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● This review assesses the potential of a number of bioactive trace elements and their isotopes to 
inform on past ocean productivity 

● Distributions, drivers, and depositional archives are described for iron, zinc, copper, cadmium, 
molybdenum, barium, nickel, and silver  

● Future priorities include quantification of ‘missing’ flux terms, constraining circulation influences, 
and identifying sedimentary archives 
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1 

The ocean’s biological carbon pump redistributes climatically-significant quantities of carbon from the 2 

atmosphere to the ocean interior and seafloor. How the biological pump operated in the past is therefore 3 

important for understanding past atmospheric carbon dioxide concentrations and Earth’s climate history. 4 

Due to their intimate association with biological processes, several bioactive trace metals and their isotopes 5 

are thought to be promising proxies for productivity, including: iron, zinc, copper, cadmium, molybdenum, 6 

barium, nickel, and silver. Here we review the oceanic distributions, driving processes, and depositional 7 

archives for these eight elements and their isotopes based on GEOTRACES-era datasets. We offer an 8 

assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past 9 

ocean export productivity, and identify priorities for future research. Despite many of the elements reviewed 10 

here sharing a common biological driving processes, we show that key aspects of the biogeochemical cycle 11 

of each element are often unique. Rather than being a source of confusion, it is our hope that combining the 12 

unique perspectives afforded by each bioactive trace element will enable painting a more complete picture 13 

of marine paleoproductivity, biogeochemical cycles, and Earth’s climate history. 14 
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15 

The ocean plays host to three carbon ‘pumps’ that redistribute climatically-significant quantities of carbon 16 

dioxide (CO2) from the atmosphere to the ocean interior and seafloor (Volk & Hoffert, 1985). These ocean 17 

carbon pumps—biological, carbonate, and solubility— influence Earth’s climate over timescales ranging 18 

from decades to millions of years (e.g., Volk & Hoffert, 1985; Sigman et al., 2010; Khatiwala et al., 2019). 19 

The biological pump is of particular interest as it connects the cycles of C to those of O2, (micro)nutrients, 20 

and marine biology, and today accounts for as much as 70 % of the ‘contribution ’ of all three carbon pumps 21 

(Sarmiento & Gruber, 2006). The biological pump redistributes atmospheric carbon in two steps. First, 22 

phytoplankton, photoautotrophic microbes, use sunlight to transform ambient DIC (dissolved inorganic 23 

carbon) into POC (particulate organic carbon), represented here by CO2 and glucose, respectively, by the 24 

simplified reaction: 25 

 CO2 + H2O + hv → CH2O + O2       [1] 26 

The second step requires that some fraction of the newly-formed POC sinks into the ocean interior through 27 

a combination of biological and physical aggregation processes (e.g., Alldredge & Silver 1988). The 28 

resulting surface ocean DIC deficit promotes the invasion of atmospheric CO2 into seawater to maintain 29 

air–sea CO2 equilibrium, driving an overall reduction in atmospheric pCO2. (This definition of the 30 

biological pump neglects dissolved organic carbon export, which is comparatively understudied, though 31 

may account for as much as one-third of C export; e.g., Carlson et al., 2010; Giering et al., 2014.) 32 

Importantly, Reaction [1] requires sunlight and can only occur in the euphotic layer of the ocean. In contrast, 33 

aerobic heterotrophic respiration can occur wherever POC and O2 are present: 34 

CH2O + O2 → CO2 + H2O       [2] 35 

(There are a number of O2-independent respiration pathways that are reviewed in detail elsewhere; e.g., 36 

Froelich et al., 1979.)  37 

 38 

While the representation of all POC as glucose (CH2O) is instructive for illustrating an important biotic 39 

transformation in the ocean, it is also simplistic; microbial biomass consists of dozens of bioactive elements 40 

that serve many essential functions (e.g., da Silva & Williams, 1991). The elemental stoichiometry of POC 41 

can thus be expanded to include a number of major and micronutrient elements, as illustrated by the 42 

extended Redfield ratio reported by Ho et al. (2003): 43 

 C124,000N16,000P1,000S1,300K1,700Mg560Ca500Sr5.0Fe7.5Zn0.8Cu0.38Co0.19Cd0.21Mo0.03  [3] 44 
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With this extended stoichiometry in mind, it is clear that Reactions [1] and [2]—the production and 45 

regeneration of organic matter, respectively—will not only generate gradients in the dissolved 46 

concentration of DIC and O2, but also for many other bioactive elements associated with POC cycling. 47 

These gradients will be steepest for those elements possessing shorter residence times and where biological 48 

uptake and regeneration are the most important processes driving their vertical distributions. Likewise, such 49 

gradients may be almost absent for elements that possess long residence times or are primarily cycled by 50 

processes disconnected from productivity.  51 

 52 

For those bioactive metals where biological processes are important, the implication of Reactions [1] and 53 

[2] is that many of the metals listed in [3] may, in turn, be used as proxies of POC cycling and hence 54 

paleoproductivity. A key motivation for using these elements as tracers of (past) POC cycling is that 55 

bioactive metal distributions are often set over significant spatiotemporal scales. For example, temporal 56 

changes in POC fluxes from a single sediment core would, at most, reflect local changes in export 57 

productivity, though such reconstructions are oftentimes unreliable indicators of productivity owing to 58 

significant preservation biases (e.g., Rühlemann et al., 1999). Biases aside, building a regional picture of 59 

paleoproductivity in this manner would require sampling many regions of the seafloor (e.g., Cartapanis et 60 

al., 2016) and conducting many more analyses. In contrast, the flux and residence time of nutrients in the 61 

euphotic ocean can be diagnostic of the productivity of entire ecosystems (e.g., Dugdale & Goering, 1967). 62 

Indeed, large-scale features of past ocean productivity are routinely reconstructed using the abundance and 63 

stable isotopic compositions of macronutrient elements (C, N, and Si; see Farmer et al., this issue). It thus 64 

follows that the abundance and isotopic compositions of several bioactive trace elements and their isotopes 65 

(TEI’s) cycled along with POC could also serve as valuable proxies for past export productivity. However, 66 

in order to use systems of trace elements and their isotopes as proxies for productivity, it is necessary to 67 

develop a comprehensive understanding of the marine behavior of these elements, including: mapping their 68 

distribution in the ocean; elucidating the drivers of the distribution; characterizing sources, sinks, and 69 

transformations associated with biological, physical and chemical (notably redox) reactions; and, 70 

recognizing if (and how) a given element is incorporated and preserved in marine sediments.  71 
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The wealth of new TEI data from the GEOTRACES program (Fig. 1) now permits an assessment of whether 84 

certain bioactive metals are promising proxies for past ocean productivity. This contribution represents such 85 

an assessment. Our study synthesizes what is known about the processes governing the cycling of several 86 

bioactive TEIs in seawater, explores the level of development and readiness of each TEI system to inform 87 

on aspects of past ocean productivity, and identifies areas where further research is most needed to improve 88 

our understanding of the geochemistry of TEIs in the past and present ocean. We base our assessment on 89 

publicly-available results from the international GEOTRACES programme (e.g., Mawji et al. 2015; 90 

Schlitzer et al., 2018). Our study is not intended to be a thorough review of all available techniques used to 91 

reconstruct paleoproductivity. Instead, we focus on bioactive TEI systems that are either recognized as 92 

micronutrients (such as those in Eq. 3) or exhibit nutrient-like dissolved profiles in seawater, regardless of 93 

their nutritional status to phytoplankton (e.g., Ba, Ag). This will not be the last word on the topic; our 94 

understanding of many of these TEIs has rapidly evolved in recent years, and will continue to evolve as 95 

new data are generated. 96 

 97 

This contribution is structured such that each bioactive TEI system is reviewed similarly and systematically. 98 

The order in which TEI’s are assessed follows the extended Redfield ratio—iron (Fe; Sec. 3.), zinc (Zn; 99 

Sec. 4), copper (Cu; Sec. 5), cadmium (Cd; Sec. 6), and molybdenum (Mo; Sec. 7)—before describing the 100 

nonessential elements barium (Ba; Sec. 8), nickel (Ni; Sec. 9.), and silver (Ag, Sec. 10) in order of 101 

decreasing dissolved concentration in seawater. The assessment of each TEI system is organized around 102 

four questions: 103 

1. What is the modern marine distribution of this TEI system? 104 

2. Which biological, chemical, and physical processes are most important for maintaining this 105 

distribution? 106 

3. In what form is this TEI system incorporated into sediments? 107 

4. Are there clear priorities for improving the utility of this system to track paleoproductivity? 108 

This structure results in some repetition of the main distributions, drivers, and sedimentary archives 109 

between individual TEI systems. This redundancy is deliberate: each section can be read independently 110 

without reference to other TEIs. We close our review by assessing the ‘maturity’ of each system based on 111 

a comparison to more established productivity proxies, offer suggestions for future studies, and discuss 112 

prospects for paleoproductivity reconstructions using bioactive TEI isotope systems.   113 
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114 

115 

What is (paleo)productivity? This definition is significant since the biological productivity of an ecosystem 116 

can be described by a number of nested C cycles, whereby only some sub-cycles contribute to the 117 

sequestration of atmospheric CO2 as POC in the ocean interior and the geological record. Moreover, 118 

productivity estimates can diverge depending on the tracer (e.g., Bender et al., 1987) or reference depths 119 

(e.g., Buesseler et al., 2020) used as the basis of any calculation. Individual proxies for POC cycling may 120 

be sensitive to only certain components of the C cycle and could thus yield conflicting insights into 121 

paleoproductivity. For consistency with the macronutrient literature, we use the definitions described by 122 

Sigman & Hain (2012): GPP, NPP, and NEP, which correspond to gross primary production, net primary 123 

production, and net ecosystem (or ‘export’) production, respectively. Gross PP refers to total autotrophic 124 

production of POC (or O2; i.e., Eq. [1]). Net PP is defined as GPP minus autotrophic respiration—the 125 

metabolic O2 requirements of primary producers—and is effectively the rate at which phytoplankton 126 

produce new biomass. Lastly, NEP refers to GPP minus all autotrophic and heterotrophic respiration in an 127 

ecosystem (i.e., NPP minus heterotrophic respiration). If considering only the sunlit surface ocean, NEP is 128 

equivalent to export production; the flux of POC from the surface ocean must, over sufficiently long 129 

timescales, balance the vertical supply of dissolved nutrients. Likewise, integrated over the entire euphotic 130 

ocean, NEP represents the upper limit of the CO2 sequestering capacity of the biological pump: the amount 131 

of POC buried in marine sediments must be less than, or equivalent to, annual NEP (minus any contributions 132 

from terrestrial OC). Accordingly, NEP is perhaps the most relevant term to understanding how the 133 

biological pump draws down and stores atmospheric CO2. Indeed, variations in NEP are implicated as a 134 

key driver of glacial–interglacial variations in pCO2 and hence climate (e.g., Broecker, 1982; Boyle, 1988a; 135 

Berger et al., 1989; Paytan, 2009). Thus, when describing and assessing the utility of each TEI system to 136 

inform on past productivity, we are specifically concerned with whether and how that system is related to 137 

NEP.  138 

 139 

140 

In addition to only being sensitive to certain POC sub-cycles, the TEI systems reviewed here exhibit a 141 

number of instances where their cycling may be decoupled from those of POC. Broadly, these processes 142 

can be categorized as affecting the sources, internal cycling, or sinks of TEIs, but not always the 143 

macronutrients or C. These additional processes may lead to differences between, or even a complete 144 
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decoupling of (paleo)productivity estimates using TEI- and macronutrient-based productivity measures. 145 

These three areas are introduced here and described in detail in the sections that follow. 146 

 147 

First, many elements, including bioactive TEIs, can be decoupled from DIC cycling through ‘external’ 148 

sources that mask any POC-related drawdown. Though rarely significant for DIC, these sources—rivers, 149 

dust, desorption from particles, sediments, and hydrothermalism—may be significant terms in local and 150 

regional TEI budgets if the magnitude is comparable to the dissolved supply from ocean circulation. 151 

Examples include dust-derived Cu to surface planktonic communities (e.g., Paytan et al., 2009) and 152 

hydrothermal-derived Fe to the deep ocean (e.g., Resing et al., 2015). Consideration of these external 153 

sources is particularly important when close to such point sources and for elements with residence times 154 

that are less than or similar to the mixing time of the ocean (~1 kyr).  155 

 156 

Second, the internal cycle of TEIs can be complex; TEI distributions can be decoupled from those of the 157 

macronutrients through myriad interactions with particles, be they biological (uptake and remineralization), 158 

physical (adsorption, desorption), or chemical (e.g., redox transformation leading to precipitation or 159 

dissolution; e.g., Boyd et al., 2017).  160 

Biological uptake itself may decouple TEIs from macronutrients since organisms appear to have wider 161 

tolerances for the intracellular proportions of certain trace elements compared to those of C, N, and P. The 162 

physiological mechanisms enabling this plasticity, and the feedback interactions that drive it, are beyond 163 

the scope of this review, and are discussed in detail elsewhere (e.g., Sunda, 2012; Morel et al., 2020). From 164 

a proxy perspective, this flexibility may cause uncertainty in paleoproductivity estimates; the more variable 165 

the C:TEI stoichiometry of organisms within an ecosystem, the more uncertain the paleoproductivity 166 

estimate derived from that trace element. (The corollary being that the more rigid the stoichiometry, the 167 

more robust the paleoproductivity estimate.) An extreme example concerns nonessential elements (e.g., 168 

Ba), or metals that are only essential for certain groups of organisms within an ecosystem (e.g., Ni for 169 

methanotrophs). Productivity estimates derived from the export of these nonessential elements are 170 

potentially susceptible to decoupling from productivity cycles as their export is not intrinsically tied to the 171 

overall functioning of an ecosystem.  172 

Remineralization—the regeneration of POC to inorganic dissolved nutrients—can similarly decouple the 173 

internal cycles of TEIs and macronutrients. In the case of a scarce nutrient, such as Fe, individual organisms 174 

(e.g., Saito et al., 2011) and even entire ecosystems (e.g., Rafter et al., 2017) may have evolved mechanisms 175 

to retain scarce resources. Likewise, macro- and micronutrient TEIs may be regenerated by heterotrophic 176 
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organisms at different rates (e.g., Twining et al., 2014; Ohnemus et al., 2019). Thus, the number of 177 

productivity cycles that must occur before a trace element is exported out of the euphotic zone may differ 178 

from that of C or other macronutrients.  179 

The processes of adsorption and desorption can also fractionate TEI:macronutrient relationships. Originally 180 

developed in the context of dissolved and particulate thorium isotopes (Bacon & Anderson, 1982), 181 

reversible scavenging is now suggested to play a role in the vertical cycling of other metals, including Cu 182 

(e.g., Little et al., 2013) and Fe (e.g., Abadie et al., 2017). Reversible scavenging is a continuous process 183 

that occurs between particle surfaces and dissolved species. While this process can occur at any depth, 184 

scavenging intensity is positively correlated with the quantity of particles, and so is most important in the 185 

upper water column. Likewise, while dissolved TEIs may be scavenged by any class of particle (e.g., opal, 186 

lithogenics), recent modeling efforts indicate that certain particle types may preferentially scavenge certain 187 

elements (e.g., Lerner et al., 2018). Scavenging may also affect TEIs primarily cycled by organic matter; 188 

secondary phases may scavenge metals during remineralization, which could affect TEI distributions in the 189 

upper water column (e.g., Zn, John & Conway, 2014; Co, Hawco et al., 2018; Fe, Tagliabue et al., 2019).  190 

Changes in the ambient redox environment, such as in an oxygen minimum zone (OMZ), may also enhance 191 

dissolved–particulate transformations for certain TEIs. Whether OMZs act as a source or a sink depends on 192 

the TEI; whereas some elements may be released during reductive dissolution of particulate Fe–Mn oxides, 193 

others may exhibit enhanced scavenging onto particles in strongly reducing environments.  194 

 195 

Third, many TEIs have significant output fluxes that are not associated with organic matter. The processes 196 

mediating these burial fluxes are diverse, ranging from scavenging (e.g., Cu, Mo) to precipitation into 197 

(organo)minerals (e.g., Ba; Défarge, 2011). Consequently, changes in the non POC-associated burial flux 198 

term(s) may drive the ocean to a new TEI:C stoichiometry that could be difficult to recognize or interpret 199 

in the sedimentary record. 200 

 201 

While these three categories of processes may appear insurmountable obstacles to the reliable application 202 

of TEIs to reconstruct paleoproductivity, there are reasons to be optimistic. Indeed, the fact that so many 203 

confounding processes are now recognized highlights just how far our understanding of TEI geochemistry 204 

has evolved in recent years. Moreover, many of these processes primarily concern the use of trace element 205 

abundances to reconstruct past productivity. As we show in the following sections, the processes controlling 206 

the abundance of an element may be distinct from that controlling its isotopic composition. These distinct 207 

controls may enable isotopic analyses to reduce, or even eliminate, certain ambiguities in 208 
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paleoceanographic data, highlighting a potentially valuable role for TEI systems in the reconstruction of 209 

paleoproductivity. 210 

 211 

212 

The bioactive TEI literature abounds with isotope notations (e.g., ε, δ), reference materials (e.g., JMC, 213 

NIST), and isotope ratio pairs (e.g., 57Fe/54Fe versus 56Fe/54Fe; 137Ba/134Ba versus 138Ba/134Ba). There are 214 

merits to each choice and it is not our intention to review these here. However, we believe that the sheer 215 

number of ways in which TEI data have been reported can be confusing to scientists in other disciplines 216 

and this confusion ultimately diminishes the reach and utility of TEI-based research. To avoid furthering 217 

this confusion, we have adopted a number of conventions that apply throughout this review, regardless of 218 

how literature data were originally reported. First, we use a single isotope notation throughout (‘δ’; i.e., the 219 

delta notation). Second, we express all data relative to the most widely accepted standard for each isotope 220 

system. For many isotope systems, the most widely-accepted standard may have since been exhausted (e.g., 221 

JMC Lyon for Zn). In those cases, there are usually cross-calibrated secondary materials that can be used 222 

to report new isotope data in terms of ‘legacy’ materials (e.g. AA-ETH for Zn, Archer et al., 2017). Third, 223 

we report TEI data using the same isotope ratio pairs as used in the GEOTRACES data products (e.g., 224 

Mawji et al., 2015; Schlitzer et al., 2018). We note that isotope data are a unitless ratio quantity (Coplen, 225 

2011), though are commonly reported with ‘units’ of ‰ (i.e., parts per one-thousand): 226 

δxTE = Rsample / Rstandard − 1        [4] 227 

where δxTE represents δ56Fe, δ66Zn, δ65Cu, δ114Cd, δ98Mo, δ138Ba, δ60Ni, or δ109Ag and R represents 228 
56Fe/54Fe, 66Zn/64Zn, 65Cu/63Cu, 114Cd/110Cd, 98Mo/95Mo, 138Ba/134Ba, 60Ni/58Ni, or 109Ag/107Ag in either a 229 

sample or standard. For clarity, all isotopic data reviewed here have been calculated using notation in Eq. 230 

4, and renormalized to the following standards, regardless of how the data originators reported their results: 231 

IRMM-014 for Fe (e.g., Dauphas et al., 2017), JMC-Lyon for Zn (e.g., Moynier et al., 2017), NIST SRM 232 

976 for Cu (ibid.), NIST SRM 3108 for Cd (e.g., Abouchami et al., 2013), NIST SRM 3134 +0.25 ‰ for 233 

Mo (Nägler et al., 2014), NIST SRM 3104a for Ba (e.g., Horner et al., 2015a), NIST SRM 986 for Ni (e.g., 234 

Elliott & Steele, 2017), and NIST SRM 978a for Ag (e.g., Woodland et al., 2005).  235 

 236 

We summarize salient features of each TEI in Table 1. The review of each TEI system follows.237 

238 

239 

ESSOAr | https://doi.org/10.1002/essoar.10504252.1 | Non-exclusive | First posted online: Fri, 11 Sep 2020 06:48:45 | This content has not been peer reviewed. 



 

240 
241 

Element Dissolved 
concentration 

range  
(nmol kg-1) 

 Mean Upper 
Continental 

Crust 
composition 

(‰) 

Mean deep 
ocean isotopic 
composition 

(‰) 

Range of deep 
ocean isotope 
compositions 

(‰)  

Residence time 
estimates (kyr) 

Fe 0.01–100a +0.1d Variablek −2.4 to +1.5k 0.004–0.6r 

Zn 0.01–10a +0.3e ≈+0.5l -0.2 to +0.6l 1–11r 

Cu 0.5–4a +0.1e ≈+0.7m  +0.6 to +0.8m 2–5r 

Cd 0.00003–1.2a  0.0f ≈+0.3n +0.2 to +0.4n 22–105r 

Mo 100b +0.4g ≈+2.3o Homogeneouso
 440s 

Ba 35–160a 0.0h ≈+0.3p +0.2 to +0.4p 8t 

Ni 1.5-11a +0.1i ≈+1.3q Homogeneousq 10–30u 

Ag 0.0002–0.1c 0.0j Unknown Unknown 0.4v 
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242 

Iron (Fe) plays a key role within phytoplankton as an electron carrier for photosynthesis and respiration 243 

processes, as well as within enzymes necessary for photosynthesis and nitrogen fixation (Morel & Price, 244 

2003). However, in oxygenated seawater, Fe(II) is rapidly oxidized to Fe(III), which is highly insoluble 245 

(Liu & Millero, 2002). Intense biological demand coupled to low solubility results in generally sub-246 

nanomolar concentrations for dissolved Fe throughout the oceans, and Fe concentrations approach the low 247 

picomolar range in some surface regions far from Fe sources, such as the vast Southern Ocean (Chever et 248 

al., 2010; Klunder et al., 2011; Schlitzer et al., 2018). Consequently, biological production in about 30 % 249 

of the modern surface ocean is thought to be limited primarily by Fe (Moore et al., 2013), principally in 250 

upwelling regions where deep water is depleted in Fe relative to the macronutrients nitrate and phosphate 251 

(e.g., Moore, 2016; Boyd et al., 2017). In these regions, termed ‘High Nutrient Low Chlorophyll’ (HNLC), 252 

Fe supply can limit primary productivity (e.g., Martin & Fitzwater, 1988) and potentially the exchange of 253 

carbon between the ocean and atmosphere. Furthermore, a changing supply of Fe from sources such as 254 

atmospheric dust, hydrothermal venting, or sedimentary release to the surface oceans through geological 255 

time can exert a significant control on both the distribution of primary productivity in the oceans and, 256 

through this, the global carbon cycle. Changes in supply of dust to the Fe-limited Southern Oceans has been 257 

shown to correlate with climate variability on millennial time scales and has also been invoked to explain 258 

the dramatic sawtooth glacial–interglacial shifts in atmospheric carbon dioxide (Martin, 1990; Sigman & 259 

Boyle, 2000; Martínez-Garcia et al., 2011; 2014). The strong link between Fe supply and primary 260 

productivity means that ratios of Fe to other elements and/or Fe isotope ratios (δ56Fe) might be useful 261 

proxies for investigating changes in paleoproductivity, provided the processes that fractionate them are 262 

dominantly linked to primary production, can be constrained, and suitable archives identified.  263 

264 

265 

The distribution of dissolved Fe in seawater is driven by a mixture of competing processes, including 266 

biological uptake and (deeper) regeneration; distinct sources of Fe at shallow, intermediate, and deep 267 

depths; adsorption/desorption processes onto organic and lithogenic particles; dissolution and precipitation 268 

processes; and complexation to organic ligands (Fig. 2; e.g., Boyd & Ellwood, 2010; Labatut et al. 2014; 269 

Tagliabue et al., 2017). As a result, dissolved Fe displays what has historically been termed as hybrid-type 270 

depth profile in the open ocean, which exhibits a number of similarities between different ocean basins 271 

(Fig. 3). Surface Fe is drawn down in surface waters by biological uptake, and can even be as low as 0.01 272 

nmol kg-1 in Fe limited regions. However, some areas of the oceans, such as the ‘dusty’ North Atlantic, 273 
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surface Fe concentrations can be driven as high as 2 nmol kg  as a result of dust events (Sedwick et al., 274 

2005). Below the surface mixed layers, regeneration of biogenic material, reversible particle scavenging, 275 

and complexation by organic ligands act to keep the background deep ocean Fe concentrations at around 276 

0.4–0.6 nmol kg  (e.g., Lauderdale et al., 2020). Against this background, it has been known for decades 277 

that Fe concentrations in deeper waters are elevated near point sources such as sedimentary margins 278 

(Johnson et al., 1999). Recently, a range of studies including those conducted as part of the GEOTRACES 279 

program, have illuminated this picture, showing that deep sources of Fe—such as sedimentary and 280 

hydrothermal release—are widespread, may have distinct traceable δ56Fe source signatures, and that this 281 

Fe can be transported over large distances through the ocean interior (e.g., Radic et al. 2011; Saito et al., 282 

2013; Conway and John, 2014; Resing et al., 2015; Nishioka et al., 2020). Despite exhibiting well-defined 283 

deep maxima close to point sources, Fe distributions at shallow and intermediate depths are much more 284 

variable and models have struggled to reproduce these variations (e.g., Tagliabue et al., 2016). The extent 285 

to which deeply sourced Fe is supplied to surface seawater is thus equivocal (c.f.., Tagliabue et al., 2010; 286 

Roshan et al., 2020).  287 

 288 

The origin of Fe variability in the shallow and intermediate ocean is thought to reflect local differences in 289 

the competition between uptake, regeneration, sources, and scavenging. The same processes influence 290 

δ56Fe; however, unlike variations in Fe concentrations, δ56Fe exhibits dramatic variability between—and 291 

even within—ocean basins (Fig. 2; Schlitzer et al., 2017). Such water column variability in δ56Fe, from 292 

isotope compositions as light as −3 ‰ (John et al., 2012), to as heavy as ~+1.5 ‰ (Ellwood et al., 2020), 293 

is thought to be driven by Fe source signatures and therefore also oceanic circulation, and a combination of 294 

biological uptake, Fe complexation to organic ligands in surface waters, and non-reductive release of 295 

dissolved Fe from particles (notably lithogenic particles) during desorption and/or ligand-promoted 296 

dissolution (e.g. Conway and John, 2014; Abadie et al. 2017; Ellwood et al., 2020; Fig. 3). As such, δ56Fe 297 

may provide insight to the contribution of Fe sources at the basin scale (e.g. Conway & John, 2014), as well 298 

as for Fe cycling processes such as uptake and regeneration. 299 

 300 
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302 
303 
304 

 305 
 306 

Despite numerous studies of both small- (e.g., Martin et al., 1990; Coale, 1991; Coale et al., 2003) and 307 

large-scale iron fertilization (e.g., de Baar et al., 2005; Boyd et al., 2007; Boyd & Ellwood, 2010), there are 308 

still uncertainties in how changing Fe supply to the surface ocean may affect phytoplankton growth in Fe-309 

limited regions, and/or nitrogen fixers under nitrate limitation, leading to gaps in our understanding of 310 

linking Fe cycling directly to climate change (Misumi et al., 2014). One major challenge is assessing what 311 

portion of the dissolved Fe pool is available for uptake by different microbes, termed ‘bioavailable’ Fe. 312 

Such uncertainties on Fe supply, speciation, and bioavailability in the surface ocean are compounded by 313 

limitations in our ability to constrain the supply of dissolved Fe in upwelled deep waters. For example, 314 

while the ratio of C to macronutrients such N and P in the deep ocean is well known and the residence time 315 

and distribution can be accurately reproduced using apparent oxygen utilization (AOU), this is not the case 316 

for Fe. Only around 10–15 % of cellular Fe (Fe:C = 18–33 μmol:mol) appears to be regenerated in the deep 317 

ocean (Fe:C 4–6; Twining & Baines, 2013), leading to a weaker correlation between Fe and AOU, even in 318 

regions away from Fe sources (Rijkenberg et al., 2014) and upwelling deep waters that are depleted in 319 
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dissolved Fe relative to macronutrients. Since incubation experiments show that Fe associated with sinking 320 

organic matter from the subsurface is effectively regenerated (Velasquez et al., 2016), much of the released 321 

Fe must be rapidly scavenged (Tagliabue et al., 2019). Despite this scavenging, vertical transport is still 322 

thought to be the major source of dissolved Fe for phytoplankton in most Fe-limited regions, indicating that 323 

additional research into the interplay between Fe supply (sources, stabilization, and transport) and demand 324 

(biological uptake, scavenging) are required.  325 

 326 

 327 

 328 

329 
330 

 331 

 332 

333 

334 

Initial studies of processes that fractionate Fe isotopes were optimistic that δ56Fe would make for a powerful 335 

proxy of physiological ‘biosignatures’ (Beard et al., 1999), especially once measurement of δ56Fe was 336 
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extended to seawater by Lacan et al. (2008). However, much of this early optimism faded once it was found 337 

that other factors were also important in setting dissolved δ56Fe, such as external Fe sources (e.g., Radic et 338 

al., 2011; John et al., 2012; Sec. 3.2.3.). Moreover, organisms exhibit significant variability in Fe:C ratios 339 

(e.g., Twining & Baines, 2013), suggesting that Fe cycling may be partially decoupled from ecosystem 340 

productivity. Despite the more nuanced picture, there is a growing body of evidence suggesting that 341 

phytoplankton probably preferentially incorporate light Fe isotopes from seawater and, in some 342 

circumstances, can render detectable changes in dissolved δ56Fe. For example, studies from isolated eddies, 343 

the Mertz Polynya, and the open Southern Ocean showed that surface δ56Fe at picomolar dissolved Fe 344 

concentrations are isotopically heavy (>+1‰), which has been attributed to the combination of surface 345 

uptake, regeneration, and organic complexation (Lacan et al. 2008; Ellwood et al., 2015; 2020). Estimates 346 

for the magnitude of fractionation due to biological uptake range between −0.1 (Radic et al., 2011) and −1.0 347 

‰ (Ellwood et al., 2020). The magnitude and direction of any Fe isotope fractionation during uptake may 348 

depend on the phytoplankton species, uptake mechanism, and Fe species consumed. Additional research is 349 

required on all three fronts. Below the surface mixed layer, δ56Fe of dissolved Fe appears to be primarily a 350 

reflection of the isotope signature of Fe sources, rather than reflecting a dominant influence from the 351 

biological processes of remineralization (e.g. Abadie et al., 2017; Conway & John, 2014a; John et al., 352 

2018a; Labatut et al., 2014). Accordingly, there remains the possibility for δ56Fe of surface seawater to be 353 

linked to productivity in some oceanographic settings, though the relative role of other Fe-cycling processes 354 

and the degree to which they erase any diagnostic productivity signatures requires further investigation.  355 

 356 

357 

The chemical behavior of Fe in seawater is complex and has the potential to decouple Fe cycling from 358 

macronutrients and thus productivity. Unlike the macronutrients, which are present as aqueous ions in 359 

solution, Fe is scarcely soluble in seawater, and much of what constitutes ‘dissolved’ Fe—operationally 360 

defined as that which can pass through a 0.2 or 0.4 μm filter—is in actuality a soup containing organic 361 

complexes, nanoparticles, colloids, and a small fraction of truly ionic Fe. The controls governing, and the 362 

extent to which exchange occurs between these forms of dissolved Fe, are areas of focused interest (e.g., 363 

Fitzsimmons & Boyle, 2014; Fitzsimmons et al., 2015). Additionally, dissolved Fe is subject to strong 364 

removal via scavenging, which lowers the Fe:macronutrient ratio of waters returned to the surface via 365 

upwelling (Moore, 2016). Chemical processes can also exert a significant influence over the isotopic 366 
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composition of Fe in seawater, such as through redox transformations, exchange reactions (e.g., 367 

complexation, particle interactions), and by authigenic precipitation, discussed below. 368 

Redox transformations drive large Fe isotope effects (e.g., Johnson et al., 2002; Skulan et al., 2002; Welch 369 

et al., 2003; Anbar et al., 2005). Indeed, much of the Fe isotope variation in Earth’s ancient, more reducing 370 

past likely derives from fractionations associated with redox transformations (e.g., Johnson et al., 2008). 371 

While the role of redox relative to other processes is diminished in today’s largely-oxygenated ocean, it is 372 

nonetheless an important mediator of Fe isotope source compositions, particularly within the ocean interior. 373 

This is neatly illustrated using the example of sediment dissolution, which can occur with or without a 374 

change in the redox state of Fe. Bulk marine sediments typically possess a composition similar to the crustal 375 

composition of +0.1 ‰ (Beard et al., 2003; Poitrasson, 2006). However, dissolved Fe(II) derived from 376 

bacterially-mediated reductive dissolution in sediments has been characterized by δ56Fe between −1 and −4 377 

‰ (Berquist & Boyle, 2006; Severmann et al., 2006; 2010; Homoky et al., 2009; 2013; Klar et al., 2017a; 378 

Henkel et al., 2018), whereas Fe derived from non-reductive dissolution processes is thought to be 379 

considerably heavier, between +0.1 to +0.3‰ (Homoky et al., 2009; 2013; Radic et al., 2011). Further 380 

modification of reductive end-member compositions is possible upon contact with oxidizing seawater, 381 

potentially masking true source signatures. Oceanic water column dissolved δ56Fe compositions attributed 382 

to either non-reductive (+0.1 to +0.4 ‰) or reductive (−0.3 to −3.3 ‰) release of Fe from sediments have 383 

now been observed globally (Radic et al., 2011; John et al., 2012; Staubwasser et al., 2013; Conway & 384 

John, 2014a; Labutut et al., 2014; Conway & John 2015a; Chever et al., 2015; Fitszimmons et al., 2016; 385 

Klar et al., 2017a; Abadie et al., 2017; Klar et al., 2018; Rolison et al., 2018; John et al., 2018a; Charette et 386 

al., 2020). 387 

Exchange reactions can also fractionate primary Fe isotope compositions. For example, natural lithogenic 388 

dust is thought to possess a relatively narrow range of Fe isotope compositions (i.e., δ56Fe ≈ +0.1±0.2‰; 389 

Waeles et al., 2007; Mead et al., 2013; Conway et al., 2019; Chen et al., 2020), reflecting the overall 390 

homogeneity of the upper continental crust. However, dissolved Fe in seawater attributed to dissolving dust 391 

particles is isotopically heavy, around +0.7 ‰ (Conway & John, 2014a). This fractionation is thought to 392 

reflect dissolution in concert with, and complexation by, strong (organic) ligands (Fishwick et al., 2014), 393 

which have been experimentally shown to preferentially bind heavy Fe isotopes (Dideriksen et al., 2008; 394 

Morgan et al., 2010). Fractionation effects may also arise during exchange of Fe between dissolved and 395 

particulate forms, though the magnitude of the effect depends on whether the exchange is primarily physical 396 
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(negligible fractionation; e.g. Fitzsimmons et al., 2017) or chemical (from ≈+0.3 up to +1 ‰; Labutut et 397 

al., 2014; Fitzsimmons et al., 2015).  398 

Lastly, authigenic precipitation can control the isotopic composition of Fe released by large point sources, 399 

such as hydrothermal vents and margin sediments. Iron in hydrothermal vent fluids possesses end-member 400 

compositions ranging from −0.7 to +0.1‰ (Sharma et al., 2001; Beard et al., 2003; Severmann et al., 2004; 401 

Rouxel et al., 2008; Bennett et al., 2009; Rouxel et al., 2016; Nasemann et al., 2018; Rouxel et al., 2018). 402 

However, precipitation of Fe into authigenic minerals can render significant changes in dissolved δ56Fe 403 

(e.g., Severmann et al., 2004; Bennett et al., 2009). The direction of fractionation depends on (e.g., Lough 404 

et al., 2017)—and may thus be diagnostic of (e.g., Horner et al., 2015b)—the specific transformations 405 

occurring: Fe sulfides and oxides preferentially incorporate isotopically light and heavy Fe, respectively 406 

(e.g., Skulan et al. 2002; Rouxel et al., 2008). Mineral precipitation can drive δ56Fe of residual Fe stabilized 407 

in seawater to values ranging between −2.4 to +1.5 ‰, depending on the authigenic mineral produced 408 

(Conway & John, 2014a; Ellwood et al., 2015; Fitzsimmons et al., 2016; 2017; Klar et al., 2017b; Lough 409 

et al., 2017; Rouxel et al., 2018). Analogous processes appear to operate along continental margins, 410 

whereby ‘light’ Fe, mobilized by reductive dissolution, encounters oxidizing seawater and forms 411 

precipitates that are heavier than the source Fe (though overall still considerably lighter than background 412 

seawater; e.g., Marsay et al., 2018).  413 

Additional nuances relating to δ56Fe signatures of local point sources such as Fe released from 414 

anthropogenic aerosol dust, glaciers, icebergs, and rivers are also emerging, with such sources varying 415 

dramatically over short spatial and temporal scales and with in situ chemical reactions (e.g. Fantle & 416 

DePaolo, 2004; Berquist & Boyle, 2006; Ingri et al., 2006; Escoube et al., 2009; Poitrasson et al., 2014; 417 

Mead et al., 2013; Ilina et al., 2013; Akerman 2014; Chen et al., 2014; Escoube et al., 2015; Mullholland 418 

2015; Zhang et al., 2015; Kurisu et al., 2016a;b; Stevenson et al., 2017; Conway et al., 2019). The net effect 419 

of the dominance of Fe source on dissolved δ56Fe in seawater means that any signal from biological uptake 420 

in the Fe-depleted mixed layer, even if could be recorded in an archive, may be easily overprinted by even 421 

a small addition of new Fe from either above or below. 422 

 423 

424 

The residence time of Fe in seawater is substantially less than the mixing time of the global ocean (Table 425 

1). Local and regional Fe sources can thus drive large differences in dissolved [Fe] and δ56Fe between ocean 426 

basins (Fig. 3). Local source signatures—[Fe], δ56Fe, and perhaps Fe speciation—can be transported and 427 
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retained over the scale of individual ocean basins (Fig. 4; Conway & John, 2014a; Abadie et al., 2017). 428

This is arguably one of the marquee findings of the GEOTRACES program, and underpins the utility of 429

sedimentary δ56Fe to reconstruct past marine Fe sources, discussed next. 430

431

432
433
434
435

436

437

438

439

A requirement of the application of any paleoproxy is the availability of suitable sedimentary archives. 440

These archives must have both a high fidelity for the signal of interest and be robust to post-depositional 441
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alteration. Archives most relevant to reconstructing paleoproductivity should capture surface ocean δ56Fe; 442 

however, there are few—if any—reliable archives. The lack of surface-water archives reflects two related 443 

challenges. First, most archives for surface seawater are derived from biominerals, such as foraminifera, 444 

diatoms, sponges, and corals. These archives possess vanishingly low Fe concentrations, such that Fe 445 

isotopic analysis of these substrates has proven difficult. Second, following burial, many biominerals will 446 

act as substrates for authigenic mineral formation. These authigenic minerals, such as clays (e.g., Badaut & 447 

Risacher, 1983) and Fe–Mn oxides (e.g., Boyle, 1981), possess Fe concentrations far in excess of those in 448 

the underlying biomineral, necessitating significant physical and chemical cleaning (e.g., Cheng et al., 449 

2000). 450 

Despite these obstacles, there are three positive signs that reconstructing past surface seawater δ56Fe is 451 

possible. First, biogenic opal may contain Fe at concentrations in the μg g-1 range (Ellwood & Hunter, 2000; 452 

Lal et al., 2006; Shemesh et al., 1988; Sun et al., 2016), which is tractable for δ56Fe analysis. Second, the 453 

Fe content of diatoms is correlated with ambient dissolved [Fe] (Twining & Baines, 2013). Lastly, the 454 

positive relationship between the Fe content of diatoms and corresponding seawater appears to hold through 455 

sinking and sedimentation (Pichevin et al., 2014), indicating that diatoms are a potential window into past 456 

surface ocean Fe chemistry. Whether these relationships also extend to δ56Fe remains to be seen, and will 457 

require additional core-top calibrations, incubation experiments, and detailed assessment of the efficacy of 458 

chemical cleaning. 459 

 460 

461 

In contrast to surface seawater, there are a number of studies examining Fe sources and fluxes in the meso- 462 

and bathypelagic ocean. To constrain Fe sources, researchers have examined the Fe isotope composition of 463 

Fe-rich sediments, including red clays (Tegler et al., 2018), polymetallic nodules (Marcus et al., 2015), and 464 

Fe–Mn crusts (Zhu et al., 2000; Levasseur et al., 2004; Chu et al., 2006; Horner et al., 2015b; Liu et al., 465 

2020). Ferromanganese crusts are currently the best-studied for Fe isotopes (Fig. 5); Fe–Mn crusts are 466 

slowly-accumulating deposits (~mm Myr−1) that record ambient seawater δ56Fe with a spatially-invariant 467 

offset of −0.77±0.06 ‰ (Horner et al., 2015b). The constancy of the offset implies that the Fe isotope 468 

composition of individual Fe–Mn crust layers can be interpreted in terms of past dissolved δ56Fe, and thus 469 

past Fe sources. Curiously, however, the Fe-isotopic variability of Fe–Mn deposits recovered from the 470 

central Pacific—particularly layers formed before ~20 Ma—exceed the range of modern deep-ocean δ56Fe 471 

(though only in the positive direction; Fig. 5). The reasons for elevated δ56Fe in the past are debated. Horner 472 

et al. (2015b) report that heavy δ56Fe could arise through widespread secondary modification of large Fe 473 
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sources through authigenic reactions, such as sulfide precipitation. In contrast, Johnson et al. (2020) contend 474 

that the elevated δ56Fe reflects extensive biological modification of dissolved Fe, driven by large-scale Fe 475 

fertilization. Regardless, the variation in these records points to a dynamic and enigmatic Fe cycle in Earth’s 476 

past, and indicates that Fe–Mn crusts have a largely untapped potential to reconstruct spatiotemporal 477 

variations in this cycle. 478 

 479 

Other approaches are also showing promise to study Fe fluxes to the deep ocean through time. For example, 480 

researchers have constrained the rate of sedimentary accumulation of hydrothermally-derived Fe and Cu 481 

using constant flux proxies such as extraterrestrial helium-3 (e.g., Middleton et al., 2016) or thorium-230 482 

(Costa et al., 2017). These studies report that hydrothermal activity may be coherent with sea-level changes 483 

on Quaternary glacial–interglacial cycles, suggesting a potentially remarkable set of connections between 484 

the solid Earth, ocean chemistry, and global climate (e.g., Cullen & Coogan, 2017). Reconstruction of 485 

hydrothermal metal fluxes over million-year timescales may also be possible using the geochemistry of 486 

pelagic clays (e.g., Dunlea et al., 2015), though such approaches are still in their infancy.  487 

 488 

Although existing Fe-isotopic and Fe flux records cannot be directly interpreted in terms of past 489 

productivity, the supply and cycling of Fe in seawater is an important control over the biological 490 

productivity of the ocean. Thus, records of past oceanic Fe sources may prove most valuable as context for 491 
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interpreting other proxy records, or for generating novel hypotheses regarding the connections between the 492 

Fe cycle and global climate. 493 

 494 

 495 

496 
497 
498 
499 
500 

 501 
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502 

While the marine Fe cycle is complex, Fe isotopes are proving to be a valuable tool for studying the modern 503 

Fe cycle. Detailed study of this cycle reveals that it is driven by a multitude of biological, physical and 504 

chemical processes, amongst which productivity is but one small part. In our view, this means that there 505 

are considerable obstacles to using δ56Fe as a paleoproductivity tracer. However, this does not preclude 506 

δ56Fe from emerging as a powerful tracer for studying the dynamics of the Fe cycle in the (paleo)oceans. 507 

Such a tracer would be especially powerful given the proximal connection between Fe supply and the 508 

biological productivity of the ocean.  509 

Exploiting δ56Fe will require resolving and refining several ambiguities. First, there is a clear need to better 510 

constrain the Fe-isotopic fractionation factor associated with biological uptake (in variable conditions and 511 

from different species) and to diagnose locations where dissolved δ56Fe is most affected by productivity. 512 

Second, the fractionation factors for remineralization and scavenging are essentially unknown, though field 513 

data suggests that the net result of these effects is relatively small (e.g. Radic et al., 2011; Labutut et al., 514 

2104). Constraining these fractionation factors will be particularly important for developing novel archives 515 

of the paleo Fe cycle, such as pelagic clays (e.g., Tegler et al., 2018). Third, any sedimentary reconstruction 516 

of past Fe-isotopic chemistry will need to consider the high degree of spatial variability in modern δ56Fe. 517 

This will necessitate spatially-distributed core sampling, similar to the approach used to constrain basin-518 

scale patterns of dust deposition over glacial–interglacial timescales (e.g., Costa et al., 2016; Winckler et 519 

al., 2016). Addressing these priorities will provide valuable constraints on the extent to which the Fe cycle 520 

has influenced primary productivity over recent geological history, and provide key insights into the 521 

potential sensitivity of Earth’s climate to perturbations in marine trace element cycles.  522 

523 
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524 

525 

Consistent with its importance as a micronutrient, dissolved Zn has a nutrient-type distribution in the ocean 526 

(e.g., Bruland, 1980). Typical surface ocean Zn concentrations are 0.01 to 0.5 nmol kg-1, compared to deep 527 

water concentrations of ~2.5 nmol kg-1 in the north Atlantic and ~10 nmol kg-1 in the north Pacific (Schlitzer 528 

et al., 2018; Fig. 6). The dissolved Zn distribution in the ocean closely follows that of the macronutrient Si 529 

(Bruland, 1980), at least partially due to the similar behaviour of both elements in the Southern Ocean 530 

(Vance et al., 2017; de Souza et al., 2018; Weber et al., 2018; Roshan et al., 2018; Middag et al., 2019). 531 

Decoupling of Zn from Si is observed in regions remote from Southern Ocean influence (Janssen & Cullen, 532 

2015; Vance et al., 2019). 533 

 534 

535 
536 
537 

 538 

 539 
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It was hoped that Zn isotope ratios would provide a means of tracing biological carbon cycling in the past 540 

and present ocean (e.g., Maréchal et al., 2000; Pichat et al., 2003; Bermin et al., 2006). Zinc isotope data 541 

are reported relative to JMC-Lyon, which has now expired. New δ66Zn data are typically measured relative 542 

to AA-ETH or IRMM-3702 Zn standards and corrected by the offset between these and JMC-Lyon (≈0.3‰; 543 

Moeller et al., 2006; Archer et al., 2017). The apparent preferential uptake of light Zn isotopes by 544 

phytoplankton observed in some culture experiments (John et al., 2007; Köbberich and Vance, 2017; 545 

Samanta et al., 2018) predicted an isotopically heavy residual pool in surface seawater, analogous to that 546 

observed for δ13C, δ15N, δ30Si and δ114Cd (Cd reviewed in Sec. 6., C, N and Si in Farmer et al., this issue). 547 

However, the test of this hypothesis, through analyses of δ66Zn in seawater, awaited a GEOTRACES-driven 548 

revolution in large volume trace metal clean sampling (Cutter et al., 2017), alongside analytical advances 549 

including new chemical separation procedures and MC-ICP-MS (multiple-collector inductively-coupled 550 

plasma mass spectrometry; Bermin et al., 2006; Conway et al., 2013; Takano et al., 2017).  551 

 552 

A consistent picture of the distribution of δ66Zn in the ocean has since emerged. The deep ocean is 553 

isotopically homogeneous, with a δ66Zn signature of about +0.45‰ (Fig. 6.; Conway & John, 2014b; Zhao 554 

et al., 2014; Conway & John, 2015a; Samanta et al., 2017; Takano et al., 2017; John et al., 2018b; Wang et 555 

al., 2019a; Vance et al., 2019; Sieber et al., 2020; Liao et al., 2020; Lemaitre et al., 2020), and isotopically 556 

heavier than the upper continental crust (UCC; δ66Zn +0.3 ‰; Moynier et al., 2017). Deviations to deep 557 

ocean δ66Zn compositions as light as -0.2 ‰ have been observed near sediments or hydrothermal Zn sources 558 

(Conway and John; 2014b; Lemaitre et al., 2020). In the surface, while heavy δ66Zn isotope compositions 559 

have been observed, the upper water column for Zn is often isotopically light or, in the Southern Ocean and 560 

North Pacific, only very slightly fractionated towards heavier values (Conway & John, 2014b; 2015a; Zhao 561 

et al., 2014; Samanta et al., 2017; Takano et al., 2017; Wang et al., 2019a; Sieber et al., 2020; Vance et al., 562 

2019; Liao et al., 2020; Lemaitre et al., 2020). Possible reasons for the discrepancy between expected and 563 

observed upper water column δ66Zn are discussed in detail below. They include preferential scavenging of 564 

isotopically heavy Zn on particle surfaces (e.g., John & Conway, 2014; Weber et al., 2018), an isotopically 565 

light source of Zn, possibly from shallow remineralization of organic material (Samanta et al., 2017; Vance 566 

et al., 2019) or from anthropogenic aerosols (Liao et al., 2020; Lemaitre et al., 2020). We note here that 567 

these complexities will likely make it challenging to use Zn isotopes as a paleoproductivity proxy. 568 

569 
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 570 

571 
 572 

 573 

574 

575 

Zinc is a metal center in two key enzymes: carbonic anhydrase, necessary for carbon fixation, and alkaline 576 

phosphatase, necessary for dissolved organic phosphorus uptake by marine organisms (Morel et al., 1994; 577 

Shaked et al., 2006; reviewed by Sinoir et al., 2012). Zinc also has an array of other physiological roles in 578 

marine organisms, as exemplified by the observation that Zn contents of phytoplankton cells are of similar 579 

magnitude to the micronutrient Fe (Twining & Baines, 2013).  580 

Zinc can be growth-limiting for phytoplankton grown in culture (Anderson et al., 1978; Brand et al., 1983; 581 

Morel et al., 1994), but Zn (co)-limitation (with Fe, Co) has only rarely been observed in the open ocean 582 

(e.g., Coale, 1991; Coale et al., 2003; Franck et al., 2003; Ellwood, 2004; Lohan et al., 2005). This 583 

difference between culture and field may reflect the ability of some phytoplankton to substitute Cd or Co 584 
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for Zn in some enzyme systems when ambient Zn concentrations are low (e.g., Morel et al., 1994; Lee & 585 

Morel, 1995; Yee & Morel, 1996; Kellogg et al., 2020). Nevertheless, Zn availability has been shown to 586 

influence species composition and phytoplankton growth, including rates of calcification and alkaline 587 

phosphatase activity (Sunda & Huntsman, 1995; Crawford et al., 2003; Schulz et al., 2004; Shaked et al., 588 

2006; Mahaffey et al., 2014). In culture, phytoplankton biomass is typically enriched in the light isotopes 589 

of Zn (John et al., 2007; Köbberich and Vance, 2017; 2019; Samanta et al., 2018). Rather than reflecting a 590 

kinetic isotope effect on uptake, it has been suggested that Zn speciation in the media controls cellular δ66Zn 591 

values; specifically, strong organic ligands (e.g., EDTA) present in the media preferentially complex heavy 592 

Zn isotopes, rendering the bioavailable Zn pool isotopically light (John et al., 2007; Köbberich and Vance, 593 

2017; 2019; Fig. 7). 594 

 595 

596 

Like most bioessential metals, Zn bioavailability is dictated by its chemical speciation (e.g., Anderson et 597 

al., 1978), which is dominated in the ocean by complexation to strong (K’ ~ 109 – 1011) organic ligands 598 

(Bruland, 1989; Donat & Bruland, 1990; Ellwood & Van Den Berg, 2000; Jakuba et al., 2012; Kim et al., 599 

2015). Inorganic Zn is considered to make up <5% of the total Zn pool in most ocean regions, with the 600 

exception of the Southern Ocean, where strong upwelling of nutrient-rich deep waters leads to Zn 601 

concentrations in excess of complexing ligands (Baars & Croot, 2011). Note that while strongly-complexed 602 

Zn is unlikely to be bioavailable, the presence of ‘weak’ ligands (or more labile ligands) can enhance Zn 603 

uptake (Aristilde & Xu, 2012). As noted above, the role of the diversity of organic (and inorganic) Zn-604 

binding ligands in determining dissolved and particulate δ66Zn values remains to be fully evaluated. 605 

A role for scavenging in the marine cycling of Zn and Zn isotopes has been widely cited (e.g., John & 606 

Conway, 2014; Weber et al., 2018; Roshan et al., 2018; Liao et al., 2020; Fig. 7). It is argued that scavenging 607 

can a) explain the widespread observation of isotopically light Zn in the upper ocean, via preferential 608 

removal of heavy Zn isotopes on particles, and b) explain elevated concentration of Zn in the deep Pacific 609 

compared to that supplied in southern-sourced deep waters (Weber et al., 2018; Roshan et al., 2018). 610 

Elevated Zn in the deep Pacific has also been attributed to additional Zn input via, e.g., hydrothermalism 611 

(Roshan et al., 2018), with a lighter than deep ocean δ66Zn signature (John et al., 2018b). Local and basin 612 

scale deviations towards lighter deep ocean δ66Zn compositions in both the Atlantic and Pacific have been 613 

attributed to sedimentary input (Conway & John, 2014b; John et al., 2017; Liao et al., 2020; Lemaitre et 614 

al., 2020), and could also reflect hydrothermalism (Conway & John, 2014b; John et al., 2018b; Lemaitre et 615 

al., 2020). Anthropogenic aerosol deposition is thought to supply significant Zn to regions of the surface 616 
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ocean (e.g., Liao & Ho, 2018), with possible direct and indirect (via scavenging) regional impacts on upper 617 

ocean δ66Zn values (Liao et al., 2020; Lemaitre et al., 2020). 618 

Lastly, Janssen & Cullen (2015) suggest that decoupling of Zn and Si in the northeast Pacific reflects the 619 

formation of Zn sulfides in the oxygen deficient zone (ODZ), directly equivalent to proposed Cd sulfide 620 

precipitation; this hypothesis is discussed in more detail in Sec. 6.2.3. To date, however, there remains scant 621 

evidence for water column Zn-sulfide precipitation in ODZs (e.g., Conway & John, 2014b; John et al., 622 

2018b; Vance et al., 2019). That said, Zn-sulfide precipitation is undoubtedly important in euxinic basins 623 

such as the Black Sea and Cariaco Basin (Vance et al., 2016; Isson et al., 2018), and has been postulated to 624 

occur within the porewaters of oxygen deficient, organic-rich sediments (Sec. 4.3.3.; Little et al., 2016). 625 

 626 

627 

In common with many of the TEIs discussed here, the physical ocean circulation exerts a first order control 628 

on the distribution of dissolved Zn and δ66Zn compositions (Vance et al., 2017; de Souza et al., 2018; Weber 629 

et al., 2018; Sieber et al., 2020). Subantarctic water masses have distinct low Zn:PO4 and Si:PO4 ratios, due 630 

to the elevated uptake of Zn and Si by diatoms in the surface Southern Ocean (Sarmiento et al., 2004; Vance 631 

et al., 2017). Remineralization of these Zn- and Si-rich diatoms at depth imprints a correspondingly high 632 

Zn:PO-4 and high Si:PO4 fingerprint on Antarctic bottom waters. This coupling of Zn and Si in the Southern 633 

Ocean forms the basis of the global Zn:Si correlation via the advection of southern sourced water masses 634 

towards the low latitudes, where they fill much of the ocean interior (de Souza et al., 2012; Holzer et al., 635 

2014). The homogeneity of deep ocean Zn isotope compositions reflects the limited degree of Zn isotope 636 

fractionation on uptake by Southern Ocean diatoms (Zhao et al., 2014; Wang et al., 2019a), which results 637 

in intermediate and deep southern-sourced water masses with limited or no isotopic contrast (Sieber et al., 638 

2020). The oceanic Zn:Si correlation persists despite shallower remineralization of Zn relative to Si 639 

(Twining et al., 2014), and is especially clear in the Atlantic, underlining that the mixing of water masses 640 

is the dominant control on dissolved Zn in this basin (Vance et al., 2017; Weber et al., 2018; Middag et al., 641 

2019). Decoupling of Zn and Si is observed in the upper water column of the northeast Pacific, far from the 642 

Southern Ocean influence (Janssen & Cullen, 2015; Vance et al., 2019), likely resulting from the shallower 643 

remineralisation of Zn (from organic ‘soft parts’) relative to Si (from opal; Vance et al., 2019). 644 
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 645 

646 

Manganese oxides are strong sorbents of positively charged, divalent trace metals, due to their negative 647 

layer charge at the pH of natural waters (e.g., Koschinsky & Halbach, 1995). The phyllomanganate 648 

birnessite is the main Mn- and TE-bearing phase in oxic marine sediments (e.g., Koschinsky and Hein, 649 

2003), as well as for several elements described here, including Zn, Cu, Ni, Cd, and Mo (though Mo exists 650 

in seawater as the molybdate anion). Ferromanganese crusts and nodules incorporate TEs during growth, 651 

leading to 106-fold enrichments compared to seawater concentrations (e.g., Arrhenius, 1963; Aplin and 652 

Cronan, 1985). As a result, Fe–Mn sediments are often one of the first marine sediment types to be targeted 653 

in the development of a new isotopic tracer.  654 

In the case of Zn, Fe–Mn crusts and nodules are isotopically heavy compared to seawater (≈ +0.45‰), 655 

exhibiting compositions between +0.9 to +1 ‰ (Maréchal et al., 2000; Little et al., 2014a; Fig. 8). The 656 

heavy signature is broadly consistent with inorganic sorption experiments of Zn on birnessite, with 657 

experiments at high ionic strength yielding Δ66Znsorbed-aqueous (where Δ66Znsorbed-aqueous = δ66Znsorbed – 658 

δ66Znaqueous) of +0.16 to +2.7‰ (Bryan et al., 2015). The magnitude of fractionation observed in experiments 659 

is typically considerably larger than in natural Fe–Mn crusts and nodules, which Bryan et al. (2015) suggest 660 

may reflect sorption of Zn on birnessite via two different molecular mechanisms, each associated with 661 

different isotopic fractionation factors, as is the case for thallium (e.g., Nielsen et al., 2013). In addition, 662 

the influence of organic and inorganic speciation of Zn in seawater may play a role, though this remains to 663 

be fully evaluated (e.g., Little et al., 2014b). 664 

Little et al. (2014a) observed no marked temporal changes in δ66Zn values for three Fe–Mn crusts from 665 

each of the major ocean basins over the last ~20 Ma. Assuming no significant diffusion or resetting of crust 666 

Zn isotope compositions on this timescale, this observation suggests that, on a global basis, the marine Zn 667 

cycle has been in isotopic steady state for at least 20 Myr (Fig. 8) 668 
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677 

The correlation of Zn with Si in the modern ocean led to the suggestion that Zn/Si measured in diatom opal 678 

may be a proxy for Zn/Si (and thus [Zn]) of past seawater. However, culturing and µ-XRF analyses revealed 679 

that only a small fraction (1–3%) of the diatom Zn quota is incorporated into the opal frustules, with the 680 

remainder present in the organic ‘soft parts’ of the diatom cells (Ellwood & Hunter, 2000; Twining et al., 681 

2004). The Zn concentration in opal (Znopal) also more closely reflects the bioavailable Zn in seawater than 682 

ambient Zn:Si (Ellwood & Hunter, 2000). Nevertheless, if the mechanisms of Zn incorporation into 683 

biogenic opal can be understood, and calibrated, a Zn:Si proxy of Zn bioavailability could help shed light 684 

on micronutrient limitation of the biological pump. 685 

Andersen et al. (2011) analyzed Zn isotopes (δ66Znopal) and Zn/Siopal in diatom opal isolated from core top 686 

sediments from the Southern Ocean. They observed isotopically heavy Zn in opal (at +0.7 to +1.5‰), and 687 

an inverse relationship of δ66Znopal with Zn/Siopal. Consistent with culturing studies, core top Zn/Siopal 688 

appears to be linked to bioavailable Zn concentrations in ambient surface seawater. The authors suggested 689 

that δ66Znopal should also reflect the isotope composition of bioavailable Zn in surface seawater, which, they 690 

predicted, should be isotopically heavy due to the predicted preferential incorporation of light isotopes into 691 

phytoplankton organic material. In this view, the extent of uptake—nutrient utilization—would be recorded 692 

by the systematics of Zn/Siopal and δ66Znopal. However, this study predated the recent surge in seawater δ66Zn 693 

measurements. As discussed above, surface water δ66Zn analyses in the Southern Ocean have not borne out 694 

the prediction of isotopically-heavy residual surface waters, with little to no fractionation observed (Zhao 695 

et al., 2014; Wang et al., 2019a; Sieber et al., 2020).  696 

More recently, Hendry and Andersen (2013) have shown that some sponge spicules faithfully record 697 

seawater δ66Zn. Sponges are primarily deep-sea organisms. Hence, if we can deconvolve the controls on 698 

diatom Zn/Si and δ66Znopal, a combination of Zn/Si and δ66Zn measurements in diatoms and sponges (as 699 

used for Si isotopes, Farmer et al., this issue) could provide a strong basis for unravelling the past ocean 700 

global Zn cycle, including the role of Southern Ocean processes in the biological carbon pump.  701 

  702 

703 

Carbonates may provide an alternative archive for Zn (as Zn/Ca) and δ66Zn. For example, Marchitto et al. 704 

(2000) showed that Zn/Ca ratios in benthic foraminifera reflect bottom water dissolved Zn concentrations. 705 

However, Zn concentrations in individual microfossil shells are extremely low (of the order ~0.1 ng); at 706 
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this level, with current analytical capabilities and blank contributions, more than one hundred benthic 707 

foraminifera would be required for a single Zn isotope measurement.  708 

To circumvent the issue of low Zn contents of individual shells, Pichat et al. (2003) utilized a selective 709 

carbonate dissolution procedure on bulk sediment from the equatorial Pacific, mostly consisting of 710 

coccoliths. These authors argued that isotopically heavy δ66Zncarb reflected ambient surface seawater, with 711 

values modulated by changes in biological productivity due to varying seasonal insolation. Similarly 712 

isotopically heavy Zn in ancient carbonates has also been argued to reflect strong biological utilization in 713 

surface waters (Kunzmann et al., 2013; cf. John et al., 2017; Liu et al., 2017). However, as discussed, the 714 

interpretation of these data should be revisited in the light of recent seawater δ66Zn data, where isotopically 715 

heavy surface ocean Zn isotope compositions are rarely observed.  716 

Selective carbonate dissolution procedures present two problems. First, Zn is present at high concentrations 717 

in potential contaminating material, e.g., lithogenic or authigenic (e.g. Fe-Mn oxide) phases, and second, 718 

non-quantitative leaching introduces the potential for stable isotope fractionation (Revels et al., 2015). 719 

Nevertheless, several lab groups are now investing considerable effort to systematically assess these 720 

procedures, with promising results (e.g., Clarkson et al., 2018).  721 

Finally, deep-sea coral skeletons also provide promise as a potential intermediate-deep water archive of 722 

δ66Zn (e.g., Little et al., 2017a). Their size and global distribution, combined with the ability to assign 723 

precise ages to individual specimens, gives corals some distinct advantages over traditional sedimentary 724 

paleoclimate archives (Robinson et al., 2014).  725 

  726 

727 

Quantitative removal of Zn into Zn sulfides in the euxinic Black Sea water column leads to sedimentary 728 

δ66Zn values that preserve the global seawater signature (Vance et al., 2016). This behaviour is analogous 729 

to the Mo isotope system (Sec. 7; e.g., Neubert et al., 2008; Nägler et al., 2011), and suggests that euxinic 730 

black shales represent an archive for seawater δ66Zn values. By extension, Isson et al. (2018) propose that 731 

a chemically isolated sulfide-bound Zn fraction also preserves seawater δ66Zn values, demonstrating the 732 

effectiveness of their approach for core top sediments from the euxinic Cariaco Basin. However, it is not 733 

yet clear if the sulfide fraction of organic shales from non-euxinic sites will necessarily record seawater 734 

δ66Zn, as (non-quantitative) precipitation of Zn sulfides is associated with light isotope fractionation (Fujii 735 

et al., 2011a; Vance et al., 2016). 736 
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Authigenic Zn in organic rich sediments deposited in productive continental margin settings is isotopically 737 

light (on average, about +0.1‰) compared to seawater (at about +0.45 ‰; Little et al., 2016). One possible 738 

explanation for this signature is the preferential biological uptake of light isotopes into organic matter (Little 739 

et al., 2016; John et al., 2017). The second possible explanation, touched upon above, is light Zn isotope 740 

fractionation during Zn sulfide precipitation, either in sediments or, possibly, in reducing 741 

microenvironments in the water column (Janssen & Cullen, 2015; Little et al., 2016; Vance et al., 2016; 742 

Bianchi et al., 2018). While a biologically-driven signature would suggest utility for δ66Zn in organic-rich 743 

sediments as a paleoproductivity proxy, a role for sulfidation highlights the importance of redox conditions 744 

during diagenesis, particularly sulphate reduction, in driving the δ66Zn values preserved in organic-rich 745 

sediments. We note that sedimentary redox is linked to overlying productivity (e.g., Hartnett et al., 1998), 746 

but in a complex manner that would make a purely productivity based interpretation of preserved δ66Zn 747 

values in black shales challenging. 748 

  749 

750 

To summarize, recent seawater, experimental, and sedimentary Zn isotope research implies that the 751 

relationship between Zn isotopes and (paleo)productivity is not straightforward. This adds uncertainty to 752 

the application of using Zn isotopes as a tracer of paleoproductivity. Fundamental to the application of Zn 753 

isotopes as a paleoproductivity proxy (or other type of paleoenvironmental tracer) is a better understanding 754 

of the mechanisms driving the modern upper water column distribution of δ66Zn. Future work should target 755 

coupled dissolved and particulate phase δ66Zn data, in concert with detailed biological and chemical 756 

speciation data. To date, particulate phase δ66Zn data has proved particularly challenging due to Zn being 757 

extremely contamination prone. 758 

We recommend revisiting existing archive data in the context of modern seawater δ66Zn data. In general, 759 

we encourage that the future interpretation of Zn/Si, Zn/Ca, Zn-TOC and δ66Zn data be made within a 760 

mechanistic framework, via careful sequential extraction procedures, application of appropriate micro-761 

analytical techniques (e.g., LA-ICP-MS, nano-SIMS, µ-XAFS), and further experimental and theoretical 762 

work. 763 

We note that there are systematic variations in sedimentary Zn isotope compositions on Gyr timescales. For 764 

example, Isson et al. (2018) reported δ66Zn of black-shale associated Zn spanning ~3.5 Gyr, as well as 765 

bitumen and kerogen spanning the last 1.5 Gyr. The black shale record shows a shift from UCC-like values 766 

(centered on ≈+0.4 ‰) to more marine-like δ66Zn (centered on ≈+0.6 ‰) around 800 Ma, which the authors 767 
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interpret as evidencing a transition to a more eukaryote-dominated marine ecosystem. While this feature is 768 

consistent with the higher affinity of eukaryotes for Zn compared to prokaryotes (Dupont et al., 2006; 2010), 769 

there remains considerable uncertainty regarding the influence of Earth’s overall redox state on marine Zn 770 

isotope systematics. 771 

In carbonates, Yan et al. (2019) compile three δ66Zn datasets from contemporaneous Ediacaran (635 Ma, 772 

Marinoan) post-glacial cap carbonates (Kunzmann et al., 2013; John et al., 2017; Lv et al., 2018), which 773 

show systematic changes in Zn isotope compositions over this period of marked global change. Similarly, 774 

Sweere et al. (2018) present data showing marked shifts in carbonate-bound Zn isotope compositions in 775 

several geological sections spanning a Cretaceous ocean anoxic event (OAE 2). As yet, there is no 776 

consensus on the drivers of these intriguing isotopic shifts, but these and similar records serve to motivate 777 

the future of Zn isotope research. 778 

779 
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780 

781 

The distribution of Cu in the ocean has been described as ‘hybrid-type’, because it is intermediate between 782 

nutrient- and scavenged-type elements (Bruland & Lohan, 2003). Depth profiles of dissolved Cu typically 783 

show approximately linear increases in concentration with depth (e.g., Boyle et al., 1977). Surface dissolved 784 

Cu concentrations are typically about 0.5 to 1 nmol kg , compared to deep Atlantic concentrations of ~2.5 785 

nmol kg  and deep Pacific concentrations of ~4 nmol kg-1 (Fig. 9). The distribution of dissolved Cu has 786 

been attributed to a combination of biological uptake and remineralization, benthic flux from sediments 787 

(e.g., Boyle et al., 1977; Roshan & Wu, 2015a; Little et al., 2018), and/or reversible scavenging (Little et 788 

al., 2013; Richon et al., 2019). These processes are superimposed on the first-order distribution established 789 

via the physical ocean circulation (Roshan & Wu, 2015a). 790 

791 
792 
793 
794 

 795 

 796 
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Copper isotopes are reported as relative to the NIST SRM 976 standard, though due to a shortage of this 797 

material, two other certified reference standards are now available: ERM-AE633 (δ65CuSRM976 = −0.01±0.05 798 

‰) and ERM-AE647 (δ65CuSRM976 = +0.21±0.05 ‰; Moeller et al., 2012; Moynier et al., 2017). For 799 

consistency and ease of comparison, Moynier et al. (2017) recommend that future data be reported relative 800 

to NIST SRM 976. We adopt this convention. The analysis of Cu isotopes in seawater is challenging, due 801 

to both Cu’s strong organic complexation, and only two isotopes precluding the use of a double spike 802 

technique (reviewed in Little et al., 2018). The data presented to date indicate that deep seawater δ65Cu 803 

values are isotopically heavy (at about +0.7 ‰) compared to the upper continental crust (UCC; at about 804 

+0.1 ‰; Table 1; Moynier et al., 2017). Lighter Cu isotope compositions in the upper water column and 805 

along margins are thought to reflect local sources of isotopically light Cu (e.g., aerosols, riverine 806 

particulates, sediments; Takano et al., 2014; Little et al., 2018). 807 

808 

809 

810 
811 
812 
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813 

814 

Copper is bioessential, but cellular Cu contents are approximately 2–10 fold lower than the micronutrients 815 

Fe and Zn (Twining & Baines, 2013). The redox-active behaviour of Cu (existing as Cu2+ or Cu+ in 816 

biological systems) enables its role in electron transport, for example in the Cu-containing proteins 817 

plastocyanin and cytochrome c oxidase (Ridge et al., 2008). Copper uptake of some Fe-limited 818 

phytoplankton may increase, either due to the replacement of Fe-containing with Cu-containing enzymes 819 

(e.g., Peers and Price, 2006), or the involvement of Cu in the high-affinity Fe uptake systems (Annett et al., 820 

2008; Maldonado et al., 2006; Guo et al., 2012). Despite its biological function, Cu is also extremely toxic 821 

due to the formation of reactive oxygen species, which pose a threat to DNA, lipids, and proteins (Ridge et 822 

al., 2008). Copper toxicity thresholds vary by phytoplankton group, with smaller organisms generally more 823 

sensitive than larger ones (e.g., cyanobacteria cf. diatoms; Brand et al., 1986), and coastal strains more 824 

resistant than open ocean strains (e.g., Peers et al., 2005).  825 

A small number of studies have investigated Cu isotope fractionation during cellular uptake or cell surface 826 

adsorption by microorganisms (Pokrovsky et al., 2008; Navarrete et al., 2011; Cadiou et al., 2017; Coutaud 827 

et al., 2018; 2019). The results of these experiments are somewhat variable, with enrichment of either light 828 

or heavy Cu isotopes observed during assimilation and adsorption. However, assimilation in culture 829 

generally favours light Cu isotopes (Navarrete et al., 2011; Cadiou et al., 2017; Fig. 10). The complexity in 830 

Cu isotopic behaviour has been attributed to small changes in Cu speciation or redox during uptake and/or 831 

release of Cu (Coutaud et al., 2018; 2019). 832 

 833 

834 

In seawater, the vast majority of Cu is complexed to strong organic ligands (more than 99.8% complexed 835 

in surface northeast Pacific), which lower free Cu2+ concentrations to below toxic levels (e.g., Coale & 836 

Bruland, 1988; 1990; Moffett & Dupont, 2007). It is thought that ligands are primarily produced by biota 837 

for the purpose of detoxification (e.g., Moffett et al., 1990; Moffett & Brand, 1996), albeit recent work 838 

suggesting that strongly complexed Cu is bioavailable to some eukaryotes, which appear to have a higher 839 

cellular Cu requirement (and higher thresholds of Cu toxicity) than prokaryotes (Semeniuk et al., 2009; 840 

2015).  841 
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Both theory and experiments predict preferential complexation of heavy isotopes by strong organic ligands 842 

(Sherman, 2013; Fujii et al., 2013; Ryan et al., 2014; Sherman et al., 2015), and organic complexation is 843 

thought to play a key role in the modern oceanic budget and distribution of Cu isotopes (Vance et al., 2008; 844 

Little et al., 2014a; Thompson & Ellwood, 2014; Takano et al., 2014; Little et al., 2018). The small pool of 845 

non-complexed Cu2+ in seawater is thus expected to be isotopically light (e.g., Little et al., 2014b, 2018). 846 

Based on a surface complexation model with the phyllomanganate birnessite, the principal scavenging 847 

phase of divalent trace metals in oxic sediments, Sherman & Peacock (2010) calculated that the 848 

concentration of dissolved Cu in deep waters should be orders of magnitude lower than is actually observed. 849 

They attribute this difference to the chelation of “essentially all dissolved Cu” by organic ligands (Sherman 850 

& Peacock, 2010), consistent with observations (e.g., Moffett & Dupont, 2007; Heller & Croot, 2015; 851 

Jacquot & Moffett, 2015). Nevertheless, some form or forms of scavenging are also thought to play a role 852 

in the oceanic Cu distribution. 853 

Reversible scavenging, a term used to describe the equilibrium between a scavenged and dissolved metal 854 

pool, has been proposed as the driving process behind the generally monotonic, linear increases in dissolved 855 

[Cu] depth (Little et al., 2013; Richon et al., 2019; Fig. 9). In some regions with high particulate loads (e.g., 856 

some hydrothermal plumes, benthic nepheloid layers), scavenging removal of Cu has been observed 857 

(Jacquot and Moffett, 2015; Roshan & Wu, 2015a). Preferential scavenging of light Cu isotopes by 858 

particulate (e.g., oxyhydroxide) phases has also been proposed as an explanation for isotopically heavy 859 

seawater Cu isotope compositions (e.g., Takano et al., 2014), though the driving mechanisms leading to 860 

isotopically light particulate Cu remain to be fully established (see section 5.3; Fig. 10). 861 

The shorter residence time of Cu (2-3.3 kyr; Little et al., 2017b), compared to metals with longer residence 862 

times (e.g., Cd, Zn, Ni), mean that, as for Fe, regional and local sources of Cu to the ocean play a relatively 863 

larger role in determining dissolved Cu distributions than for some other TEIs. Sources of Cu include 864 

aerosols (both natural and anthropogenic; e.g., Takano et al., 2014; Yang et al., 2019), benthic fluxes from 865 

sediments (e.g., Boyle et al., 1977; Heller & Croot, 2015; Roshan & Wu, 2015a; Little et al., 2018), and 866 

dissolved or particulate riverine sources (e.g., Vance et al., 2008; Little et al., 2018; Richon et al., 2019). A 867 

possible small hydrothermal source has been identified in the South Pacific from the East Pacific Rise 868 

(Roshan & Wu, 2018), which is in contrast to the scavenging removal of Cu observed around hydrothermal 869 

vents elsewhere (e.g., Jacquot and Moffett, 2015).  870 
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871 

872 

Copper’s shorter residence time relative to Cd, Zn and Ni also means that the Southern Ocean and wider 873 

physical ocean circulation play a somewhat smaller role in oceanic Cu and δ65Cu distributions compared to 874 

many of the other TEIs discussed herein. Nonetheless, the imprint of circulation is evident in certain 875 

circumstances, such as in the Atlantic and the upper 2 km of the South Pacific where dissolved Cu is 876 

correlated with dissolved silicate (Roshan & Wu, 2015a; 2018; Little et al., 2018). 877 

  878 

879 

880 

Ferromanganese sediments (crusts and nodules) exhibit Cu isotope compositions of +0.3 to +0.5 ‰ 881 

(Albarède, 2004; Little et al., 2014). This means that, on average, Fe–Mn sediments are approximately 0.35 882 

‰ lighter than deep seawater, which averages +0.7 ‰ (Fig. 11). The explanation for this offset is uncertain, 883 

but may reflect either strong organic complexation of Cu in seawater (Little et al., 2014b), or the enrichment 884 

of light Cu isotopes on the birnessite mineral surface, as recently observed in inorganic experiments 885 

whereby sorbed Cu exhibited δ65Cu that was 0.45±0.18 ‰ lighter than cu in solution (Ijichi et al., 2018). 886 

At equilibrium in seawater, however, the strong complexation and mineral sorption effects should be 887 

additive, leading to a much larger isotopic offset than the ~0.35 ‰ observed, suggesting that one of the two 888 

effects is not expressed in nature for reasons as yet unclear.  889 

Little et al. (2014a) observed no marked changes in deep-ocean δ65Cu recovered from three Fe–Mn crusts 890 

from each of the major ocean basins over the last ~20 Ma. Assuming Cu diffusion is slower than crust 891 

growth rate, the lack of Cu isotope variation indicates that, on a global basis, the marine Cu cycle has been 892 

in isotopic steady state for at least 20 Myr (Fig. 10). 893 

 894 

ESSOAr | https://doi.org/10.1002/essoar.10504252.1 | Non-exclusive | First posted online: Fri, 11 Sep 2020 06:48:45 | This content has not been peer reviewed. 



 

 895 

896 
897 
898 
899 
900 
901 

  902 

ESSOAr | https://doi.org/10.1002/essoar.10504252.1 | Non-exclusive | First posted online: Fri, 11 Sep 2020 06:48:45 | This content has not been peer reviewed. 



 

903 

Qualitative arguments for high organic matter fluxes (i.e., higher paleoproductivity) have been made based 904 

on elevated Cu and Ni concentrations in ancient organic-rich sediments (e.g., Tribovillard et al., 2006). This 905 

approach is supported by positive correlations between Cu and Ni with TOC in modern continental margin 906 

sediments (Sec. 9.3). Applying this [metal]–TOC approach to study past productivity has three 907 

prerequisites: 908 

1. Organic matter is the primary vector supplying the TE to sediments; 909 

2. Sediments are reducing, and must remain reducing during diagenesis and burial (note that this 910 

differs for Ba, since BaSO4 preservation requires more oxidizing conditions; Sec. 8); 911 

3. The system is open marine 912 

A significant challenge to this approach for Cu (as well as Zn, Cd, Mo, and other chalcophile elements) is 913 

its reactivity towards sulfide, as illustrated by the quantitative removal of Cu from the euxinic Black Sea 914 

water column and resultant enrichment in underlying sediments (Tankéré et al., 2001; Little et al., 2015). 915 

Thus, for Cu, prerequisite number (1), that the metal is primarily supplied to sediment associated with 916 

organic matter, is not fulfilled. We return to this approach for Ni in Sec. 9.3.2. 917 

Authigenic Cu in modern organic-rich sediments is generally similar in isotopic composition to Fe–Mn 918 

sediments and suspended particulate material collected from the South Atlantic, all at about +0.3‰ (Little 919 

et al., 2017b; 2018; Ciscato et al., 2019). This homogeneity in authigenic Cu isotope compositions has been 920 

suggested to reflect an equilibrium isotope fractionation in the aqueous phase between organically 921 

complexed Cu and inorganic Cu2+, with the latter approximately 0.4‰ lighter than ligand-bound Cu, 922 

followed by near quantitative scavenging of inorganic Cu2+ by (any type of) particulate material (Little et 923 

al., 2017b; 2018). If correct, this hypothesis suggests that authigenic Cu isotope compositions in marine 924 

sediments may reflect the evolution of organic complexation on geological timescales. 925 

Ciscato et al. (2018; 2019) developed a new approach to isolate TEIs associated with two different fractions 926 

in organic-rich sediments, the ‘organic-pyrite fraction’ (OPF) and ‘HF-digestible fraction’ (HFD). They 927 

find that the OPF of modern Peru margin sediments typically contains >50 % of total Cu and is variably 928 

isotopically light compared to bulk authigenic Cu. They suggest this signature reflects incomplete 929 

sulfidation under variable water column and sedimentary redox conditions (e.g., Bianchi et al., 2018). 930 

Unlike in modern sediments, in ancient shales (ranging in age from 0.4 to 3.4 Ga) bulk Cu concentrations 931 

do not correlate with TOC and >80% of Cu is hosted in the HFD fraction. In addition, the OPF fraction in 932 

ancient shales is markedly isotopically heavier than it is in modern sediments (Ciscato et al., 2019). This 933 

ESSOAr | https://doi.org/10.1002/essoar.10504252.1 | Non-exclusive | First posted online: Fri, 11 Sep 2020 06:48:45 | This content has not been peer reviewed. 



 

difference between modern and ancient Cu partitioning may reflect diagenetic or metamorphic processing, 934 

or it may be a primary feature relating to differences in the Cu isotope composition of seawater, or 935 

differences in the mechanism(s) of Cu sequestration into sediments. 936 

  937 

938 

Despite the biological importance of Cu, the modern biogeochemical cycle of Cu suggests there is no clear 939 

route to developing Cu isotopes (or Cu concentrations) as a paleoproductivity proxy. However, organic 940 

ligands play a key role in the cycling of Cu and Cu isotopes, suggesting potential for the use of Cu isotopes 941 

in tracing the evolution of organic complexation on geological timescales. Additionally, careful sequential 942 

extraction procedures, such as those described by Ciscato et al. (2019), may allow for the direct probing of 943 

past seawater properties, such as redox state. 944 

At present, there are few applications of Cu isotopes to study ancient biogeochemical cycles. Interestingly 945 

however, there are two black shale records that indicate a shift from UCC-like to heavy Cu isotope values 946 

across the Great Oxidation Event (GOE, ~2.4 Ga; Chi Fru et al., 2016; Ciscato et al., 2019). Chi Fru et al. 947 

(2016) interpreted this shift as reflecting the onset of oxidative weathering and waning of iron formation 948 

deposition, with the latter process driving pre-GOE seawater isotopically light due to the preferential 949 

scavenging of heavy Cu isotopes to Fe oxides. However, a recent analysis of two classic pre-GOE sequences 950 

containing iron formations do not support this earlier hypothesis, with δ65Cu remaining close to 0 ‰ 951 

(Thibon et al., 2019). Thus, while the limited available data preclude confident interpretations, there are 952 

tantalizing tastes of future research directions in Cu isotope geochemistry. 953 

 954 

 955 

 956 

 957 

 958 
 959 
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960 

Dissolved cadmium (Cd) concentrations closely correlate with the macronutrient phosphate in the oceans 961 

(PO4
3−; e.g., Boyle et al., 1976; Bruland, 1980). The nutrient-like properties of Cd—and attendant 962 

correlations with PO4
3−—have been documented in multiple ocean basins and in multiple dimensions (i.e., 963 

vertically, spatially, and temporally). This overall behavior implies that Cd somehow participates in marine 964 

biological processes and that the resulting distribution captured by sediments can be connected to 965 

underlying patterns of primary productivity. Recently, results from the GEOTRACES program have 966 

highlighted new nuances to this cycle that act to decouple phosphate and Cd in certain situations, which 967 

affect the interpretation of Cd distributions in the modern ocean as well as in the sedimentary record. 968 

Accordingly, this section will review the first-order features of marine Cd (and Cd isotope) distributions, 969 

discuss known driving mechanisms, highlight recent progress on identifying suitable sedimentary archives, 970 

and offer recommendations for future studies. 971 

 972 

973 

Away from major upwelling regions, surface water dissolved Cd concentrations are typically between 1–974 

100 pmol kg−1, but can reach as low as 30 fmol kg−1 (Schlitzer et al., 2017; Fig. 12). The majority of this 975 

small surface inventory is thought to be complexed by strong organic ligands (e.g., Bruland, 1992; Ellwood, 976 

2004). In intermediate and deep waters, dissolved Cd concentrations are significantly elevated relative to 977 

surface waters, ranging from 0.5 nmol kg−1 in intermediate and deep waters in the north Atlantic to ≈1.2 978 

nmol kg−1 in the oldest deep waters of the north Pacific (Schlitzer et al., 2018). As with Zn (Sec. 4.), the 979 

overall distribution of dissolved Cd throughout the oceans is driven principally by biological and physical 980 

processes in the Southern Ocean, and the lateral circulation of Southern Ocean water masses (e.g., Baars et 981 

al., 2014; Middag et al., 2018; Sieber et al., 2019a). Thus, the shape of vertical Cd concentration profiles at 982 

lower latitudes arises largely from horizontal transport and mixing of high-Cd Southern Ocean-sourced 983 

water masses, with a modest contribution from regeneration of sinking particles (i.e., 5–40 %; Middag et 984 

al., 2018). These processes result in Cd having ‘nutrient-type’ one dimensional water column profiles, with 985 
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a progressive increase in intermediate- and deep-water [Cd] along the pathways of meridional overturning 986 

circulation (e.g., de Baar et al., 1994; Middag et al., 2018). 987 

 988 

989 

990 
991 
992 
993 
994 
995 
996 

 997 

 998 

The past decade has seen an explosion in the number of studies employing Cd stable isotopes to investigate 999 

marine Cd cycling. The majority of extant Cd isotope data are reported relative to the NIST SRM 3108 1000 

standard, though several earlier studies, reviewed by Rehkämper et al. (2012), were reported relative to 1001 

other in-house materials. Cross-calibration of these materials is described in detail by Abouchami et al. 1002 

(2013). While the earliest study of Cd isotope variations in seawater was unable to unambiguously identify 1003 

systematic patterns in the water column, the authors noted that cultures of phytoplankton preferentially 1004 
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incorporated isotopically-light Cd relative to the media (Lacan et al., 2006). Assuming biological processes 1005 

were responsible for Cd uptake, this observation led to two key predictions for marine Cd isotope 1006 

systematics: that Cd-depleted surface waters should exhibit isotopically ‘heavier’ compositions than Cd-1007 

replete deep waters; and, that the degree of isotopic fractionation should be proportional to the extent of Cd 1008 

removal into particles. Indeed, this is precisely the pattern that was first reported by Ripperger et al. (2007).  1009 

Subsequent studies have corroborated this general one-dimensional pattern in the Southern (e.g., 1010 

Abouchami et al., 2011; 2014; Xue et al., 2013; Sieber et al. 2019a), Atlantic (e.g., Xue et al., 2012; Conway 1011 

& John, 2015a; Xie et al., 2017; Xie et al., 2019a), Arctic (Zhang et al., 2019), and Pacific Oceans (Yang 1012 

et al., 2012; Yang et al., 2014; Conway & John, 2015b; Janssen et al., 2017; John et al., 2018; Yang et al., 1013 

2018; Xie et al., 2019b; Sieber et al., 2019b). These studies have shown that the deep ocean (>500–1,000 1014 

m) is largely homogenous in Cd isotope composition (δ114Cd of +0.2 to +0.3 ‰). This deep water δ114Cd 1015 

value is heavier than the upper continental crust δ114Cd signature of ~0‰ (Schmitt et al., 2009a), similar to 1016 

that observed for other metals such as Zn, Ba, and Ni (Sections 4, 8, and 9.). Intermediate-depth waters 1017 

relating to water masses such as Antarctic Intermediate Water (AAIW) exhibit slightly heavier δ114Cd 1018 

values (+0.4 to +0.5 ‰), while surface waters generally exhibit heavier isotopic compositions (up to 1019 

~+1‰). As for Cd concentrations, these one dimensional δ114Cd profile shapes arise largely from the 1020 

combination of Southern Ocean biological processes and lateral circulation of water masses, as well as 1021 

some contribution from local surface uptake and regeneration (Abouchami et al., 2014; Sieber et al., 2019b). 1022 

Some studies have reported δ114Cd values of up to +5 ‰ in surface waters of the northern hemisphere gyres 1023 

(Ripperger et al., 2007; Xue et al., 2012; Conway & John, 2015a; 2015b), while others have reported more 1024 

muted fractionation or even a switch to lighter than deep-ocean compositions in surface waters (Gault-1025 

Ringold et al., 2012; Xie et al., 2017; Janssen et al., 2017; Xie et al., 2019a; George et al., 2019; Sieber et 1026 

al., 2019b; Xie et al., 2019). The origin of these extreme δ114Cd values remains ambiguous.  1027 

Overall, although the first-order distributions of dissolved Cd concentration and isotope composition in 1028 

surface waters are consistent with intense cycling by biological processes, this range of observations 1029 

suggests that the processes influencing surface Cd isotope compositions may be more complex. For 1030 

example, interactions with ligands, effects arising from recycling of organic matter, differences in 1031 

fractionation factor between different organisms, and supply of Cd from external Cd sources may all 1032 

influence surface water dissolved δ114Cd. This raises three related questions to be addressed in the remainder 1033 

of this section: What are the candidate biological processes that drive these patterns? How do other physical 1034 
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or chemical processes play a role in setting marine Cd distributions? Can Cd-based reconstructions of these 1035 

processes be used to inform on past productivity? 1036 

 1037 

1038 

1039 
1040 
1041 

1042 

1043 

1044 

As noted above, the nutrient-like distribution of Cd implies intense biological cycling in seawater, even 1045 

though Cd is considered toxic (e.g., Waldron & Robinson, 2009). This dichotomy has inspired a significant 1046 

body of research investigating the role that Cd plays in microbial physiology. These studies showed that 1047 

Cd uptake by marine microbes exhibits three noteworthy dependencies. First, cellular Cd quotas are 1048 

strongly positively correlated with the Cd content of their environment, both in culture (see compilation by 1049 

Twining & Baines, 2013) and from oceanographic data (Middag et al., 2018). Second, microbial Cd uptake 1050 
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is diminished when the concentration of other divalent cations increases, particularly so for Fe, Mn, and 1051 

Zn. Likewise, lower concentrations of these divalent cations cause increases in Cd uptake (e.g., Sunda & 1052 

Huntsman, 2000; Cullen et al., 2003). Some diatoms have even shown capacity to substitute much of their 1053 

metabolic Zn requirements with Cd (Price & Morel, 1990). Third, Cd uptake is also influenced by speciation 1054 

of inorganic carbon, with low pCO2 promoting higher cellular Cd quotas (e.g., Cullen et al., 1999; Cullen 1055 

& Sherrell, 2005; de Baar et al., 2017). The connection between Cd and carbon speciation is particularly 1056 

intriguing given the discovery of the ζ-class of carbonic anhydrase that can utilize Cd (or Zn) as the catalytic 1057 

metal (e.g., Lane et al., 2005; Xu et al., 2008).  1058 

Despite these dependencies, the extent to which active physiological utilization of Cd controls global 1059 

patterns of Cd uptake is unclear. For example, genes encoding the ζ carbonic anhydrase metalloenzyme 1060 

were not found in green algae nor coccolithophores, and were similarly absent from many species of diatom 1061 

(Park et al., 2007). Thus, it is similarly plausible that some part of the biological Cd cycle is driven by 1062 

organisms inadvertently removing Cd from seawater while attempting to source other metals (e.g., Boyle, 1063 

1988b; Horner et al., 2013), or that microbes require Cd to populate other Cd-centered metalloenzymes that 1064 

await discovery.  1065 

The role of microbial physiology in mediating Cd isotope fractionation is comparatively understudied. 1066 

Despite this, it appears that biological fractionation of Cd isotopes is ubiquitous; fresh- (Lacan et al., 2006) 1067 

and saltwater (John & Conway, 2014) green algae, incubations of unfiltered seawater (Xue et al., 2012), 1068 

heterotrophic bacteria (Horner et al., 2013), and shallow marine particles (e.g., Yang et al., 2015; Janssen 1069 

et al., 2019) all indicate that biological particles accumulate isotopically-light Cd from their environment 1070 

with a fractionation between −0.3 to −0.8 ‰ (Fig. 13). How—and perhaps even whether—this range of 1071 

offsets is related to environmental context, experimental setup, species, or specific microbial functions is 1072 

unknown.  1073 

 1074 

1075 

The role of chemical processes in mediating global Cd distributions is the most under-constrained. Recent 1076 

studies suggested that pelagic partitioning of Cd into sulfides in oxygen-minimum zones may be a 1077 

significant loss term (Janssen et al., 2014; Bianchi et al., 2018; Plass et al., 2020). Moreover, the Cd isotope 1078 

effect associated with sulfide precipitation identified by Guinoiseau et al. (2018) is consistent with field 1079 

data, and particulate Cd is known to accumulate more rapidly in sediments that are bathed by bottom waters 1080 

containing low dissolved oxygen (e.g., van Geen et al., 1995; Sec. 6.3; Fig. 13). Collectively, these 1081 
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observations suggest a potential redox sensitivity in sedimentary Cd isotope distributions that deserves 1082 

additional scrutiny. Indeed, the influence of sediments as the most important marine Cd sink can be seen in 1083 

some water column profiles of δ114Cd (Xie et al., 2019b). Similarly, data from the hydrothermal TAG site 1084 

in the North Atlantic suggests that hydrothermal plumes may scavenge Cd from seawater, constituting a 1085 

small sink of isotopically-light Cd, though this does not have an observable effect on deep ocean δ114Cd 1086 

values outside of the plume itself (Conway & John, 2015b; Fig. 13).  1087 

Other potential sources and sinks include rivers, atmospheric deposition, and sediments; however, none of 1088 

these interfaces exhibit significant anomalies in Cd concentration or δ114Cd in GEOTRACES-era datasets. 1089 

This finding is in accord with earlier research by Martin & Thomas (1994), though there exist two possible 1090 

exceptions. The first concerns the role of atmospheric aerosols, which have been invoked to explain the Cd 1091 

isotope composition of surface waters in the Southwest Pacific (e.g., George et al., 2019) and South China 1092 

Sea (e.g., Yang et al., 2012). Modern aerosol inputs may be largely anthropogenic in origin. Anthropogenic 1093 

forms of Cd exhibit a relatively narrow range of isotopic compositions that are typically—though not 1094 

always (e.g., Shiel et al., 2010)—lighter than dust-derived Cd (e.g., Bridgestock et al., 2017). Second, 1095 

interactions with organic ligands have also been invoked to explain the relatively muted pattern of Cd 1096 

isotope fractionation in the surface of the south Atlantic Ocean (e.g. Xie et al., 2017; Guinoiseau et al., 1097 

2018), but there are as yet no corroborating field or experimental data examining the role of organic ligands 1098 

in mediating Cd isotope fractionation in seawater. 1099 

 1100 

1101 

Physical processes are similarly influential in mediating the global distribution and isotopic composition of 1102 

Cd throughout the global ocean, particularly those processes occurring in the Southern Ocean. Antarctic 1103 

Intermediate- and Bottom Waters masses possess higher dissolved [Cd]:[PO4
3−] than North Atlantic Deep 1104 

Water (e.g., de Baar et al., 1994; Middag et al., 2018). Mixing between these southern- and northern-sourced 1105 

water masses likely contributes to the well-known ‘kink’ in the Cd–PO4
3− relationship (e.g., Frew & Hunter, 1106 

1992; Elderfield & Rickaby, 2000; Quay & Wu, 2015). Why northern- and southern-sourced intermediate 1107 

and deep waters possess different dissolved [Cd]:[PO4
3−] is debated, and likely reflects regionally-distinct 1108 

fractionation of Cd and P during biological uptake (e.g., Sunda & Huntsman, 2000; Cullen et al., 2003) and 1109 

during remineralization (e.g., Baars et al., 2014; Roshan & Wu, 2015). In the Atlantic, however, the 1110 

importance of remineralization to deep water Cd budgets is of secondary significance: the ratio of 1111 

regenerated-to-preformed [Cd] is ~30 % in the mesopelagic, and generally <10 % in the deep ocean (Roshan 1112 

& Wu, 2015b; Middag et al., 2018). Given the low proportion of regenerated Cd in the deep Atlantic, the 1113 
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ratio of dissolved [Cd]:[PO4
3−] and the overall distribution of [Cd] are essentially governed by the 1114 

[Cd]:[PO4
3−] of the source waters (Middag et al., 2018) and the prevailing geometry of ocean circulation, 1115 

respectively (Boyle, 1988b). 1116 

Recent Cd isotope data from the South Atlantic (Xie et al., 2017), South Pacific (George et al., 2019; Sieber 1117 

et al., 2019a), and Arctic (Zhang et al., 2019) also support the importance of mixing in mediating deep-1118 

ocean Cd distributions, though it should be noted that the isotopic contrast between mixing end-members 1119 

is small, relative to measurement precision (e.g., Janssen et al., 2017; Fig. 12). For example, biological 1120 

uptake of light Cd in the source regions of intermediate waters in the surface Southern Ocean results in 1121 

isotopically-heavy pre-formed δ114Cd signatures being imparted to Cd-depleted intermediate water masses 1122 

(e.g., +0.45 ‰ in AAIW; +0.65 ‰ in Subantarctic Mode Water, SAMW; Xue et al., 2013; Abouchami et 1123 

al., 2014; Sieber et al., 2019b). Lateral circulation of these southern-sourced water masses then transfer this 1124 

signature northward to intermediate depths in the Atlantic and Pacific Oceans (e.g. Xue et al., 2012; 1125 

Abouchami et al., 2014; Conway & John, 2015a; Sieber et al., 2019b). This effect is more pronounced in 1126 

the North Atlantic than in the Pacific, where southward flowing NADW also carries isotopically-heavy Cd 1127 

southward at depths of 1,000–3,000m (Xue et al., 2012; Conway & John, 2015a).  1128 

 1129 

1130 

1131 

There is a long history of Cd concentration measurements in marine carbonates, particularly corals and 1132 

foraminifera, most commonly reported as Cd:Ca molar ratios. In principle, carbonates are an appealing 1133 

archive of ambient Cd chemistry since inorganic partition coefficients are 1 (e.g., Tesoriero & Pankow, 1134 

1996) and the Cd:Ca of many types of carbonate exhibit a strong proportionality with ambient dissolved 1135 

[Cd]. In practice, however, most biogenic carbonates exhibit partition coefficients closer to unity (Boyle, 1136 

1988b), and resultant Cd:Ca is also sensitive to the species (Boyle, 1992) and temperature of calcification 1137 

(e.g., Rickaby & Elderfield, 1999). As such, Cd:Ca in carbonates has found the most utility where ambient 1138 

dissolved [Cd]—and attendant carbonate Cd:Ca—exceeds several 100 pmol kg−1, such as in tracing 1139 

industrial fallout (e.g., Shen et al., 1987) or in studies of Quaternary deep ocean circulation (e.g., Boyle & 1140 

Keigwin, 1985; van Geen et al., 1992; Adkins et al., 1998; Farmer et al., 2019). 1141 

There are far fewer studies examining the Cd isotope composition of marine carbonates as tracers of 1142 

historical Cd isotope chemistry. Inorganic partitioning experiments indicate that Cd isotopes are 1143 

fractionated during incorporation into calcite by ≈−0.5 ‰ (Horner et al., 2011). The isotopic effect is 1144 
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temperature- and Mg-independent, but vanishes at low salinity. This inorganic calibration has been used to 1145 

interpret patterns of Cd isotope fractionation preserved in bulk carbonates from the Neoproterozoic Eon 1146 

(1,000–541 Ma). The variations in these sediments are interpreted as evidencing changes in biological 1147 

productivity (e.g., Hohl et al., 2017) and Cd sinks (e.g., John et al., 2017) through time. Applications of Cd 1148 

isotopes to foraminifera to study problems in Quaternary paleoceanography are precluded by the large 1149 

sample requirements; obtaining 1 ng of Cd—the minimum quantity needed for a reasonable isotope 1150 

measurement (Ripperger & Rehkämper, 2007; Schmitt et al., 2009b)—requires picking (and cleaning) of 1151 

10’s of mg of foraminiferal tests. Alleviation of such limitations awaits development of automated picking 1152 

and screening systems, or vast improvements in ion transmission efficiency for isotope ratio mass 1153 

spectrometry. 1154 

 1155 

1156 

Ferromanganese sediments have shown the most promise for recording deep-ocean Cd isotope chemistry. 1157 

Both ferromanganese nodules (Schmitt et al., 2009a) and crusts (Horner et al., 2010) reflect ambient 1158 

seawater Cd isotope compositions with negligible fractionation (Fig. 14A), consistent with Cd–Mn-1159 

oxyhydroxide partitioning experiments conducted at high ionic strength that show only minor Cd isotope 1160 

fractionation (Wasylenki et al., 2014). Cadmium is predicted to have a similar diffusivity in Fe-Mn crusts 1161 

to Hf (Horner et al., 2010), implying that long-term records are likely to exhibit some diffusive smoothing 1162 

while preserving larger variations (e.g., Henderson & Burton, 1999). As with Zn and Cu isotopes however, 1163 

time-resolved records of δ114Cd recovered from Fe–Mn crusts indicate minimal variation over the last 20 1164 

Myr, and perhaps even the Cenozoic (Fig. 14B); modeling conducted by Murphy (2016) suggests that Cd 1165 

diffusion may occur much faster than predicted by the diffusion model of Henderson & Burton (1999). If 1166 
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so, the lack of variation in δ114Cd over the Cenozoic may simply reflect a ‘resetting’ of all crust layers 1167 

toward modern deep-ocean Cd isotope compositions. 1168 

 1169 

1170 
1171 
1172 
1173 
1174 
1175 
1176 
1177 

 1178 

1179 

Organic-rich sediments are the principal sink of dissolved Cd from the modern oceans (e.g., Rosenthal et 1180 

al., 1995; van Geen et al., 1995; Little et al., 2015). A significant fraction of the total Cd in organic-rich 1181 

sediments is derived from sinking organic matter. Accordingly, the Cd content of organic-rich sediments 1182 

has been applied as a proxy for past productivity (e.g., Brumsack, 2006). However, there is also a redox 1183 

sensitivity: Cd contents are generally elevated in organic-rich sediments that are bathed by low-oxygen 1184 

waters (Fig. 15). This enrichment likely derives from three processes. First, low-oxygen environments may 1185 

limit oxidation—and thus favor preservation—of settling Cd sulfide particles formed in the water column. 1186 

Second, the chalcophile nature of Cd means that even trace levels of hydrogen sulfide may cause Cd to (co-1187 
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)precipitate. Thus, as organic matter is remineralized within the sediment column, any Cd liberated to 1188 

porewaters is proportionally more likely to re-precipitate into sulfide minerals, relative to harder metals 1189 

(and carbon), effectively ‘trapping’ remineralized Cd in sediments (e.g., Rosenthal et al., 1995). Third, 1190 

recent evidence suggests that Cd may also directly (co-)precipitate from seawater and into sediments when 1191 

plumes of hydrogen sulfide interact with bottom waters (e.g., Xie et al., 2019b; Plass et al., 2020). The 1192 

relative importance of these three processes to the O2-dependent pattern of Cd accumulation remains to be 1193 

fully elucidated. 1194 

While the contribution of organic-rich sediments to the isotopic mass balance of Cd is presently unknown, 1195 

their significance to the marine Cd budget suggests that, globally, the Cd isotope composition of these 1196 

sediments should balance the riverine flux δ114Cd ≈+0.1±0.1‰ (Lambelet et al., 2013). Alternatively, the 1197 

other minor sinks of Cd—carbonates, ferromanganese oxides, clays—must possess large isotopic offsets 1198 

relative to seawater, which seems unlikely given existing field and experimental data. Obtaining modern 1199 

calibrations of Cd isotope partitioning into organic-rich sediments should be considered a priority. 1200 

 1201 

1202 
1203 
1204 
1205 
1206 
1207 

 1208 
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1209 

The overview provided above indicates that Cd participates in marine biological processes and that its 1210 

distribution is sensitive to the biological productivity of the oceans. How this sensitivity is transcribed into 1211 

marine sediments remains uncertain, however. Additionally, there are several other processes that have the 1212 

potential to render isotope effects that require further exploration before Cd isotopes can be solely 1213 

interpreted as a productivity proxy, such as: biological fractionation effects, authigenic transformations, 1214 

and redox sensitivities. Relatedly, the fidelity of many types of marine sediment to record ambient Cd 1215 

isotope chemistry remain inadequately constrained. With these two themes in mind, we suggest several 1216 

areas for additional research that may help to address the overarching question as to whether Cd isotope-1217 

based reconstructions can be used to inform on past ocean productivity.  1218 

 1219 

1220 

Several questions persist regarding the modern Cd isotope cycle. We list five of the most pressing below 1221 

and offer possible remedies to each.  1222 

Are the ‘extreme’ (i.e., δ114Cd of + 5 ‰; Fig. 12) values seen in surface waters of the northern-1223 

hemisphere gyres real? That is, are these heavy compositions true oceanographic features that are 1224 

absent from the southern hemisphere, or do they represent analytical artifacts unique to MC-ICP-1225 

MS? This issue will require intercalibration between the two main approaches—the other being 1226 

thermal ionization mass spectrometry (TIMS)—that various groups use to measure Cd isotopes in 1227 

seawater. 1228 

To what extent do local Cd isotope compositions in surface waters reflect larger-scale processes? 1229 

Addressing this issue will require elucidating the role of organismal uptake, ligands, and mixing, 1230 

which would benefit from conducting additional experimentation with plankton, coupling of 1231 

isotope methods with electrochemistry, and numerical modeling, respectively. 1232 

Is there a ‘Redfield’ stoichiometry for Cd in organic matter? If so, what controls it? Existing culture 1233 

(Ho et al., 2003) and field (Ohnemus et al., 2017) data suggest a wide range of cellular Cd:P, which 1234 
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have been suggested as reflecting species and local supply ratios, respectively (in addition to the 1235 

aforementioned feedback interactions). Further experimentation with model organisms is needed.  1236 

Do all organisms contribute to Cd isotope fractionation in seawater? Uptake of Cd into cells is 1237 

widespread, whereas the genes encoding the ζ-class of carbonic anhydrases are not. Again, further 1238 

experimentation with marine-relevant organisms is necessary. 1239 

How are the ‘light’ Cd isotope compositions seen in suspended particles above oxygen-minimum 1240 

zones related to those putatively accumulating in sediments? Do these values relate to sulfide 1241 

precipitation and what is their influence on the global mass balance? What controls the Cd isotope 1242 

composition of these particles? Addressing these questions will require examining the Cd isotope 1243 

composition of particles from oxygen-rich oceanographic regions, identifying whether processes 1244 

associated with particle regeneration affect Cd isotope compositions, and surveying core-top 1245 

sediments.  1246 

 1247 

1248 

As with the modern cycle, several ambiguities persist, though the most pressing relates to archives. Indeed, 1249 

it appears that a major obstacle preventing the widespread application of Cd isotope-based proxies in 1250 

paleoceanography has been the lack of suitable archives.  1251 

Concerning carbonates, the main question is still whether it is possible to isolate sufficient 1252 

quantities of foraminiferal-bound Cd to reconstruct past seawater δ114Cd. Does species matter, or 1253 

can mixed assemblages be used?  1254 

For organic-rich sediments, the role of biology itself must be considered. That is, how important 1255 

might it be that different organisms exhibit different magnitudes of Cd isotope fractionation (and 1256 

Cd:C stoichiometry)? If important, how best to interpret Cd isotope records—species, evolutionary 1257 

innovations, productivity? 1258 

 1259 

1260 
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1261 

1262 

Today, Mo is one of the most abundant trace metals in seawater (Morris, 1975; Bruland 1983; Collier 1985). 1263 

Molybdenum possesses a long residence time (~440,000 yr; Miller et al., 2011), is conservative with respect 1264 

to salinity, and exhibits a uniform isotopic composition in oxygenated seawater (e.g., Barling et al., 2001; 1265 

Siebert et al., 2003). Based on 168 seawater samples from the Atlantic, Pacific, and Southern Oceans 1266 

analyzed by Nakagawa et al. (2012), the average salinity-normalized dissolved [Mo] and δ98Mo of the ocean 1267 

are 107±6 nmol kg−1 and +2.36±0.10 ‰, respectively (both values ±2 SD; Fig. 16).  1268 

 1269 

1270 
1271 
1272 
1273 
1274 

Given that no significant gradients in dissolved [Mo] are expected, there are few new open-ocean δ98Mo 1275 

data measured as part of GEOTRACES. However, dissolved [Mo] has been measured on two 1276 

GEOTRACES transects (GP16 and GA02), demonstrating four intriguing instances where [Mo] deviated 1277 
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from an otherwise conservative distribution. These instances are briefly described below and covered in 1278 

detail by Ho et al. (2018). First, the most significant dissolved [Mo] anomalies (~5 % drawdown) are 1279 

associated with intense scavenging by particulate Fe (oxy)hydroxides close to the Peruvian OMZ. Second, 1280 

dissolved [Mo] is slightly drawn down (<5 %) in some samples directly above the East Pacific Rise 1281 

hydrothermal ridge crest, again mostly likely driven by scavenging onto hydrothermally-derived Fe–Mn 1282 

oxides. Some Mo drawdown is also observed in some far-field hydrothermal samples, though the 1283 

mechanism is unclear. Third, following normalization to a salinity of 35, surface seawater shows a minor 1284 

dissolved [Mo] drawdown, implying either biological uptake or adsorption to biotic particles. Though not 1285 

a true oceanographic feature, a fourth type of dissolved Mo anomaly is also noteworthy: bottle storage 1286 

artefacts. Ho et al. (2018) found that many samples with initially low values showed an increase in dissolved 1287 

[Mo] with increasing storage time, implying a change in Mo speciation to a form that is detectable by ICP-1288 

MS. In contrast to the relative constancy of dissolved [Mo] in open ocean settings, there are a number of 1289 

studies of showing striking dissolved Mo variations in coastal and estuarine systems (e.g., Dalai et al., 2005; 1290 

Dellwig et al., 2007; Joung and Shiller, 2016; Wang et al., 2016) as well as in modern restricted settings, 1291 

such as the Black and Baltic Seas (Nägler et al., 2011).  1292 

 1293 
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 1294 

1295 
1296 
1297 

 1298 

1299 

1300 

Molybdenum is a bio-essential micronutrient required by enzymes that catalyze key reactions in the global 1301 

C, N, and S cycles (Mendel & Bittner, 2006). Importantly, Mo is a co-factor of the primary nitrogenase 1302 

enzyme complex, meaning that Mo is required for energy-efficient nitrogen fixation. Additionally, Mo is 1303 

required for over 30 other enzymes that control biologically essential redox processes (Kendall et al., 2017). 1304 

Despite its biological importance, biological activity does not appear to be a dominant process in setting 1305 

the distribution of Mo in seawater (Fig. 17), likely due to the high abundance of Mo in the modern ocean. 1306 

Results from the East Pacific Zonal Transect do, however, suggest some Mo removal by biological uptake 1307 

and/or adsorption onto biogenic particles within regions of elevated chlorophyll (Ho et al., 2018). 1308 

Experimental data indicate that biological uptake of Mo imparts a small negative isotope fractionation on 1309 

the order of 0.3 ‰ (Wasylenki et al., 2007).  1310 
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Enhanced removal of Mo from seawater in regions with high export of organic carbon likely explains some 1311 

of the non-conservative behavior observed in modern coastal regions. A significant relationship between 1312 

Mo and total organic carbon has also been observed in marine euxinic sediments (e.g. Helz et al., 1996; 1313 

Algeo & Lyons, 2006; McManus et al., 2006; Lyons et al., 2009). Furthermore, it has been shown that Mo 1314 

interactions with organic matter can control Mo cycling in both soils (Wichard et al., 2009; King et al., 1315 

2014, 2016; Marks et al., 2015; Siebert et al., 2015) and marine sediments (Wagner et al., 2017; Tessin et 1316 

al., 2019). The formation of Mo complexes containing organic ligands has been proposed as an explanation 1317 

for the correlation between sedimentary Mo and organic carbon, suggesting that organic matter may play 1318 

an important role in both the delivery and burial of Mo in sediments (Wagner et al., 2017). Accordingly, it 1319 

is possible that Mo accumulation in marine sediments is linked to export production and, more specifically, 1320 

delivery and burial of organic carbon in sediments.  1321 

 1322 

1323 

Due to the long residence time and abundance of Mo, non-conservative Mo behavior is typically localized 1324 

to areas with high particle concentrations, such as close to the continental margin, in the euphotic ocean, or 1325 

around hydrothermal vents (e.g., Goto et al., 2020). In the present oxic water column, Mo is present 1326 

primarily as the oxyanion molybdate (MoO4
2−) and Mo sorption onto Mn oxyhydroxides represents the 1327 

most significant modern Mo sink (Fig. 17; Bertine & Turekian, 1973; Scott & Lyons, 2012). Since the Fe–1328 

Mn oxide sink preferentially incorporates isotopically light Mo from seawater with an isotopic effect of 1329 

≈3.0 ‰, the fraction of Mo that is buried in Fe–Mn oxides exerts a major control over the Mo isotope 1330 

composition of seawater.  1331 

In the presence of sulfide, the oxygen atoms in molybdate are progressively substituted for sulfur, producing 1332 

particle reactive thiomolybdate species (MoO4−xSx
2−; Erickson & Helz, 2000; Vorlicek et al., 2015). 1333 

Dissolved Mo can thus be strongly drawn down in sulfidic environments, such as the Black Sea. 1334 

Importantly, this drawdown occurs with a small, but non-zero isotope effect of ≈0.5±0.3 ‰, whereby 1335 

isotopically light Mo is preferentially scavenged (e.g., Nägler et al., 2011). Thiomolybdate is also 1336 

scavenged in from sulfidic sediment porewaters leading to significant Mo accumulations within sediments 1337 

deposited in anoxic and euxinic environments (e.g., Emerson & Huested, 1991; Crusius et al., 1996; Scott 1338 

& Lyons, 2012). Long-term Mo burial is associated with Fe–S minerals (Chappaz et al., 2014; Vorlicek et 1339 

al., 2018) and/or organic matter (Dahl et al., 2017; Tessin et al., 2019), depending on the biogeochemical 1340 

conditions prevailing at a given basin.  1341 

ESSOAr | https://doi.org/10.1002/essoar.10504252.1 | Non-exclusive | First posted online: Fri, 11 Sep 2020 06:48:45 | This content has not been peer reviewed. 



 

 1342 

1343 

The residence time of dissolved Mo is significantly longer than the mixing time of the ocean (Table 1). 1344 

Thus, variations in dissolved [Mo] and δ98Mo are not influenced by the geometry of modern overturning 1345 

circulation. Whole-ocean changes in dissolved [Mo] and δ98Mo are, however, possible, and much of what 1346 

we know about such changes is gleaned from studies of the geological past, particularly during periods of 1347 

ocean anoxia. Based on this research, it has been suggested that during intervals of lower ocean 1348 

oxygenation, the ocean Mo inventory may have been low enough to limit marine primary productivity 1349 

(Anbar & Knoll, 2002; Algeo, 2004; Glass et al., 2009; Reinhard et al., 2013). This limitation has been 1350 

demonstrated in certain lake ecosystems (Goldman, 1960; Glass et al., 2012). Under strongly euxinic 1351 

conditions ([H2S]aq>11 μM), thermodynamic calculations predict that tetrathiomolybdate (MoS4
2-) becomes 1352 

the most predominant species (Erickson and Helz, 2000), which can result in quantitative Mo drawdown 1353 

from seawater into seawater with negligible isotope fractionation. Evidence from Lake Cadagno, the Black 1354 

and Baltic Seas, and seasonally anoxic fjords supports the occurrence of near-quantitative drawdown of Mo 1355 

from seawater in these environments (Neubert et al., 2008; Dahl et al., 2010; Nägler et al., 2011; 1356 

Noordmann et al., 2015). Indeed, this hypothesis is the foundation of several paleoceanographic studies that 1357 

assume that the sedimentary Mo isotopic signatures, deposited in euxinic settings, faithfully capture the 1358 

δ98Mo of oxygenated (surface) seawater and can be further interpreted in terms of the fraction of the seafloor 1359 

that is oxygenated (e.g., Kendall et al., 2015; Dickson, 2017).  1360 

 1361 

1362 

The majority of Mo paleoceanographic studies focus on the measurement of Mo concentrations and 1363 

isotopes within bulk sediments. While many applications of Mo within the sedimentary record focus on 1364 

early Earth, Mo proxies have been used to constrain environmental conditions in the Holocene (e.g. 1365 

Hardisty et al., 2016; van Helmond et al., 2018) and Pleistocene (e.g. Dean et al., 2006; Scholz et al., 2017). 1366 

However, Mo and its isotopes are predominantly used as tracers of redox conditions and not productivity. 1367 

Research on biological archives of Mo concentrations and isotopes has met with mixed results. Research 1368 

examining δ98Mo in corals indicates that corals may accurately record seawater Mo isotope concentrations 1369 

(Voegelin et al., 2009). However, follow-up studies suggested a temperature-dependent fractionation 1370 

between seawater and corals that is related to the activity of symbiotic zooxanthellae (Wang et al., 2019b). 1371 

Moreover, bivalve shell Mo:Ca ratios have been determined to have no relationship to oceanographic 1372 
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conditions (Vihtakari et al., 2017), whereas Tabouret et al. (2012) suggest a mechanism related to trophic 1373 

uptake, but not to ambient dissolved [Mo]. A third study proposed that Mo:Ca peaks in bivalve carbonate 1374 

are controlled by ingestion of phytoplankton grown on nitrate due to high concentrations of Mo associated 1375 

with nitrate reductase, indicating that bivalves may provide an archive for surface water nitrate uptake and 1376 

a potential proxy for the balance between new and regenerated productivity (Thebault et al., 2009).  1377 

 1378 

1379 

At present, it does not appear that bulk sediment δ98Mo will be useful for reconstructing biological 1380 

productivity, even though Mo is cycled by organic matter both actively (e.g., Liermann et al., 2005; 1381 

Wasylenki et al., 2007) and passively (e.g., Kowalski et al., 2013; King et al., 2018). That we see no 1382 

pathway to using Mo as a productivity tracer reflects, in part, the difficulty in disentangling biological 1383 

processes that exert relatively modest Mo isotope fractionations from those associated with thiomolybdate 1384 

transformations (Tossell, 2005), or scavenging processes that possess large fractionation effects (e.g., Mn- 1385 

or Fe-oxide scavenging; Siebert et al., 2003; Barling & Anbar, 2004; Wasylenki et al., 2008; Brucker et al., 1386 

2009; Goldberg et al, 2009; 2012). Additionally, within the modern ocean and likely within the recent 1387 

geologic past, the global ocean reservoir of Mo is too large and well mixed for biological associated 1388 

fractionations to significantly impact the global Mo isotopic composition. 1389 

The use of bulk sedimentary Mo concentrations as a proxy for export of organic carbon to the seafloor is 1390 

more promising, but numerous caveats exist. Specifically, other mechanisms for enhanced delivery, 1391 

sequestration, and burial complicate any efforts to quantitatively relate Mo enrichments to increased export 1392 

productivity (e.g., Scholz et al., 2017). Redox conditions and, in particular, the presence of sulfide in the 1393 

water column and sediment pore waters will be a primary control on Mo accumulation (e.g., Hardisty et al., 1394 

2018). Sedimentary Mo enrichments can also be produced through shuttling of Mo adsorbed to the surface 1395 

of Fe and Mn oxides to the seafloor (Algeo & Lyons, 2006; Algeo & Tribovillard, 2009; Dellwig et al., 1396 

2010; Scholz et al., 2013). At a minimum, independent constraints on water column and pore water redox 1397 

conditions using Fe speciation, other trace metals and/or fossil redox proxies are required before an 1398 

argument can be made relating Mo concentrations to export productivity. Additionally, the quantitative 1399 

relationship between Mo and organic carbon may be impacted by aqueous Mo concentrations, which may 1400 

have varied over Earth’s history, or if depositional environments become restricted (i.e., Mo drawdown 1401 

leads to a lower Mo:TOC ratio; Algeo & Lyons, 2006). Conversely, the utility of bulk sediment Mo 1402 

ESSOAr | https://doi.org/10.1002/essoar.10504252.1 | Non-exclusive | First posted online: Fri, 11 Sep 2020 06:48:45 | This content has not been peer reviewed. 



 

concentrations and isotopes may lie in constraining redox conditions to improve the interpretation of other 1403 

trace metal proxies that are more strongly controlled by primary and/or export productivity.  1404 

The most promising future avenue for Mo-based productivity proxies may emerge from fossil-specific 1405 

measurements of Mo concentrations (and perhaps δ98Mo). Currently, research has focused on large fossils 1406 

(corals and bivalves) and has led to mixed results on the utility of Mo in reconstructing productivity-related 1407 

parameters. However, analytical progress may allow for measurement of smaller sample sizes, which may 1408 

provide opportunities to explore new archives of past marine Mo geochemistry. 1409 

  1410 

 1411 

1412 
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1413 

Barium is a widely-used tracer of marine export production, past and present. This section provides an 1414 

overview of marine Ba geochemistry, focusing on driving mechanisms, palaeoceanographic applications, 1415 

and emerging insights from Ba stable isotopes. We close by suggesting several areas for additional research. 1416 

 1417 

1418 
1419 
1420 

 1421 

 1422 

1423 

The nutrient-like distribution of dissolved Ba has been documented in the literature since the 1970’s (e.g., 1424 

Wolgemuth & Broecker, 1970). However, it was not until later in the decade that the GEOSECS Program 1425 

fully revealed the three-dimensional marine distribution of Ba (e.g., Chan et al., 1976; 1977). These 1426 

geochemical ocean sections highlighted vertical, zonal, and meridional variations in dissolved [Ba] related 1427 

to the major biogeochemical and hydrographic features of the ocean. In nutrient-depleted surface waters, 1428 

dissolved [Ba] exhibits low concentrations between 35–45 nM. Similarly, nutrient-replete deep waters are 1429 
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enriched in [Ba], though typically by no more than a factor of four above surface values. The spatial 1430 

resolution of GEOSECS illustrated the importance of hydrography; [Ba] increases along the meridional 1431 

overturning circulation from ≈50 nM in deep waters of the North Atlantic, to ≈90 nM in the Southern Ocean, 1432 

up to ≈180 nM in the deep northeast Pacific (Fig. 18; Chan et al., 1976; 1977).  1433 

Though it was long suspected that the major dissolved–particulate transformation of Ba was related to the 1434 

mineral barite (BaSO4; e.g., Chow & Goldberg, 1960; Turekian, 1968), this was not confirmed until the 1435 

1980’s (e.g., Dehairs et al., 1980; Bishop, 1988). Barite crystals are now recognized as an ubiquitous 1436 

component of marine particulate matter, with up to 104 discrete, micron-sized crystals present per L of 1437 

seawater (Dehairs et al., 1980). However, the distribution of particulate BaSO4 is distinct from primary 1438 

biogenic phases that exhibit Martin-like distributions with maxima in the euphotic zone. The minimum 1439 

particulate Ba concentration is typically situated in the euphotic zone and the maximum slightly below, 1440 

usually in the upper mesopelagic (e.g., Ohnemus & Lam, 2015; Ohnemus et al., 2019). This distribution 1441 

likely reflects the fact that neither Ba nor BaSO4 are utilized for physiological processes by any of the major 1442 

marine primary producers. Particulate Ba fluxes are nevertheless strongly correlated with export 1443 

productivity in well-oxygenated environments (e.g., Bishop, 1988; Dymond et al., 1992; Francois et al., 1444 

1995; Dymond & Collier, 1996; McManus et al., 2002) and therefore sedimentary Ba abundances have 1445 

been widely used as a proxy to reconstruct past changes in ocean export production (e.g., Francois et al., 1446 

1995; Paytan et al., 1996; Paytan & Griffith, 2007 and references therein; Costa et al., 2016, Winckler et 1447 

al., 2016). 1448 

Recent studies of Ba stable isotope geochemistry have added a new dimension with which to study marine 1449 

Ba cycling. Von Allmen et al. (2010) first reported that isotopically light Ba is preferentially incorporated 1450 

into BaSO4, with a particulate–dissolved Ba-isotopic offset of ≈−0.3 ‰. The direction of this offset implies 1451 

that residual solutions, such as seawater, should exhibit Ba-isotopic compositions heavier than those of 1452 

sedimented BaSO4. This was corroborated for Atlantic seawater by Horner et al. (2015a), showing that 1453 

dissolved δ138Ba displays a mirror image of dissolved [Ba]: Ba-depleted surface water masses exhibited 1454 

‘heavy’ Ba-isotopic compositions (≈+0.6 ‰), whereas Ba-replete deep waters possessed ‘lighter’ values 1455 

≈+0.3 ‰. (Notably, all values are considerably heavier than the upper continental crust, which possesses 1456 

δ138Ba ≈ 0.0±0.1‰; Nan et al., 2018.) Similar patterns have since been corroborated in other ocean basins 1457 

(Bates et al., 2017; Hsieh & Henderson, 2017; Bridgestock et al., 2018; Geyman et al., 2019; Cao et al., 1458 

2020; Fig. 18).  1459 

These isotopic studies have yielded a number of novel insights into the marine Ba cycle. First, these data 1460 

underscore the importance of physical mixing (i.e., ocean circulation) in mediating patterns of dissolved 1461 
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δ138Ba and, by extension, [Ba]. Second, both the regression of dissolved Ba-isotopic data (Bates et al., 2017; 1462 

Hsieh & Henderson, 2017) and comparison of co-located seawater and particulates (Horner et al., 2017) 1463 

imply an average particulate–dissolved Ba-isotopic offset ≈−0.5 ‰, somewhat larger than the experimental 1464 

results reported by Von Allmen et al. (2010). Third, marine sediments—both bulk (Bridgestock et al., 2018) 1465 

and BaSO4 isolates therefrom (Crockford et al., 2019)—faithfully reflect the ≈−0.5 ‰ Ba-isotopic offset 1466 

from surface seawater. Consequently, the mean δ138Ba of globally-sedimented BaSO4 is ≈+0.1±0.1 ‰ 1467 

(Crockford et al., 2019). Since BaSO4 is the dominant oceanic output (e.g., Paytan & Kastner, 1996), these 1468 

data imply that mean isotopic composition of Ba delivered to the ocean should possess an average 1469 

composition ≈+0.1±0.1 ‰. At present however, the main Ba inputs are unable to close the marine Ba-1470 

isotopic budget: rivers, the principal Ba source to seawater, rivers, are too heavy, exhibiting compositions 1471 

generally ≥+0.2 ‰ (e.g., Cao et al., 2020; Gou et al., 2020); and, groundwater discharge, while possessing 1472 

the necessary ‘light’ composition of ≈+0.1 ± 0.1 ‰, is too small a Ba flux to balance the budget (Mayfield 1473 
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et al., in press). Thus, either the marine Ba-isotopic budget is currently out of steady state, or an additional 1474 

Ba source possessing a light isotopic composition remains to be identified. 1475 

 1476 

 1477 

1478 
1479 
1480 

 1481 

1482 

Seawater is undersaturated with respect to BaSO4 almost everywhere (Monnin et al., 1999; Rushdi et al., 1483 

2000; Monnin & Cividini, 2006). However, micro-crystalline BaSO4 is ubiquitous in the ocean. This ‘barite 1484 
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paradox’ remains an area of active research. Proposed driving mechanisms broadly fall into two categories: 1485 

‘active’ biological and ‘passive’ chemical precipitation.  1486 

 1487 

1488 

Several organisms are known to precipitate BaSO4 intracellularly, possibly for the purposes of gravitropism 1489 

(e.g., Gooday & Nott, 1982; Finlay et al., 1983). However, the organisms known to actively precipitate 1490 

BaSO4 are not abundant in seawater, nor do they constitute a significant fraction of marine primary 1491 

productivity. Likewise, acantharea—organisms that precipitate SrSO4 (celestite) tests that can contain 1492 

considerable quantities of Ba (e.g., Bernstein & Byrne, 2004)—are not necessary for driving significant 1493 

dissolved [Ba] drawdown in the ocean (Esser & Volpe, 2002) or for barite precipitation (Ganeshram et al., 1494 

2003). Thus, existing evidence does not support a significant role for active biological processes in driving 1495 

marine Ba cycling (Fig. 19).  1496 

1497 

1498 

Passive chemical precipitation is likely the major contributor to particulate BaSO4 stocks and 1499 

sedimentation. Given that seawater is largely undersaturated with respect to BaSO4, passive precipitation 1500 

is thought to occur within particle-associated microenvironments that are supersaturated with respect to 1501 

BaSO4 (e.g., Chow & Goldberg, 1960; Dehairs et al., 1987). The development of BaSO4-supersaturated 1502 

microenvironments is hypothesized to relate to the heterotrophic oxidation of organic matter (Chow & 1503 

Goldberg, 1960), whereby Ba and sulfate ions are concentrated in chemically-isolated micro-zones during 1504 

bacterially-mediated mineralization of organic matter. Once sufficient quantities of Ba and sulfate ions have 1505 

accumulated and the microenvironment becomes supersaturated, BaSO4 precipitation occurs. Thus, passive 1506 

precipitation of BaSO4 is possible even in strongly undersaturated environments with low ambient sulfate 1507 

(e.g., Horner et al., 2017). Continued mineralization destroys the microenvironment, ceasing precipitation 1508 

and exposing BaSO4 precipitates to undersaturated seawater where they begin to dissolve.  1509 

The widespread association between pelagic BaSO4 and aggregates of decaying organic matter provides 1510 

indirect support for this process (Dehairs et al., 1980; Bishop, 1988). Indeed, the peak in particulate Ba—1511 

and presumably BaSO4—abundance is found in the upper mesopelagic zone where most organic matter 1512 

mineralization occurs (e.g., Sternberg et al., 2008). Microscale mechanisms remain unresolved, however; 1513 

recent studies indicate that biofilms may play an important role accumulating Ba (e.g., Martinez-Ruiz et 1514 
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al., 2018; 2019), which can promote precipitation of BaSO4 nanoparticles from undersaturated solutions 1515 

(Deng et al., 2019).  1516 

Regardless of the precise microscale mechanism, precipitation of particulate BaSO4 is ubiquitous in the 1517 

marine realm. Given that BaSO4 precipitation renders a substantial negative isotope fractionation of ≈0.5 1518 

‰, it is highly likely that BaSO4 cycling drives much of the Ba isotope variability in the ocean (Fig. 19). 1519 

From a paleoproxy perspective, this is ideal; BaSO4 formation is related to the decay of organic matter and 1520 

not by the presence of any specific organism (e.g., Jacquet et al., 2007; Dehairs et al., 2008). Downward 1521 

transport of particulate BaSO4 is driven by aggregation with larger particles (Lam & Marchal, 2014). The 1522 

efficiency of this downward transport depends on the same biophysical processes that export organic matter, 1523 

thus connecting the export flux of BaSO4 to that of organic carbon (Fig. 19).  1524 

Barites formed in the ocean through this passive chemical pathway are commonly termed marine, pelagic, 1525 

authigenic, or biogenic. Though none of these terms are perfect descriptors of the chemical processes 1526 

involved, ‘marine’ and ‘biogenic’ are the most ambiguous and their use is discouraged; the former 1527 

encompasses all BaSO4 formed in the marine realm—including diagenetic, cold seep, and hydrothermal—1528 

whereas the latter could be taken to imply only those precipitates brought about by active biological 1529 

processes. While ‘authigenic’ is an informative descriptor, it has also been used to describe sedimentary 1530 

BaSO4 that formed via diagenetic redistribution on or below the seafloor (e.g., Torres et al., 1996). Thus, 1531 

we recommend use of the term ‘pelagic’ when describing chemically-precipitated microcrystalline BaSO4, 1532 

and encourage authors to include this definition in their works. 1533 

 1534 

1535 

Barium exhibits a nutrient-like profile in the oceans, similar to that of Si (silicic acid) and alkalinity (Fig. 1536 

18). However, the extent to which this pattern arises from non-conservative biogeochemical processes 1537 

versus physical mixing remains unresolved. Results from the GEOTRACES program are facilitating 1538 

renewed interest into this topic, which is being investigated using two complementary approaches. In the 1539 

first, biogeochemical contributions to basin-scale Ba distributions are isolated using statistical methods, 1540 

such as OMPA (Optimum Multiparameter water mass Analysis). These statistical methods showed that 1541 

mixing is dominant in the Mediterranean (Jullion et al., 2017) and North Atlantic (Le Roy et al., 2018), but 1542 

that sea ice-related processes may be important in the Arctic (Hendry et al., 2018). Second, the influence 1543 

of mixing is evidenced from emerging Ba stable isotope data. Indeed, the importance of mixing has been 1544 

documented vertically (Horner et al., 2015a), zonally (Bates et al., 2017; Bridgestock et al., 2018), and 1545 
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meridionally (Bates et al., 2017; Hsieh & Henderson, 2017). Together, these new approaches imply that in 1546 

situ biogeochemical processes exert a relatively minor influence on basin-scale Ba distributions. 1547 

 1548 

1549 

Given the connections between export production and BaSO4 fluxes, the major archive of historical changes 1550 

in Ba cycling is BaSO4 itself. Indeed, the sedimentary accumulation of BaSO4—most commonly 1551 

determined as the fraction of Ba in excess of the detrital Ba background or the deposition rate of BaSO4 1552 

itself—has been extensively used to reconstruct past changes in export production (e.g., Schmitz, 1987; 1553 

Francois et al., 1995; Paytan et al., 1996; Frank et al., 2000; Jaccard et al., 2005; Jaccard et al., 2013; Ma 1554 

et al., 2014; 2015, Costa et al. 2016, Winckler et al., 2016). An estimated 30 % of the BaSO4 microcrystals 1555 

formed in seawater are buried in oxygenated sediments (e.g. Dymond et al., 1992), a considerably higher 1556 

fraction than for organic carbon (Paytan & Kastner, 1996). However, in oligotrophic regimes where both 1557 

BaSO4 fluxes and sedimentation rates are low, prolonged exposure to undersaturated seawater results in 1558 

poor preservation (Eagle et al., 2003; Serno et al., 2014). Similarly, in high-productivity coastal upwelling 1559 

settings, sedimentary mineralization of organic matter consumes oxygen present in pore waters, driving 1560 

conditions down the redox tower and toward sulfate reduction, hampering BaSO4 preservation (McManus 1561 

et al., 1998; Paytan & Griffith, 2007; Carter et al., 2020). 1562 

Recently, the isotopic composition of Ba in bulk sediments has been investigated as a proxy for the Ba 1563 

isotope composition of the Ba source (i.e., dissolved Ba in epipelagic and upper-mesopelagic seawater). 1564 

Applications to date have explored the recovery of the biological carbon pump following the PETM (~56 1565 

Ma; Bridgestock et al., 2019) and the origin of enigmatic sedimentary BaSO4 deposited in the aftermath of 1566 

the Marinoan glaciation (~635 Ma; Crockford et al., 2019) and Great Oxidation Event (~2,000 Ma; 1567 

Hodgskiss et al., 2019). Proceedings from recent geochemistry conferences indicate that many more 1568 

investigations are underway. 1569 

Lastly, the amount—and, more recently the isotopic composition (e.g., Hemsing et al., 2018; Geyman et 1570 

al., 2019; Liu et al., 2019)—of Ba in marine carbonates has been extensively used to reconstruct the Ba 1571 

content of past environments. These studies are not discussed here as they only indirectly relate to 1572 

productivity, and instead pertain primarily to reconstructing ocean circulation and/or terrestrial runoff.  1573 

 1574 
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1575 

Barium exhibits several nutrient-like properties. Dissolved Ba distributions resemble those of other 1576 

nutrients and particulate abundances are intimately associated with the processes of organic carbon 1577 

remineralization and export. Despite these connections, several aspects of Ba cycling—both in the modern 1578 

and past oceans—remain unresolved. We suggest several areas for additional research that will help widen 1579 

the applicability of Ba-based proxies in paleoceanography.  1580 

 1581 

1582 

Several questions persist regarding the modern Ba cycle. Below we list three and offer possible remedies 1583 

to each. 1584 

To what extent do the similar distributions in [Ba], [Si], alkalinity, and [226Ra] reflect true 1585 

biogeochemical coupling versus passive physical mixing? As noted above, statistical analysis of 1586 

Ba (and Si, Ra) distributions in regions will offer valuable insights, particularly if conducted in 1587 

regions with weaker overturning circulation. Likewise, additional profiles of dissolved Ba isotope 1588 

distributions will enable quantification of mixing relationships. 1589 

Closing the Ba-isotopic mass balance of the ocean. This will require detailed evaluation of other 1590 

putative Ba sources, such as hydrothermal vents, cold seeps and other benthic sources (e.g., 1591 

Hoppema et al., 2010), atmospheric deposition, and the importance of estuarine enhancement of 1592 

riverine Ba fluxes (e.g., Hanor & Chan, 1977; Edmond et al., 1978) as well as Ba fractionation 1593 

associated with other phases like the adsorption on Fe-Mn oxyhydroxides. 1594 

What is the mechanism of BaSO4 precipitation? While the microenvironment-mediated model 1595 

appears most likely, the (bio)chemical mechanisms of precipitation remain ambiguous: How and 1596 

from what are Ba and sulfate ions liberated during bacterial mineralization? How are they 1597 

accumulated? Do different substrate organisms and/or heterotrophic communities influence the 1598 

amount of BaSO4 precipitated? Addressing these questions will require additional field and 1599 

laboratory studies, which can then be compared against distributions of particulate BaSO4 in the 1600 

ocean interior. Depending on their importance, these nuances may require ecological 1601 

parameterizations in numerical models of Ba cycling. 1602 

Narrowing estimates of the fractionation factor between BaSO4 and seawater. Existing laboratory 1603 

studies place this estimate ≈ −0.3 ‰, whereas a wide-range of field data suggest that it is 1604 

considerably larger at ≈−0.5 ‰. Accounting for this ≈ 0.2 ‰ difference is both important and 1605 
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justifies additional experimentation, as it indicates incomplete understanding of the processes that 1606 

fractionate Ba isotopes in the marine realm. 1607 

 1608 

1609 

As with the modern cycle, several ambiguities persist. Assuming that BaSO4 remains the preferred archive 1610 

of past Ba cycle variations, the most pressing relates to diagenesis.  1611 

What is the effect of early diagenesis on the Ba isotope composition of sedimentary BaSO4? 1612 

Likewise, do diagenetic BaSO4 retain any primary Ba isotope information? Assessing these 1613 

questions will require studies of co-located BaSO4 and porewaters from environments at various 1614 

stages of early diagenesis. Answering these questions is critical in establishing the validity of Ba 1615 

isotopes in barite as a paleoceanographic proxy.  1616 

Are BaSO4 accumulation rates impacted by ambient [Ba]? Related to the question concerning 1617 

BaSO4 precipitation mechanisms above, it is presently unknown if the quantity of BaSO4 yielded 1618 

by remineralization is impacted by ambient [Ba]—does more BaSO4 precipitation occur at higher 1619 

ambient [Ba]? Likewise, to what extent does BaSO4 preservation depend on ambient [Ba]? These 1620 

considerations are significant when considering longer-term records, particularly when marine 1621 

sulfate levels were lower-than-modern (and [Ba] presumably higher; e.g., Hanor, 2000; Wei & 1622 

Algeo, in press). Finally, does the seawater temperature at the depth of POC mineralization impact 1623 

the relationship between POC and barite formation? These questions are best addressed through a 1624 

combination of experimentation (e.g., cultures, precipitation), field studies in basins with large 1625 

gradients in [Ba], and numerical experiments incorporating saturation state modeling.  1626 
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1627 

1628 

Nickel has a classic nutrient-type distribution in the oceans with one unusual feature; surface dissolved Ni 1629 

concentrations never drop below around 1.8–2 nmol kg-1 (e.g., Sclater et al., 1976; Bruland, 1980; Fig. 20). 1630 

There is evidence, however, that this residual pool in surface waters is not bioavailable, as summarized 1631 

recently by Archer et al. (2020). Deep water dissolved Ni concentrations are 4–5 nmol kg−1 in the Atlantic, 1632 

and ~9 nmol kg−1 in the north Pacific (Fig. 20). 1633 

 1634 
1635 
1636 
1637 
1638 
1639 

Developing robust analytical protocols for analyzing Ni isotopes for a range of sample matrices has proven 1640 

somewhat more challenging than for some of the other TEIs discussed here due to the difficulty in 1641 

separating Ni from interfering elements (e.g., Fe, a major isobaric interference on 58Ni). Chemical 1642 

purification protocols now use a sequence of resins including anion exchange (e.g., AG MP-1M or AG1-1643 
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X8, Bio-Rad) and either a Ni-specific resin (containing dimethylglyoxime) or Nobias PA-1 (Hitachi High 1644 

Technologies; e.g., Cameron et al., 2009; Gueguen et al., 2013; Wang et al., 2019a; Yang et al., 2020). The 1645 

limited data subsequently reported for the oceanic dissolved pool of Ni is isotopically homogeneous at 1646 

depth (δ60Ni ≈+1.3 ‰), with a small shift towards heavier values (up to +1.7 ‰) in the upper water column 1647 

(Takano et al., 2017; Wang et al., 2019a; Yang et al., 2020; Archer et al., 2020). The latter is proposed to 1648 

reflect a small kinetic isotope fractionation during biological uptake. Similar to Zn, Cu, Cd, Mo, and Ba, 1649 

the isotopic composition of Ni in seawater is isotopically heavy compared to the UCC (Table 1). 1650 

 1651 

1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 

 1660 
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1661 

1662 

To date, eight Ni-based enzyme systems have been identified (Ragsdale, 2009), including urease, which is 1663 

key to the global nitrogen cycle, and methyl-CoM reductase, which catalyses the production of all 1664 

biologically generated methane on Earth. The obligate requirement of methanogens for Ni has led to interest 1665 

in developing Ni and Ni isotopes as a tracer of methane production on the early Earth (e.g. Cameron et al., 1666 

2009; Konhauser et al., 2009; Wang et al., 2019c). In the modern ocean the highest Ni quotas are found in 1667 

diazotrophs (N-fixers), thought to reflect the presence of Ni-Fe hydrogenases (which catalyse H2 produced 1668 

during N fixation), Ni-superoxide dismutase (Ni-SOD) and urease (Tamagnini et al., 2002; Dupont et al., 1669 

2008a; 2008b; Nuester et al., 2012). Nickel limitation of phytoplankton grown on urea has been shown in 1670 

culture and in natural assemblages, suggesting the Ni-N co-limitation of phytoplankton growth may be 1671 

relevant in the ocean (Price & Morel, 1991; Dupont et al. 2008a; 2010). Significant Ni is also found in 1672 

diatom frustules (about 50 % of diatom cellular quotas; Twining et al., 2012). The latter observation is 1673 

thought to play a role in the similarity of Ni and Si oceanic distributions (Twining et al., 2012). 1674 

No culture data are available to determine the degree of Ni isotope fractionation during biological uptake. 1675 

Upper ocean data suggest no fractionation or a small preference for the light isotope (up to α ≈ 0.9997; 1676 

Takano et al., 2017; Archer et al., 2020; Yang et al., 2020; Fig. 21), consistent with the Ni isotope 1677 

systematics observed in organic-rich sediments (Ciscato et al., 2018) and water column particulates (Takano 1678 

et al., 2020). Interestingly, new water column data from the South Atlantic suggest distinct ecological 1679 

differences in Ni drawdown and Ni isotope fractionation compared to other TEIs (e.g., Zn, Cd). Limited 1680 

drawdown and Ni isotope fractionation is observed in the diatom-dominated regime south of the Polar Front 1681 

in the Southern Ocean. In contrast, more marked drawdown and significant Ni isotope fractionation is 1682 

observed north of the Polar Front, which has been attributed to the predominance of nitrate-limited, Ni-1683 

requiring cyanobacteria (Archer et al., 2020). 1684 

  1685 

1686 

Nickel is partially complexed by strong organic ligands in coastal and open ocean environments (5–70 %; 1687 

e.g., Donat et al., 1994; Saito et al., 2004; Boiteau et al., 2016), though slow water exchange kinetics of Ni 1688 

make these complexation measurements particularly challenging (Hudson & Morel, 1993). Slow exchange 1689 

kinetics may also explain the residual pool of non-bioavailable Ni in the surface ocean (e.g., Mackay et al., 1690 
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2002; Dupont et al., 2010). Speciation models suggest that the remainder of the Ni is present as free Ni2+ 1691 

and NiCl+, with a small fraction present as NiCO3
0 (Zirino and Yamamoto, 1972; Turner et al., 1981).  1692 

Nickel cycling is tightly coupled to that of Mn, in sediments, pore waters, and across the redoxcline of the 1693 

Black Sea (e.g., Klinkhammer, 1980; Koschinsky and Hein, 2003; Vance et al., 2016). In the Black Sea, 1694 

for example, Mn redox cycling is associated with preferential sorption of light Ni isotopes, with a large 1695 

negative fractionation of ≈–4‰ (Vance et al., 2016). This large fractionation is consistent with experimental 1696 

sorption of Ni on birnessite (Wasylenki et al., 2014; Sorensen et al., 2020). 1697 

Unlike more strongly chalcophile elements like Cd, Cu, and Zn, dissolved Ni is not strongly drawn down 1698 

in the euxinic portion of the Black Sea water column (Tankéré et al., 2001; Vance et al., 2016). However, 1699 

Ni is enriched in Black Sea sediments (Little et al., 2015), with δ60Ni compositions notably lighter (at +0.3 1700 

to +0.6‰) than Ni sources to the basin (at about +1.3‰; Vance et al., 2016; Fig. 21). Vance et al. (2016) 1701 

attributed these light isotope compositions to the scavenging of sulfidized Ni species, which are predicted 1702 

to be isotopically light (Fujii et al., 2011b). 1703 

  1704 

1705 

The most recent estimate for residence time of Ni in the ocean is approximately ~20 kyr (Little et al., 2020), 1706 

considerably longer than the mixing time of the ocean. As a result, in parallel with the other TEIs discussed 1707 

herein, Ni and Ni isotope distributions are modulated at first order by the geometry of physical ocean 1708 

circulation. The importance of diatom uptake in the Southern Ocean in partially coupling oceanic Ni and 1709 

Si (Twining et al., 2012) was introduced above, and the homogeneity of deep ocean Ni isotope compositions 1710 

supports an important role for southern-sourced water masses in the Ni distribution (Takano et al., 2017; 1711 

Wang et al., 2019a; Archer et al., 2020). 1712 

  1713 

1714 

1715 

Ferromanganese crusts exhibit variable Ni isotope compositions (Fig. 22; Gall et al., 2013; Gueguen et al., 1716 

2016), which are, on average, slightly isotopically heavier (at δ60Ni of +1.6‰) than seawater (δ60Ni at about 1717 

+1.3‰). However, experiments suggest that sorption of Ni to birnessite (the primary Ni-hosting phase in 1718 

Fe–Mn sediments) should be associated with a large negative isotope effect (of about 3 to 4 ‰; Wasylenki 1719 
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et al., 2014; Sorensen et al., 2020). It remains unclear why the full isotope effect is not expressed in Fe–Mn 1720 

crusts. Intense Mn cycling occurs across the redoxcline of the Black Sea; this cycling is associated with 1721 

large variations in Ni and Ni isotopes, consistent with the experimentally observed light isotope effect on 1722 

sorption to birnessite (Vance et al., 2016). Recent data from Mn-rich sediments that have undergone 1723 

diagenesis also point to the preservation of a large negative Ni isotope effect (Little et al., 2020). 1724 

 1725 

1726 
1727 
1728 
1729 
1730 
1731 
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Though promising, the development of Fe–Mn crusts as a tracer of past oceanic Ni cycling awaits a 1732 

mechanistic understanding of the processes driving their variably isotopically heavy signature, as well as 1733 

an awareness of the likely complicating role of diagenetic remobilisation of Ni (e.g., Atkins et al., 2016; 1734 

Little et al., 2020). 1735 

  1736 

1737 

As introduced in section 5.3.2 (Cu), qualitative arguments for high organic matter fluxes (i.e., increased 1738 

paleoproductivity) have been made based on elevated Cu and Ni concentrations in ancient organic-rich 1739 

sediments (e.g., Tribovillard et al., 2006). For Ni, this approach is supported by positive correlations with 1740 

TOC in modern continental margin sediments (Fig. 23).  1741 

Nickel does not precipitate in the presence of water column dissolved sulfide and is therefore a better 1742 

candidate for the Metal–TOC approach than the more strongly chalcophile elements, like Cu. Nevertheless, 1743 

Ni cycling is strongly linked to the redox cycling of Mn, so prerequisite (2)—that depositional environments 1744 

remain reducing—is critical. In addition, sedimentary and water column data from the Black Sea indicate 1745 

that the Fe–Mn redox shuttle provides an alternative supply route for Ni to sediments in these settings (Little 1746 

et al., 2015; Vance et al., 2016). Finally, an open marine setting (prerequisite 3) would be required to make 1747 

estimates of the relative productivity of two different sites based on their absolute measured Ni:TOC ratios. 1748 

Otherwise the degree of basin restriction will exert the primary control on nutrient supply, and therefore 1749 

the degree of trace metal enrichment (Algeo & Maynard, 2008; Little et al., 2015). 1750 
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1751 
1752 
1753 
1754 

1755 

Ciscato et al. (2018) investigated the distribution of Ni and its isotopes in two fractions isolated from Peru 1756 

margin organic-rich sediments. The HF-HCl digestible fraction (usually containing >80% of total Ni) 1757 

exhibited δ60Ni values similar to modern deep seawater (at about +1.2‰). Meanwhile, these authors found 1758 

variable Ni isotope compositions in the organic-pyrite fraction (OPF), which they suggested record the 1759 

fractionation imparted by biological uptake in the photic zone. Systematic relationships between Ni–TOC, 1760 
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δ60NiOPF, and δ13C indicate that there is merit in continuing to investigate Ni and Ni isotopes as a 1761 

paleoproductivity tracer (Ciscato et al., 2018). 1762 

  1763 

1764 

To date, Ni and its isotopes have been under-developed as a potential paleoproductivity proxy. Recent data, 1765 

both from the dissolved phase in seawater and in two different fractions isolated from anoxic organic-rich 1766 

sediments, suggest promise in the coupling of Ni and C and their isotopes. However, in oxic-to-suboxic 1767 

settings, Ni and its isotopes in sediments are strongly influenced by the diagenetic redox cycling of Mn. In 1768 

these settings, we recommend exploratory Ni and δ60Ni work focusing on carbonate and siliceous 1769 

biominerals, work that is increasingly tractable with new and improved chemical separation and analytical 1770 

techniques. 1771 

Finally, in a completely different approach, Wang et al. (2019c) present δ60Ni values of Precambrian glacial 1772 

diamictites, which are suggested to represent the chemical weathering residues of the UCC. They find a 1773 

small shift towards heavier Ni isotope compositions across the Great Oxidation Event, which they relate to 1774 

the onset of oxidative weathering of crustal sulfides (Wang et al., 2019c). Combined with the proposed 1775 

importance of Ni to the maintenance of methanogenesis during this time period (e.g. Konhauser et al., 1776 

2009), it is hoped that future Ni stable isotope analyses will shed further light on the paleoenvironmental 1777 

conditions on the early Earth.  1778 

1779 
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1780 

1781 

Silver is the scarcest of the TEIs described here, both within Earth’s crust and in the modern ocean. 1782 

Moreover, Ag is an usual candidate for a paleoproductivity proxy given that it possesses no known 1783 

biological function and is most widely known for its antimicrobial properties. Despite this, Ag exhibits a 1784 

characteristic nutrient-like profile in seawater, most similar to that of Si (and Zn, Ba; Fig. 24).  1785 

1786 
1787 

 1788 

 1789 

Dissolved Ag occurs primarily as chloride complexes in seawater (Cowan et al., 1985, Miller & Bruland, 1790 

1995) and exhibits a nutrient-type depth profile. Dissolved [Ag] in surface waters is typically <5 pmol kg−1, 1791 

and ranges from 5–30 pmol kg−1 in deep waters of the Atlantic Ocean to 50–114 pmol kg−1 in the Pacific 1792 
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Ocean (Fig. 24; Flegal et al., 1995; Rivera-Duarte et al., 1999; Ndung’u et al., 2001; Zhang et al., 2001; 1793 

2004; Ranville and Flegal, 2005; Boye et al., 2012). The total observed range in seawater is 0.2–115 pmol 1794 

kg−1 (Gallon and Flegal. 2014). Despite its potential as a biogeochemical proxy, no Ag isotope data yet 1795 

exist for dissolved or particulate phases in the water column, nor in marine sedimentary archives. 1796 

Accordingly, we cannot directly assess the utility of Ag isotopes to infer paleoproductivity, though we can 1797 

deduce a number of processes that are likely to influence dissolved δ109Ag based on the processes known 1798 

to cycle Ag (Fig. 25).  1799 

 1800 

1801 
1802 
1803 
1804 
1805 
1806 

1807 

The 1D depth profile for dissolved Ag is similar to that of Si (and Zn, Ba), resulting in a strong positive 1808 

correlation between these elements (Fig. 1). This has led researchers to suggest that Ag is taken up by 1809 

diatoms, incorporated into their frustules, and then released as the frustules dissolve (e.g., Flegal et al., 1810 
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1995). Silver might then be delivered to the seafloor with opal, potentially making it useful as a 1811 

paleoproductivity proxy (Friedl & Pedersen, 2002). However, the correlation between dissolved Ag and Si 1812 

is non-linear, indicating that other factors are at play (Zhang et al., 2001; 2004). Furthermore, while Ag is 1813 

taken up by various types of phytoplankton, including diatoms (Fisher & Wente, 1993), experiments 1814 

conducted using the marine diatom Thalassiosira pseudonana show that most of the Ag is associated with 1815 

the organic fraction rather than the opal (Wagner, 2013; Fig. 25). Martin et al. (1983) also hypothesized 1816 

that high particulate Ag concentration within the euphotic zone (40–70 m) off the west coast of Mexico 1817 

were due to the formation of Ag-organic complexes. Interestingly, particulate Ag concentrations are even 1818 

higher well below the euphotic zone, at a depth corresponding to the upper portion of the oxygen minimum 1819 

zone (Martin et al., 1983). It could also be that a global Ag:Si correlation arises at least in part from 1820 

biological processes occurring int he surface of the Southern Ocean, whereby intermediate and mode water 1821 

masses with low preformed [Ag] are advected to lower latitudes, analogous to the mechanism proposed for 1822 

Zn–Si (Vance et al., 2017) and Ba–Si coupling (Horner et al., 2015a). If correct, Ag is unlikely to be coupled 1823 

directly to opal with a simple relationship that can be used to reconstruct past diatom productivity. 1824 

 1825 

Dissolved Ag cycling may become decoupled from productivity by possessing different source and sink 1826 

terms relative to carbon and the macronutrients (Gallon and Flegal, 2014 and references therein). For 1827 

example, Ranville & Flegal (2005) and Ranville et al. (2010) invoked an anthropogenic aerosol source of 1828 

Ag to surface and intermediate waters to explain north Pacific water column data. Other complications may 1829 

arise in low-oxygen environments—waters from the northeast Pacific (Kramer et al., 2011) and 1830 

southeastern Atlantic (Boye et al., 2012) exhibit a deficit in dissolved Ag relative to Si within their 1831 

respective OMZs. These deficits imply preferential removal of Ag over Si, which may occur locally or 1832 

‘upstream’. If occurring locally, a putative mechanism is (co-)precipitation with other chalcophile elements, 1833 

analogous to the sulfide-mediated mechanism proposed for Cd in OMZs (Janssen et al., 2014; Sec. 6). 1834 

Alternatively, the deficit may reflect low preformed Ag:Si in intermediate waters, which is inherited from 1835 

preferential drawdown of Ag over Si in regions upstream where these intermediate waters were last 1836 

ventilated. Both interpretations have implications for the use of Ag (isotopes) as a paleoproxy: the former 1837 

implies a redox sensitivity that depends on the changing location, spatial extent, and intensity of low-oxygen 1838 

regions in the oceans over time. The latter implies a sensitivity to ecology and the geometry of ocean 1839 

circulation. Both warrant additional scrutiny. 1840 

 1841 
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1842 

Bulk sediments are the main archive that has been investigated for their potential to record information 1843 

about the marine Ag cycle. Silver concentrations in bulk sediments from open-marine environments range 1844 

from ≤100 ng g−1 (i.e., typical lithogenic values) up to 100s of ng g−1 (Koide et al., 1986). In general, low 1845 

concentrations are typical of well-oxygenated sediments, while higher concentrations are found in oxygen-1846 

poor and sulfidic environments. The general consensus has been that Ag enrichment in anoxic sediments is 1847 

the result of post-depositional precipitation of Ag2S (Koide et al., 1986) or possibly Ag selenide (Crusius 1848 

& Thomson, 2003; Böning et al., 2005). However, high Ag concentrations are also documented in marine 1849 

sediments that are only weakly reducing (Böning et al., 2004, 2005; McKay & Pedersen, 2008; Morford et 1850 

al., 2008). Furthermore, even in anoxic sediments, the degree of Ag enrichment exceeds what would be 1851 

expected from post-depositional Ag precipitation alone (Borchers et al., 2005; McKay and Pedersen, 2008; 1852 

Böning et al., 2009). Thus, redox-controlled, post-depositional precipitation is not the primary control on 1853 

Ag accumulation in marine sediments; there must also be a flux of non-lithogenic, particulate Ag to the 1854 

seafloor (McKay & Pedersen, 2008). 1855 

McKay & Pedersen (2008) hypothesized that Ag, like Ba, accumulates in organic-rich settling particles. 1856 

However, in contrast to Ba, Ag precipitation requires a reduced microenvironment within the particle, 1857 

which is only favored in oxygen-poor waters. The analysis of sediment trap samples from the northeast 1858 

Pacific show that the fluxes of particulate Ag and particulate organic carbon flux positively correlate 1859 

(Martin et al., 1983). This correlation is also seen in surface sediments (McKay & Pedersen, 2008) and 1860 

sediment cores from the northeastern Pacific (Fig. 26). These data broadly support the use of Ag 1861 

concentrations as a paleoproductivity proxy, with an important caveat: the post-depositional preservation 1862 

of particulate Ag requires that sediments remain reducing (prerequisite 2.), as settling particulate Ag formed 1863 

below the euphotic zone is not preserved if sediments are oxidizing (McKay and Pedersen, 2008; Morford 1864 

et al., 2008). Thus, while the delivery of Ag to sediments appears related to productivity (Wagner et al., 1865 

2013), Ag preservation will likely depend on the depositional environment. Regardless, these observations 1866 

are promising from the point of view of tracing past productivity.  1867 

 1868 
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 1869 

1870 
1871 
1872 

 1873 

 1874 

1875 

The apparent linkages between dissolved and particulate [Ag], macronutrients, and organic matter provides 1876 

tantalizing evidence that Ag may be coupled to surface productivity (Fig. 24). Moreover, core-top studies 1877 

indicate that the geochemical signature of this coupling is preserved under certain environmental conditions 1878 
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(Fig. 26). Despite this progress, the study of Ag in marine biogeochemical cycles remains in its infancy, 1879 

particularly compared to many of the other elements described here. Additional constraints are needed in 1880 

several areas, including: the role of biogeochemical processes in mediating Ag distributions in the water 1881 

column, the dominant controls on the downward transport of Ag through the oceans, and on the controls on 1882 

Ag preservation in sediments. Given what has been learned from the application of the other TEI systems 1883 

described here, new analytical developments in Ag isotope geochemistry could help place valuable 1884 

constraints in several of these areas. 1885 

 1886 

1887 
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1888 

We now assess the overall readiness of each TEI system to reconstruct productivity, summarized in Table 1889 

2. This exercise is analogous to the assessment of analytical techniques used in chemical oceanography 1890 

described by Fassbender et al. (2017). Our assessment is similarly conducted in two dimensions. First, we 1891 

identify five objectives toward the development of a reliable productivity proxy, ranging from development 1892 

of the analytical capabilities necessary to measure that species, to constraining diagenetic effects, and 1893 

ending with the goal of using that species to reliably reconstruct paleoproductivity itself. Second, we assess 1894 

the level of development within each objective. Our reasoning behind the assignments is described above 1895 

in Sections 3–10.  1896 

 1897 

Reliable application of a proxy requires that five objectives be serially met (e.g., Hillaire-Marcel & Vernal, 1898 

2007; Table 2). In practical terms, however, the final stage (proxy application) is often realized before many 1899 

of the supporting objectives; variations in TEI ratios in the sedimentary record commonly provide the 1900 

motivation for developing a more holistic understanding of that TEI system in the modern environment. (A 1901 

common critique of this approach being that subsequent studies often invalidate earlier interpretations.) The 1902 

five objectives that follow are common to the development of almost any proxy. First, it is essential to 1903 

develop the analytical capability to measure the species of interest commensurate with the quantities 1904 

typically encountered in the environment. In the case of TEI abundance proxies, the development and 1905 

widespread adoption of ICP-MS instrumentation coupled to automated sample preparation systems has 1906 

enabled low-blank–high-throughput–high-sensitivity analyses of multiple TE’s in both seawater (e.g., 1907 

Wuttig et al., 2019) and sediments alike (e.g., Wefing et al., 2017). In contrast, the techniques required to 1908 

measure many TEI systems have only been developed within the past decade—or are still in development—1909 

and generally remain labor intensive and time consuming. Second, it is important to map the broad vertical 1910 

and spatial patterns of a TEI system in the modern ocean. The GEOTRACES program has provided a 1911 

coordinated opportunity to study the basin-scale distributions of multiple TEIs. Third, the utility of a proxy 1912 

is significantly increased if the driving processes are understood. These processes may be isolated through 1913 

a number of approaches, including: lab-based analogue experimentation, numerical modeling, and high-1914 

resolution spatiotemporal environmental studies. Fourth, paleoceanographic proxies require sedimentary 1915 

archives—a substrate from which to reconstruct the variable of interest. The latter necessitates knowledge 1916 

of how a TEI system partitions between seawater and sediment, such as through a core-top study, ideally 1917 

conducted across large environmental gradients. Since many marine sedimentary archives are biogenic in 1918 

origin, additional experimentation isolating ‘vital effects’ may be necessary. Fifth, proxies are only as 1919 
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reliable as their archives are hardy. Diagenetic processes may alter primary environmental signatures, and 1920 

recognizing these effects is imperative for reliably reconstructing past environmental conditions.  1921 

 1922 

We assess the level of development within each objective on a four-point scale: unknown, developing, 1923 

applied, and unlikely. The levels define a continuum from least to most understood, and are a useful 1924 

shorthand for illustrating where additional work is most needed. Assignment of ‘unknown,’ implies that 1925 

too little is presently known to reliably assess progress towards that objective. These TEI systems may or 1926 

may not ultimately be useful in reconstructing ocean productivity. ‘Developing’ objectives are those where 1927 

there are pilot studies on that topic, but overall there are an insufficient number to define general rules for 1928 

that TEI system. If a TEI system is widely recognized to be useful towards some objective, it is given a 1929 

score of ‘applied’. Though these scores are subjective, they are roughly equivalent to the number of 1930 

spatiotemporal and lab studies of that TEI system, and the number of inter-calibrated laboratories. If the 1931 

evidence indicates that a TEI system is not suitable for reconstruction of past productivity, a score of 1932 

‘unlikely’ is given. This does not rule out future developments, such as identification of environmental 1933 

control variables or new sedimentary archives, only that current data (and archives) do not support use of 1934 

the TEI system towards this goal. Lastly, we recognize that there are continual refinements to analytical 1935 

protocols, environmental distributions, etc. and thus, at some level, all five objectives could reasonably be 1936 

described as ‘developing’. Rather, our assignments are intended to give a relative sense of understanding 1937 

between different TEI systems toward the overarching goal of reconstructing past ocean productivity.  1938 
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1949 

 1950 

This review and synthesis allows us to draw a number of inferences regarding the overall suitability, 1951 

similarities, and research priorities for using Fe, Zn, Cu, Cd, Mo, Ba, Ni, and Ag and their isotopes as 1952 

paleoproductivity proxies. Regarding suitability, our proxy development assessment highlights that our 1953 

knowledge of bioactive trace metal isotope systematics lags far behind those of trace-element abundances. 1954 

This field is nascent; excepting Mo, the very first isotope data for seawater for all of the elements reviewed 1955 

here were published within the last 15 year, or are yet to be reported, as is the case for Ag. The field is thus 1956 

decades behind the trace element concentration community. Despite the lack of detail however, we can 1957 

classify the elements reviewed here into three broad categories: those where the preponderance of evidence 1958 

indicates that a particular bioactive metal isotope system is unlikely to inform on paleoproductivity, such 1959 

as δ56Fe, δ65Cu, and δ98Mo; those where there are promising signs, but significant calibration and validation 1960 

remains to be completed, such as for δ66Zn and δ114Cd; and, those elements where simply too little is 1961 

presently known to confidently assign utility in diagnosing paleoproductivity such as for δ138Ba, δ60Ni, and 1962 

δ109Ag.  1963 

 1964 

Our review highlights a number of instances where the bioactive metals and their isotopes share similarities 1965 

or—perhaps more importantly—exhibit divergent behaviors, despite sharing a common biological driver. 1966 

The most significant similarity is ocean circulation; trace element isotope distributions reflect a mixture of 1967 

local (i.e., in situ) processes, and regional (or ex situ) conditions that are set ‘upstream’ of any given locality. 1968 

Indeed, researchers are recognizing that, much like the macronutrients (see Farmer et al., this issue), the 1969 

first-order features of marine δ66Zn, δ65Cu, δ114Cd, δ138Ba, and δ60Ni distributions are not controlled locally 1970 

by dissolved–particulate transformations, but reflect a regionally-integrated history of vertical cycling and 1971 

mixing that is imparted over the scale of an ocean basin. Today, the Southern Ocean represents the common 1972 

starting point in controlling nutrient and bioactive metal inventories for much of the low latitude 1973 

thermocline; whether, when, and how this pattern might have changed in Earth’s past will be an important 1974 

consideration for interpreting paleoproductivity records derived from these proxies. Where the bioactive 1975 

metals diverge in their response is equally instructive from the point of view of proxy development. For 1976 

example, if experiencing a common forcing, such as a temporary shift in the loci of most intense primary 1977 

productivity, subtle differences in the response of the various bioactive metals reviewed here may hold the 1978 

key to understanding whether the underlying change was truly productivity related. For example, 1979 

sedimentary accumulation and preservation of Cd and Ba exhibit opposing redox sensitivities; Cd burial is 1980 

enhanced at low [O2], whereas Ba is oftentimes diminished. Recognizing these opposing controls may 1981 
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enable reconciling inconsistent proxy records, thus building a more holistic picture of marine 1982 

biogeochemistry at key points in Earth’s history.  1983 

 1984 

Lastly, we outline three priorities for further study. First, a number of modern ambiguities require 1985 

addressing. Most notable is the apparent ‘missing’ source and/or sink terms for the whole-ocean isotopic 1986 

budgets of several elements, including Cu, Cd, Ba, and Ni. Though it is possible that these missing source 1987 

and sink terms represent actual short-term imbalances in the flux of these elements to and from the ocean, 1988 

we view it more likely that there are major fluxes that remain uncharacterized. The origin of these 1989 

imbalances is most pressing for elements where the output flux associated with organic matter constitutes 1990 

a secondary sink (e.g., Zn, Ni), as the isotopic budget of these elements is most susceptible to decoupling 1991 

from productivity. Second, the significance of ocean circulation in mediating basin-scale bioactive metal 1992 

isotope distributions implies that paleoceanographic interpretations made from a single site cannot be 1993 

uniquely interpreted in terms of either changes in productivity or ocean circulation without additional 1994 

constraints. Such constraints could take the form of independent circulation estimates—from numerical 1995 

models or canonical circulation proxies measured in the same samples—or by measuring bioactive metal 1996 

isotope distributions in spatially-distributed sediment samples. Third, the lack of suitable archives with 1997 

which to reconstruct surface water bioactive metal isotope compositions afflicts almost every element 1998 

reviewed here. Overcoming this limitation will require the most creativity; we suggest more studies testing 1999 

the fidelity of non-traditional substrates (e.g., mixed foraminiferal assemblages, coccolith calcite, diatom 2000 

opal), periodic re-assessment of the feasibility of traditional substrates following analytical advancements 2001 

(e.g., improvements in ion transmission efficiency, large-scale [automated and/or crowd-sourced] picking 2002 

of monospecific foraminiferal assemblages), and development and validation of selective extraction 2003 

protocols that can be used to isolate phases of interest from complex matrices. Though attempting to 2004 

overcome these limitations may be considered high risk, we believe that this risk is more than justified by 2005 

the reward of developing a more complete understanding of Earth's biogeochemical history. 2006 
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