014b; Lemaitre et al., 2020). While heavy Zn isotope compositions are sometimes observed in the 
surface, this pattern is not seen everywhere; the upper water column is often isotopically lighter compared 
with deeper samples or, in the Southern Ocean and North Pacific, only very slightly fractionated toward 
heavier values (Conway & John, 2014b, 2015a; Lemaitre et al., 2020; Liao et al., 2020; Samanta et al., 2017; 
Sieber et al., 2020; Takano et al., 2017; Vance et al., 2019; R. M. Wang et al., 2019; Zhao et al., 2014). Thus, 
despite the nutrient-like distribution of Zn, the lack of consistent covariation between [Zn] and dissolved 
δ66Zn precludes the use of the isotope reactor framework outlined in Section 2.2. Possible reasons for the 
lack of “heavy” surface δ66Zn values are discussed in the next section, and include: Preferential scavenging 
of isotopically heavy Zn on particle surfaces (e.g., John & Conway, 2014; Weber et al., 2018); isotopically 
light sources of Zn to the surface ocean, possibly from shallow remineralization of organic material (Saman-
ta et al., 2017; Vance et al., 2019); and, Zn sourced from anthropogenic aerosols (Liao et al., 2020; Lemaitre 
et al., 2020). Given these complexities, we believe it will be extremely challenging to develop Zn isotopes as 
a paleoproductivity proxy.

4.2. Driving Processes

4.2.1. Biological

Zinc is a metal center in two key enzymes: Carbonic anhydrase, necessary for carbon fixation, and alkaline 
phosphatase, necessary for dissolved organic phosphorus uptake by marine organisms (Morel et al., 1994; 
Shaked et al., 2006; reviewed by Sinoir et al., 2012). Zinc also has an array of other physiological roles in 
marine organisms, as exemplified by the observation that Zn contents of phytoplankton cells are of similar 
magnitude to the micronutrient Fe (Twining & Baines, 2013).

Zinc can be growth-limiting for phytoplankton grown in culture (Anderson et al., 1978; Brand et al., 1983; 
Morel et al., 1994), but Zn colimitation (with Fe, Co) is rarely observed in the open ocean (e.g., Chappell 

Figure 9. Representative profiles of dissolved Zn concentrations ([Zn]); (a) and Zn isotopic compositions (δ66Zn); 
(b). Data from the Eastern Tropical North Atlantic (squares, dashed line; Conway & John, 2014b), Northeast Pacific 
(circles, solid line; Conway & John, 2015a) and Southern Oceans (triangles, dotted line; R. M. Wang et al., 2019). Station 
locations as per Figure 1. This comparison illustrates that despite possessing distinct dissolved concentration profiles, 
the isotopic behavior of Zn is similar between basins.
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et al., 2016; Coale, 1991; Coale et al., 2003; Ellwood, 2004; Franck et al., 2003; Lohan et al., 2005). This 
difference between culture and field samples may reflect the ability of some phytoplankton to substitute 
Cd or Co for Zn in some enzymes when ambient dissolved [Zn] is low (e.g., Morel et  al.,  1994; Lee & 
Morel, 1995; Kellogg et al., 2020; Yee & Morel, 1996). Nevertheless, Zn availability has been shown to in-
fluence species composition and phytoplankton growth, including rates of calcification and alkaline phos-
phatase activity (Crawford et al., 2003; Mahaffey et al., 2014; Schulz et al., 2004; Shaked et al., 2006; Sunda 
& Huntsman, 1995).

Phytoplankton biomass grown in culture is typically enriched in the light isotopes of Zn (John et al., 2007; 
Köbberich & Vance, 2017, 2019; Samanta et al., 2018). Rather than reflecting a kinetic isotope effect ex-
pressed during uptake, recent studies suggested that Zn speciation in the media itself controls cellular 
δ66Zn; specifically, strong organic ligands present in the growth media, such as ethylenediaminetetraacetic 
acid, preferentially complex heavy Zn isotopes, rendering the bioavailable Zn pool isotopically light (Fig-
ure 10; John et al., 2007; Köbberich & Vance, 2017, 2019). An analogous process has also been suggested to 
occur between bioavailable Zn and that bound by natural organic ligands in the surface ocean, though this 
remains to be proven.

4.2.2. Chemical

Like most bioessential metals, Zn bioavailability is dictated by its chemical speciation (e.g., Anderson 
et al., 1978), which is dominated in the ocean by complexation to strong (K’ ∼ 109–1011) organic ligands 
(Bruland, 1989; Donat & Bruland, 1990; Ellwood & Van Den Berg, 2000; Jakuba et al., 2012; Kim et al., 2015). 
Inorganic Zn is considered to make up <5% of the total Zn pool in most ocean regions, with the exception 
of the Southern Ocean, where strong upwelling of nutrient-rich deep waters leads to [Zn] in excess of com-
plexing ligands (Baars & Croot, 2011). Note that while strongly complexed Zn is unlikely to be bioavailable, 
the presence of “weak” ligands (or more labile ligands) can enhance Zn uptake (Aristilde & Xu, 2012). De-
spite their potential importance to Zn isotope cycling, the role of organic (and inorganic) Zn-binding ligands 
in controlling dissolved and particulate δ66Zn remains to be fully evaluated.

Figure 10. Processes driving Zn isotope variations in modern seawater. Though biological processes are capable of 
influencing dissolved δ66Zn, they do not appear to be the dominant driver of Zn isotope variations in the marine realm.
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The importance of scavenging on the marine cycling of [Zn] and Zn isotopes is debated (Figure 10; e.g., 
John & Conway, 2014; Liao et al., 2020; Roshan et al., 2018; Weber et al., 2018). It is argued that scavenging 
can explain both the widespread observation of isotopically light Zn in the upper ocean, via preferential re-
moval of heavy Zn isotopes on particles (and release at depth), and also the elevated concentration of Zn in 
the deep Pacific compared to that supplied by southern-sourced deep waters (Figure 9; Roshan et al., 2018; 
Weber et al., 2018). Indeed, Weber et al. (2018) propose that the light Zn isotope compositions exhibited by 
phytoplankton are a result of scavenging removing isotopically heavy Zn from surface seawater, leaving the 
residual bioavailable Zn pool isotopically light.

Elevated [Zn] in the deep Pacific has also been attributed to regional Zn inputs, particularly from hydrother-
malism (Roshan et al., 2018), which possesses δ66Zn < +0.45‰ (John, Helgoe, & Townsend, 2018). Like-
wise, local- and regional-scale deviations toward lighter δ66Zn in the deep Atlantic and Pacific have been 
attributed to sedimentary (Conway & John, 2014b; John et al., 2017; Lemaitre et al., 2020; Liao et al., 2020) 
and hydrothermal inputs (Conway & John, 2014b; John, Helgoe, & Townsend, 2018; Lemaitre et al., 2020). 
Anthropogenic aerosol deposition is also thought to supply significant Zn to regions of the surface ocean 
(e.g., Liao & Ho, 2018), with possible direct and indirect (via scavenging) regional impacts on upper ocean 
δ66Zn values (Lemaitre et al., 2020; Liao et al., 2020).

Lastly, Janssen & Cullen (2015) suggest that decoupling of [Zn] and [Si] in the Northeast Pacific reflects the 
formation of Zn sulfides within particles in the North Pacific OMZ, in a manner analogous to that proposed 
for Cd (e.g., Janssen et al., 2014), which is discussed in more detail in Section 6.2.2. To date, however, there 
remains scant evidence for water column Zn-sulfide precipitation in OMZs (e.g., Conway & John, 2014b; 
John, Helgoe, & Townsend,  2018; Vance et  al.,  2019), with the patterns described by Janssen and Cul-
len (2015) alternatively attributed to shallower remineralization of Zn (from organic “soft parts”) relative 
to opal (Vance et al., 2019). That said, Zn-sulfide precipitation is undoubtedly important in euxinic basins 
such as the Black Sea and Cariaco Basin (Isson et al., 2018; Vance et al., 2016), and has been postulated to 
occur within the porewaters of oxygen deficient, organic-rich sediments (Section 4.3.4; Little et al., 2016).

4.2.3. Physical

In common with many of the trace metal isotope systems discussed here, the physical ocean circulation ex-
erts a first order control on the distribution of [Zn] and dissolved δ66Zn compositions (de Souza et al., 2018; 
Sieber et al., 2020; Vance et al., 2017; Weber et al., 2018). Subantarctic water masses have distinctive and 
low [Zn]:[PO4

3−] and [Si]:[PO4
3−] ratios, due to the elevated uptake of Zn and Si by diatoms in the surface of 

the Southern Ocean (Sarmiento et al., 2004; Vance et al., 2017). Remineralization of these Zn- and Si-rich 
diatoms at deeper depths imprints a correspondingly high [Zn]:[PO4

3−] and high [Si]:[PO4
3−] fingerprint on 

Antarctic bottom waters. This coupling of [Zn] and [Si] in the Southern Ocean forms the basis of the global 
[Zn]:[Si] correlation via the advection of southern sourced water masses toward the low latitudes, where 
they fill much of the ocean interior (de Souza et al., 2012; Holzer et al., 2014). The homogeneity of deep 
ocean dissolved Zn isotope compositions reflects the limited degree of Zn isotope fractionation on uptake 
by Southern Ocean diatoms (R. M. Wang et al., 2019; Zhao et al., 2014), which results in intermediate and 
deep southern-sourced water masses with limited or no Zn isotope contrast (Sieber et al., 2020). Although 
exceptions exist (see Section 4.2.2), generally, the oceanic [Zn]:[Si] correlation persists despite shallower 
remineralization of Zn relative to Si (Twining et al., 2014), and is especially clear in the South Atlantic, 
underlining that the mixing of water masses acts as the dominant control on [Zn] (de Souza et al., 2018; 
Middag et al., 2019; Vance et al., 2017). While Weber et al. (2018) concur with these other studies about the 
overall importance of ocean circulation on setting the distribution of [Zn] and [Zn]:[Si], they also argue 
that reversible scavenging is needed to fully explain the observed global patterns, particularly for dissolved 
δ66Zn. Further, any Zn addition from hydrothermal vents or sediments is superimposed on the circulation 
pattern, adding further complexity to the [Zn]:[Si] relationship (Section 4.2.2).

4.3. Sedimentary Archives

4.3.1. Ferromanganese Sediments

Manganese oxides are strong sorbents of positively charged, divalent trace metals, due to their negative lay-
er charge at the pH of natural waters (e.g., Koschinsky & Halbach, 1995). The phyllomanganate birnessite 
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is the main Mn- and trace element-bearing phase in oxic marine sediments (e.g., Koschinsky & Hein, 2003), 
as well as for several elements described here, including Zn, Cu, Ni, Cd, and Mo (though Mo exists in seawa-
ter as the molybdate anion). Ferromanganese crusts and nodules incorporate many trace elements during 
growth, leading to 106-fold concentration enrichments relative to seawater (e.g., Arrhenius, 1963; Aplin & 
Cronan, 1985). As a result, Fe–Mn sediments are often one of the first marine sediment types to be targeted 
in the development of a new metal isotope tracer.

In the case of Zn, Fe–Mn crusts and nodules are isotopically heavy compared to seawater by ≈+0.6‰, 
exhibiting δ66Zn between +0.9‰ and +1.2‰ (Figure 11; Little, Vance et al., 2014; Maréchal et al., 2000). 
This heavy composition is broadly consistent with inorganic sorption experiments of Zn on birnessite, with 
experiments at high ionic strength yielding Zn isotope offsets between sorbed and aqueous Zn of +0.16‰ 
to +2.7‰ (Bryan et al., 2015). However, the magnitude of fractionation observed in experiments is typically 
considerably larger than in natural Fe–Mn crusts and nodules, which Bryan et al. (2015) suggest may reflect 
sorption of Zn on birnessite via two different molecular mechanisms, each associated with different isotopic 
fractionation factors, as is the case for thallium (e.g., Nielsen et al., 2013). In addition, the influence of or-
ganic and inorganic speciation of Zn in seawater may play a role, though this remains to be fully evaluated 
(e.g., Little, Sherman et al., 2014).

Little, Vance et al.  (2014) observed no marked temporal changes in δ66Zn values for three Fe–Mn crusts 
from each of the major ocean basins over the last ∼20 Ma. Zinc is somewhat immobile in Fe–Mn crusts, 
with a calculated effective diffusivity <10−8 cm2 yr−1, similar to Hf (Henderson & Burton, 1999) and Ba (Sec-
tion 8.3). Assuming that Fe–Mn crusts preserve primary δ66Zn, the various records suggest that on a global 
basis, the marine Zn cycle has been in isotopic steady state for at least 20 Myr (Figure 11).

4.3.2. Biogenic Silica

The correlation of Zn with Si in the modern ocean led to the suggestion that Zn:Si measured in diatom 
opal may be a proxy for seawater [Zn]:[Si] (and thus [Zn]) of past seawater. However, culturing and µ-XRF 
analyses revealed that only a small fraction (1%–3%) of the diatom Zn quota is incorporated into the opal 
frustules, with the remainder present in the organic ‘soft parts’ of the diatom cells (Ellwood & Hunter, 2000; 

Figure 11. Records of deep ocean δ66Zn through time. (a) Three records from Fe-Mn crusts recovered from the Atlantic (square, dashed line), Indian (triangle, 
solid line), and Pacific Oceans (circle, dotted line; Little, Vance et al., 2014). Assuming the isotopic offset between dissolved Zn in seawater and Fe-Mn crusts 
has remained unchanged at ≈0.55‰ over this interval, these records imply only minimal Zn isotope variations in the deep ocean over the past ∼20 Myr. Two 
anomalous measurements from 109D-C (in parentheses) possess low levels of authigenic Zn enrichment, indicative of detrital contamination. (b) Records 
recovered from the sulfide fraction of sulfidic black shales over the last 3,500 Myr (Isson et al., 2018). Assuming that sulfidic black shales record ambient 
seawater with no Zn isotope offset, this record can be interpreted as reflecting deep-ocean δ66Zn over much of Earth's history. The dashed line indicates 
an apparent reorganization of the marine Zn isotope cycle around 800 Ma, interpreted by Isson et al. (2018) to reflect the rise of eukaryotes to ecological 
prominence.
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Twining et al., 2004). The Zn concentration in opal, [Znopal], better reflects bioavailable Zn concentrations 
in seawater than dissolved [Zn]:[Si] (Ellwood & Hunter, 2000). Thus, if the mechanisms of Zn incorporation 
into biogenic opal can be understood and calibrated, a [Znopal] proxy of Zn bioavailability could help shed 
light on micronutrient limitation of the biological pump.

Andersen et al. (2011) analyzed Zn isotopes (δ66Znopal) and Zn:Siopal in diatom opal isolated from core top 
sediments from the Southern Ocean. They observed isotopically heavy Zn in opal (from +0.7‰ to +1.5‰), 
and an inverse relationship between δ66Znopal and Zn:Siopal. Consistent with culturing studies, core top 
Zn:Siopal appears to be linked to bioavailable Zn concentrations in ambient surface seawater. The authors 
suggested that δ66Znopal should also reflect the isotope composition of bioavailable Zn in surface seawater, 
which should be isotopically heavy due to the predicted preferential incorporation of light Zn isotopes into 
phytoplankton organic matter. In this view, the extent of uptake—nutrient utilization—would be record-
ed by the systematics of Zn:Siopal and δ66Znopal. While promising, this study predated the recent surge in 
seawater δ66Zn measurements. Measurements of Southern Ocean seawater δ66Zn have not borne out early 
predictions of isotopically heavy residual surface waters (Figure 9), with little to no fractionation observed 
(Sieber et al., 2020; R. M. Wang et al., 2019; Zhao et al., 2014).

In apparent contrast to diatoms, Hendry and Andersen (2013) showed that sponge spicules can faithfully 
record seawater δ66Zn. Sponges are primarily deep-sea organisms. Hence, if the controls on diatom Zn:Si 
and δ66Znopal can be understood, a combination of Zn:Si and δ66Zn measurements in diatoms and sponges 
(as used for Si isotopes; Farmer et al., 2021) could provide a vertically resolved view of the past ocean global 
Zn cycle, including the role of Southern Ocean processes in the biological carbon pump.

4.3.3. Carbonates

Carbonates may provide an alternative archive for [Zn] (as Zn:Ca) and δ66Zn. For example, Marchitto 
et al. (2000) showed that Zn:Ca ratios in benthic foraminifera are sensitive to bottom water dissolved [Zn]. 
However, the Zn content in individual microfossil shells is extremely low (typically <0.1 ng per test); at 
this level, with current analytical capabilities and blank contributions, many tens to hundreds of benthic 
foraminifera would be required for a single Zn isotope measurement.

To circumvent the issue of low Zn contents of individual shells, Pichat et al. (2003) utilized a selective car-
bonate dissolution procedure on bulk sediment from the equatorial Pacific, mostly consisting of coccoliths. 
These authors argued that isotopically heavy δ66Zn in carbonates reflected surface seawater, with values 
modulated by changes in biological productivity due to varying seasonal insolation. Similarly isotopically 
heavy Zn in ancient carbonates has also been argued to reflect strong biological utilization in surface waters 
(Kunzmann et al., 2013; cf. John et al., 2017; Liu et al., 2017). More recently, Zhao et al. (2021) surveyed car-
bonates from the Great Bahama Bank, observing carbonate-bound δ66Zn ranging from ≈−0.5‰ to +1.1‰. 
Given the local seawater value of ≈+0.1‰, this large range is surprising, and implies that a number of addi-
tional factors must fractionate Zn isotopes during incorporation into and recovery from carbonates. These 
factors include: Stable isotope fractionation during Zn incorporation into CaCO3, contamination from 
non-CaCO3 phases (e.g., lithogenic or authigenic phases), and methodological issues (e.g., non-quantitative 
selective leaching leading to stable isotope fractionation; e.g., Revels et al., 2015). Overall, the relationship 
between bulk carbonate and seawater δ66Zn is not straightforward.

Despite the difficulty in interpreting bulk carbonate δ66Zn, phase-specific (particularly, aragonitic) CaCO3 
archives appear more promising. For example, Zhao et al. (2021) identify carbonate ooids as a promising 
archive of past seawater δ66Zn. Likewise, Little et al. (2021) showed that deep-sea coral skeletons record 
intermediate- and deep-ocean δ66Zn. Given the large size of specimens and their global distribution, com-
bined with the ability to assign precise ages to individual specimens, deep-sea corals may provide an archive 
of seawater compositions that are amenable to Zn isotope analysis. However, recent Zn isotope studies of 
shallow-water zooanthellate corals suggests that the relationship with seawater δ66Zn is complicated by 
temperature and photosynthetic effects (Ferrier-Pagès et al., 2018; Xiao et al., 2020).

4.3.4. Organic-Rich Sediments

The isotope composition of Zn in organic-rich sediments deposited along productive continental margins 
is typically ≈+0.1‰, which is lighter than ambient seawater by ∼0.4‰ (Little et al., 2016). This light δ66Zn 
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signature likely arises from one of two processes. In the first process, isotopically light Zn is preferentially 
removed from seawater during precipitation of sulfides (Fujii, Moynier, Pons, & Albarède,  2011; Vance 
et al., 2016). This precipitation may occur directly from seawater and into sediments, or possibly within re-
ducing microenvironments that develop within particles sinking through low-(O2) water columns (Bianchi 
et al., 2018; Janssen & Cullen, 2015; Little et al., 2016; Vance et al., 2016). Regardless, so long as Zn removal 
is non-quantitative, these processes act to bury isotopically light Zn from the ocean. In the euxinic Black 
Sea, where Zn drawdown with sulfides is quantitative, sedimentary δ66Zn is expected to reflect the deep 
seawater composition from above the chemocline (analogous to Mo; Section 7; Vance et al., 2016), and eux-
inic black shales represent a promising archive of past deep seawater δ66Zn. This prediction was confirmed 
by Isson et al. (2018), who reported that sulfide-bound Zn in black shales from the euxinic Cariaco Basin 
exhibited the expected deep seawater-like δ66Zn of +0.5 ± 0.1‰. Using this calibration, Isson et al. (2018) 
analyzed δ66Zn in hundreds of euxinic black shales generating a 3,500 Myr record of deep-ocean Zn isotope 
evolution (Figure 11b). Though a full discussion of this data set is beyond the scope of our review, this 
record reveals a shift in deep ocean δ66Zn around 800 Ma, which Isson et al. (2018) interpret as reflecting a 
reorganization of the marine Zn cycle driven by the rising ecological prominence of eukaryotes.

A second process that can deliver isotopically light Zn to sediments is organic matter. That is, presuming 
that phytoplankton assimilate isotopically light Zn from seawater, the export of this organic matter to sed-
iments can bury light Zn in margin settings (John et al., 2017; Little et al., 2016). If dominant, this biolog-
ically driven process might suggest some utility for δ66Zn in organic-rich sediments to reconstruct paleo-
productivity, especially in low-oxygen settings. Alternatively, if the scavenging-centered view proposed by 
Weber et al. (2018) is correct, the δ66Zn of exported Zn—while still light relative to deep seawater—would 
not represent a simple measure of either Zn uptake or primary productivity. This view implies that there 
would be considerable spatial complexity in the δ66Zn delivered to sediments that depends on factors such 
as scavenging intensity relative to upwelling, which is not directly linked to biological productivity. Moreo-
ver, Weber et al. (2018) even suggest that some regions of the ocean might bury isotopically heavy organic 
matter-associated Zn, either due to variability in surface water δ66Zn resulting from scavenging, or via burial 
of isotopically heavy Zn adsorbed to organic matter.

Overall, the uncertainties in Zn delivery mechanisms and the indirect connections between δ66Zn and pri-
mary productivity means that there are considerable obstacles to interpreting organic-rich sedimentary 
δ66Zn as a direct tracer of productivity.

4.4. Prospects

Despite the complexities and remaining unknowns in oceanic δ66Zn cycling reviewed above, we note that 
there are systematic variations in sedimentary Zn isotope compositions recorded in geologic archives on 
Myr and Gyr timescales. In addition to the organic sediment record of Isson et al. (2018), described above, 
Yan et al. (2019) compiled three δ66Zn datasets from contemporaneous Ediacaran (635 Ma, Marinoan) post-
glacial cap carbonates (John et al., 2017; Kunzmann et al., 2013; Lv et al., 2018), which show systematic 
changes in Zn isotope compositions over this period of marked global change. Second, Sweere et al. (2018) 
presented data showing marked shifts in carbonate-bound Zn isotope compositions in several geological 
sections spanning a Cretaceous Ocean Anoxic Event (OAE 2). While there is no consensus on the causes of 
these intriguing isotopic shifts within carbonates (e.g., the role of redox vs. source/sinks vs. productivity), 
the coherency of the records is encouraging and their full interpretation awaits identification of the driving 
processes.

On longer timescales, the importance of Earth's overall redox state on marine Zn isotope systematics re-
quires elucidation. There are several other explanations for the shift in deep-ocean δ66Zn at ≈800 Ma besides 
a switch to more eukaryotic-dominated oceans, such as changes in Zn speciation, variations in other Zn 
sinks, or diagenesis (see Isson et al., 2018); indeed, we are not aware of any studies exploring how primary 
sedimentary δ66Zn may be modified by diagenetic processes. Moreover, the assumption that the high affin-
ity for Zn exhibited by eukaryotes translates into higher eukaryotic Zn:C (compared to prokaryotes) is not 
supported by culture data, which showed that cyanobacterial Zn:C is comparable to—or can even exceed 
that of—eukaryotes grown under the same conditions (Köbberich & Vance, 2019). Thus, developing a more 



Global Biogeochemical Cycles

HORNER ET AL.

10.1029/2020GB006814

25 of 86

complete interpretation of δ66Zn in the sedimentary record requires building a more complete understand-
ing of the biological and biologically mediated processes cycling δ66Zn in the upper water column.

Lastly, we recommend that future studies target coupled dissolved and particulate phase δ66Zn data, in con-
cert with detailed biological and chemical speciation data. To date, particulate phase δ66Zn data has proven 
challenging to obtain due to pervasive Zn contamination. Zinc isotope characterization of sediments and 
sediment porewater is needed to constrain the role of early diagenetic reactions, as well as their importance 
to the mass balance of Zn isotopes in the ocean. Sediment studies would also benefit from further investi-
gation of whether specific phases offer more robust archives of past seawater δ66Zn, potentially exploiting 
selective extraction methods. We also recommend revisiting published records in light of recent seawater 
δ66Zn data.

5. Copper
As with Fe and Zn, Cu is used in a number of cellular processes, most notably electron transport (e.g., Twin-
ing & Baines, 2013). Unlike Fe and Zn however, Cu is toxic to phytoplankton, even at extremely low free 
[Cu2+] (pM; Brand et al., 1986). Dissolved Cu—in seawater and within marine organisms—is thus strongly 
regulated by organic complexes that maintain low free [Cu2+] (e.g., Moffett & Dupont, 2007; Waldron & 
Robinson, 2009). Some archives have shown promise for recording aspects of surface and deep ocean δ65Cu, 
such as organic-rich sediments and authigenic Fe–Mn oxides, respectively. Despite the strong biological 
control over marine [Cu] distributions, our present understanding of the biogeochemical cycle of Cu sug-
gests there is no clear route to developing [Cu] or δ65Cu as paleoproductivity proxies, and Cu cannot be 
modeled within the simple reactor framework (Section 2.2). However, there are a number of sensitivities in 
the marine Cu isotope cycle that are indirectly related to paleoproductivity that may render δ65Cu as a proxy 
of processes related to metal complexation by organic ligands and/or marine redox evolution.

5.1. Marine Distribution

The distribution of Cu in the ocean has been described as “hybrid-type,” because it is intermediate between 
nutrient- and scavenged-type elements (Bruland & Lohan,  2003). Depth profiles of [Cu] typically show 
approximately linear increases with depth (e.g., Boyle et al., 1977; Figure 12a). Surface [Cu] are typically 
about 0.5–1 nmol kg−1, compared to deep Atlantic [Cu] of ∼2.5 nmol kg−1 and deep Pacific [Cu] of ∼4 nmol 
kg−1 (Figure 12). Unlike the other metals discussed here (with the possible exception of Cr), and despite the 
existence of a large seawater [Cu] data set, some discrepancy still exists in the [Cu] measured by different 
techniques; methodological details such as storage time, acidification strength, strong oxidation (or not) 
prior to analysis are all thought to be potentially important, and further intercomparison efforts are needed 
(Posacka et al., 2017). Nevertheless, the [Cu] distribution pattern has been attributed to a combination of bi-
ological uptake and remineralization, benthic flux from sediments (e.g., Boyle et al., 1977; Little et al., 2018; 
Roshan & Wu, 2015a), and/or reversible scavenging (Little et al., 2013; Richon & Tagliabue, 2019). These 
processes are superimposed on the first-order distribution established via the physical ocean circulation 
(Roshan & Wu, 2015a).

Copper isotopes are reported as relative to the NIST SRM 976 standard, though due to a shortage of this mate-
rial, two other certified reference standards are now available: ERM-AE633 (δ65CuSRM976 = −0.01 ± 0.05‰) 
and ERM-AE647 (δ65CuSRM976 = +0.21 ± 0.05‰; Moeller et al., 2012; Moynier et al., 2017). For consistency 
and ease of comparison, Moynier et al.  (2017) recommend that future data be reported relative to NIST 
SRM 976. We adopt this convention. The analysis of Cu isotopes in seawater is challenging, due to both 
Cu's strong organic complexation, and only two isotopes precluding the use of a double spike technique (re-
viewed in Little et al., 2018). The data presented to date indicate that deep seawater δ65Cu values are isotop-
ically heavy (at about +0.7‰; Figure 12b) compared to the upper continental crust (UCC; at about +0.1‰; 
Table 1; Moynier et al., 2017). Lighter Cu isotope compositions in the upper water column and along mar-
gins are thought to reflect local sources of isotopically light Cu (e.g., aerosols, riverine particulates, and 
sediments; Little et al., 2018; Takano et al., 2014). While sample treatment may be a concern for quantitative 
[Cu] measurements (Posacka et al., 2017), it remains unclear to what extent this might also be an issue 
for measurements of δ65Cu made using different techniques, depending on storage time, acidification and 
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oxidation with UV or H2O2 prior to analysis (see discussion in Little et al., 2018). Reassuringly, however, 
Little et al. did note that despite potential underestimation of [Cu] by some methods, a general homogeneity 
of seawater δ65Cu persists between labs and geographic location and depth of samples (Little et al., 2018; 
Yang et al., 2020; Figure 12). As such, the expected methodological effects of incomplete Cu recovery on 
δ65Cu may be slight, though it remains unclear how the size of this effect might vary with sample location 
and oceanographic conditions (e.g., in surface waters or those with low [O2]). As the seawater δ65Cu data 
set continues to grow, we echo the calls of previous authors for further intercalibration of methods (e.g., 
Baconnais et al., 2019; Little et al., 2018; Posacka et al., 2017).

5.2. Driving Processes

5.2.1. Biological

Copper is bioessential, but cellular Cu contents are ∼2–10 fold lower than the micronutrients Fe and Zn 
(Twining & Baines, 2013). The redox-active behavior of Cu (existing as Cu2+ or Cu+ in biological systems) 
enables its role in electron transport, for example in the Cu-containing proteins plastocyanin and cy-
tochrome c oxidase (Ridge et al., 2008). Iron-limited phytoplankton tend to increase their Cu uptake, either 
due to the replacement of Fe-containing with Cu-containing enzymes (e.g., Peers and Price, 2006), or the 
involvement of Cu in the high affinity Fe uptake systems (Annett et al., 2008; Guo et al., 2012; Maldonado 
et al., 2006). Despite its biological function, Cu is also extremely toxic due to the formation of reactive oxy-
gen species, which pose a threat to DNA, lipids, and proteins (Ridge et al., 2008). Copper toxicity thresholds 
vary by phytoplankton group, with smaller organisms generally more sensitive than larger ones (e.g., cy-
anobacteria cf. diatoms; Brand et al., 1986), and coastal strains more resistant than open ocean strains (e.g., 
Peers et al., 2005).

A small number of studies have investigated Cu isotope fractionation during cellular uptake or cell sur-
face adsorption by microorganisms (Cadiou et al., 2017; Coutaud et al., 2018, 2019; Navarrete et al., 2011; 

Figure 12. Representative profiles of dissolved Cu concentrations ([Cu]); (a) and Cu isotope compositions (δ65Cu); (b). 
Data from the Southwest Atlantic (squares, dashed line; Little et al., 2018), Subtropical South Pacific (circles, solid line; 
Takano et al., 2017) and Southern Oceans (triangles, dotted line; Boye et al., 2012). Station locations as per Figure 1. 
This comparison illustrates that the isotopic behavior of Cu is similar between basins, reflecting the importance of 
complexation by strong organic ligands. Note that there are no Cu isotope data available for the Southern Ocean at this 
time.
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Pokrovsky et al., 2008). The results of these experiments are somewhat variable, with enrichment of either 
light or heavy Cu isotopes observed during assimilation and adsorption. However, assimilation in culture 
generally favors light Cu isotopes (Cadiou et al., 2017; Navarrete et al., 2011; Figure 13). The complexity in 
Cu isotopic behavior has been attributed to small changes in Cu speciation or redox during uptake and/or 
release of Cu (Coutaud et al., 2018, 2019).

5.2.2. Chemical

In seawater, the vast majority of Cu is complexed to strong organic ligands (more than 99.8% complexed in 
surface Northeast Pacific), which lower free [Cu2+] to below toxic levels (e.g., Coale & Bruland, 1988, 1990; 
Moffett & Dupont, 2007). It is thought that ligands are primarily produced by biota for the purpose of Cu 
detoxification (e.g., Moffett & Brand, 1996; Moffett et al., 1990), although recent work suggests that strongly 
complexed Cu is bioavailable to some eukaryotes, which appear to have a higher cellular Cu requirement 
(and higher thresholds of Cu toxicity) than prokaryotes (Semeniuk et al., 2009, 2015).

Both theory and experiments predict preferential complexation of heavy isotopes by strong organic ligands 
(Fujii et al., 2013; Ryan et al., 2014; Sherman, 2013; Sherman et al., 2015), and organic complexation is 
thought to play a key role in the modern oceanic budget and distribution of Cu isotopes (Little et al., 2018; 
Little, Vance et al., 2014; Takano et al., 2014; Thompson & Ellwood, 2014; Vance et al., 2008). The small pool 
of non-complexed Cu2+ in seawater is thus expected to be isotopically light (e.g., Little et al., 2018; Little, 
Sherman et al., 2014).

Based on a surface complexation model with the phyllomanganate birnessite, the principal scavenging 
phase of divalent trace metals in oxic sediments, Sherman & Peacock (2010) calculated that [Cu] in deep 
waters should be orders of magnitude lower than is actually observed. They attribute this difference to the 
chelation of “essentially all dissolved Cu” by organic ligands (Sherman & Peacock, 2010), consistent with 
observations (e.g., Heller & Croot, 2015; Jacquot & Moffett, 2015; Moffett & Dupont, 2007). Nevertheless, 
some form or forms of scavenging are also thought to play a role in the oceanic Cu distribution.

Figure 13. Processes driving Cu isotope variations in modern seawater. Biological productivity exerts only a 
modest impact on the marine Cu isotope cycle and thus there is no obvious route to developing Cu isotopes (or Cu 
concentrations) as a paleoproductivity proxy.
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Reversible scavenging, a term used to describe the equilibrium between 
a scavenged and dissolved metal pool, has been proposed as the driving 
process behind the generally monotonic, linear increases in [Cu] with 
depth (Little et al., 2013; Richon & Tagliabue, 2019; Figure 12). In some 
regions with high particulate loads (e.g., some hydrothermal plumes, 
benthic nepheloid layers), scavenging removal of Cu has been observed 
(Jacquot and Moffett, 2015; Roshan & Wu, 2015a). Preferential scaveng-
ing of light Cu isotopes by particulate (e.g., oxyhydroxide) phases has 
also been proposed as an explanation for isotopically heavy seawater Cu 
isotope compositions (e.g., Takano et al., 2014), though the driving mech-
anisms leading to isotopically light particulate Cu remain to be fully es-
tablished (see Section 5.3; Figure 13).

The shorter residence time of Cu (2–3.3 kyr; Little et al., 2017), compared 
to many of the other trace metals reviewed here (e.g., Cd, Zn, and Ni), 
mean that regional and local sources of Cu to the ocean play a relatively 
larger role in determining [Cu] distributions than for some other met-
als. Sources of Cu include aerosols (both natural and anthropogenic; 
e.g., Takano et al., 2014; Yang et al., 2019), benthic fluxes from sediments 
(e.g., Boyle et al., 1977; Heller & Croot, 2015; Roshan & Wu, 2015a; Lit-
tle et al., 2018), and dissolved or particulate riverine sources (e.g., Little 
et al., 2018; Richon & Tagliabue, 2019; Vance et al., 2008; Figure 13). A 
possible small hydrothermal source has been identified in the South Pa-
cific from the East Pacific Rise (Roshan & Wu, 2018), which is in contrast 
to the scavenging removal of Cu observed around hydrothermal vents 
elsewhere (e.g., Jacquot & Moffett, 2015).

5.2.3. Physical

Copper's shorter residence time relative to Cd, Zn, and Ni also means that 
the Southern Ocean and wider physical ocean circulation play a some-
what smaller role in oceanic [Cu] and δ65Cu distributions compared to 
many of the other bioactive trace metals discussed herein. Nonetheless, 
the imprint of circulation is evident in certain circumstances, such as in 

the Atlantic and the upper 2 km of the South Pacific where [Cu] is correlated with [Si] (Little et al., 2018; 
Roshan & Wu, 2015a, 2018).

5.3. Marine Archives

5.3.1. Ferromanganese Sediments

Ferromanganese sediments (crusts and nodules) exhibit Cu isotope compositions of +0.3‰ to +0.5‰ (Al-
barède, 2004; Little, Vance et al., 2014). This means that, on average, Fe–Mn sediments are ∼0.35‰ lighter 
than deep seawater, which averages +0.7‰ (Figure 14). The explanation for this offset is uncertain, but 
may reflect either strong organic complexation of Cu in seawater (Little, Sherman et al., 2014), or the en-
richment of light Cu isotopes on the birnessite mineral surface. The latter has been observed in inorganic 
experiments, whereby sorbed Cu exhibited δ65Cu that was 0.45 ± 0.18‰ lower than δ65Cu in solution (Ijichi 
et al., 2018). Consistent with these experiments, light isotope fractionation on sorption of Cu to birnessite 
has also been predicted from first-principles ab initio calculations (Sherman & Little, 2020). At equilibrium 
in seawater, however, the strong complexation and mineral sorption effects should be additive, leading to a 
much larger isotopic offset than the ∼0.35‰ observed, suggesting that one of the two effects is not expressed 
in nature for reasons as yet unclear (Sherman & Little, 2020).

Little, Vance, et al. (2014) observed no marked changes in deep ocean δ65Cu recovered from three Fe–Mn 
crusts from each of the major ocean basins over the last ∼20 Ma. Copper is relatively immobile in Fe–Mn 
crusts, with a calculated effective diffusivity ≤10−9 cm2 yr−1 (Henderson & Burton,  1999), similar to Ni 

Figure 14. Deep ocean δ65Cu constancy over the past 20 Myr. These 
records are derived from Fe–Mn crusts recovered from the Atlantic 
(square, dashed line), Indian (triangle, solid line), and Pacific Oceans 
(circle, dotted line; data from Little, Vance et al., 2014). Assuming the 
isotopic offset between dissolved Cu in seawater and Fe-Mn crusts has 
remained unchanged at ≈0.35‰ over this time, these records imply that 
the inter-basin Cu isotope variations observed in modern crusts and the 
Cu isotope cycle itself have remained relatively stable for at least 20 Myr. 
Two samples from 109D-C possess low levels of authigenic Cu enrichment 
indicating detrital contamination (parentheses, arrow; see Little, Vance 
et al., 2014).
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(Section 9.3.1). Assuming that Fe–Mn crusts preserve primary δ65Cu, the various records suggest that on a 
global basis, the marine Cu cycle has been in isotopic steady state for at least 20 Myr (Figure 14).

5.3.2. Organic-Rich Sediments

Qualitative arguments for high organic matter fluxes (i.e., higher paleoproductivity) have been made based 
on elevated Cu (and Ni) contents of ancient organic-rich sediments (e.g., Tribovillard et al., 2006). This 
approach is supported by positive correlations between Cu (and Ni, Section 9.3.2) with TOC content in mod-
ern continental margin sediments (e.g., Böning et al., 2012). For this approach to offer mechanistic insights 
into past export productivity, organic matter (or a biologically associated mineral phase, such as CaCO3 or 
BaSO4), must always be the primary vector for that metal to sediments. This condition is not met for Cu, nor 
for other chalcophile elements (e.g., Mo), thus presenting a significant challenge to the use of sedimentary 
Cu contents to trace past export productivity. Copper exhibits a strong reactivity toward sulfide, as illustrat-
ed by the quantitative removal of Cu from the euxinic Black Sea water column and resultant enrichment in 
underlying organic-rich sediments (Little et al., 2015; Tankéré et al., 2001).

Despite the strong reactivity of Cu toward sulfide, and unlike Zn (Section 4.3.4) and Mo (Section 7.2.3), 
Cu in euxinic sediments from the Black Sea and Cariaco Basin does not record open marine δ65Cu (Little 
et al., 2017). In fact, authigenic Cu in modern organic-rich sediments (from both euxinic basins and con-
tinental margin settings) is generally similar in isotopic composition to Fe–Mn sediments and to suspend-
ed particulate material collected from the South Atlantic, all at about +0.3‰ (Ciscato et al., 2019; Little 
et al., 2018; Little et al., 2017). The homogeneity in authigenic sedimentary Cu isotope compositions has 
been suggested to reflect an equilibrium isotope fractionation in the aqueous phase between organical-
ly complexed Cu and inorganic Cu2+, with the latter ∼0.4‰ lighter than ligand-bound Cu, followed by 
near quantitative scavenging of inorganic Cu2+ by particulate material of any type (Little et al., 2018; Little 
et al., 2017). For example, in the Black Sea, transfer of Cu to the deep euxinic basin may be mediated by 
cycling with nanoparticulate Fe and Mn oxides at the redoxcline, linked to the benthic Fe–Mn redox shut-
tle (Little et al., 2017; Lyons & Severmann, 2006). If correct, this hypothesis suggests that authigenic Cu 
isotope compositions in marine sediments may reflect the evolution of organic complexation on geological 
timescales.

Ciscato et al. (2018, 2019) developed a new approach to isolate trace elements associated with two differ-
ent fractions in organic-rich sediments, the “organic-pyrite fraction” (OPF) and “HF digestible fraction” 
(HFD). They find that the OPF of modern Peru margin sediments typically contains >50% of total Cu and 
is variably isotopically light compared to bulk authigenic Cu. They suggest this signature reflects incom-
plete sulfidation under variable water column and sedimentary redox conditions (e.g., Bianchi et al., 2018). 
Unlike in modern sediments, in ancient shales (ranging in age from 0.4 to 3.4 Ga) bulk Cu content does not 
correlate with TOC and >80% of Cu is hosted in the HFD fraction. In addition, the OPF fraction in ancient 
shales is markedly isotopically heavier than it is in modern sediments (Ciscato et al., 2019). This difference 
between modern and ancient Cu partitioning may reflect diagenetic or metamorphic processing, or it may 
be a primary feature relating to differences in the Cu isotope composition of seawater, or differences in the 
mechanism(s) of Cu sequestration into sediments.

5.4. Prospects

Despite the biological importance of Cu, the modern biogeochemical cycle of Cu suggests there is no clear 
route to developing Cu isotopes (or [Cu]) as a paleoproductivity proxy. Work is also urgently needed to 
better understand the role of processing and storage effects on the accuracy of the oceanic [Cu] database, 
perhaps providing the opportunity to better understand the speciation of the dissolved Cu pool. Similarly, 
work is needed to firmly establish the fidelity of δ65Cu measurements and ensure that different datasets 
are directly comparable. Despite these challenges, however, it is firmly established that organic ligands 
play a key role in the cycling of Cu and δ65Cu, suggesting potential for the use of Cu isotopes in tracing the 
evolution of organic complexation on geological timescales. Additionally, careful sequential extraction pro-
cedures, such as those described by Ciscato et al. (2019), may allow for the direct probing of past seawater 
properties, such as redox state.
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At present, there are few applications of Cu isotopes to study ancient biogeochemical cycles. Two black 
shale records indicate a shift from UCC-like to heavy Cu isotope values across the Great Oxidation Event 
(GOE, ∼2.4 Ga; Ciscato et al., 2019; Fru et al., 2016). Chi Fru et al. (2016) interpreted this shift as reflecting 
the onset of oxidative weathering and waning of iron formation deposition, with the latter process driving 
pre-GOE seawater isotopically light due to the preferential scavenging of heavy Cu isotopes to Fe oxides. 
However, a recent analysis of two classic pre-GOE sequences containing iron formations do not support 
this earlier hypothesis, with δ65Cu remaining close to 0‰ (Thibon et al., 2019). Thus, while the limited 
available data preclude confident interpretations, there are tantalizing tastes of future research directions 
in Cu isotope geochemistry.

6. Cadmium
The distribution of [Cd] closely correlates with the macronutrient [PO4

3−] in the oceans (e.g., Boyle 
et al., 1976; Bruland, 1980). The nutrient-like properties of [Cd] and attendant correlations with [PO4

3−] 
have been documented in multiple ocean basins, in multiple dimensions (i.e., vertically, spatially, and tem-
porally), and are faithfully captured by certain sediments (e.g., Boyle, 1981). Moreover, many marine mi-
crobes assimilate isotopically light Cd from their environment (e.g., Lacan et  al.,  2006), consistent with 
the direction and magnitude of Cd isotope fractionation in seawater (e.g., Ripperger et al., 2007). Though 
the overall geochemical distribution of Cd is promising from the perspective of tracing paleoproductivity, 
there are three main uncertainties that require resolving. Broadly, these relate to uncertainties surrounding: 
How, why, and which organisms contribute to Cd cycling in seawater; the significance of the decoupling 
between Cd and major nutrients in sinking particles, particularly in low [O2] settings; and, identification of 
sedimentary archives that capture surface water δ114Cd. Despite these uncertainties, the first-order features 
of marine Cd geochemistry are characteristic of a nutrient-type element, meaning that Cd can be modeled 
in a simple reactor scheme (see Section 2.2), and that the distributions of [Cd] and δ114Cd appear broadly 
connected to underlying patterns of productivity.

6.1. Marine Distribution

Away from major upwelling regions, surface water [Cd] are typically between 1 and 100 pmol kg−1, but can 
reach as low as 30 fmol kg−1 (Schlitzer et al., 2018; Figure 15). The majority of this small surface inventory 
is thought to be complexed by strong organic ligands (e.g., Bruland, 1992; Ellwood, 2004). In intermediate 
and deep waters, [Cd] are significantly elevated relative to surface waters, ranging from 0.5 nmol kg−1 in 
intermediate and deep waters in the north Atlantic to almost 1.2 nmol kg−1 in the oldest deep waters of 
the north Pacific (Schlitzer et al., 2018). As with Zn (Section 3), the overall distribution of (Cd) throughout 
the oceans is driven principally by biological and physical processes in the Southern Ocean, and the lateral 
circulation of Southern Ocean water masses (e.g., Baars et al., 2014; Middag et al., 2018; Sieber, Conway, 
de Souza, Hassler et al., 2019; Xie et al., 2017). Thus, the shape of vertical [Cd] profiles at lower latitudes 
arises largely from horizontal transport and mixing of high-Cd Southern Ocean-sourced water masses, with 
a modest contribution from regeneration of sinking particles (i.e., 5%–40%; Middag et  al.,  2018). These 
processes result in Cd having a “nutrient-type” one-dimensional water column profile, with a progressive 
increase in intermediate and deep water [Cd] along the pathways of meridional overturning circulation 
(e.g., de Baar et al., 1994; Middag et al., 2018).

The past decade has seen an explosion in the number of studies employing Cd stable isotopes to investigate 
marine Cd cycling. The majority of extant Cd isotope data are reported relative to the NIST SRM 3108 stand-
ard, though several earlier studies, reviewed by Rehkämper et al.  (2012), were reported relative to other 
in-house materials. Cross-calibration of these materials is described in detail by Abouchami et al. (2013). 
While the earliest study of Cd isotope variations in seawater was unable to unambiguously identify system-
atic patterns in the water column, the authors noted that cultures of phytoplankton preferentially incor-
porated isotopically light Cd relative to the media (Lacan et al., 2006). Assuming biological processes were 
responsible for Cd uptake, this observation led to two key predictions for marine Cd isotope systematics: 
That Cd-depleted surface waters should exhibit isotopically “heavier” compositions than Cd-replete deep 
waters; and, that the degree of isotopic fractionation should be proportional to the extent of Cd removal into 
particles. Indeed, this is precisely the pattern that was first reported by Ripperger et al. (2007).
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Subsequent studies have corroborated this general one-dimensional pattern in the Southern (e.g., Abou-
chami et al.,  2011, 2014; Sieber, Conway, de Souza, Hassler et al.,  2019; Xue et al.,  2013), Atlantic (e.g., 
Bryan et al., 2021; Conway & John, 2015a; Xie et al., 2017; Xie, Galer et al., 2019; Xue et al., 2012), Arc-
tic (Zhang et  al.,  2019), and Pacific Oceans (Conway & John,  2015b; Janssen et  al.,  2017; John, Helg-
oe, & Townsend,  2018; Sieber, Conway, de Souza, Obata et  al.,  2019; Xie, Rehkämper et  al.,  2019; Yang 
et al., 2012, 2014, 2018). These studies have shown that the deep ocean (>500–1,000 m) is largely homog-
enous in Cd isotope composition (δ114Cd of +0.2‰ to +0.3‰; Figure 15). This deep water δ114Cd value is 
heavier than the upper continental crust δ114Cd composition of ∼0‰ (Schmitt et al., 2009a), similar to that 
observed for other metals such as Zn, Ba, and Ni (Sections 3, 7, and 8). Intermediate-depth waters relating 
to water masses such as Antarctic Intermediate Water (AAIW) exhibit slightly heavier δ114Cd values (+0.4‰ 
to +0.5‰), with waters above these typically exhibiting heavier isotopic compositions (up to ∼+1‰; Fig-
ure 15). As for [Cd], these one-dimensional δ114Cd profile shapes arise largely from the combination of 
Southern Ocean biological processes and lateral circulation of water masses, as well as some contribution 
from local surface uptake and regeneration (Abouchami et  al.,  2014; Sieber, Conway, de Souza, Hassler 
et al., 2019).

Although the first-order distributions of [Cd] and δ114Cd in surface waters are consistent with intense cy-
cling by biological processes, when considering the global database of surface δ114Cd data, this simple “nu-
trient-like” reactor scheme with a single fractionation factor breaks down. For example, while studies have 
reported δ114Cd values of up to +5‰ in Cd-depleted surface waters of the Northern Hemisphere gyres 
(Conway & John, 2015a, 2015b; Ripperger et al., 2007; Xue et al., 2012), others have reported more mut-
ed fractionation or even a switch to lighter-than-deep-ocean compositions in surface waters (Gault-Rin-
gold et al., 2012; George et al., 2019; Janssen et al., 2017; Sieber, Conway, de Souza, Obata et al., 2019; Xie 
et al., 2017; Xie, Galer et al., 2019; Xie, Rehkämper et al., 2019). This range of observations suggests that the 

Figure 15. Representative profiles of dissolved Cd concentrations ([Cd]); (a) and Cd isotope compositions (δ114Cd); (b). 
Data from the Eastern Tropical North Atlantic (squares, dashed line; Conway & John, 2015b), Northeast Pacific (circles, 
solid line; Conway & John, 2015a), and Southern Oceans (triangles, dotted line; Abouchami et al., 2014). Station 
locations as per Figure 1. Note the break in scale in δ114Cd above 1‰, illustrating the extreme isotopic compositions 
observed in the most Cd-depleted surface samples. Notably, such extreme compositions are generally not observed in 
the similarly Cd-depleted surface waters of the Southern Hemisphere gyres (e.g., Gault-Ringold et al., 2012; George 
et al., 2019; Xie et al., 2017), nor in the surface of the high latitude Southern Ocean, where dissolved [Cd] is elevated 
(e.g., Abouchami et al., 2011, 2014). This comparison illustrates that the processes leading to distinct dissolved 
concentration profiles effect only modest changes in dissolved δ114Cd between basins.
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processes influencing surface Cd isotope compositions may be more complex than simple biological uptake 
(Figure 16). For example, interactions with ligands, effects arising from recycling of organic matter, differ-
ences in fractionation factor between different organisms, and supply of Cd from external Cd sources may 
all influence surface water dissolved δ114Cd. This raises three related questions to be addressed in the re-
mainder of this section: What are the candidate biological processes that drive these patterns? How do other 
physical or chemical processes play a role in setting marine Cd distributions? Can Cd-based reconstructions 
of these processes be used to inform on past productivity? Further to these questions, are the extreme heavy 
δ114Cd observed in Northern Hemisphere gyres, and so far only twice in the Southern hemisphere (Bryan 
et al., 2021; Sieber, Conway, de Souza, Obata et al., 2019), real, or analytical artifacts?

6.2. Driving Processes

6.2.1. Biological

As noted above, the nutrient-like distribution of [Cd] implies intense biological cycling in seawater, even 
though Cd is considered toxic (e.g., Waldron & Robinson,  2009). This dichotomy has inspired a signifi-
cant body of research investigating the role that Cd plays in microbial physiology. These studies showed 
that Cd uptake by marine microbes exhibits three noteworthy dependencies. First, cellular Cd quotas are 
strongly positively correlated with the Cd content of their environment, both in culture (see compilation 
by Twining & Baines, 2013) and from oceanographic data (Middag et al., 2018). Second, microbial Cd up-
take is diminished when the concentration of other divalent cations increases, particularly so for Fe, Mn, 
and Zn. Likewise, lower concentrations of these divalent cations cause increases in Cd uptake (e.g., Cullen 
et al., 2003; Sunda & Huntsman, 2000). Some diatoms have even shown capacity to substitute much of their 
metabolic Zn requirements with Cd (Price & Morel, 1990). Third, Cd uptake is also influenced by speciation 
of inorganic carbon, with low pCO2 promoting higher cellular Cd quotas (e.g., Cullen et al., 1999; Cullen 
& Sherrell, 2005; de Baar et al., 2017). The connection between Cd and carbon speciation is particularly 
intriguing given the discovery of the ζ-class of carbonic anhydrase that can utilize Cd (or Zn) as the catalytic 

Figure 16. Processes driving Cd isotope variations in modern seawater. Biological processes exert a significant control 
on surface water Cd cycling, implying that δ114Cd is broadly responsive to productivity. However, important redox-
dependent processes remain to be fully elucidated, particularly those occurring around OMZs.
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metal (e.g., Lane et al., 2005; Xu et al., 2008). Despite these dependencies, however, the extent to which 
active physiological utilization of Cd controls global patterns of Cd uptake is unclear. For example, genes 
encoding the ζ-class of carbonic anhydrase were not found in green algae nor coccolithophores, and were 
similarly absent from many diatom species (Park et al., 2007). Thus, it is similarly plausible that some part 
of the biological Cd cycle is driven by organisms inadvertently removing Cd from seawater while attempting 
to source other metals (e.g., Boyle, 1988a; Horner et al., 2013), or that microbes require Cd to populate other 
Cd-centered metalloenzymes that await discovery.

The role of microbial physiology in mediating Cd isotope fractionation is also comparatively understudied. 
However, it does appear that biological fractionation of Cd isotopes is ubiquitous; fresh- (Lacan et al., 2006) 
and saltwater (John & Conway, 2014) green algae, incubations of unfiltered seawater (Xue et al., 2012), 
heterotrophic bacteria (Horner et al., 2013), and shallow marine particles (e.g., Yang et al., 2015; Janssen 
et al., 2019) all indicate that biological particles accumulate isotopically light Cd from their environment 
with a fractionation between −0.3‰ and −0.8‰ (Figure 16). The limited depth profile data of suspend-
ed particulates suggests subsequent partial respiration of already-light particulate organic matter also in-
duces a second fractionation, further enriching light isotopes in the remnant particulate phase (Janssen 
et al., 2019). Additionally, the significant variability in surface water dissolved δ114Cd at low [Cd]—ranging 
from extremely heavy compositions to deep-water like values—suggests that Cd isotope cycling is more 
complex than a single process removing isotopically light Cd into particules, though our understanding of 
these complexities is limited.

6.2.2. Chemical

The role of chemical processes in mediating global Cd distributions is the most underconstrained of the 
three processes discussed in this review. Recent studies suggested that pelagic partitioning of Cd into sulfides 
in OMZs may constitute a significant loss term (Bianchi et al., 2018; Janssen et al., 2014; Plass et al., 2020). 
Moreover, the Cd isotope effect associated with sulfide precipitation identified by Guinoiseau et al. (2018) 
is consistent with field data, and particulate Cd is known to accumulate more rapidly in sediments that are 
bathed by bottom waters containing low [O2] (Figure 16; Section 5.3; e.g., van Geen et al., 1995). Collec-
tively, these observations suggest a potential redox sensitivity in sedimentary Cd isotope distributions that 
deserves additional scrutiny. Indeed, the influence of sediments as the most important marine Cd sink can 
be seen in some water column profiles of δ114Cd (Xie, Rehkämper et al., 2019). Similarly, data from the 
hydrothermal TAG site in the North Atlantic suggests that hydrothermal plumes may scavenge Cd from 
seawater, constituting a small sink of isotopically light Cd, though this does not have an observable effect on 
deep ocean δ114Cd values outside of the plume itself (Figure 16; Conway & John, 2015b).

Other potential sources and sinks include rivers, atmospheric deposition, and sediments; however, none of 
these interfaces exhibit significant anomalies in [Cd] or δ114Cd in GEOTRACES-era datasets. This finding 
is in accord with earlier research by Martin & Thomas (1994), though there exist two possible exceptions. 
The first concerns the role of atmospheric aerosols, which have been invoked to explain the Cd isotope 
composition of surface waters in the Southwest Pacific (e.g., George et al., 2019) and South China Sea (e.g., 
Yang et al., 2012). Modern aerosol inputs may be largely anthropogenic in origin. Anthropogenic forms of 
Cd exhibit a relatively narrow range of isotopic compositions that are typically—though not always (e.g., 
Shiel et al., 2010)—lighter than dust-derived Cd (e.g., Bridgestock et al., 2017). Second, interactions with 
organic ligands have also been invoked to explain the relatively muted pattern of Cd isotope fractionation 
in the surface of the south Atlantic Ocean (e.g., Guinoiseau et al., 2018; Xie et al., 2017), but there are as yet 
no corroborating field or experimental data examining the role of organic ligands in mediating Cd isotope 
fractionation in seawater.

6.2.3. Physical

Physical processes are similarly influential in mediating the global distribution of [Cd] and δ114Cd through-
out the global oceans, particularly those processes occurring in the Southern Ocean. Antarctic Intermediate 
and Bottom Waters possess higher [Cd]:[PO4

3−] than North Atlantic Deep Water (e.g., de Baar et al., 1994; 
Middag et al., 2018). Mixing between these southern- and northern-sourced water masses likely contributes 
to the well-known “kink” in the [Cd]:[PO4

3−] relationship (e.g., Elderfield & Rickaby, 2000; Frew & Hunt-
er, 1992; Quay & Wu, 2015). Why northern- and southern-sourced intermediate and deep waters possess 
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different [Cd]:[PO4
3−] is debated, and likely reflects regionally distinct fractionation of Cd and P during 

biological uptake (e.g., Cullen et al., 2003; Sunda & Huntsman, 2000) and during remineralization (e.g., 
Baars et al., 2014; Roshan & Wu, 2015b). In the Atlantic, however, the importance of remineralization to 
deep water Cd budgets is of secondary significance: The ratio of regenerated-to-preformed [Cd] is ∼30% in 
the mesopelagic, and generally <10% in the deep ocean (Roshan & Wu, 2015b; Middag et al., 2018). Given 
the low proportion of regenerated Cd in the deep Atlantic, the ratio of [Cd]:[PO4

3−] and the overall distribu-
tion of [Cd] are essentially governed by the [Cd]:[PO4

3−] of the source waters (Middag et al., 2018) and the 
prevailing geometry of ocean circulation, respectively (Boyle, 1988a).

Recent Cd isotope data from the South Atlantic (Xie et al., 2017), South Pacific (George et al., 2019; Sie-
ber, Conway, de Souza, Obata et al., 2019), and Arctic (Zhang et al., 2019) also support the importance of 
mixing in mediating deep ocean [Cd] and δ114Cd distributions, though it should be noted that the isotopic 
contrast between mixing endmembers is small, relative to measurement precision (Figure 15; e.g., Janssen 
et al., 2017). For example, biological uptake of light Cd in the source regions of intermediate waters in the 
surface Southern Ocean results in isotopically heavy preformed δ114Cd signatures being imparted to Cd-de-
pleted intermediate water masses (e.g., +0.45‰ in AAIW; +0.65‰ in Subantarctic Mode Water, SAMW; 
Abouchami et al., 2014; Sieber, Conway, de Souza, Hassler et al., 2019; Xue et al., 2013). Lateral circulation 
of these southern-sourced water masses then transfers this signature northward to intermediate depths 
in the Atlantic and Pacific Oceans (e.g., Abouchami et al., 2014; Conway & John, 2015a; Sieber, Conway, 
de Souza, Obata et al., 2019; Xue et al., 2012). This effect is more pronounced in the North Atlantic than 
in the Pacific, where southward flowing NADW also carries isotopically heavy Cd southward at depths of 
1,000–3,000 m (Figure 15; Conway & John, 2015a; Xue et al., 2012).

6.3. Marine Archives

6.3.1. Carbonates

There is a long history of the measurement of Cd contents of marine carbonates, particularly corals and 
foraminifera, most commonly reported as Cd:Ca molar ratios. In principle, carbonates are an appealing ar-
chive of ambient Cd chemistry since inorganic partition coefficients are ≫1 (e.g., Tesoriero & Pankow, 1996) 
and the Cd:Ca of many types of carbonate exhibit a strong proportionality with ambient [Cd]. In practice, 
however, most biogenic carbonates exhibit partition coefficients closer to unity (Boyle, 1988a), and resultant 
Cd:Ca is also sensitive to the species (Boyle, 1992) and temperature of calcification (e.g., Rickaby & Elder-
field, 1999). As such, Cd:Ca in carbonates has found the most utility where ambient [Cd]—and attendant 
carbonate Cd:Ca—exceeds several 100 pmol kg−1, such as in tracing industrial fallout (e.g., Shen et al., 1987) 
or in studies of Quaternary deep ocean circulation (e.g., Adkins et al., 1998; Boyle & Keigwin, 1985; Farmer 
et al., 2019; van Geen et al., 1992).

There are far fewer studies examining the Cd isotope composition of marine carbonates as tracers of his-
torical Cd isotope chemistry. Inorganic partitioning experiments indicate that Cd isotopes are fractionated 
during incorporation into calcite by ≈−0.5‰ (Horner et al., 2011). The isotopic effect is temperature- and 
Mg-independent, but vanishes at low salinity. This inorganic calibration has been used to interpret patterns 
of Cd isotope fractionation preserved in bulk carbonates from the Neoproterozoic Eon (1,000–541 Ma). The 
variations in these sediments are interpreted as evidencing changes in biological productivity (e.g., Hohl 
et al., 2017) and Cd sinks through time (e.g., John et al., 2017). Applications of Cd isotopes to foraminifera to 
study problems in Quaternary paleoceanography are precluded by the large sample requirements; obtaining 
∼1 ng of Cd—the minimum quantity typically needed for a reasonably precise Cd isotope measurement 
(Ripperger & Rehkämper, 2007; Schmitt et al., 2009b)—requires picking and cleaning of 10s of mg of fo-
raminiferal tests. Alleviation of such limitations awaits development of automated picking and screening 
systems (e.g., Mitra et al., 2019), or vast improvements in ion transmission efficiency for isotope ratio mass 
spectrometry.

6.3.2. Ferromanganese Sediments

Ferromanganese sediments have shown the most promise for recording deep ocean Cd isotope chemistry. 
Both ferromanganese nodules (Schmitt et al., 2009a) and crusts (Horner et al., 2010) reflect ambient seawa-
ter Cd isotope compositions with negligible fractionation (Figure 17a), consistent with Cd-Mn-oxyhydroxide 
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partitioning experiments conducted at high ionic strength that show only minor Cd isotope fractionation 
(Wasylenki et al., 2014). Horner et al. (2010) estimated that Cd is somewhat mobile in Fe–Mn crusts, with 
a predicted diffusivity ≤10−7 cm2 yr−1, similar to Hf (Henderson & Burton), Mo (Section  7.3), Cr (Sec-
tion 10.3.2), and Ag (Section 11.3). This rate implies that long-term records of δ114Cd derived from Fe–Mn 
crusts are likely to exhibit some diffusive smoothing while preserving larger perturbations. As with Zn and 
Cu isotopes however, time-resolved records of δ114Cd recovered from Fe–Mn crusts indicate minimal vari-
ation over the last 20–60 Myr (Figure 17b). The lack of variation may indicate that the sources and sinks of 
Cd have been in isotopic steady state throughout the Cenozoic. Alternatively, the lack of variation in δ114Cd 
over the Cenozoic may simply reflect a “resetting” of all crust layers toward modern deep ocean Cd isotope 
compositions, as suggested by Murphy (2016).

6.3.3. Organic-Rich Sediments

Organic-rich sediments are the principal sink of dissolved Cd from the modern oceans (e.g., Little et al., 2015; 
Rosenthal et al., 1995; van Geen et al., 1995). A significant fraction of the total Cd in organic-rich sediments 
is derived from sinking organic matter. Accordingly, the Cd content of organic-rich sediments or of mul-
tiple paired sedimentary phases has been applied as a proxy for past productivity (e.g., Brumsack, 2006; 
Hohl et al., 2019). However, there is also a redox sensitivity: Cd contents are generally elevated in organ-
ic-rich sediments that are bathed by low [O2] waters (Figure 18). This enrichment likely derives from three 
processes. First, low [O2] environments may limit oxidation—and thus favor preservation—of settling Cd 
sulfide particles formed in the water column. Second, the chalcophile nature of Cd means that even trace 
levels of hydrogen sulfide may cause Cd to precipitate into sulfides. Thus, as organic matter is remineralized 
within the sediment column, any Cd liberated to porewaters is proportionally more likely to reprecipitate 
into sulfide minerals, relative to harder metals (and carbon), effectively “trapping” remineralized Cd in 
sediments (e.g., Rosenthal et al., 1995). Third, recent evidence suggests that Cd may also directly precipitate 
from seawater and into sediments when plumes of hydrogen sulfide interact with bottom waters (e.g., Plass 

Figure 17. Ferromanganese crusts records of deep-water δ114Cd. (a) Compilation of “coretop” Fe–Mn crust δ114Cd; 
data from Schmitt et al. (2009a; open symbols) and Horner et al. (2010; closed symbols). In general, Southern Ocean 
samples exhibit lighter δ114Cd than other basins, consistent with profiles of δ114Cd (e.g., Figure 15). (b) Cenozoic 
records of deep-water δ114Cd recovered from four Fe–Mn crusts; data from Murphy, 2016 (closed symbols) and Schmitt 
et al. (2009a; open symbols). These records have been plotted using the authors’ preferred age models, meaning that 
there are some differences between the chronology of CD29-2 shown here compared to Figure 8. Such differences may 
be immaterial however, given that Cd isotopes in Fe–Mn crusts are potentially subject to diffusive “resetting” over time 
(Murphy, 2016).
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et al., 2020; Xie, Rehkämper et al., 2019). The relative importance of these three processes to the O2-depend-
ent pattern of Cd accumulation remains to be fully elucidated.

While the contribution of organic-rich sediments to the isotopic mass balance of Cd is presently limited, 
their significance to the marine Cd budget suggests that, globally, the Cd isotope composition of these 
sediments should balance the riverine flux δ114Cd ≈+0.1 ± 0.1‰ (Lambelet et al., 2013). Recent data from 
organic-rich sediments (Chen et al., 2021), suboxic sediments (Bryan et al., 2021), and intermediate-depth 
biogenic particles (Janssen et al., 2019) generally support this view, and that low [O2] settings may help to 
close the isotope mass balance of Cd. Alternatively, the other minor sinks of Cd—carbonates, ferroman-
ganese oxides, clays—must possess large isotopic offsets relative to seawater, which seems unlikely given 
existing field and experimental data. Obtaining further calibrations of Cd isotope partitioning into recent 
organic-rich sediments should be considered a priority.

6.4. Prospects

The overview provided above indicates that Cd participates in marine biological processes and that its dis-
tribution is sensitive to the biological productivity of the oceans. How this sensitivity is transcribed into ma-
rine sediments remains uncertain, however. There are several additional processes that have the potential 
to render isotope effects that require further exploration before Cd isotopes can be solely interpreted as a 
productivity proxy, such as: Biological fractionation effects, authigenic transformations, and redox sensi-
tivities. Relatedly, the fidelity of many types of marine sediment to record ambient Cd isotope chemistry 
remain inadequately constrained. With these two themes in mind, we suggest several areas for additional 

Figure 18. Cadmium concentrations in California Margin sediments. (a) Regionally representative [O2] profile from 
the Northeast Pacific showing broad minimum between 600–800 m. Profile from 35.5°N, 122.5°W (from World Ocean 
Atlas; Garcia et al., 2014). (b) Solid phase Cd concentration data from van Geen et al. (1995) for Northeast Pacific 
coretop (closed symbols) and “slightly deeper” (8–10 cm; open symbols) sediment samples; dashed line indicates 
arithmetic mean. These samples evidence a maximum in authigenic Cd deposition at the top of the oxygen minimum 
zone (OMZ), which may originate from processes occurring in the water or sediment column.
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research that may help to address the overarching question as to whether Cd isotope-based reconstructions 
can be used to inform on past ocean productivity.

6.4.1. Modern

Several questions persist regarding the modern Cd isotope cycle. We list five of the most pressing below 
and offer possible remedies to each. First, are the “extreme” (i.e., δ114Cd of + 5‰; Figure 15) values seen in 
surface waters of the Northern Hemisphere gyres real? That is, are these heavy compositions true oceano-
graphic features that are generally absent from the Southern Hemisphere, or do they represent analytical 
artifacts unique to MC-ICP-MS? This question remains to be answered, and will require measurement of 
the same low [Cd] surface samples by multiple MC-ICP-MS and MC-TIMS groups. To date, this exercise has 
proven difficult because of the difficulty of collecting surface low [Cd] seawater (where heavy δ114Cd has 
been reported by MC-ICP-MS) in sufficient quantities to permit analysis by multiple groups.

Second, to what extent do local Cd isotope compositions in surface waters reflect larger-scale processes 
versus local features? While available data consistently show biological Cd uptake removes isotopically light 
Cd, not all surface waters show the expected progressive increase in δ114Cd with decreasing [Cd]. Address-
ing this issue will require elucidating the role of external sources (e.g., dust, margin sediments), organismal 
uptake, ligands, and mixing, which would benefit from conducting additional experimentation with plank-
ton, coupling of isotope methods with electrochemistry, and numerical modeling, respectively.

Third, is there a “Redfield” stoichiometry for Cd in organic matter? If so, what controls it? Existing culture 
(Ho et al., 2003) and field (Ohnemus et al., 2017) data suggest a wide range of cellular Cd:P, which have 
been suggested as reflecting species and local supply ratios, respectively (in addition to the aforementioned 
feedback interactions). Further experimentation with model organisms is needed.

Fourth, it is unclear if cells must possess a true physiological use for Cd in order to contribute to Cd isotope 
fractionation in seawater. The uptake of Cd into cells is widespread, whereas the genes encoding the ζ-class 
of carbonic anhydrases are not. The importance of this enzyme to Cd geochemistry could be tested by 
characterizing the Cd isotope composition of organisms that are known to produce Cd-containing carbonic 
anhydrases and comparing against those that cannot. Such experiments may also benefit from use of mu-
tant cell lines with targeted knockouts or by culturing phytoplankton in the presence of carbonic anhydrase 
inhibitors.

Last, how are the light Cd isotope compositions seen in suspended biogenic particles above OMZs related to 
those within OMZ layers and to those putatively accumulating in sediments? Does biogenic particulate Cd 
reach sediments? Do particulate Cd isotope signatures within OMZ particles relate to sulfide precipitation 
and what is their influence on the global mass balance? What controls the Cd isotope composition of these 
particles? Addressing these questions will require examining the Cd isotope composition of particles from 
oxygenated oceanographic regions, identifying whether processes associated with particle regeneration af-
fect Cd isotope compositions, and surveying coretop sediments.

6.4.2. Paleo

As with the modern cycle, several ambiguities persist, though the most pressing relates to archives. Indeed, 
it appears that a major obstacle preventing the widespread application of Cd isotope-based proxies in pale-
oceanography has been the lack of suitable archives. Concerning carbonates, the main difficulty is isolation 
of sufficient quantities of foraminiferal-bound Cd to reconstruct past seawater δ114Cd. This difficulty might 
be solved by first testing whether species matters for reconstructing δ114Cd, or whether mixed foraminiferal 
assemblages can be used. For organic-rich sediments, the role of biology itself must be considered. That is, 
how important might it be that different organisms exhibit different magnitudes of Cd isotope fractionation 
(and Cd:C stoichiometry)? If important, how best to interpret Cd isotope records—species, evolutionary 
innovations, productivity?
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7. Molybdenum
Molybdenum is a cofactor in several key enzymes in the nitrogen cycle, and Mo availability in the ancient 
oceans may have helped shape the Precambrian biosphere (e.g., Anbar & Knoll, 2002). Today, Mo is the 
scarcest of the essential trace metals in phytoplankton (Equation 3), but is one of the most abundant transi-
tion metals in the ocean (Collier, 1985; Morris, 1975; Bruland, 1983). Indeed, Mo possesses a long residence 
time (∼440,000 yr; Miller et al., 2011; Table 1), is conservative with respect to salinity, and exhibits a uniform 
isotopic composition in oxygenated seawater (e.g., Barling et al., 2001; Siebert et al., 2003; Figure 19). Given 
the lack of [Mo] and δ98Mo variability in the modern ocean, the isotope reactor framework outlined in Sec-
tion 2.2 cannot be applied to Mo and thus there is no simple way to link δ98Mo with paleoproductivity. De-
spite this, Mo is a widely used tracer of paleoredox conditions, and emerging fossil-specific measurements 
of δ98Mo provide a promising future means to reconstruct high-resolution records of ocean oxygenation.

7.1. Marine Distribution

Based on 168 seawater samples from the Atlantic, Pacific, and Southern Oceans analyzed by Nakagawa 
et al. (2012), the average salinity-normalized [Mo] and δ98Mo of the ocean are 107 ± 6 nmol kg−1 and +2.36 
± 0.10‰, respectively (both values ± 2 SD; Figure 19).

Given that no significant gradients in [Mo] are expected, there are few new open ocean δ98Mo data meas-
ured as part of GEOTRACES. However, [Mo] has been measured on two GEOTRACES transects (GP16 
and GA02), demonstrating four intriguing instances where [Mo] deviated from an otherwise conservative 
distribution. These instances are briefly described below and covered in detail by Ho et al. (2018). First, the 
most significant [Mo] anomalies (∼5% drawdown) are associated with intense scavenging by particulate 
Fe hydroxides and oxyhydroxides close to the Peruvian OMZ. Second, Mo is slightly drawn down (<5%) in 
some samples directly above the East Pacific Rise hydrothermal ridge crest, again mostly likely driven by 
scavenging onto hydrothermally derived Fe–Mn oxides. Some Mo drawdown is also observed in some far-
field hydrothermal samples, though the mechanism is unclear. Third, following normalization to a salinity 

Figure 19. Representative profiles of dissolved Mo concentrations ([Mo]); (a) and Mo isotope compositions (δ98Mo); 
(b). Data from the Northwest Atlantic (squares, dashed line), Southern (triangles, dotted line), and Northwest Pacific 
Oceans (circles, solid line; all data from Nakagawa et al., 2012). Station locations as per Figure 1. This comparison 
illustrates that the dissolved behavior of Mo is essentially invariant throughout the global oceans.
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of 35, surface seawater shows a minor Mo drawdown, implying either biological uptake or adsorption to 
biotic particles. Though not a true oceanographic feature, a fourth type of [Mo] anomaly is also noteworthy: 
Bottle storage artifacts. Ho et al. (2018) found that many samples with initially low values showed an in-
crease in [Mo] with increasing storage time, implying a change in Mo speciation to a form that is detectable 
by ICP-MS. In contrast to the relative constancy of [Mo] in open ocean settings, a number of studies show 
striking [Mo] variations in coastal and estuarine systems (e.g., Dalai et al., 2005; Dellwig et al., 2007; Joung 
& Shiller, 2016; Wang et al., 2016) as well as in modern restricted settings, such as the Black and Baltic Seas 
(Nägler et al., 2011).

7.2. Driving Processes

7.2.1. Biological

Molybdenum is an essential micronutrient required by enzymes that catalyze key reactions in the global C, 
N, and S cycles (Mendel & Bittner, 2006). Importantly, Mo is a cofactor of the primary nitrogenase enzyme 
complex, meaning that Mo is required for energy-efficient nitrogen fixation. Additionally, Mo is required 
for over 30 other enzymes that control biologically essential redox processes (Kendall et al., 2017). Despite 
its biological importance, biological activity does not significantly influence the distribution of Mo in sea-
water (Figure  20). Results from the GEOTRACES GP16 section do, however, suggest some Mo removal 
by biological uptake and/or adsorption onto biogenic particles within regions of elevated chlorophyll (Ho 
et al., 2018). Experimental data indicate that biological uptake of Mo imparts a small negative isotope frac-
tionation on the order of −0.3‰ (Wasylenki et al., 2007; Figure 20).

Enhanced removal of Mo from seawater in regions with high export of organic carbon likely explains some 
of the nonconservative behavior observed in modern coastal regions. A significant relationship between 
Mo and total organic carbon content is observed in marine euxinic sediments (e.g., Algeo & Lyons, 2006; 
Helz et al., 1996; Lyons et al., 2009; McManus et al., 2006), though this appears to be more a function of 

Figure 20. Processes driving Mo isotope variations in modern seawater. While biological processes may exert a slight 
influence on surface water Mo distributions, the main drivers of marine Mo cycling are related to the balance between 
scavenging pathways, which are redox dependent.
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euxinia rather than organic C burial. Furthermore, it has been shown 
that Mo interactions with organic matter can control Mo cycling in 
both soils (King et al., 2014, 2016; Marks et al., 2015; Siebert et al., 2015; 
Wichard et  al.,  2009) and marine sediments (Tessin et  al.,  2019; Wag-
ner et al., 2017). The formation of Mo complexes containing organic li-
gands has been proposed as an explanation for the correlation between 
sedimentary Mo and organic carbon, suggesting that organic matter may 
play an important role in both the delivery and burial of Mo in sediments 
(Wagner et al., 2017).

7.2.2. Chemical

Due to the long residence time and abundance of Mo, nonconservative 
Mo behavior is typically localized to areas with high particle concen-
trations, such as close to the continental margin, in the euphotic ocean, 
or around hydrothermal vents (e.g., Goto et  al.,  2020). In the modern 
oxic water column, Mo is present primarily as the oxyanion molybdate 
(MoO4

2−) and Mo sorption onto Mn oxyhydroxides represents the most 
significant modern Mo sink (Figure 20; Bertine & Turekian, 1973; Scott 
& Lyons, 2012). Since the Fe–Mn oxide sink preferentially removes Mo 
from seawater with an isotopic effect of ≈−3.0‰ (Barling et al., 2001; Sie-
bert et al., 2003; Figure 21), the fraction of Mo that is buried in Fe–Mn ox-
ides exerts a major control over the Mo isotope composition of seawater.

In the presence of sulfide, the oxygen atoms in molybdate are progres-
sively substituted for sulfur, producing particle reactive thiomolybdate 
species (MoO4−xSx

2−; Erickson & Helz, 2000; Vorlicek et al., 2015). Dis-
solved Mo can thus be strongly drawn down in sulfidic environments, 
such as the Black Sea. Importantly, this drawdown occurs with a small, 
but non-zero isotope effect of ≈−0.5 ± 0.3‰ (i.e., isotopically light Mo is 
preferentially scavenged; e.g., Nägler et  al.,  2011). Thiomolybdate may 
also be scavenged from sulfidic sedimentary porewaters leading to sig-

nificant Mo accumulations within sediments deposited in anoxic and euxinic environments (e.g., Crusi-
us et al., 1996; Emerson & Huested, 1991; Scott & Lyons, 2012). Long-term Mo burial is associated with 
Fe–S minerals (Chappaz et al., 2014; Vorlicek et al., 2018) and/or organic matter (Dahl et al., 2017; Tessin 
et al., 2019), depending on the biogeochemical conditions prevailing within a given basin.

7.2.3. Physical

The residence time of dissolved Mo is significantly longer than the mixing time of the ocean (Table 1). Thus, 
variations in [Mo] and dissolved δ98Mo are not influenced by the geometry of modern overturning circula-
tion. Whole ocean changes in [Mo] and dissolved δ98Mo are, however, possible, and much of what we know 
about such changes is gleaned from studies of the geological past, particularly during periods of ocean 
anoxia. Based on this research, it has been suggested that during intervals of lower ocean oxygenation, the 
ocean Mo inventory may have been low enough to limit marine primary productivity (Algeo, 2004; Anbar & 
Knoll, 2002; Glass et al., 2009; Reinhard et al., 2013). This limitation has been demonstrated in certain lake 
ecosystems (Glass et al., 2012; Goldman, 1960). Under strongly euxinic conditions ([H2S]aq > 11 μM), ther-
modynamic calculations predict that tetrathiomolybdate (MoS4

2−) becomes the predominant Mo species 
(Erickson and Helz, 2000). The transformation can result in quantitative drawdown of Mo from seawater 
and into sediments with negligible net isotope fractionation, a mechanism that has been evidenced in Lake 
Cadagno (Dahl et al., 2010), the Black Sea (e.g., Nägler et al., 2011; Neubert et al., 2008), and Kyllaren fjord 
(a seasonally anoxic basin off of the west coast of Norway; Noordmann et al., 2015). Indeed, the quantitative 
drawdown mechanism is the foundation of several paleoceanographic studies that assume that the sedi-
mentary Mo isotopic signatures, deposited in euxinic settings, faithfully capture the δ98Mo of oxygenated 
(surface) seawater and can be further interpreted in terms of the fraction of the seafloor that is oxygenated 
(e.g., Dickson, 2017; Kendall et al., 2015).

Figure 21. Two Fe-Mn records of δ98Mo spanning the Cenozoic. Data 
from the Atlantic (squares, solid line) and Pacific Oceans (circles, dotted 
line; Siebert et al., 2003). Assuming that these Fe-Mn crusts have always 
formed with an offset ≈−3.0‰ with respect to dissolved Mo in seawater, 
these records indicate that the δ98Mo of seawater has minimally varied 
over the Cenozoic (Anbar, 2004; Siebert et al., 2003). However, given the 
effective diffusivity of Mo in Fe-Mn crusts, it is possible that the lack of 
variation may also reflect post-depositional resetting to modern-like values.



Global Biogeochemical Cycles

HORNER ET AL.

10.1029/2020GB006814

41 of 86

7.3. Sedimentary Archives

The majority of Mo paleoceanographic studies focus on the measurement of the Mo content and isotopic 
composition of bulk sediments, spanning early Earth (e.g., Arnold et al., 2004) to the Holocene (e.g., Hard-
isty et al., 2016; van Helmond et al., 2018). However, the vast majority of these studies applied Mo and its 
isotopes to trace ocean redox conditions rather than productivity (e.g., Anbar, 2004; Kendall et al., 2017). 
Similar to the other elements reviewed here, there are measurements of δ98Mo in Fe–Mn sediments (e.g., 
Barling et al., 2001). Siebert et al. (2003) reported a time series from two Fe–Mn crusts implying no varia-
tions in the δ98Mo of seawater, relative to modern values, over the Cenozoic (Figure 21). Molybdenum is 
somewhat mobile in Fe–Mn crusts, with a calculated effective diffusivity ≤10−7 cm2 yr−1 (see Henderson & 
Burton, 1999 for calculation details), similar to Cd (Section 6.3.2), Cr (Section 10.3.2), and Ag (Section 11.3). 
Thus, the invariance of the Fe–Mn crust δ98Mo record may imply that the relative balance of Mo sinks has 
not shifted by more than 10% over the Cenozoic (e.g., Anbar, 2004; Siebert et al., 2003), or could reflect some 
degree of post-depositional resetting.

Despite the ambiguity surrounding Fe–Mn sediments, research on biological archives of [Mo] and δ98Mo 
has found mixed results. Research examining δ98Mo in corals indicates that corals may accurately record 
ambient seawater Mo isotopic composition (Voegelin et al., 2009). However, later studies suggested a tem-
perature-dependent fractionation between seawater and corals that is related to the activity of symbiotic 
zooxanthellae (Z. Wang et al., 2019). Moreover, bivalve shell Mo:Ca ratios have been determined to have no 
relationship to oceanographic conditions (Vihtakari et al., 2017), whereas Tabouret et al. (2012) suggest a 
mechanism related to trophic uptake, but not to ambient [Mo]. A third study proposed that Mo:Ca peaks in 
bivalve carbonate are controlled by ingestion of phytoplankton grown on NO3

− (due to high Mo associated 
with NO3

− reductase), indicating that bivalves may provide an archive for surface water NO3
− uptake and a 

potential proxy for the balance between new and regenerated productivity (Thébault et al., 2009).

7.4. Prospects

At present, it does not appear that bulk sediment δ98Mo will be useful for reconstructing biological pro-
ductivity, even though Mo is cycled by organic matter, both actively (e.g., Liermann et al., 2005; Wasylenki 
et al., 2007) and passively (e.g., King et al., 2018; Kowalski et al., 2013). That we see no pathway to using 
Mo as a productivity tracer reflects, in part, the difficulty in disentangling biological processes that exert rel-
atively modest Mo isotope fractionations from those associated with thiomolybdate transformations (Tos-
sell, 2005), or scavenging processes that possess large fractionation effects (Figure 20; e.g., Mn- or Fe-oxide 
scavenging; Barling & Anbar, 2004; Brucker et al., 2009; Goldberg et al., 2009, 2012; Siebert et al., 2003; 
Wasylenki et al., 2008). Additionally, within the modern ocean and likely within the recent geologic past, 
the global ocean reservoir of Mo is too large and too well mixed for biological associated fractionations to 
significantly impact the global Mo isotopic composition.

The use of bulk sedimentary Mo concentrations as a proxy for export of organic carbon to the seafloor is 
more promising, but numerous caveats exist. Specifically, other mechanisms for enhanced delivery, seques-
tration, and burial complicate any efforts to quantitatively relate Mo enrichments to increased export pro-
ductivity (e.g., Scholz et al., 2017). Redox conditions and, in particular, the presence of sulfide in the water 
column and sediment porewaters will be a primary control on Mo accumulation (e.g., Hardisty et al., 2018). 
Sedimentary Mo enrichments can also be produced through shuttling of Mo adsorbed to the surface of Fe 
and Mn oxides to the seafloor (Algeo & Lyons, 2006; Algeo & Tribovillard, 2009; Dellwig et al., 2010; Scholz 
et al., 2013). At a minimum, independent constraints on water column and porewater redox conditions 
using Fe speciation, other trace metals and/or fossil redox proxies are required before an argument can be 
made relating sedimentary Mo contents to export productivity. Additionally, the quantitative relationship 
between Mo and organic carbon may be impacted by aqueous [Mo], which may have varied over Earth's 
history, or if depositional environments become restricted (i.e., Mo drawdown leads to a lower Mo:TOC 
ratio; Algeo & Lyons, 2006). Alternatively, the utility of bulk sediment Mo content and isotopic composition 
may be in constraining redox conditions to improve the interpretation of other trace metal proxies that are 
more strongly controlled by primary and/or export productivity.
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The most promising future avenue for Mo-based productivity proxies may emerge from fossil-specific meas-
urements of Mo content, and perhaps δ98Mo. Currently, research has focused on large fossils (corals and 
bivalves; e.g., Thébault et al., 2009) and has led to mixed results on the utility of Mo in reconstructing pro-
ductivity-related parameters. However, analytical progress may allow for measurement of smaller sample 
sizes, which may provide opportunities to explore new archives of past marine Mo geochemistry.

8. Barium
Like Zn, [Ba] exhibits a strong correlation with [Si] (e.g., Chan et al., 1977). Unlike Zn and Si however, Ba 
is not an essential nutrient and has no known enzymatic functions. The mechanisms underpinning the 
nutrient-like behavior of Ba instead relate to its cycling by the mineral BaSO4 (barite), which is thought to 
precipitate during the microbial oxidation of sinking organic matter (e.g., Chow & Goldberg, 1960). Barite 
precipitation also drives a sizable, negative isotope fractionation of Ba stable isotopes (e.g., Von Allmen 
et al., 2010), consistent with the direction and magnitude of Ba isotope variations in seawater (e.g., Horner, 
Kinsley, & Nielsen, 2015). Though the connections between [Ba] and productivity are thus not direct, pat-
terns of Ba sedimentation are strongly correlated with those of export production (e.g., Eagle et al., 2003), 
and Ba stable isotope distributions are consistent with underlying variations in BaSO4 cycling and ocean 
circulation (e.g., Horner & Crockford, 2021). As such, [Ba] and dissolved δ138Ba can be described using the 
reactor framework outlined in Section 2.2, and—despite some uncertainties outlined later in this section—
represents a promising tool for tracing aspects of paleoproductivity.

8.1. Marine Distribution

The nutrient-like distribution of [Ba] has been documented in the literature since the 1970s (e.g., Wol-
gemuth & Broecker,  1970; Figure  22). However, it was not until later in the decade that the GEOSECS 
Program fully revealed the three-dimensional marine distribution of [Ba] (e.g., Chan et al., 1976, 1977). 
These geochemical ocean sections highlighted vertical, zonal, and meridional variations in [Ba] related to 

Figure 22. Representative profiles of dissolved Ba concentrations ([Ba]); (a) and Ba isotope compositions (δ138Ba); 
(b). Data from the Eastern Tropical North Atlantic (squares, dashed line; Bates et al., 2017), Northeast Pacific (circles, 
solid line line; Geyman et al., 2019), and Southern Oceans (triangles, dotted lines; Hsieh & Henderson, 2017). Station 
locations as per Figure 1. This comparison illustrates that the oceanographic processes leading to distinct dissolved 
concentration profiles render significant changes in dissolved δ138Ba between basins.
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the major biogeochemical and hydrographic features of the ocean. In nutrient-depleted surface waters, [Ba] 
is lowest, between 35 and 45 nmol kg−1. Nutrient-replete deep waters are enriched in Ba, though typically 
by no more than a factor of four above surface values. The spatial resolution of GEOSECS illustrated the 
importance of hydrography; [Ba] increases along the meridional overturning circulation from ≈50 nmol 
kg−1 in deep waters of the North Atlantic, to ≈90 nmol kg−1 in the Southern Ocean, up to ≈160 nmol kg−1 in 
the deep Northeast Pacific (Figure 22; Chan et al., 1976, 1977).

Though it was long suspected that the major dissolved–particulate transformation of Ba was related to 
the mineral BaSO4 (e.g., Chow & Goldberg, 1960; Turekian, 1968), this was not confirmed until the 1980s 
(e.g., Bishop, 1988; Dehairs et al., 1980). Barite crystals are now recognized as an ubiquitous component of 
marine particulate matter, with up to 104 discrete, micron-sized crystals present per L of seawater (Dehairs 
et al., 1980). The distribution of particulate BaSO4 is distinct from primary biogenic phases that exhibit 
‘Martin-like’ distributions with maxima in the euphotic zone that subsequently decay along power-law tra-
jectories (Martin et al., 1987). Instead, particulate Ba typically exhibits a minimum in the euphotic zone 
and the maximum slightly below, usually near the top of the mesopelagic (e.g., Ohnemus & Lam, 2015; Oh-
nemus et al., 2019). This distribution likely reflects the fact that neither Ba nor BaSO4 are utilized for phys-
iological processes by any of the major marine primary producers. Particulate Ba fluxes are nevertheless 
strongly correlated with export productivity in well-oxygenated environments (e.g., Bishop, 1988; Dymond 
& Collier, 1996; Dymond et al., 1992; Francois et al., 1995; McManus et al., 2002) and therefore sedimentary 
Ba content has been widely used as a proxy to reconstruct past changes in ocean export production (e.g., 
Francois et al., 1995; Paytan & Griffith, 2007 [and references therein]; Paytan et al., 1996; Costa et al., 2016; 
Winckler et al., 2016).

Recent studies of Ba stable isotope geochemistry have added a new dimension with which to study marine 
Ba cycling. Von Allmen et al. (2010) first reported that isotopically light Ba is preferentially incorporated 
into BaSO4, with a particulate–dissolved Ba isotopic offset of ≈−0.3‰. The direction of this offset implies 
that residual solutions, such as seawater, should exhibit Ba isotopic compositions heavier than those of 
sedimented BaSO4. This was corroborated for Atlantic seawater by Horner, Kinsley, and Nielsen  (2015), 
showing that dissolved δ138Ba displays a mirror image of [Ba]: Ba-depleted surface water masses exhibited 
“heavy” Ba isotopic compositions (≈+0.6‰), whereas Ba-replete deep waters possessed “lighter” values 
≈+0.3‰ (Notably, all values are considerably heavier than the upper continental crust, which possesses 
δ138Ba ≈0.0 ± 0.1‰; Nan et al., 2018.) Similar patterns have since been corroborated in other ocean basins 
(Bates et al., 2017; Bridgestock et al., 2018; Cao, Siebert, et al., 2020; Geyman et al., 2019; Hsieh & Hender-
son, 2017; Figure 22). The first order pattern is thus consistent with the removal of isotopically light Ba 
from surface waters and its regeneration at depth. Further, the longer a water mass remains isolated from 
the surface, the more isotopically light Ba is able to accumulate, hence why Ba-replete Northeast Pacific 
seawater ∼2,000 m depth exhibits the lightest dissolved δ138Ba yet observed in the global ocean (≈+0.2‰; 
Geyman et al., 2019; Figure 22).

The isotopic studies have yielded a number of novel insights into the marine Ba cycle. First, the data un-
derscore the importance of physical mixing (i.e., ocean circulation) in mediating patterns of dissolved 
δ138Ba and, by extension, [Ba]. Second, both the regression of dissolved Ba isotopic data (Bates et al., 2017; 
Hsieh & Henderson, 2017) and comparison of colocated seawater and particulates (Cao, Li, et al., 2020; 
Horner et al., 2017) imply an average particulate–dissolved Ba isotopic offset ≈−0.5‰, which is somewhat 
larger than the experimental results reported by Von Allmen et al. (2010). Third, marine sediments—both 
bulk (Bridgestock et al., 2018) and BaSO4 isolates (Crockford et al., 2019)—faithfully reflect the ≈−0.5‰ 
Ba isotopic offset from surface seawater. Consequently, the mean δ138Ba of globally sedimented BaSO4 is 
≈+0.1 ± 0.1‰ (Crockford et al., 2019). Since BaSO4 is the dominant oceanic output (e.g., Paytan & Kast-
ner, 1996), these data imply that mean isotopic composition of Ba delivered to the ocean should possess an 
average composition ≈+0.1 ± 0.1‰ (Horner & Crockford, 2021). At present however, the main Ba inputs 
are unable to close the marine Ba isotopic budget: Rivers, the principal Ba source to seawater, are too heavy, 
exhibiting compositions generally ≥+0.2‰ (e.g., Cao, Siebert, et al., 2020; Gou et al., 2020); and, ground-
water discharge, while possessing the necessary light composition of ≈+0.1 ± 0.1‰, is too small a Ba flux 
to balance the budget (Mayfield et al., 2021). Thus, either the marine Ba isotopic budget is currently out of 
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steady state, or an additional Ba source possessing a light isotopic composition, such as estuaries (Bridge-
stock et al., 2021), remains to be identified.

8.2. Driving Processes

Seawater is undersaturated with respect to BaSO4 almost everywhere (Monnin et  al.,  1999; Rushdi 
et al., 2000). However, micro-crystalline BaSO4 is ubiquitous in the ocean. This “barite paradox” remains an 
area of ongoing research. Proposed driving mechanisms broadly fall into two categories: “active” biological 
and “passive” chemical precipitation.

8.2.1. Biological

Several organisms are known to precipitate BaSO4 intracellularly, possibly for the purposes of gravitropism 
(e.g., Gooday & Nott, 1982; Finlay et al., 1983). However, the organisms known to actively precipitate BaSO4 
are neither abundant in seawater, nor do they constitute a significant fraction of marine primary productiv-
ity. Likewise, acantharea—organisms that precipitate SrSO4 (celestite) tests that can contain considerable 
quantities of Ba (e.g., Bernstein & Byrne, 2004)—are not necessary for driving significant Ba drawdown 
from the ocean (Esser & Volpe, 2002) nor for barite precipitation (Ganeshram et al., 2003). Thus, existing 
evidence does not support a significant role for active biological processes in driving the open marine Ba 
cycle (Figure 23).

8.2.2. Chemical

Passive chemical precipitation is likely the major contributor to particulate BaSO4 stocks and sedimen-
tation. We focus our discussion on those BaSO4 formed through association with the biological pump, 
though we note that other types of BaSO4 exist in the ocean and their occurrence and geochemistry are 
reviewed in detail elsewhere (e.g., Griffith & Paytan,  2012; Hanor,  2000). Given that seawater is largely 
undersaturated with respect to BaSO4, passive precipitation is thought to occur within particle-associated 

Figure 23. Processes driving Ba isotope variations in modern seawater. Though biological processes exert only a minor 
direct influence on δ138Ba, the biologically mediated cycling of BaSO4 drives large variations in marine Ba isotope 
cycling, thereby connecting δ138Ba to paleoproductivity.
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microenvironments that are supersaturated with respect to BaSO4 (e.g., Chow & Goldberg, 1960; Dehairs 
et al., 1987). The development of BaSO4-supersaturated microenvironments is hypothesized to relate to the 
heterotrophic oxidation of organic matter (Chow & Goldberg, 1960), whereby Ba and sulfate ions are con-
centrated in chemically isolated microzones during bacterially mediated mineralization of organic matter. 
Once sufficient quantities of Ba and sulfate ions have accumulated and the microenvironment becomes 
supersaturated, BaSO4 precipitation occurs. Thus, passive precipitation of BaSO4 is possible even in strong-
ly undersaturated environments possessing low ambient sulfate concentrations (e.g., Horner et al., 2017). 
Continued mineralization destroys the microenvironment, ceasing precipitation and exposing BaSO4 pre-
cipitates to undersaturated seawater where they begin to dissolve.

The widespread association between pelagic BaSO4 and aggregates of decaying organic matter provides 
indirect support for this passive process (Dehairs et al., 1980; Bishop, 1988). Indeed, the peak in particulate 
[Ba]—and presumably BaSO4—abundance is found below the euphotic zone, where organic matter min-
eralization dominantes (e.g., Sternberg et al., 2008). Though many of the microscale mechanisms remain 
unresolved, recent studies indicate that biofilms likely play an important role in accumulating Ba from 
seawater (e.g., Martinez-Ruiz et al., 2019, 2020), and can promote precipitation of BaSO4 nanoparticles from 
undersaturated solutions (Deng et al., 2019).

Regardless of the precise microscale mechanism, precipitation of particulate BaSO4 is ubiquitous in the ma-
rine realm. Given that BaSO4 precipitation renders an apparent negative isotope fractionation of ≈−0.5‰, it 
is highly likely that BaSO4 cycling drives much of the Ba isotope variability in the ocean (Figure 23). From 
a paleoproxy perspective, this is ideal; BaSO4 formation is related to the decay of organic matter and not by 
the presence of any specific organism (e.g., Dehairs et al., 2008; Jacquet et al., 2007). Downward transport 
of particulate BaSO4 is driven by aggregation with larger particles (Lam & Marchal, 2015) and the efficiency 
of this downward transport depends on the same biophysical processes that export organic matter, thus 
connecting the export flux of BaSO4 to that of organic carbon (Eagle et al., 2003).

Barites formed in the ocean through this passive chemical pathway are commonly termed marine, pelagic, 
authigenic, or biogenic. Though none of these terms are perfect descriptors of the chemical processes in-
volved, “marine” and “biogenic” are the most ambiguous and their use is discouraged; the former encom-
passes all BaSO4 formed in the marine realm—including diagenetic, cold seep, and hydrothermal—whereas 
the latter could be taken to imply only those precipitates brought about by active biological processes. While 
“authigenic” is an informative descriptor, it has also been used to describe sedimentary BaSO4 that formed 
via diagenetic redistribution on or below the seafloor (e.g., Torres et al., 1996). Thus, we recommend use of 
the term “pelagic” when describing chemically precipitated microcrystalline BaSO4, and encourage authors 
to include this definition in their works.

8.2.3. Physical

Dissolved [Ba] exhibits a nutrient like profile in the oceans similar to alkalinity and [Si] (Figure 22). How-
ever, the extent to which this pattern arises from nonconservative biogeochemical processes versus physical 
mixing remains unresolved. Results from the GEOTRACES program are facilitating renewed interest into 
this topic, which is being investigated using two complementary approaches. In the first, biogeochemical 
contributions to basin-scale [Ba] distributions are isolated using statistical methods, such as Optimum Mul-
tiparameter water mass Analysis. These statistical methods showed that mixing is dominant in the Mediter-
ranean (Jullion et al., 2017) and North Atlantic (Le Roy et al., 2018), but that sea ice-related processes may 
be important in the high latitudes (Hendry et al., 2018). Second, the influence of mixing is evidenced from 
emerging Ba stable isotope data. Indeed, the importance of mixing has been documented vertically (Horner, 
Kinsley, & Nielsen,  2015), zonally (Bates et  al.,  2017; Bridgestock et  al.,  2018), and meridionally (Bates 
et al., 2017; Hsieh & Henderson, 2017). Together, these new approaches imply that in situ biogeochemical 
processes exert a relatively minor influence on basin-scale [Ba] distributions.

8.3. Marine Archives

Given the connections between export production and BaSO4 fluxes, the major archive of historical chang-
es in Ba cycling is BaSO4 itself (e.g., Griffith & Paytan, 2012). Indeed, the sedimentary accumulation of 
BaSO4—often determined as the fraction of Ba in excess of the detrital Ba background or the deposition 
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rate of BaSO4—has been extensively used to reconstruct past changes in export production (e.g., Costa 
et al., 2016; Francois et al., 1995; Frank et al., 2000; Jaccard et al., 2005, 2013; Ma et al., 2014, 2015; Paytan 
et al., 1996; Schmitz, 1987; Winckler et al., 2016). An estimated 30% of the BaSO4 microcrystals formed in 
seawater are buried in oxygenated sediments (e.g., Dymond et al., 1992), a considerably higher fraction than 
for organic carbon (Paytan & Kastner, 1996). However, in oligotrophic regimes where both BaSO4 fluxes and 
sedimentation rates are low, prolonged exposure to undersaturated seawater results in poor preservation 
(Eagle et al., 2003; Serno et al., 2014). Similarly, in high productivity coastal upwelling settings, mineraliza-
tion of organic matter in sediments consumes porewater O2, driving conditions down the redox tower and 
toward sulfate reduction, hampering BaSO4 preservation (Carter et al., 2020; McManus et al., 1998; Paytan 
& Griffith, 2007).

The isotopic composition of Ba in sediments has been investigated as a proxy for the Ba isotope composition 
of the Ba source (i.e., dissolved Ba in epipelagic and upper mesopelagic seawater). Applications to date have 
explored the recovery of the biological carbon pump following the Paleocene–Eocene Thermal Maximum 
(∼56 Ma; Bridgestock et al., 2019) and the origin of enigmatic sedimentary BaSO4 deposited in the after-
math of the Marinoan glaciation (∼635 Ma; Crockford et al., 2019) and Great Oxidation Event (∼2,000 Ma; 
Hodgskiss et al., 2019). These three applications are reviewed in detail in Horner & Crockford (2021).

Unlike many of the other TEIs reviewed here, we are not aware of any studies exploring δ138Ba in Fe–Mn 
crusts. Barium is somewhat immobile in Fe–Mn crusts, with a calculated effective diffusivity ≤10−8 cm2 yr−1 
(see Henderson & Burton, 1999, for calculation details), similar to Zn (Section 9.3.1). While this implies 
that Fe–Mn crusts have the potential to record variations in deep ocean δ138Ba, a significant fraction of the 
total Ba in Fe–Mn crusts is associated with CFA (carbonate fluorapatite; Koschinsky & Hein, 2003). Since 
the CFA is secondary—filling voids around the layered Fe- and Mn-oxide minerals—it is unclear if Fe–Mn 
crusts can be developed into a useful archive of δ138Ba.

Lastly, the amount of Ba in marine carbonates, typically reported as Ba:Ca, has been extensively used to re-
construct the Ba content of past environments, specifically for constraining historical patterns of upwelling 
and/or terrestrial runoff (e.g., Gebregiorgis et al., 2016; Lea et al., 1989). More recently, a number of studies 
have investigated the fidelity of surface- (Liu et al., 2019) and deep-sea corals (Hemsing et al., 2018; Gey-
man et al., 2019), finding that a number of species are faithful archives of ambient [Ba] and δ138Ba. These 
findings are highly promising from a proxy standpoint, as they indicate that a number of archives may be 
suitable for paleo Ba reconstructions.

8.4. Prospects

Barium exhibits several nutrient-like properties: First, [Ba] distributions resemble those of other nutrients 
and second, particulate abundances are intimately associated with the processes of organic carbon reminer-
alization and export. Despite these connections, several aspects of Ba cycling—both in the modern and past 
oceans—remain unresolved. We thus suggest several areas for additional research that will help widen the 
applicability of Ba-based proxies in paleoceanography.

8.4.1. Modern

Several issues remain regarding the modern Ba cycle. Many of these are reviewed in detail by Horner & 
Crockford (2021), though we outline the four most pressing and their possible remedies here. First, to what 
extent do the similar distributions in [Ba], [Si], alkalinity, and [226Ra] reflect true biogeochemical coupling 
versus passive physical mixing? These correlations have been the subject of scrutiny for over 40 years (e.g., 
Chan et al., 1976; Chung, 1980), and recent GEOTRACES sections are facilitating a reevaluation of these re-
lationships. As noted above, statistical analysis of Ba (and Si, Ra) distributions in regions will offer valuable 
insights, particularly if conducted in regions with weaker overturning circulation. Likewise, additional pro-
files of δ138Ba from regions with strong in situ influences—Ba point sources (e.g., seeps, Torres et al., 1996; 
margin sediments, McManus et al., 1998), or point sinks (e.g., plankton blooms, Esser & Volpe, 2002)—
should enable testing the importance of local processes to regional Ba isotope distributions.

Second, the Ba isotopic mass balance of the ocean must be closed. This will require detailed evaluation of 
other putative Ba sources, such as diagenetic remobilization (e.g., Hoppema et al., 2010), atmospheric depo-
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sition, and the importance of estuarine enhancement of riverine Ba fluxes (e.g., Edmond et al., 1978; Hanor 
& Chan, 1977). Large intra-marine Ba point sources, such as such as hydrothermal vents, can drive BaSO4 
supersaturation, leading to precipitation; indeed, a recent study suggests that the net effect of such point 
sources may be to increase deep δ138Ba through BaSO4 precipitation, further imbalancing the Ba isotope 
budget (e.g., Hsieh et al., 2021; Figure 23). Barium isotope fractionation associated with other mineral sinks, 
such as adsorption onto Fe–Mn oxyhydroxides, also remains uncharacterized.

Third, what is the mechanism of BaSO4 precipitation? While the microenvironment mediated model ap-
pears most likely, many microscale mechanisms of precipitation remain ambiguous: How and from what 
are Ba and sulfate ions liberated during mineralization? How and why are they accumulated onto biofilms? 
Do different substrate organisms and/or heterotrophic communities influence the amount of BaSO4 precip-
itated? Addressing these questions will require additional field and laboratory studies, which can then be 
compared against distributions of particulate BaSO4 in the ocean interior. Depending on their importance, 
these nuances may require ecological parameterizations in numerical models of Ba cycling.

Finally, additional experiments are needed to narrow estimates of the fractionation factor between BaSO4 
and seawater. Existing laboratory studies place this estimate ≈−0.3‰, whereas a wide range of field data 
suggest that it is considerably larger at ≈−0.5‰. Accounting for this ≈0.2‰ difference is both important and 
justifies additional experimentation, as it indicates incomplete understanding of the processes that fraction-
ate Ba isoopes in the marine realm.

8.4.2. Paleo

As with the modern cycle, several ambiguities persist. Assuming that BaSO4 remains the preferred archive 
of past Ba cycle variations, it is imperative to constrain the effect of early diagenesis on the Ba isotope com-
position of sedimentary BaSO4. Likewise, it is unknown if diagenetic BaSO4 retains any primary Ba isotope 
information. Assessing these issues will require studies of co-located BaSO4 and porewaters from environ-
ments at various stages of early diagenesis. Answering these questions is critical in establishing the validity 
of Ba isotopes in barite as a paleoceanographic proxy.

Additionally, there are uncertainties relating to whether BaSO4 cycling is impacted by ambient [Ba] dur-
ing BaSO4 precipitation and burial. For example, does more BaSO4 precipitation occur at higher ambient 
[Ba]? While there is evidence indicating that this is not a major influence in the modern ocean (e.g., Fagel 
et al., 2004; Serno et al., 2014), a relationship between ambient [Ba] and BaSO4 precipitation is likely nec-
essary to maintain steady state in the Ba cycle over geological timescales (e.g., Horner & Crockford, 2021). 
Likewise, to what extent does BaSO4 preservation depend on ambient [Ba]? These considerations are signif-
icant when considering longer-term records, particularly when marine sulfate levels were lower-than-mod-
ern (and [Ba] presumably higher; e.g., Walker, 1983; Wei & Algeo, 2020). Finally, does the seawater tempera-
ture at the depth of POC mineralization impact the relationship between POC and BaSO4 formation? These 
questions are best addressed through a combination of experimentation (e.g., cultures, precipitation), field 
studies in basins with large gradients in [Ba], and numerical experiments incorporating saturation state 
modeling.

9. Nickel
Nickel is biologically utilized, for example by diazotrophs during nitrogen fixation and by microorganisms 
catalyzing the breakdown of reactive oxygen species (Twining & Baines, 2013). Particularly relevant to early 
Earth reconstructions is the fact that methanogens have an obligate requirement for Ni. Several promising 
archives have been identified for marine Ni isotope chemistry, however, determination of the composition 
of Ni isotope ratios in seawater has lagged behind other nutrient-like metals such as Zn and Cd. Recent 
datasets do indicate that Ni is cycled by phytoplankton, with a resultant isotope fractionation in the eu-
photic zone dependent on the dominant ecology of the region. As such, Ni isotope variations are likely to 
be broadly responsive to biological productivity, but the assumption of a constant fractionation factor (i.e., 
ΔP–R) may be violated, which may complicate use of Ni isotopes as a quantitative paleoproductivity proxy, 
and the applicability of the simple reactor scheme. Additionally, the secondary sinks of Ni, such as those 
associated with Mn oxides, are associated with large Ni isotope fractionations, opening up the possibility of 
using Ni isotopes to track aspects of marine paleoredox.
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9.1. Marine Distribution

Nickel has a classic nutrient-type distribution in the oceans with one unusual feature: surface [Ni] nev-
er drops below ∼1.8–2 nmol kg−1 (e.g., Bruland, 1980; Sclater et al., 1976; Figure 24). There is evidence, 
however, that this residual pool in surface waters is not bioavailable, as summarized recently by Archer 
et al.  (2020). Deep water [Ni] are 4–5 nmol kg−1 in the Atlantic, and ∼9 nmol kg−1 in the north Pacific 
(Figure 24).

Developing robust analytical protocols for analyzing Ni isotopes for a range of sample matrices has proven 
somewhat more challenging than for some of the other trace metals discussed here due to the difficulty in 
separating Ni from interfering elements (e.g., Fe, a major isobaric interference on 58Ni). Chemical purifica-
tion protocols now use a sequence of resins including anion exchange (e.g., AG MP-1M or AG1-X8, Bio-Rad) 
and either a Ni-specific resin (containing dimethylglyoxime) or Nobias PA-1 (Hitachi High Technologies; 
e.g., Cameron et al., 2009; Gueguen et al., 2013; R. M. Wang et al., 2019; Yang et al., 2020). The limited data 
since reported for the oceanic dissolved pool of Ni indicates relatively little variability in δ60Ni at depth 
(+1.2‰ to +1.4‰), with a small shift toward heavier values up to +1.7‰ in the upper water column (Fig-
ure 24; Archer et al., 2020; Takano et al., 2017; R. M. Wang et al., 2019; Yang et al., 2020). The upper water 
column shift is proposed to reflect a small kinetic isotope fractionation during biological uptake. Similar to 
Zn, Cu, Cd, Mo, Ba, and Cr, the isotopic composition of Ni in seawater is isotopically heavy compared to the 
UCC (Table 1).

9.2. Driving Processes

9.2.1. Biological

To date, eight Ni-based enzyme systems have been identified (Ragsdale, 2009), including urease, which 
is key to the global nitrogen cycle, and methyl-CoM reductase, which catalyzes the production of all bio-
logically generated methane on Earth. The obligate requirement of methanogens for Ni has led to interest 

Figure 24. Representative profiles of dissolved Ni concentrations ([Ni]); (a) and Ni isotopic compositions (δ60Ni); 
(b). Data from the South Atlantic (squares, dashed line; Archer et al., 2020), Southern (triangles, dotted line; R. M. 
Wang et al., 2019), and Subtropical South Pacific Oceans (circles, solid line; Takano et al., 2017). Station locations as 
per Figure 1. This comparison illustrates that the oceanographic processes leading to distinct dissolved concentration 
profiles render only small changes in dissolved δ60Ni between basins.
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in developing Ni and δ60Ni isotopes as a tracer of methane production on the early Earth (e.g., Cameron 
et al., 2009; Konhauser et al., 2009; S. J. Wang et al., 2019). In the modern ocean the highest Ni quotas 
are found in diazotrophs (N-fixers), thought to reflect the presence of Ni-Fe hydrogenases (which cata-
lyze H2 produced during N fixation), Ni-superoxide dismutase (Ni-SOD) and urease (Dupont, Barbeau, & 
Palenik, 2008; Dupont, Neupane, et al., 2008; Nuester et al., 2012; Tamagnini et al., 2002). Nickel limitation 
of phytoplankton grown on urea has been shown in culture and in natural assemblages, suggesting the Ni-N 
colimitation of phytoplankton growth may be relevant in the ocean (Dupont, Barbeau, & Palenik, 2008; Du-
pont et al., 2010; Price & Morel, 1991). Significant Ni is also found in diatom frustules (about 50% of diatom 
cellular quotas; Twining et al., 2012). The latter observation is thought to play a role in the similarity of Ni 
and Si oceanic distributions (Twining et al., 2012).

No culture data are available to determine the degree of Ni isotope fractionation during biological up-
take. Upper ocean data suggest no fractionation or a small preference for the light isotope, equivalent to 
ΔP–R ≈−0.3‰ (Archer et al., 2020; Takano et al., 2017; Yang et al., 2020; Figure 25), consistent with the Ni 
isotope systematics observed in organic-rich sediments (Ciscato et al., 2018) and water column particulates 
(Takano et al., 2020). Interestingly, new water column data from the South Atlantic suggest distinct eco-
logical differences in Ni drawdown and Ni isotope fractionation compared to other bioactive trace metals 
(e.g., Zn, Cd). Limited drawdown and Ni isotope fractionation is observed in the diatom-dominated regime 
south of the Polar Front in the Southern Ocean. In contrast, more marked drawdown and significant Ni 
isotope fractionation is observed north of the Polar Front, which has been attributed to the predominance 
of nitrate-limited, Ni-requiring cyanobacteria (Archer et al., 2020).

9.2.2. Chemical

Nickel is partially complexed by strong organic ligands in coastal and open ocean environments (5%–70%; 
e.g., Boiteau et al., 2016; Donat et al., 1994; Saito et al., 2004), though the slow water exchange kinetics of Ni 
make these complexation measurements particularly challenging (Hudson & Morel, 1993). Slow exchange 

Figure 25. Processes driving Ni isotope variations in modern seawater. Biological processes are recognized to drive a 
small, but systematic increase in dissolved δ60Ni and marine Ni isotope values are preserved in certain sediments. Other 
abiotic Ni cycling processes may be important however, such as sorption to Mn-oxide minerals, and the significance of 
these fractionations to global Ni cycling remains to be fully elucidated.
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kinetics may also explain the residual pool of non-bioavailable Ni in the 
surface ocean (e.g., Dupont et al., 2010; Mackay et al., 2002). Speciation 
models suggest that the remainder of the Ni is present as free Ni2+ and 
NiCl+, with a small fraction present as NiCO3

0 (Turner et al., 1981; Zirino 
& Yamamoto, 1972).

Nickel cycling is tightly coupled to that of Mn—in sediments (Koschinsky 
& Hein, 2003), during removal from hydrothermal fluids (e.g., Gueguen 
et al., 2021), within porewaters (Klinkhammer, 1980), and across the re-
doxcline of the Black Sea (Vance et al., 2016). In the Black Sea, for exam-
ple, Mn redox cycling is associated with preferential sorption of light Ni 
isotopes, with a large negative fractionation of ≈–4‰ (Vance et al., 2016). 
This large fractionation is consistent with experimental sorption of Ni on 
birnessite (Sorensen et al., 2020; Wasylenki et al., 2014).

Unlike the more strongly chalcophile elements such as Cd, Cu, and Zn, 
Ni is not strongly drawn down in the euxinic portion of the Black Sea wa-
ter column (Vance et al., 2016; Tankéré et al., 2001) and in other euxinic 
basins (e.g., Jacobs & Emerson, 1982; Jacobs et al., 1985). However, Ni is 
enriched in Black Sea sediments (Little et al., 2015), with δ60Ni composi-
tions notably lighter (at +0.3 to +0.6‰) than Ni sources to the basin (at 
about +1.3‰; Vance et al., 2016). Vance et al. (2016) attributed these light 
isotope compositions to the scavenging of sulfidized Ni species, which are 
predicted to be isotopically light (Fujii, Moynier, Dauphas, & Abe, 2011).

Dissolved Ni is added to the ocean from rivers, hydrothermal vents, and 
dust (Figure  25). All three sources possess δ60Ni between +0.1‰ and 
+0.8‰, which is lighter than deep ocean seawater (see recent summaries 
by Gueguen & Rouxel, 2021; Little et al., 2020). In general, these Ni sourc-
es are not of a sufficient magnitude to generate deviations in deep ocean 
dissolved δ60Ni, and are therefore unlikely to compromise use of δ60Ni as 
a paleoproductivity tracer (similar to δ114Cd; Section 6). The main output 
flux of Ni from seawater is believed to be burial with Mn oxides, which 

have a wide range of reported Ni isotope compositions. While hydrogenetic ferromanganese crusts are gen-
erally isotopically heavy, from about +0.9 to +2.5‰ (Gall et al., 2013; Gueguen et al., 2021, 2016), Mn-rich 
pelagic clays possess δ60Ni between −0.8 and +1.0‰ (Little et al., 2020; Gueguen & Rouxel, 2021). The Ni 
isotope difference between sources and sinks implies the existence of a missing “heavy” Ni source. Recently, 
Little et al. (2020) and Gueguen & Rouxel (2021) hypothesized that this source is related to benthic release 
from sediments and predicted that it possesses an extremely fractionated Ni isotope composition of ≈+3‰.

9.2.3. Physical

The most recent estimate for the residence time of Ni in the ocean is approximately ∼20 kyr (Little 
et al., 2020), considerably longer than the mixing time of the ocean. As a result, in parallel with the other 
bioactive trace metals discussed herein, Ni and Ni isotope distributions are modulated at first order by the 
geometry of physical ocean circulation. The importance of diatom uptake in the Southern Ocean in partially 
coupling oceanic Ni and Si (Twining et al., 2012) was introduced above, and the relative homogeneity of 
deep ocean Ni isotope compositions supports an important role for southern-sourced water masses in the Ni 
distribution (Figure 24; Archer et al., 2020; Takano et al., 2017; R. M. Wang et al., 2019).

9.3. Marine Archives

9.3.1. Ferromanganese Sediments

Ferromanganese crusts exhibit variable Ni isotope compositions (Figure  26; Gall et  al.,  2013; Gueguen 
et al., 2016a), which are, on average, slightly isotopically heavier (at δ60Ni of +1.6‰) than seawater (δ60Ni 
at about +1.3‰). Nickel is relatively immobile in Fe–Mn crusts, with a calculated effective diffusivity ≤10−9 

Figure 26. Four Fe–Mn records of δ60Ni from the Pacific Ocean. 
Assuming that Fe–Mn crusts have always formed with an offset ≈+0.5‰ 
with respect to ambient dissolved Ni in seawater, these records illustrate 
that the Ni isotope composition of seawater has varied by only ±0.2‰ 
over the Cenozoic. Data for J2-480, J2-480-R14, and ZEP2-DR06-03 are 
from Gueguen et al. (2016). Data from CD29-2 are from Gall et al. (2013). 
All four records have been plotted using the authors’ preferred age model, 
meaning that there are some differences between the chronology of CD29-
2 shown here compared to Figures 8 and 17.
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cm2 yr−1 (see Henderson & Burton, 1999, for calculation details), simi-
lar to Cu (Section 5.3.1), implying that Fe–Mn crusts preserve primary 
information about dissolved δ60Ni. However, experiments suggest that 
sorption of Ni to birnessite (the primary Ni-hosting phase in Fe–Mn sed-
iments) should instead be associated with a large negative isotope effect 
of about −3 to −4‰ (Sorensen et al., 2020; Wasylenki et al., 2014). It re-
mains unclear as to why experiment- and field-derived Ni isotope effects 
for Fe–Mn crusts exibit such a large mismatch.

As discussed above, intense Mn cycling occurs across the redoxcline of 
the Black Sea; this cycling is associated with large variations in Ni and Ni 
isotopes, consistent with the experimentally observed light isotope effect 
on sorption to birnessite (Vance et al., 2016). Recent data from Mn-rich 
sediments that have undergone diagenesis also point to the preservation 
of a large negative Ni isotope effect, and predict a concomitant isotopical-
ly heavy benthic Ni source (Gueguen & Rouxel, 2021; Little et al., 2020).

Though promising, the development of Fe–Mn crusts as a tracer of past 
oceanic Ni cycling awaits a mechanistic understanding of the processes 
driving their variably isotopically heavy signature, as well as an aware-
ness of the likely complicating role of diagenetic remobilization of Ni 
(e.g., Atkins et al., 2016; Little et al., 2020).

9.3.2. Organic-Rich Sediments

As introduced in Section 4.3.2 (Cu), qualitative arguments for high or-
ganic matter fluxes (i.e., increased paleoproductivity) have been made 
based on enriched Ni (and Cu) content in ancient organic-rich sediments 

(e.g., Tribovillard et al., 2006). For Ni, this approach is supported by positive correlations with TOC in mod-
ern continental margin sediments (Figure 27).

Nickel does not precipitate in the presence of water column dissolved sulfide and is therefore less suscepti-
ble to decoupling from TOC fluxes compared to chalcophile elements such as Cu, Zn, and Cd. Nevertheless, 
Ni cycling is strongly linked to the redox cycling of Mn, potentially complicating Ni–TOC coupling in set-
tings with active diagenetic cycling of Mn. Sedimentary and water column data from the Black Sea indicate 
that cycling associated with the benthic Fe–Mn redox shuttle (e.g., Lyons & Severmann, 2006) provides an 
alternative supply route for Ni to the deep euxinic basin in this setting (Little et al., 2015; Vance et al., 2016). 
Therefore, open marine settings would be the most promising from which to make estimates of the relative 
productivity of two different sites based on their absolute measured Ni:TOC ratios. Otherwise the degree of 
basin restriction will exert the primary control on nutrient supply, and therefore the degree of trace metal 
enrichment (Algeo & Maynard, 2008; Little et al., 2015).

Ciscato et al. (2018) investigated the distribution of Ni and its isotopes in two fractions isolated from Peru 
margin organic-rich sediments. The HF-HCl digestible fraction (usually containing >80% of total Ni) exhib-
ited δ60Ni values similar to modern deep seawater (at about +1.2‰). Meanwhile, these authors found var-
iable Ni isotope compositions in the organic pyrite fraction, which they suggested record the fractionation 
imparted by biological uptake in the euphotic zone. Systematic relationships between Ni–TOC, δ60NiOPF, 
and δ13C indicate that there is merit in continuing to investigate Ni and Ni isotopes as a paleoproductivity 
tracer (Ciscato et al., 2018).

9.4. Prospects

To date, Ni and its isotopes have been under developed as a potential paleoproductivity proxy. Recent data, 
both from the dissolved phase in seawater and in two different fractions isolated from anoxic organic-rich 
sediments, suggest promise in the coupling of Ni and C and their isotopes. However, in oxic-to-suboxic 
settings, Ni contents and isotopic composition of sediments are strongly influenced by the diagenetic redox 
cycling of Mn (e.g., Gueguen & Rouxel, 2021). We recommend additional studies of Ni contents and isotopic 

Figure 27. Correlation of Ni and TOC content in organic-rich sediments 
from the Peru Margin. Data from Ciscato et al. (2018). The best-fit 
regression of these data yields a Ni–TOC slope of 9.6 ± 1.1 (mean ± 2 SD), 
similar to the “≈9” reported by Böning et al. (2015).
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compositions in sediments, focusing specifically on carbonate and siliceous biominerals, which is increas-
ingly tractable with new and improved chemical separation and analytical techniques.

Finally, in a completely different approach, S. J. Wang et al. (2019) presented δ60Ni values of Precambrian 
glacial diamictites, which are suggested to represent the chemical weathering residues of the UCC. They 
find a small shift toward heavier Ni isotope compositions across the Great Oxidation Event, which they 
relate to the onset of oxidative weathering of crustal sulfides. Combined with the proposed importance of 
Ni to the maintenance of methanogenesis during this time period (e.g., Konhauser et al., 2009), it is hoped 
that future Ni stable isotope analyses will shed further light on the paleoenvironmental conditions on the 
early Earth.

10. Chromium
Chromium (Cr) stable isotope composition (δ53Cr) has received significant attention over the past decade as 
a proxy of paleoredox conditions. These applications have generally used a framework where isotope frac-
tionation is driven by subaerial weathering, with the partial pressure of atmospheric O2 controlling δ53Cr 
signatures in resultant paleorecords (e.g., Frei et al., 2009, 2014). However, subsequent studies have iden-
tified numerous challenges to this framework, including questions about the fidelity of sediment records 
(e.g., Frank et al., 2020; Remmelzwaal et al., 2019; Wang et al., 2021) as well as the very processes driving 
Cr cycling in seawater. Indeed, recent studies suggest that the most spatially expansive Cr isotope varia-
tions in the ocean are not related to oxygen availability but rather uptake by phytoplankton (e.g., Janssen 
et al., 2020, 2021). This means that Cr isotopes may serve as a novel productivity tracer that is reasonably 
well described by the isotope reactor framework (Section 2.2). However, until recently, marine Cr data have 
not seen the significant improvements in quality control as other metals in the GEOTRACES repertoire, 
and there are currently no consensus values for [Cr] and δ53Cr in GEOTRACES reference materials. Con-
sequently, there is a degree of discrepancy among literature data that likely does not wholly represent nat-
ural variability (see discussions in Goring-Harford et al., 2018; Huang et al., 2021; Rickli et al., 2019; Moos 
et al., 2020; Nasemann et al., 2020), limiting our understanding of modern Cr cycling and thus paleoproxy 
validation. Given the issues surrounding the measurement of—and mechanisms driving—Cr isotope vari-
ation in seawater, we focus our assessment of Cr on open ocean GEOTRACES-era data that are not consid-
ered equivocal by subsequent studies. We suggest that these new insights offer an opportunity to re-assess 
the fidelity of different sediments as archives of past seawater δ53Cr.

10.1. Marine Distribution

In the ocean, [Cr] follows a nutrient-type vertical distribution (e.g., Campbell & Yeats, 1981), suggesting in-
volvement in biological processes; however, concentration gradients with depth are minor relative to other 
macro- and micronutrients (Figure 28). Open ocean surface [Cr] are 2–4 nmol kg−1, with lower concen-
trations in the oligotrophic gyres than at higher latitudes (Goring-Harford et al., 2018; Janssen et al., 2020; 
Moos & Boyle, 2019; Rickli et al., 2019; Scheiderich et al., 2015). Chromium is elevated in Pacific and South-
ern Ocean deep waters, with [Cr] of 3.5–6.0 nmol kg−1 (Figure 28; Huang et al., 2021; Janssen et al., 2021; 
Moos & Boyle.,  2019; Nasemann et  al.,  2020; Rickli et  al.,  2019). Although inter-basin deep water [Cr] 
gradients are small relative to other trace metals (e.g., [Cd], [Zn]) and macronutrients ([PO4

3−], [NO3
−], and 

[Si]), clear increases in [Cr] are seen in deep waters advected northward from the Southern Ocean. These 
observations reflect, in part, a deep regeneration cycle for Cr, with maxima in the abyssal ocean (e.g., Jean-
del & Minster, 1987).

The two primary redox forms of Cr in the ocean are Cr(VI), an oxyanion with limited particle reactivity, 
and Cr(III), a poorly soluble cation that readily adsorbs to mineral and organic phases (e.g., Semeniuk 
et al., 2016; Wang et al., 1997). In oxic seawater, thermodynamic calculations predict that Cr(VI) should be 
the only species present (Elderfield, 1970); however, Cr(III) is regularly reported as representing 5%–15% of 
[Cr] (e.g., Cranston & Murray, 1978; Davidson et al., 2020; Jeandel & Minster, 1987; Janssen et al., 2020), and 
Cr(III) abundance is elevated in OMZs and anoxic waters (Davidson et al., 2020; Huang et al., 2021; Mur-
ray et al., 1983; Rue et al., 1997). Due to the differences in solubility and reactivity of these species, redox 
cycling plays an important role in setting [Cr] distributions. The primary oceanic Cr reductants are ferrous 
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Fe (Pettine et al., 1998) and H2S (Kim et al., 2001). Chromium(III) maxima in surface waters suggests that 
biological or photochemical processes, possibly involving dissolved organic matter, are also important (e.g., 
Achterberg & van den Berg, 1997; Janssen et al., 2020; Kieber & Helz, 1992); however, these processes may 
occur indirectly through the generation of Cr reductants such as ferrous Fe (Hug et al., 1996). The primary 
marine Cr oxidants are Mn oxides (Milletto et al., 2021; van der Weijden & Reith, 1982) and H2O2 (Pettine 
et al., 1991); Cr oxidation by O2 is insignificant due to kinetic limitations. Chromium redox cycling is accom-
panied by isotope fractionation, with reduction consistently resulting in an enrichment of light isotopes in 
the reduced phase (e.g., Ellis et al., 2002; Wanner & Sonnenthal, 2013), and therefore redox cycling—biolog-
ically mediated or otherwise—is likely important for dissolved Cr stable isotope distributions as well as [Cr]. 
Fractionation during Cr oxidation is more poorly constrained, with variable fractionation patterns reported 
(Milletto et al., 2021; Zink et al., 2010).

Chromium stable isotope compositions are reported relative to NIST SRM 979. The pioneering study of 
Scheiderich et al. (2015) reported much of the first oceanographically consistent δ53Cr data. These and sub-
sequent data show enrichments of heavy isotopes in open ocean surface waters (+0.9‰ to +1.4‰) relative 
to most deep waters (+0.7‰ to +0.9‰; Goring-Harford et al., 2018; Janssen et al., 2020; Rickli et al., 2019; 
Moos & Boyle, 2019; Moos et al., 2020; Nasemann et al., 2020; Scheiderich et al., 2015; Figure 28). Impor-
tantly, the first global δ53Cr compilation also identified a tight linear correlation between δ53Cr and ln[Cr], 
suggesting that the controls on [Cr] also regulate δ53Cr—reduction and removal in OMZs and biological 
export from the surface ocean—and that these processes are accompanied by an isotope fractionation of 
approximately −0.7‰ to −0.8‰ (Goring-Harford et al., 2018; Janssen et al., 2020, 2021; Moos et al., 2020; 
Nasemann et al., 2020; Rickli et al., 2019; Scheiderich et al., 2015; Figure 29; see also reactor model, Sec-
tions 2.2 and 12.2). Subsequent studies have focused on understanding and constraining the sensitivities 
of these processes. Isotopic fractionation during Cr removal in OMZs has been reported both in the wa-
ter column (Huang et al., 2021; Moos et al., 2020) and at the sediment-water interface (Moos et al., 2020; 

Figure 28. Representative profiles of dissolved Cr concentrations ([Cr]); (a) and Cr isotopic compositions (δ53Cr); (b). 
Data from the Eastern Tropical North Atlantic (squares, dashed line; Goring-Harford et al., 2018), Southern (triangles, 
dotted line; Rickli et al., 2019), and Northeast Pacific Oceans (circles, solid line; Moos & Boyle, 2019). Station locations 
as per Figure 1. These profiles illustrate that the decrease in surface ocean (Cr) from the Southern to low-latitude 
oceans is accompanied by a modest, but significant increase in δ53Cr. Likewise, deep waters with elevated (Cr) exhibit 
lighter δ53Cr, consistent with regeneration of an isotopically light Cr-bearing phase.
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Nasemann et al., 2020). Similarly, fractionation is observed during Cr export coupled to the biological pump 
based on data from the open ocean (Janssen et al., 2020) and coastal waters (Goring-Harford et al., 2018).

While the understanding of [Cr] and dissolved δ53Cr in the modern ocean has seen substantial improve-
ments in the GEOTRACES-era, key uncertainties in Cr biogeochemical cycling remain. In turn, these 
uncertainties limit the potential of δ53Cr paleoproxy applications and the identification of faithful δ53Cr 
paleoarchives. The following sections present a more detailed summary of the marine Cr cycle and Cr 
archives, with a focus on the δ53Cr paleoproxy outlook related to marine Cr cycling and the key remaining 
uncertainties.

10.2. Driving Processes

10.2.1. Biological

Although Cr(VI) can be toxic (e.g., Wong & Trevors, 1988) and there is no known biological function for Cr 
in marine phytoplankton, [Cr] distributions reflect biogenic controls (e.g., Campbell & Yeats, 1981). This 
appears to be driven not by internalization but by adsorption of Cr(III) onto phytoplankton (Semeniuk 
et al., 2016; Wang et al., 1997). This scavenging removes isotopically light Cr from the surface ocean (Gor-
ing-Harford et al., 2018; Janssen et al., 2020; Scheiderich et al., 2015), and has been shown to quantitatively 
explain patterns of oceanic [Cr] and dissolved δ53Cr (Janssen et al., 2020, 2021). The magnitude of Cr export 
associated with the biological pump has been estimated at ∼0.1–1 Gmol Cr yr−1 (Janssen et al., 2020; Jean-
del & Minster, 1987), of comparable magnitude to known Cr sources (Wei et al., 2018).

Figure 29. Processes driving Cr isotope variations in modern seawater. Though muted, biological processes exert a 
control on [Cr] and δ53Cr, and therefore δ53Cr shows some response to productivity. The degree to which δ53Cr may 
ultimately be useful as a productivity proxy will depend on how globally important productivity is relative to other 
controls on Cr distributions, such as Cr reduction and removal in OMZs and the fidelity of sediment records, which 
currently remain unresolved.
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10.2.2. Chemical

Chromium is reduced and removed in OMZs and anoxic waters (Davidson et al., 2020; Huang et al., 2021; 
Moos et al., 2020; Murray et al., 1983; Nasemann et al., 2020; Rue et al., 1997). This removal may occur in 
the water column (Davidson et al., 2020; Huang et al., 2021; Moos et al., 2020; Rue et al., 1997) or at the sed-
iment–water interface, though it is presently unclear which is of greater importance (cf. Moos et al., 2020; 
Nasemann et al., 2020). Approximate isotope fractionation factors for OMZ Cr reduction and removal are 
estimated as being ≈−0.7‰, similar to those implied by the global dissolved δ53Cr–[Cr] array. However, 
these fractionation factors are considerably smaller than the expectations based on laboratory constrained 
fractionation factors (e.g., Wanner & Sonnenthal,  2013), likely reflecting either incomplete removal or 
re-oxidation of Cr(III), resulting in a lower effective fractionation (Huang et al., 2021; Moos et al., 2020; 
Nasemann et al., 2020), and the fact that isotope reactor models will underestimate true isotope separation 
factors in the presence of mixing. Water column-based estimates of the OMZ Cr sink are not available, and 
deep water data suggest that some of the Cr removed in OMZs is released in underlying oxic waters and/or 
sediments (e.g., Murray et al., 1983).

10.2.3. Physical

Riverine fluxes are believed to represent the main source of Cr to the oceans, accounting for ∼1 Gmol Cr 
yr–1 (Wei et al., 2018). High variability has been reported for riverine dissolved δ53Cr, though available data 
suggest that rivers are isotopically heavy relative to the continental crust (e.g., D'Arcy et  al.,  2016; Frei 
et al., 2014; Goring-Harford et al., 2020). The role of estuarine processes is unclear at present. Earlier studies 
suggested scavenging of Cr at low salinity (Campbell & Yeats, 1984; Cranston & Murray, 1980), therefore 
lowering of riverine Cr fluxes; however, recent data have found conservative mixing of Cr(III), Cr(VI) and 
δ53Cr (Goring-Harford et al., 2020) or release of particulate Cr to the dissolved phase (Sun et al., 2019).

As with other trace metals (e.g., Zn, Cd, Ba; Sections 4, 6, 8), deep water circulation plays an important role 
in shaping [Cr] and dissolved δ53Cr distributions. The advection of Cr-rich intermediate and deep waters 
formed in the Southern Ocean helps to explain [Cr] enrichments seen at depth in the Pacific (Figure 28a; cf. 
Moos & Boyle, 2019; Rickli et al., 2019). Data from NADW, while more limited, suggest it is more Cr-depleted 
than waters formed in the Southern Ocean (Figure 28a; cf. Goring-Harford et al., 2018; Rickli et al., 2019).

10.3. Marine Archives

10.3.1. Carbonates

Chromium(VI) is incorporated into the CaCO3 matrix during carbonate formation (e.g., Tang et al., 2007). 
Because Cr(VI) dominates the [Cr] pool in the oxic ocean, this suggests that carbonates may serve as a suit-
able proxy for ambient dissolved δ53Cr, motivating numerous δ53Cr-based reconstructions as well as a signif-
icant body of research to ground-truth the theory-based motivations. A recent review of δ53Cr-based paleo 
reconstructions in carbonates can be found in Wei et al. (2020) and below we highlight relevant assessments 
of the utility of carbonate archives from the modern ocean.

Inorganic calcite precipitation at oceanographically relevant pH results in an enrichment of light isotopes 
in CaCO3 up to 0.7‰ lighter than the solution (Füger et al.,  2019), though data at an oceanographical-
ly relevant ionic strength are not available. The Cr content of carbonates is low (from <1 to ∼10 µg g−1; 
Holmden et al., 2016; Pereira et al., 2016; Remmelzwaal et al., 2019), and therefore CaCO3 is not a major 
Cr sink (Bonnand et al., 2013). Studies of Cr incorporated into a diverse range of biogenic carbonates show 
an enrichment in isotopically light Cr relative to ambient seawater, but with a wide range of fractionation 
factors. This fractionation is believed to reflect redox processes during Cr uptake into calcifying organisms 
or preceding Cr incorporation into CaCO3 (Farkas et al., 2018; Holmden et al., 2016; Pereira et al., 2016). 
Marine carbonate-hosted δ53Cr archives are, however, susceptible to meteoric (Wang et al., 2021) and ma-
rine diagenetic overprinting (e.g., Remmelzwaal et al., 2019).

10.3.2. Ferromanganese Crusts

Ferromanganese crusts from the Pacific are isotopically light (δ53Cr = −0.85‰ to −0.15‰, average = −0.42‰, 
Wei et al., 2018) relative to North Pacific deep water (≈+0.7‰ to +0.8‰, Moos & Boyle, 2019; Figure 28b), 
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equivalent to an isotope separation factor of ≈−0.9‰ to −1.6‰. The low abundance of Cr in Fe–Mn crusts 
(∼7 µg g−1) indicates that, globally, Cr removal to Fe–Mn oxides is not important in controlling [Cr] and 
δ53Cr budgets (Wei et al., 2018). Additionally, Cr is likely somewhat mobile in Fe–Mn crusts, with a pre-
dicted diffusivity ≤10−7 cm2 yr−1 (see Henderson & Burton, 1999, for calculation details), similar to Cd (Sec-
tion 6.3.2), Mo (Section 7.3), and Ag (Section 11.3). This rate implies that long-term records of δ53Cr derived 
from Fe–Mn crusts are likely to exhibit some diffusive smoothing while preserving larger perturbations. 
Moreover, the large range of δ53Cr in modern Fe–Mn crusts, relative to the modest variations in δ53Cr of 
surrounding intermediate and deep waters, suggests that Fe–Mn crusts are unlikely to be developed into a 
reliable archive for past marine δ53Cr.

The Cr content of other types of oxygenated sediments are generally low (≈60 µg g−1; Gueguen et al., 2016b), 
with Cr:Ti ratios comparable to the continental crust. Some samples, however, do show apparent authigenic 
Cr enrichments of a similar magnitude to anoxic and suboxic sediments.

10.3.3. Suboxic and Anoxic Sediments

Chromium is generally enriched in suboxic and anoxic surface sediments relative to upper continental 
crust and oxic sediments (Gueguen et al., 2016b; Reinhard et al., 2014), with an average Cr content of sur-
face sediments of 108 ± 28 µg g−1 (1SD, n = 12; Bruggmann et al., 2019; Gueguen et al., 2016b), suggesting 
authigenic Cr enrichments in these environments may present a major Cr sink (Reinhard et al., 2013; Wei 
et al., 2018). Suboxic and anoxic sediment leaches targeting authigenic Cr are isotopically light relative to 
regional and basin-scale deepwater (Bruggmann et al., 2019; Gueguen et al., 2016b), in agreement with 
predictions for Cr removal in OMZs and biological export (Huang et al., 2021; Janssen et al., 2020; Moos 
et  al.,  2020; Nasemann et  al.,  2020). Down-core records of δ53Cr in suboxic sediments demonstrate gla-
cial-interglacial variability, which has been interpreted to reflect changes in ocean oxygenation (Gueguen 
et  al.,  2016b). However, given the relationships between biological export and ocean deoxygenation for 
sediment metal accumulation (e.g., Nameroff et al., 2004) and similar fractionations reported for biogenic 
export and OMZ removal, it may be difficult to disambiguate these two controls on sedimentary δ53Cr.

Initial interpretations inferred quantitative removal of Cr to anoxic sediments, suggesting they may serve 
as an archive of oceanic δ53Cr (Reinhard et al., 2014), in a manner analogous to Zn (Section 4.3.4) However, 
reinterpretations of Cariaco Basin surface sediments (δ53Cr ≈ +0.4 ± 0.1; Gueguen et al., 2016b) alongside 
nearby and oceanographically consistent water column data (dissolved δ53Cr ≈ +1.2 ± 0.1; Goring-Harford 
et al., 2018; Figure 28), suggest that δ53Cr in anoxic sediments may in fact be lighter than ambient seawater 
by ≈0.8 ± 0.2‰, which is similar to the isotope separation implied by the global dissolved [Cr]–δ53Cr array 
(ΔP–R ≈ −0.7 to −0.8). While a full assessment of this offset requires truly colocated water and sediment sam-
ples, existing data do not support the hypothesis that anoxic sedimentary δ53Cr reflects ambient dissolved 
δ53Cr with no isotope offset.

10.4. Prospects

Historically, δ53Cr has received most attention as a paleoredox proxy, with most interpretations based on the 
framework that terrestrial processes result in isotopically heavy Cr reaching the oceans via rivers, without 
further alteration of δ53Cr through oceanic cycling (e.g., Frei et al., 2009, 2014). Although this model may 
remain generally valid under atmospheric oxygen levels relevant to the early Earth, internal processes in the 
ocean, including biological productivity, dominate modern δ53Cr cycling and may still be influential under 
strongly reducing conditions (e.g., Bauer et al., 2018).

As the body of high-quality [Cr] and dissolved δ53Cr data continue to grow through GEOTRACES, two pri-
mary areas of uncertainty have emerged that are currently limiting δ53Cr paleoproxy applications: A quan-
titative apportionment of the balance between productivity- and O2-related Cr cycling, and identification of 
archives that reliably record dissolved δ53Cr.
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10.4.1. Modern

The most pressing issue for the Cr isotope community is to ensure that future water column data are re-
ported according to high standards of intercalibration and quality control. In addition to this issue, several 
targets are needed to address specific mechanistic controls on the modern ocean Cr and δ53Cr cycles. First, 
improved constraints on biological and OMZ-mediated Cr removal and the relative importance of these 
two processes would help to better understand the modern Cr biogeochemical cycle. Direct and robust de-
terminations of fractionation factors associated with biologically mediated Cr export should be prioritized, 
along with a better understanding of differences in Cr removal among taxa, as well as interrogation of the 
mechanisms by which phytoplankton reduce and scavenge Cr. More studies have assessed fractionation fac-
tors for OMZs, but quantitative constraints are still limited and it is unclear as to what extent OMZ-related 
processes influence open marine (Cr) and dissolved δ53Cr.

Second, central to OMZ and biogenic Cr removal are understandings of how much Cr is exported with par-
ticles, how much of this reaches the seafloor, and how much is eventually buried in marine sediments. Data 
from marine particulates, currently limited by high filter blanks and low particulate Cr concentrations, are 
sorely needed to address these points. Additionally, data for marine particles may help to assess to what ex-
tent middepth scavenging outside of OMZs, known to be important for other scavenging-prone metals (e.g., 
Ohnemus et al., 2019, Sections 3–5), shapes Cr distributions. More data are needed from porewaters and 
surface sediments to better understand benthic Cr fluxes and Cr burial. Finally, some aspects of the modern 
global biogeochemical cycle, such as fluxes from hydrothermal vents, remain completely unconstrained.

10.4.2. Paleo

Ideal archives for δ53Cr paleoproxy applications should faithfully reflect a known oceanic condition (e.g., 
dissolved δ53Cr) or processes (e.g., Cr removal in OMZs) and should have a sufficient Cr content so that sam-
ple availability is not a limiting factor. It is also clear from the δ53Cr paleoproxy research to date that careful 
record selection is necessary to avoid samples with minimal overprinting or alteration of primary δ53Cr 
records (e.g., Albut et al., 2018; Remmelzwaal et al., 2019; Wang et al., 2021). Given these constraints, the 
following points summarize the most promising archives, which may also offer an opportunity to reevaluate 
literature data—mostly interpreted in terms of paleoredox—in the context of paleoproductivity.

At present, carbonate-hosted δ53Cr remains a challenging archive for several reasons, including: Low Cr:-
Ca, taxon-dependent Cr isotope fractionations, fractionation during inorganic calcite precipitation, and 
potential diagenetic overprinting in marine sediments (e.g., Holmden et al., 2016; Pereira et al., 2016; Rem-
melzwaal et  al.,  2019). Additional research is needed to assess to what extent variable taxon-dependent 
fractionations and diagenetic overprinting can be recognized and corrected before applying δ53Cr in marine 
carbonates. Existing data indicate that Fe–Mn crusts are not suitable δ53Cr archives (Wei et al., 2018). Other 
oxic sedimentary archives, such as authigenic clays, may be suitable, but little is known about the degree to 
which sedimentary and oceanic Cr and δ53Cr exchange, the role of oxic sedimentary phases in the Cr cycle 
(and the relevant isotope separation factors), and the depths in the water column recorded by these phases.

Black shale records of δ53Cr have been used to investigate oceanic oxygenation levels over time. However, 
the uncertainty regarding how faithfully anoxic and suboxic sediments record ambient conditions in the 
modern ocean combined with potential δ53Cr homogenization among sediment phases (Frank et al., 2020) 
suggests more research is needed to validate shales as reliable records before further applications. Fur-
thermore, early interpretations of quantitative removal of Cr to anoxic sediments are not supported by the 
current body of water column data. Consequently, more research is needed to validate the use of anoxic 
sediments to reconstruct water column δ53Cr, such as identification of suitable correction factors based on 
colocated water column and sediment data. Similarly, oceanographically consistent water column data are 
sparse relative to suboxic sedimentary measurements, complicating assessments of the impact of Cr loss to 
sediments. Disentangling local reduction-based accumulation from Cr delivery to suboxic and anoxic sedi-
ments via biogenic particles may be challenging, given the importance of both these processes on Cr cycling 
and the linkages between biological export and oxygen depletion.
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11. Silver
Silver is the scarcest of the bioactive trace metals described here—within 
Earth's crust, in the modern ocean (Table 1), and from an observational 
point of view. Like Ba, Ag is an unusual candidate for a paleoproductivity 
proxy given that it possesses no known biological function and is most 
widely known for its antimicrobial properties. Despite this, [Ag] exhibits 
a characteristic nutrient-like profile in seawater, most similar to that of 
[Si] (or [Zn], [Ba]; Figures 1 and 30), and Ag content in certain sediments 
is positively correlated with organic C. These intriguing features warrant 
further investigation into whether and how marine Ag cycling might re-
flect ocean productivity.

11.1. Marine Distribution

Dissolved Ag occurs primarily as chloride complexes in seawater (Cowan 
et al., 1985; Miller & Bruland, 1995) and exhibits a nutrient-type depth 
profile; [Ag] in surface waters are typically <5 pmol kg−1, and range from 
5–30 pmol kg−1 in deep waters of the Atlantic Ocean to 50–114 pmol 
kg−1 in the Pacific Ocean (Figure 30; Boye et al., 2012; Flegal et al., 1995; 
Kramer et al., 2011; Rivera-Duarte et al., 1999; Ranville & Flegal, 2005; 
Ndung'u et al., 2001; Zhang et al., 2001, 2004). The total observed range 
in seawater is 0.2–115 pmol kg−1 (Gallon and Flegal, 2015). Despite its 
potential as a biogeochemical proxy, no Ag isotope data currently exist 
for dissolved or particulate phases in the water column, nor in marine 
sedimentary archives. Accordingly, we cannot directly assess the utility of 
δ109Ag to infer paleoproductivity, though we can deduce a number of pro-
cesses that are likely to influence dissolved δ109Ag based on the processes 
known to cycle Ag (Figure 31).

11.2. Driving Processes

The typical [Ag] depth profile (Figure 30) is similar to that of [Si], result-
ing in a strong positive correlation between these elements in existing 
datasets. This has led researchers to suggest that Ag is taken up by dia-
toms, incorporated into their frustules, and then released as the frustules 
dissolve (e.g., Flegal et al., 1995). Silver might then be delivered to the 
seafloor with opal, potentially making it useful as a paleoproductivity 

proxy (Friedl & Pedersen, 2002). Silver is taken up by various types of phytoplankton, including diatoms 
(Fisher & Wente, 1993); however, experiments conducted using the marine diatom Thalassiosira pseudona-
na show that, similar to Zn (Section 4.3.2), most of the Ag is associated with the organic fraction rather than 
the opal (Wagner, 2013). Moreover, the correlation between dissolved [Ag] and [Si] is nonlinear, indicating 
that other factors are at play (Zhang et al., 2001, 2004). Martin et al. (1983) also hypothesized that high par-
ticulate Ag concentration within the euphotic zone (40–70 m) off the west coast of Mexico were due to the 
formation of Ag-organic complexes. Interestingly, particulate Ag concentrations are even higher well below 
the euphotic zone, at a depth corresponding to the upper portion of the local OMZ (Martin et al., 1983). It 
could also be that the global [Ag]–[Si] correlation arises at least in part from biological processes occurring 
in the surface of the Southern Ocean, whereby intermediate and mode waters with low preformed [Ag] are 
advected to lower latitudes, analogous to the mechanism proposed for [Zn]–[Si] (Vance et al., 2017) and 
[Ba]–[Si] coupling (Horner, Kinsley, & Nielsen, 2015). If correct, Ag is unlikely to be coupled directly to opal 
via a simple relationship that can be used to reconstruct past diatom productivity.

Even if driven by productivity, [Ag] distributions may become decoupled from productivity by possessing 
different source and sink terms relative to carbon and the macronutrients (Gallon & Flegal, 2015 and refer-
ences therein). For example, Ranville & Flegal (2005) and Ranville et al. (2010) invoked an anthropogenic 

Figure 30. Representative profiles of dissolved Ag concentrations ([Ag]). 
Data from the Northeast Pacific (circles, solid line; Fischer et al., 2018) and 
Southern Oceans (triangles, dotted line; Boye et al., 2012). Station locations 
as per Figure 1. Data from the Northeast Pacific were extracted graphically 
using WebPlotDigitizer (Rohatgi, 2019). The authors are not aware of the 
existence of any Ag isotope data for seawater at this time.
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aerosol source of Ag to surface and intermediate waters to explain north Pacific water column data. Oth-
er complications may arise under low [O2] environments—waters from the Northeast Pacific (Kramer 
et al., 2011) and southeastern Atlantic (Boye et al., 2012) exhibit a deficit in [Ag] relative to [Si] within 
their respective OMZs. These deficits imply preferential removal of Ag over Si, which may occur locally or 
“upstream.” If occurring locally, a putative mechanism is co-precipitation with other chalcophile elements, 
analogous to the sulfide-mediated mechanism proposed for Cd in OMZs (Janssen et al., 2014; Section 6.2.2). 
Alternatively, the deficit may reflect low preformed [Ag]:[Si] in intermediate waters, which is inherited 
from preferential drawdown of Ag over Si in regions upstream where these intermediate waters were last 
ventilated. Both interpretations have implications for the use of Ag or δ109Ag as a paleoproxy: The former 
implies a redox sensitivity that depends on the changing location, spatial extent, and intensity of low [O2] 
regions in the oceans over time, whereas the latter implies a sensitivity to ecology and the geometry of ocean 
circulation. Both interpretations warrant additional scrutiny.

11.3. Marine Archives

Bulk sediments are the main archive that has been investigated for their potential to record information 
about the marine Ag cycle. The Ag content of bulk sediments from open marine environments range 
from ≤100 ng g−1 (i.e., typical lithogenic values) up to 100s of ng g−1 (Koide et al., 1986). In general, low 
Ag contents are typical of well-oxygenated sediments, while higher Ag contents are typical of sediments 
formed in oxygen-poor and euxinic environments. The general consensus has been that Ag enrichment in 
anoxic sediments is the result of post-depositional precipitation of Ag2S (Koide et al., 1986) or possibly Ag 
selenide (Böning et al., 2005; Crusius & Thomson, 2003). However, high Ag content is also documented 
in marine sediments that are only weakly reducing (Böning et al., 2004, 2005; McKay & Pedersen, 2008; 
Morford et al., 2008). Furthermore, even in anoxic sediments, the degree of Ag enrichment exceeds what 
would be expected from post-depositional Ag precipitation alone (Böning et al., 2009; Borchers et al., 2005; 
McKay & Pedersen, 2008). Thus, redox-controlled, post-depositional precipitation is not the primary con-

Figure 31. Processes likely to drive Ag isotope variations in modern seawater. Despite there being no Ag isotope data 
for seawater at this time, we can infer a number of processes that are most likely to influence dissolved δ109Ag from 
measurements of [Ag] in seawater and sediments.
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trol on Ag accumulation in marine sediments, impling that there must 
also be a flux of non-lithogenic, particulate Ag to the seafloor (McKay & 
Pedersen, 2008).

McKay and Pedersen (2008) hypothesized that Ag, like Ba, accumulates 
in organic-rich settling particles. However, in contrast to Ba, Ag precip-
itation requires a reduced microenvironment within the particle, which 
is generally only possible in waters that possess relatively low [O2] (e.g., 
Bianchi et  al.,  2018). The analysis of sediment trap samples from the 
Northeast Pacific show that the fluxes of particulate Ag and particulate 
organic carbon positively correlate (Martin et al., 1983). This correlation 
is also seen in surface sediments (McKay & Pedersen,  2008) and sedi-
ment cores from the Northeast Pacific (Figure  32). These data broadly 
support the use of particulate Ag flux as a paleoproductivity proxy, with 
an important caveat: The post-depositional preservation of particulate Ag 
requires that sedimentary porewaters remain reducing, as settling partic-
ulate Ag formed below the euphotic zone is not preserved if sediments 
are oxidizing (McKay and Pedersen,  2008; Morford et  al.,  2008). Thus, 
while the delivery of particulate Ag to sediments appears related to pro-
ductivity (Wagner et al., 2013), Ag delivery to—and preservation with-
in—sediments is also sensitive to [O2]; firstly because low water column 
[O2] favors higher Ag:C of sinking particles, and secondly because low 
[O2] will lead to greater Ag preservation at the seafloor. By analogy to 
other metals (e.g., Twining & Baines, 2013), variations in surface water 
[Ag] may also offer a third means of modulating Ag:C, though remains to 
be tested. These three sensitivities likely explain why different regions ex-
hibit distinct arrays in Ag–TOC space (Figure 32). Despite these regional 
variations, the relationships between Ag and organic matter are promis-
ing from the point of view of tracing past productivity.

Though yet to be investigated for δ109Ag, Ag is predicted to be somewhat 
mobile in Fe–Mn crusts, with a predicted diffusivity ≤10−7 cm2 yr−1 (see 
Henderson & Burton, 1999, for calculation details), similar to Cd (Sec-

tion 6.3.2), Mo (Section 7.3), and Cr (Section 10.3.2). This rate implies that, should any long-term records 
be forthcoming, Fe–Mn crust based reconstructions of δ109Ag are likely to exhibit some diffusive smoothing 
while preserving larger perturbations.

11.4. Prospects

The apparent linkages between [Ag] and particulate Ag, macronutrients, and organic matter provides tan-
talizing evidence that Ag cycling may be related to surface productivity (Figure  30). Moreover, coretop 
studies indicate that the geochemical signature of this coupling is preserved under certain environmental 
conditions (Figure 32). Despite this progress, the study of Ag in marine biogeochemical cycles remains in 
its infancy, particularly compared to many of the other elements described here. Additional constraints are 
needed in several areas, including: The role of biogeochemical processes in mediating Ag distributions in 
the water column, the dominant controls on the downward transport of Ag through the oceans, and on the 
controls on Ag preservation in sediments. Given what has been learned from the application of the other 
trace metal isotope systems described here, new analytical developments in Ag isotope geochemistry could 
help place valuable constraints on these areas.

Figure 32. Concentrations of Ag and total organic carbon in sediment 
cores from the Northeast Pacific Ocean. These data illustrate that Ag 
is broadly correlated with organic matter in bulk sediments, which is 
promising from the perspective of developing Ag as a paleoproductivity 
proxy. Core MD02-2496 (Vancouver Island Margin; 48.97°N, 127.04°W, 
1,243 m water depth) from Chang et al., 2014; Core W8709-13PC (Oregon 
Margin; 42.116°N, 125.75°W; 2,712 m water depth) from Kienast, 2003; 
ODP 1017E (Southern California; 34.53°N, 121.1°W; 955 m water depth) 
from Hendy & Pedersen, 2005; ODP 893A (Santa Barbara Basin; 34.287°N, 
120.036°W; 576.5 m water depth) from Ivanochko, 2001.
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12. Synthesis
In this final section, we synthesize and describe the overall suitability to trace productivity (Section 12.1), 
explore inter-element similarities (Section 12.2), define proxy readiness (Section 12.3), and outline a num-
ber of research priorities (Section 12.4) for using Fe, Zn, Cu, Cd, Mo, Ba, Ni, Cr, and Ag and their isotopes 
as paleoproductivity proxies.

12.1. Overall State of the Proxies

Taking a general view, the review of each element highlights that our knowledge of bioactive trace metal 
isotope systematics lags behind those of trace element abundances and far behind those of macronutrient 
isotopes (e.g., Farmer et al., 2021). The bioactive metal isotope field is nascent; excepting Mo, the very first 
isotope data for seawater for all of the elements reviewed here were published within the last 15 years, 
or—in the case of Ag—are yet to be reported. The field is thus decades behind the trace metal concentration 
community. Despite the lack of detail, we can begin to classify the metals reviewed here into three broad 
categories: Those where there are clear and promising signs that a metal can serve as a proxy of paleopro-
ductivity, such as for δ114Cd, δ138Ba, δ60Ni, and δ53Cr; those where a metal is unlikely to directly inform on 
paleoproductivity, as for δ56Fe, δ66Zn, δ65Cu, and δ98Mo; and those where simply too little is known to confi-
dently assign utility at this time, as for δ109Ag.

More specifically, this review highlights the importance of ocean circulation in mediating the distribution 
of several bioactive trace metals and their isotopes. Key features of the isotope distributions reviewed here 
reflect a mixture of local (i.e., in situ) and regional (or ex situ) processes, with the latter often set far upstream 
of any given locality. Indeed, researchers are recognizing that, much like the macronutrients (see Farmer 
et al., 2021), the first-order features of many metals are not controlled locally by a given dissolved–particu-
late transformations, but reflect a regionally integrated history of vertical cycling and mixing that is impart-
ed over the scale of an ocean basin, which we discuss next.

12.2. The Reactor Model Applied to Select Trace Metal Isotope Systems

Today, the Southern Ocean represents the common starting point and ultimate source of many TEIs for 
low latitude thermoclines (e.g., Sarmiento et al., 2004; Talley, 2013). If we assume that the reaction progress 
term in the reactor model is analogous to the fraction of initially supplied nutrient left unconsumed by phy-
toplankton, the concentration and isotope composition of a Me in the Southern Ocean can be assumed to 
represent the starting composition of a metal in the isotope reactor (i.e., [Me] and δiMeR,0 when f = 0). Our 
study suggests that four of the nine bioactive trace metals reviewed here (Cd, Ba, Ni, and Cr) are suitable 
candidates for the isotope reactor model, which we now use to constrain ΔP–R for both Steady State (SS) 
and Rayleigh Distillation (RD). We assume that samples from the upper 1,000 m of the Southern Ocean 
represent the initial reactor conditions (Figure 33). Downstream of the Southern Ocean, we regress only 
those samples shallower than 200 m to ensure that the models only consider productivity-associated Me 
drawdown. Our example calculations are intended to be illustrative, rather than the definitive estimate of 
ΔP−R for each metal; comprehensive, global compilations are described elsewhere for Cd (Sieber, Conway, 
de Souza, Hassler et al., 2019; Xie et al., 2017), Ba (Horner & Crockford, 2021; Hsieh & Henderson, 2017), 
Ni (Yang et al., 2020), and Cr (Rickli et al., 2019; Wei et al., 2020). Accordingly, we limit our example to the 
stations shown in Figure 1.

Excepting the RD model for Cd, the reactor models generate a reasonable fit to the shallow water data, 
with best-fit ΔP−R of −0.75 ± 0.02‰ (SS) and −0.23 ± 0.16‰ (RD) for Cd (n = 6), −0.54 ± 0.03‰ (SS) 
and −0.35 ± 0.03‰ (RD) for Ba (n = 16), −0.54 ± 0.04‰ (SS) and −0.36 ± 0.04‰ (RD) for Ni (n = 20), 
and −0.84 ± 0.04‰ (SS) and −0.71 ± 0.04‰ (RD) for Cr (n = 18; all ± represent the root-mean-square 
deviation). These values are generally within the accepted ranges reported for each metal, either for ocean-
ographic data or specific experiments (e.g., culture studies, mineral precipitation). The reactor models il-
lustrate that best-fit ΔP−R for SS are larger in magnitude than for RD. This difference derives from mixing. 
Open-system models account for continuous uptake and removal of Me from the reactor, thus requiring 
a larger ΔP−R to render an equivalent change in δiMeR compared to RD. In general therefore, calculations 
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assuming SS will be closer to the underlying value of ΔP−R, since the surface ocean is poorly represented by 
a closed-system reactor.

In practical terms, knowledge of ΔP−R, derived using the reactor framework, allows for the isotope composi-
tions of Cd, Ba, Ni, and Cr to be interpreted in terms of reflecting the balance between supply and demand 
for that Me in the surface ocean reactor (i.e., f). Though this does not confer direct information about the 
total quantity of nutrients consumed, it offers a means to assess the spatial pattern of nutrient utilization 
in Earth's past. The spatial dependency is particularly important to consider, since the geometry of ocean 
circulation cannot be assumed constant over time. However, if assuming that the flux of a Me to the sea-
floor is proportional to export productivity, the combination of metal fluxes with metal isotopes can offer 
insights into patterns of paleoproductivity and circulation by constraining export and fractional nutrient 
use, respectively.

Figure 33. Reactor framework applied to select bioactive trace metal isotope systems. Station locations and symbols 
as per Figure 1. (a–d) Isotope reactor models for Cd (a), Ba (b), Ni (d), and Cr (d) showing evolution of the residual 
reactant during Me consumption. Best-fit ΔP−R are shown for Steady State (SS; solid) and Rayleigh Distillation 
fractionation (RD; dashed lines) based on a common Southern Ocean starting point (arrow). The large and small 
symbols indicate data that are regressed in the model and those that are not, respectively; samples from the top 1,000 
m of the Southern Ocean are included, whereas only those above 200 m are included from elsewhere. This screening 
focuses the regression models on productivity- associated Me drawdown, which occurs shallowly. Samples with 
extreme Cd isotope compositions (δ114Cd >+1‰) are excluded from the model given that it is unclear if these are true 
oceanographic features (see Section 6.4.1).
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Combined C export–f approaches are largely unexplored in paleoceanographic studies, and we believe they 
offer the best opportunity for using bioactive trace metal isotope systems to constrain paleoproductivity. 
These approaches will prove most powerful when the constraints on C export and f are derived from the 
same Me system, since this minimizes the importance of other metal-cycling processes. However, mul-
ti-proxy approaches may also prove useful in differentiating between productivity- and non productivi-
ty-driven variations in metal cycling. For example, Cd, Ba, Ni, and Cr isotopes are all expected to exhibit 
coherent variations in their distributions if productivity or ocean circulation varied. In contrast, chang-
es in mean ocean redox state, benthic fluxes, or terrestrial sources would render distinct changes in the 
distribution of each Me consistent with its sensitivity to that process. The cycling of other metals that are 
not directly sensitive to productivity—Fe, Zn, Cu, and Mo—could also be used to provide oceanographic 
context for paleoproductivity records, thus helping to build a more robust picture of marine biogeochemis-
try at key points in Earth's history.

12.3. Proxy Readiness

We now assess the overall readiness of each bioactive trace metal isotope system to reconstruct productiv-
ity, summarized in Table 2. This exercise is analogous to the assessment of analytical techniques used in 
chemical oceanography described by Fassbender et al.  (2017). Our assessment is similarly conducted in 
two dimensions. First, we identify five objectives toward the development of a reliable productivity proxy, 
ranging from development of the analytical capabilities necessary to measure that species, to constraining 
diagenetic effects, and ending with the goal of using that species to reliably reconstruct paleoproductivity 
itself. Second, we assess the level of development within each objective. Our reasoning behind the assign-
ments is described above in Sections 3–11.

Reliable application of a TEI as a proxy requires that five objectives be serially met (e.g., Hillaire-Marcel & 
Vernal, 2007; Table 2). In practical terms, however, the final stage (proxy application) is often realized be-
fore many of the supporting objectives; variations in elemental or isotopic ratios in the sedimentary record 
commonly provide the motivation for developing a more holistic understanding of that isotope system in 
the modern environment. A common critique of this approach is that subsequent studies often invalidate 

Note. The progress toward five objectives is assessed for each bioactive metal proxy system and assigned a development level ranging unknown to unlikely, 
corresponding to the least and most certain assignments, respectively. Some trace metal isotope systems possess split designations (stripes). Definitions of each 
development level are described in Section 12.3 and discussed in detail for each metal system in the corresponding section.

Table 2 
Proxy Development Assessment
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earlier interpretations. The five objectives that follow are common to the development of almost any proxy. 
First, it is essential to develop the analytical capability to measure the species of interest commensurate 
with the quantities typically encountered in the environment. In the case of trace element abundance prox-
ies, the development and widespread adoption of ICP-MS instrumentation coupled to automated sample 
preparation systems has enabled low-blank, high-throughput, high-sensitivity analyses of multiple trace el-
ements in both seawater (e.g., Wuttig et al., 2019) and sediments alike (e.g., Wefing et al., 2017). In contrast, 
the techniques required to measure many trace metal isotope systems have only been developed within 
the past decade—or are still in development—and generally remain labor intensive and time consuming. 
Second, it is important to map the broad vertical and spatial patterns of a TEI system in the modern ocean. 
The GEOTRACES program has provided a coordinated opportunity to study the basin-scale distributions of 
multiple TEIs. Third, the utility of a proxy is significantly increased if the driving processes are understood. 
These processes may be isolated through a number of approaches, including: Lab-based analogue experi-
mentation, numerical modeling, and high-resolution spatiotemporal environmental studies. Fourth, pale-
oceanographic proxies require sedimentary archives—a substrate from which to reconstruct the variable of 
interest. The latter necessitates knowledge of how a trace metal partitions between seawater and sediment, 
such as through a coretop study, ideally conducted across large environmental gradients. Since many ma-
rine sedimentary archives are biogenic in origin, additional experimentation isolating “vital effects” may 
be necessary. Fifth, proxies are only as reliable as their archives are hardy. Diagenetic processes may alter 
primary environmental signatures, and recognizing these effects is imperative for reliably reconstructing 
past environmental conditions.

Here, we assess the level of development for each marine bioactive trace metal isotope system within each 
objective on a four point scale: Unknown, developing, applied, and unlikely. The levels define a continuum 
from least to most understood, and are a useful shorthand for illustrating where additional work is most 
needed. Assignment of “unknown” implies that too little is presently known to reliably assess progress 
toward that objective; we cannot judge if these isotope systems may or may not ultimately be useful in 
reconstructing ocean productivity. “Developing” objectives are those where there are pilot studies on that 
topic, but overall there are an insufficient number to define general rules for that system. If a trace metal 
isotope system is widely recognized to be useful toward some objective, it is given a score of “applied.” If 
the preponderance of evidence indicates that a trace metal isotope system is not suitable for reconstruction 
of paleoproductivity, a score of “unlikely” is given. This does not rule out future developments, such as 
identification of environmental control variables or new sedimentary archives, only that current data (and 
archives) do not support use of the isotope system toward this goal. Lastly, we recognize that there are 
continual refinements to analytical protocols, environmental distributions, etc. and thus, at some level, all 
five objectives could reasonably be described as “developing.” Rather, our assignments are intended to give 
a relative sense of understanding between different metal isotope systems toward the overarching goal of 
reconstructing past ocean productivity.

12.4. Outlook

We close by outlining three general priorities for further study. First, a number of modern ambiguities 
require addressing. Most notable is the apparent “missing” source and/or sink terms for the whole ocean 
isotopic budgets of several bioactive metals, including Cu, Cd, Ba, and Ni. Though it is possible that these 
missing source and sink terms represent true non-steady state imbalances in the flux of these elements to 
and from the ocean, we view it more likely that there are major fluxes that remain uncharacterized. The 
origin of these imbalances is most pressing for those elements where the output flux associated with organic 
matter constitutes a minor sink (e.g., Zn, Ni), as the isotopic budget of these elements is most suscepti-
ble to decoupling from productivity. Second, the significance of ocean circulation in mediating basin-scale 
trace metal distributions implies that paleoceanographic interpretations made from a single site cannot 
be uniquely interpreted in terms of either changes in productivity or ocean circulation without additional 
constraints. Such constraints could take the form of independent circulation estimates—from numerical 
models or canonical circulation proxies measured in the same samples—or by measuring trace metal iso-
tope distributions in spatially distributed sediment samples. Third, the lack of suitable archives with which 
to reconstruct surface water trace metal isotopic compositions afflicts almost every element reviewed here. 
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Overcoming this limitation will require the most creativity; we suggest more studies testing the fidelity of 
non-traditional substrates (e.g., mixed foraminiferal assemblages, coccolith calcite, diatom opal), periodic 
reassessment of the feasibility of traditional substrates following analytical advancements (e.g., improve-
ments in ion transmission efficiency, large-scale [automated and/or crowd-sourced] picking of monospecif-
ic foraminiferal assemblages), and development and validation of selective extraction protocols that can be 
used to isolate phases of interest from complex matrices. Though attempting to overcome these limitations 
may be considered high risk, we believe that this risk is more than justified by the reward of developing a 
more complete understanding of Earth's biogeochemical history.
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