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Abstract 

Intratumour heterogeneity due to cancer cell clonal evolution and microenvironment 

composition and tumor differences due to genetic variations between patients suffering of 

the same cancer pathology play a crucial role in patient response to therapies.  This study is 

oriented to show that matrix-assisted laser-desorption ionization-Mass spectrometry 

imaging (MALDI-MSI), combined with an advanced multivariate data processing pipeline 

can be used to discriminate subtle variations between highly similar colorectal tumors. 

To this aim, experimental tumors reproducing the emergence of drug-resistant clones were 

generated in athymic mice using subcutaneous injection of different mixes of two isogenic 

cell lines, the irinotecan-resistant HCT116-SN50 (R) and its sibling human colon 

adenocarcinoma sensitive cell line HCT116 (S). Because irinotecan-resistant and 

irinotecan-sensitive are derived from the same original parental HCT116 cell line, their 

genetic characteristics and molecular compositions are closely related.  

The multivariate data processing pipeline proposed relies on three steps: (a) multiset 

multivariate curve resolution (MCR) to separate biological contributions from background; 

(b) multiset K-means segmentation using MCR scores of the biological contributions to 

separate between tumor and necrotic parts of the tissues; and (c) partial-least squares 

discriminant analysis (PLS-DA) applied to tumor pixel spectra to discriminate between R 

and S tumor populations. High levels of correct classification rates (0.85), sensitivity (0.92) 

and specificity (0.77) for the PLS-DA classification model were obtained. If previously 

labeled tissue is available, the multistep modeling strategy proposed constitutes a good 

approach for the identification and characterization of highly similar phenotypic tumor 

subpopulations that could be potentially applicable to any kind of cancer tissue that 

exhibits substantial heterogeneity.  
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Introduction 

Colorectal cancer (CRC) is the third cause of cancer mortality worldwide, affecting men 

and women almost equally. Despite significant improvements in early cancer detection and 

treatment, about half of the patient will develop distant metastases (mCRC) associated with 

a 5-year survival rate for patients of less than 10 % [1]. The standard of care for mCRC 

includes surgery of the primary tumor, if still present, combined with chemotherapy based 

on Oxaliplatin, Irinotecan and 5-Fluorouracile administered in various combinations and 

an antibody-based chemotherapy. These treatments may induce regression of metastases 

and, in favorable cases, a secondary surgery of liver metastases.  

Tumor heterogeneity is now recognized as a key driver in patient response to therapy and 

thus in clinical outcome. Whereas intertumor heterogeneity among patients has been 

identified for many years as an important factor explaining differences in patient response 

to therapeutic regimens, intratumor heterogeneity and its implication in resistance 

mechanisms has been only more recently recognized and addressed [2–7]. Understanding 

and characterizing tumor heterogeneity is therefore a key factor to improve patient 

management and treatment.  

To characterize these heterogeneities, a technique that maintains the spatial organization of 

cells but allows in depth analysis of their molecular content in eventually unknown 

molecules is needed. Matrix-assisted laser-desorption ionization-mass spectrometry 

imaging (MALDI-MSI) fulfills these constraints and several studies have indeed shown 

that this approach may characterize relevant tumor populations within cancer tissues [8–

10]. In particular, because it relies on multivariate analysis of large-scale molecular 

signatures, MALDI-MSI has the potential to identify differences between histologically 

indistinguishable regions of a tissue, which are the basis of cancer phenotypes that drives 

tumor progression and ultimately determines which variant of cancer a patient will 
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experience. In addition, coupled with other MS analytical techniques, the approach cannot 

only define signatures but also identify characteristic biomolecular ions to get information 

on the underlining mechanisms of cancer cell resistance in vivo and eventually derive new 

targeted-treatments. Moreover, no requirement for specific staining/labelling agents is 

needed as compared with histological analysis, thus permitting multiplex analysis of 

several molecules in the same tissue section. Finally, it allows the correlation of molecular 

information with traditional histology by maintaining the spatial localization information 

of the analytes during mass spectrometric measurement.  

Traditional analysis of MALDI-MSI images has made only limited use of the big amount 

of information achieved with this kind of data. To attain the distribution of molecular 

phenotypes while demonstrating the significant spatial heterogeneity present in the 

molecular phenotype distribution, the use of an efficient multivariate data processing 

pipeline is vital. The data analysis workflow proposed in this work is applied to fifteen 

tissues of experimental colorectal cancer images with different degree of heterogeneity 

using a mixture of isogenic cells all derived from HCT116 human colon adenocarcinoma 

cells. Using mixtures of Irinotecan-sensitive (S) and resistant (R) cell lines presenting 

highly similar molecular phenotypes will accurately represent the clinical question of 

clonal evolution and emergence of resistant cancer cells during treatment [11]. The 

strategy follows the three steps below: 

a) Multiset multivariate curve resolution (MCR) on the 15 images. Basic MS spectral 

signatures and related distribution maps of all components in MSI are recovered. This 

method allows segmenting components related to background signal contributions from 

biological components. However, biological components related to different tissue types 

(necrotic and tumoral parts) may overlap, and hence no hard separation between them 
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could be achieved. Moreover, in this case, R and S cell lines cannot be easily separated by 

MCR due to highly similar MS signatures and/or unclear spatial pattern.  

b) Multiset K-means image segmentation analysis on the MCR scores (concentration 

profiles) of only biological contributions. In this step, a hard clustering method separates 

classes of tumor and necrotic tissues. However, this unsupervised clustering is not 

sufficient/powerful enough to distinguish between R and S tumors, and hence, a supervised 

discrimination method is needed.  

c) Partial-least squares discriminant analysis (PLS-DA) model on pixel spectra from 

tumoral clusters. Supervised classifier such PLS-DA using previous pixel labeling (classes 

R or S) will help to discriminate between irinotecan-resistant and irinotecan-sensitive cell 

lines even if only subtle differences among R and S are present.  

The proposed approach is a method to find the spatial tumor heterogeneity based on 

MALDI-MSI measurements even in scenarios of highly similar cancer subpopulations.  

 

2. Experimental  

A model of tumor heterogeneity, using two human colon adenocarcinoma cell lines; one 

sensitive (HCT116) and another resistant (HCT116-SN50) to Irinotecan, was designed to 

examine the feasibility of the proposed strategy. The complete methodology and materials 

used are detailed in our recent paper [12]. Briefly, experimental tumors were generated in 

athymic mice by a subcutaneous injection of a mix of a resistant (R) and a sensitive (S) 

HCT116 cell lines at five ratios (100%S; 90%S; 50%S; 90%R; 100%R). Tumors were then 

collected, sliced, scanned with an Epson Perfection 4990 Photo Scanner and subsequently 

analyzed by a 4800 Plus MALDI TOF/TOF
TM

 Analyzer. A total of 15 images 

corresponding to different tumor samples (corresponding to different mice) and replicates 
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of slices of the same tumor were analyzed. Table 1 summarizes the description and image 

labelling. 

TABLE 1 

 

3. Data analysis 

The data analysis workflow proposed follow the four steps below: 

a) Image preprocessing  

b) Multiset MCR resolution on all images to recover basic spectral signatures and 

distribution maps of pure compounds contributions, allowing separation of tumor 

and necrotic contributions from background. 

c) Multiset K-means image segmentation analysis on the MCR scores 

(concentration profiles) of only biological contributions, to identify tumor or 

necrotic parts, permitting selection of tumor pixels for discrimination purposes. 

d) Use of supervised classification method to discriminate between irinotecan-

resistant and irinotecan-sensitive populations of tumor tissue. 

These steps are described in detail in the following subsections. 

 

3.1 Image preprocessing 

To extract reliable conclusions and to retain maximum biological information from MSI 

data, it is necessary to choose appropriate preprocessing steps. We chose MALDIquant R 

package [13] to perform almost all preprocessing data, which includes baseline correction, 

spectra smoothing, peak detection and spectra alignment. A matrix D (n,m) of dimension n 

equal to (x × y) pixels by m m/z values was generated per each image. Finally, a multiset 
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structure containing all 15 images was built, concatenating the 15 individual matrices one 

on top of each other. For a more detailed information about the preprocessing steps and 

parameters, please refer to our recent publication about the same dataset [12].  

3.2 MCR-ALS resolution of MSI multiset 

The goal of the image resolution step by Multivariate Curve Resolution Alternating Least 

Squares (MCR-ALS) algorithm is the decomposition of the data set into the distribution 

maps (relative amounts or concentration) and pure spectra of the signal contributions 

present in the imaged sample [14–16]. In this study, all 15 images were analyzed 

simultaneously in a single multiset structure. This multiset was obtained by appending the 

pixel MS matrix of the different MALDI images one on top of each other to form a 

column-wise augmented matrix, Daug= [D100R1a; D100R1b; D100R1c; D100R2… 

D50R11]. This column-wise augmented data matrix Daug can be decomposed using the 

bilinear model equation: 

 

Daug=CaugS
T
+Eaug                                                                                                   Equation 1 

 

where the matrix Caug, is a column-wise matrix formed by as many submatrices Ci (matrix 

of the relative amounts or concentration of n components) as images in the multiset and S
T
 

is a single matrix of pure spectra of n components, valid for all the images in the multiset.  

MCR-ALS estimates iteratively the matrices Caug and S
T
 under the control of constraints 

[12].   

. In this study, the most common constraints in image resolution, such as non-negativity 

and normalization, were used. As a particularity, physiological information based on 
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scanned images were coded as local rank constraints and were oriented to extract much 

more reliable MS signatures and distribution maps of the different tissue types present in 

the samples. Further information on the application of this local rank constraint can be 

found in [12]. Indeed, more details about the MCR-ALS method are given in [17–19] and a 

GUI to use the algorithm is freely available at http://mcrals.info.  

MCR-ALS results, i.e., distribution maps (C matrix) and pure spectra (S
T
 matrix) may be 

further used to obtain additional information. In this work, distribution maps were used as 

starting information in K-means that allows a component selection of the profiles to be 

included in the segmentation process, i.e. resolved components linked clearly to 

background signal contributions are discarded and only those linked to biological 

contributions are retained for segmentation.  

3.3 K-means multiset segmentation 

The main goal of image segmentation is to partition the images into pixel groups built 

according to their pixel similarity in an unsupervised way [17]. In this work, K-means was 

used as a segmentation approach that tries to partition the dataset into K pre-defined 

clusters where each pixel belongs to only one group.  

K-means analysis has been applied to the multiset structure containing all 15 images. MCR 

scores (concentration profiles) of biological contributions were used as starting information 

because MCR scores are compressed and noise-filtered and keep only biological relevant 

information on pixel composition, which makes them more suitable than raw spectra for 

segmentation purposes. It has been proved that dimensionality reduction prior to K-means 

clustering can be beneficial for the quality of the clustering [20]. 

Based on the comparison between segmentation map and grayscale images, we can 

determine which pixels are localized in each region and classify the corresponding spectra 

http://mcrals.info/
https://www-sciencedirect-com.sire.ub.edu/topics/earth-and-planetary-sciences/segmentation
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into categories (tumoral or necrotic tissues). Tumoral spectra will be used for further 

supervised classifications purposes.  

3.4 Supervised Classification 

Supervised learning methods are widely used in tissue MSI based-research when  prior 

examples regarding píxel labeling in tissue samples is available [21]. In this work, Partial 

Least Squares Discriminant Analysis (PLS-DA) was used as supervised classification 

method to predict the class (R  or S tumor type) of unknown samples according to their 

mass spectrum (MS pixels) [20]. The use of a supervised methodology responds to the fact 

that individual MS signatures of R and S cell subpopulations are not sufficiently different 

to be properly separated by the sole use of unsupervised methods [8]. .  PLS-DA is a 

discriminant technique based on PLS regression that builds a model using an appropriate 

set of latent variables to maximize the covariance between X, the MS pixels, and Y, a 

vector containing the categorical classes R and S, numerically coded.  Since PLS-DA is 

very prone to provide overoptimistic results even in cross-validation [22], the use of 

permutation tests is also applied to investigate the statistical significance of the classifier 

accuracy  [23]. 

In our case, labelling can only be done on images with 100% of either R or S cell types. 

Mixed images cannot be labelled since visually type R tumor cannot be differentiated from 

tumor type S. Therefore, from all 15 images only 8 images were labelled, please refer to 

table 1 to see which images correspond to 100% of one type of tumor. The calibration set 

comprises 3 images of 100% irinotecan-resistant (100R1a, 100Rab, 100R1c) from the 

same tumor and 3 images of 100% irinotecan-sensitive from the same tumor (100S3a, 

100S3b, 100S3c). External validation set includes the images of 100% R and 100% S 

obtained from another grafted mouse but without replicates (100R2 and 100S4, 

respectively). Additionally, we have also applied the resultant predictive model to the 



11 
 

remaining images, which include mixtures of R and S tumors, in order to determine the 

spatial distribution of the tumors over the images. 

Within the calibration test, cross-validation performed by leaving one image of each class 

out was used to choose the optimal number of latent variables as well as to test the 

predictive performance of the model, according to the cross-validation table shown below 

(see Table S1 in supplement material). 

 
     

The classification rate is taken as a criterion of goodness for the developed model. The 

number of LV was selected as the one that provides a maximum CR in cross-validation. 

However, we applied the Parsimony principle: the inclusion of one more LV should 

represent a gain of more than 1 % in the CR value to be considered.  

To asses the quality of the model, classification rate (accuracy), sensitivity (Se), defined as 

proportion of samples correctly classified within a particular class, selectivity (Sp), defined 

as proportion of samples correctly classified outside a particular class, and area under 

Receiver Operator Characteristic (AUROC), which is equal to 1 for perfect classification 

accross all possible values of the threshold. [24].  

A permutation test has been used to assess whether the specific classification of the MS 

pixels in the two designed groups (R or S) is significantly better than random classification 

in two arbitrary groups. In this stduy, 6000 permutations have been done to define the 

classification paràmetresassociated with the arbitrary class models. Statistical significance 

of the PLS-DA model is then assessed by relating the value of  the classification 

parameters obtained by the original data set to the distribution of them calculated with the 

permuted data sets. In this way, permutation test allows to estimate a p-value for the 

classification rate obtained with the real labels. The significance threshold is usually set to 
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0.05 as in most biologic applications. p-values smaller than 0.05 indicate that differences 

between the two classes are statistically significant.  

In order to understand the molecular ions that contribute to the discrimination between 

both classes (R and S tumor classes), the Variable Importance in Projection (VIP) has been 

used [25].   

All data treatment (resolution, segmentation and classification methods) has been 

performed in Matlab (The MathWorks Inc.). The PLS-DA method has been applied using 

in-house routines, partly based on the PLS Toolbox (Eigenvector Research Inc.).  

 

4. Results and discussion 

4.1 Selection of tumoral pixels for further discrimination purposes.  

Results from the proposed combination of MCR-ALS resolution with K-means 

segmentation in order to select the tumor spectra pixels of the tissues, that will be used for 

further discrimination tasks, could be found in our recent publication about the same 

dataset [12].  

As an example, Figure 1a shows a schematic illustration of the proposed strategy for the 

image 100R1b. Firstly, basic description of pure contributions of the tissue is achieved by 

MCR-ALS. Background and biological (tumoral and necrotic) contributions could be 

clearly differentiated. Background signals present noise spectral signatures while 

biological components present chemically meaningful signatures. However, it was seen 

that distribution maps present overlaps among necrotic and tumoral contributions; i.e. no 

hard separation of these contributions is obtained and, due to heterogeneity, more than one 

contribution is needed to describe these two kinds of tissues [8]. Moreover, MCR results, 

i.e distribution maps (concentration profiles) and pure MS spectra (figure not shown), were 

not conclusive enough to separate R and S cell populations. Secondly, MCR concentration 
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profiles of biological contributions were used as input information for K-means 

segmentation. In this case, hard separation of necrotic and tumoral pixels is achieved. Two 

Clusters (green and orange) correspond to the tumor parts, they have the same spatial 

distribution of the dark grey regions in the scanned image. Similarly, two clusters (blue and 

brown) were associated with the necrotic parts. It is worth to mention that the information 

coming from segmentation maps is richer than that provided by the grayscale images 

because it reveals heterogeneity within necrotic and tumor tissues and is based on chemical 

information (from MS measurement) rather than simple color intensity. All the pixels 

could be assigned to any of the tissue types (tumoral or necrotic), as opposed to grayscale 

images, where the assignment of a pixel is just based on the grayscale level and hence 

some pixels cannot be straightforwardly assigned to any tissue type.   

Now, we can determine which pixels are localized to each region and classify the 

corresponding spectra into categories (tumoral or necrotic tissues). However, this plain 

unsupervised clustering is not enough to distinguish between R and S tumors, and hence a 

dedicated method for discrimination is required. Therefore, tumoral spectra selected from 

the clusters associated with tumoral parts by K-means (see figure 1b) will be used as 

starting information in order to discriminate between R and S cell populations.  

 

FIGURE 1 

 

4.2. PLS-DA classification method. Discrimination between R and S populations 

In supplementary material, Figure S1a shows the plots of the mean of CR and their 

confidence interval calculated from the binomial distribution in cross validation as a 

function of the increasing number of latent variables. The model seems to show a plateau 
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from 5 to 10 components and thus appears to be rather stable. Therefore, the number of 

LVs chose was 5 since inclusion of one more dimension did not represent a gain of more 

than 1% in the CR value.  

Once the optimal number of LV has been selected, calculation the PLS-DA model on the 

calibration samples has been carried out. This calculation was performed selecting 5 LV 

and the same cross validation groups for internal validation. In Table S1 of supplementary 

material quality parameters obtained in the training set and in cross validation are 

collected. Similar classification performance was obtained in both cases; thus, we can 

consider the PLS-DA model reliable and stable.  

High classification rate, CR, specificity and sensitivity were achieved. Both R and S pixel 

spectra were correctly classified into their corresponding class with more than 94% of 

accuracy in both calibration and cross-validation. Note that AUROC is nearly 1 in both 

cases and hence, practically perfect separation between the classes is achieved. The plot of 

sensitivity and specificity values as a function of the increasing class threshold for R class 

was presented in supplementary material  (Figure S1b). Note that the same plot for S class 

would be complementary (figure not shown). The class threshold where the number of TP 

and TN is maximized, thus, better classification performance is achieved, corresponds to 

the point where the specificity line crosses the sensitivity line. It can be seen from this 

figure that the class threshold for the best classification of R class is ranged from 0.591 to 

0.597 (0.403-0.409 for S class).  

Although values of CR= 0.98 or AUROC = 0.99 could be considered vastly good and to 

correspond to a proper model with a high discriminating power, we have tested in those 

values can be reached purely by chance. In order to give a measure of the statistical 

significance of these quality parameters (p-value), a permutation test was carried out (see 

section 3.4).  Statistical significance of CR and AUCROC of the PLS-DA model can be 
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evaluated by comparing them to the values of their null reference distributions H0 obtained 

by permutation tests. Figure S2 of supplementary material  shows the CR and AUCROC 

values obtained in calibration setup in red and for the permutations in gray. For both 

quality parameters there is a clear distinction between the null hypothesis distribution and 

the obtained estimation with the real labels. The results of the permutation test indicate that 

the specific classification is significant. If we compare the average value of the original 

classification with all the permutations, then a p-value can be obtained as described in 

section 3.4 (equations 5 and 6). Both pCR (0.0002) and pAUCROC (0.0002) values are smaller 

than 0.05, confirming the statistical significance of the obtained results. 

The variables in the projection (VIPs) provided by the classification model were used to 

determine the most important ion molecular m/z values in the discrimination of the two 

classes. In Figure 2, the mean spectrum of pixels from R and S classes in black and red, 

respectively, have been overlapped with the VIPS to reveal the most relevant m/z values to 

distinguish both classes. It could be seen slight differences in spectral intensities which 

lead to understand some underlying behaviours of the different classes of images. Class R 

presents higher intensity at the m/z values of 291.1, 348.0, 672.0 and Class S present 

higher intensities at 520.3/522.3, 568.2, 738.5, 754.5/756.5, 770.5/772.5 and 798.5. 

Identification of these mass values could not be unequivocally done due to the resolution 

limits in the MS detection system. However, class R present higher intensities in masses 

around 750-800 that could be assigned to glycosyldiradylglycerols, 

glycerophosphocholines or glycerophosphoglycerols and to masses around 520-525 that 

could be related to oxidized glycerophospholipids or fatty acyl glycosides. 

 

FIGURE 2 
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Once the model has been considered adequate, the true predictive performance of the 

classification model could be assessed by the external test set. Quality parameters from the 

test set confirm the same classification performance previously achieved by internal 

validation on the training samples (see external validation results in Table S2 in 

supplementary material ). CR, specificity and AUCROC are similar to those obtained on 

the training set. However, lower value of sensitivity is obtained, consequently less ability 

to correctly recognize pixels belonging to R class is presented. It is worth to mention that 

no images from different mice of neither R nor S classes were included in the model 

development due to the limited number of images; Therefore, the variability coming from 

different mice was not considered in the model, explaining the slightly worse classification 

results for the external validation set. Nevertheless, since classification results obtained in 

external validation are satisfactory, the PLS-DA model could be considered adequate and 

its performance on future samples is expected to be comparable to those achieved on test 

samples.  

Once the model is built and validated, it has been used to predict the distribution of R and 

S class pixels in the images coming from xenografts where both R and S cell lines in 

different proportions were inoculated. Figure 3 shows the pixel class assignment in the 

analyzed samples. As can be seen, pixels of the two cell lines are detected in tumors where 

both were inoculated. From the analyzed samples, no morphological distribution patterns 

can be associated with the growth of the two cell lines, i.e., both cell lines grow similarly 

and in a mixed way in the tissue analyzed. Qualitatively, it seems that both cell lines R and 

S present ratios in the tumor sections analyzed similar to the ratio inoculated, except for 

sample 90S8.   

 

FIGURE 3 
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Indeed, this observation could be confirmed when quantitative ratios of R and S tumors 

were calculated by using the percentage of pixels predicted for each class in every sample 

over the total number of pixels considered to be tumor. An estimation of the percentage of 

R tumor populations is presented in Table 2.  

TABLE 2 

 

From Table 2, a satisfactory estimate of the percentage of R tumor populations can be 

observed except for the image 90S8. Without considering this image, a correlation of 0.93 

between real % of R and estimated % of R was observed. This indicates that the % of the 

different cell lines found by PLS-DA in the analyzed images is closely correlated with the 

one in the inoculated samples. When grafted independently, the growth rate of the R and   

Scell lines are similar with a doubling time of 8.6 +/- 0.6 and 9.0 +/- 0.4 days respectively. 

The similarity in the predicted proportion of R cells between injection and resection 

suggests that there is no competition for growth between the two cell lines in vivo. The 

deviations in the % of cell lines predicted can be explained by biological variability 

between mice, but also because we analyzed a single tumor slice that cannot represent the 

composition of the full tumor. This is particularly evident in sample 90S8, where the 

results linked to the tissue section analyzed are far from the cell line R/S ratio expected.    

As a final summary, the combination of MSI and a powerful protocol combining 

consecutive modeling steps of image resolution – segmentation – discrimination has 

proven to be efficient to distinguish the highly similar Rand irinotecan-sensitive tumor cell 

lines. 
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5. Conclusions 

Combination of image resolution, segmentation and classification multivariate analysis 

method results in the capacity to much better discriminate highly similar tumors 

subpopulations (irinotecan-resistant (R) and irinotecan-sensitive (S)) in heterogenous 

cancer tissues investigated by MALDI-MSI. 

In the present model of irinotecan-resistant human adenocarcinoma cells, discriminating 

differences in the intensities of the peaks of masses around 750-800 and 520-525 have 

been detected. These masses could be assigned to glycosyldiradylglycerols, 

glycerophosphocholines or glycerophosphoglycerols, and to oxidized 

glycerophospholipids or fatty acyl glycosides, respectively. Furthermore, the results 

obtained support the idea that the different tumor cell lines (R and S) present the same 

proliferation behavior in vivo, as shown by the preservation of ratios of R  and S cells 

during tumor growth. 

The conclusions reached in this work promote further biological research in order to 

evaluate the discriminant potential of this approach in case of bigger data sets showing a 

large variability among individuals. In particular, studies of patient samples are now 

required to more precisely characterize the type of heterogeneity that can be identified 

using this approach and the interest in patient monitoring during treatment [2,3]. In 

addition, a A systematic comparison with conventionally stained sections would be of 

interest to evaluate the potential of the proposed strategy as a complement to this routine 

approach.  

Nevertheless, MALDI-MSI combined with the proposed data analysis protocol has been 

shown to be a valuable tool to investigate tumor heterogeneity even in scenarios of highly 

similar cancer subpopulations.  



19 
 

 

6. Acknowledgements 

This work is part of the BEST Postdoctoral Program, funded by the European Commission 

under Horizon 2020 Marie Skłodowska-Curie Actions COFUND scheme (Grant 

Agreement no. 712754) and by the Severo Ochoa program of the Spanish Ministry of 

Science and Competitiveness (Grant SEV-2014-0425 (2015-2019)). A.J. acknowledges 

financial support from the Catalan government through project 2017 SGR 753 and the 

Spanish government through project CTQ2015-66254-C2-2-P. We would like to 

acknowledge the Departament d’Universitats, Recerca i Societat de la Informació de la 

Generalitat de Catalunya (expedient 2017 SGR 1721); the Comissionat per a Universitats i 

Recerca del DIUE de la Generalitat de Catalunya; and the European Social Fund (ESF). 

Additional financial support has been provided by the Institut de Bioenginyeria de 

Catalunya (IBEC). IBEC is a member of the CERCA Programme/Generalitat de 

Catalunya. This publication has been also funded with support from the French National 

Research Agency under the program “Investissements d’avenir” Grant Agreement LabEx 

MAbImprove: ANR-10-LABX-53. A. T. and P. M. acknowledge the support of the 

Fondation pour la Recherche Médicale. We thank the Experimental Histology Network of 

Montpellier for histology/immunohistology experiments (RHEM,http://www.rhem.cnrs.fr). 

7. Conflict of interest 

The authors report there are not conflicts of interest 

6. Bibliography 

[1] F.A. Haggar, R.P. Boushey, D. Ph, Colorectal Cancer Epidemiology : Incidence , 

Mortality , Survival , and Risk Factors, 6 (2009) 191–197. doi:10.1055/s-0029-

1242458. 

http://www.rhem.cnrs.fr/


20 
 

[2] I. Dagogo-Jack, A.T. Shaw, Tumour heterogeneity and resistance to cancer 

therapies, Nat. Rev. Clin. Oncol. 15 (2017) 81. 

https://doi.org/10.1038/nrclinonc.2017.166. 

[3] N. McGranahan, C. Swanton, Clonal Heterogeneity and Tumor Evolution: Past, 

Present, and the Future, Cell. 168 (2017) 613–628. doi:10.1016/j.cell.2017.01.018. 

[4] M. Jamal-Hanjani, G.A. Wilson, N. McGranahan, N.J. Birkbak, T.B.K. Watkins, S. 

Veeriah, S. Shafi, D.H. Johnson, R. Mitter, R. Rosenthal, M. Salm, S. Horswell, M. 

Escudero, N. Matthews, A. Rowan, T. Chambers, D.A. Moore, S. Turajlic, H. Xu, 

S.-M. Lee, M.D. Forster, T. Ahmad, C.T. Hiley, C. Abbosh, M. Falzon, E. Borg, T. 

Marafioti, D. Lawrence, M. Hayward, S. Kolvekar, N. Panagiotopoulos, S.M. Janes, 

R. Thakrar, A. Ahmed, F. Blackhall, Y. Summers, R. Shah, L. Joseph, A.M. Quinn, 

P.A. Crosbie, B. Naidu, G. Middleton, G. Langman, S. Trotter, M. Nicolson, H. 

Remmen, K. Kerr, M. Chetty, L. Gomersall, D.A. Fennell, A. Nakas, S. Rathinam, 

G. Anand, S. Khan, P. Russell, V. Ezhil, B. Ismail, M. Irvin-Sellers, V. Prakash, J.F. 

Lester, M. Kornaszewska, R. Attanoos, H. Adams, H. Davies, S. Dentro, P. Taniere, 

B. O’Sullivan, H.L. Lowe, J.A. Hartley, N. Iles, H. Bell, Y. Ngai, J.A. Shaw, J. 

Herrero, Z. Szallasi, R.F. Schwarz, A. Stewart, S.A. Quezada, J. Le Quesne, P. Van 

Loo, C. Dive, A. Hackshaw, C. Swanton, Tracking the Evolution of Non–Small-Cell 

Lung Cancer, N. Engl. J. Med. 376 (2017) 2109–2121. 

doi:10.1056/NEJMoa1616288. 

[5] P.C. Nowell, The clonal evolution of tumor cell populations, Science (80-. ). 194 

(1976) 23 LP – 28. doi:10.1126/science.959840. 

[6] Z. Piotrowska, M.J. Niederst, C.A. Karlovich, H.A. Wakelee, J.W. Neal, M. Mino-

Kenudson, L. Fulton, A.N. Hata, E.L. Lockerman, A. Kalsy, S. Digumarthy, A. 



21 
 

Muzikansky, M. Raponi, A.R. Garcia, H.E. Mulvey, M.K. Parks, R.H. DiCecca, D. 

Dias-Santagata, A.J. Iafrate, A.T. Shaw, A.R. Allen, J.A. Engelman, L. V Sequist, 

Heterogeneity Underlies the Emergence of 

&lt;em&gt;EGFR&lt;/em&gt;&lt;sup&gt;T790&lt;/sup&gt; Wild-Type Clones 

Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR 

Inhibitor, Cancer Discov. 5 (2015) 713 LP – 722. doi:10.1158/2159-8290.CD-15-

0399. 

[7] L.A. Diaz Jr, R.T. Williams, J. Wu, I. Kinde, J.R. Hecht, J. Berlin, B. Allen, I. 

Bozic, J.G. Reiter, M.A. Nowak, K.W. Kinzler, K.S. Oliner, B. Vogelstein, The 

molecular evolution of acquired resistance to targeted EGFR blockade in colorectal 

cancers, Nature. 486 (2012) 537–540. doi:10.1038/nature11219. 

[8] S.M. Willems, A. Van Remoortere, Imaging mass spectrometry of myxoid sarcomas 

identifies proteins and lipids specific to tumour type and grade , and reveals 

biochemical intratumour heterogeneity §, (2010) 400–409. 

[9] R. Emrys A. Jones, Alexandra van Remoortere, L.A.M. ´ J. M. van Zeijl, Pancras C. 

W. Hogendoorn, Judith V. M. G. Bovée, André M. Deelder, Multiple Statistical 

Analysis Techniques Corroborate Intratumor Heterogeneity in Imaging Mass 

Spectrometry Datasets of Myxofibrosarcoma, 6 (2011). 

doi:10.1371/journal.pone.0024913. 

[10] B. Balluff, C.K. Frese, S.K. Maier, C. Schöne, B. Kuster, M. Schmitt, M. Aubele, H. 

Höfler, A.M. Deelder, A.J.R. Heck, P.C.W. Hogendoorn, A.F.M. Altelaar, A. 

Walch, L.A. Mcdonnell, De novo discovery of phenotypic intratumour 

heterogeneity using imaging mass spectrometry, (2015) 3–13. 

doi:10.1002/path.4436. 



22 
 

[11] M. Greaves, C.C. Maley, Clonal evolution in cancer, Nature. 481 (2012) 306–313. 

doi:10.1038/nature10762. 

[12] S. Mas, A. Torro, N. Bec, L. Fernández, G. Erschov, C. Gongora, C. Larroque, P. 

Martineau, A. de Juan, S. Marco, Use of physiological information based on 

grayscale images to improve mass spectrometry imaging data analysis from 

biological tissues, Anal. Chim. Acta. (2019). doi:10.1016/j.aca.2019.04.074. 

[13] S. Gibb, K. Strimmer, Maldiquant: A versatile R package for the analysis of mass 

spectrometry data, Bioinformatics. 28 (2012) 2270–2271. 

doi:10.1093/bioinformatics/bts447. 

[14] J. Jaumot, R. Tauler, Potential use of multivariate curve resolution for the analysis 

of mass spectrometry images, Analyst. 140 (2015). doi:10.1039/c4an00801d. 

[15] C. Bedia, R. Tauler, J. Jaumot, Analysis of multiple mass spectrometry images from 

different Phaseolus vulgaris samples by multivariate curve resolution, Talanta. 175 

(2017) 557–565. doi:10.1016/j.talanta.2017.07.087. 

[16] S. Piqueras, C. Krafft, C. Beleites, K. Egodage, F. von Eggeling, O. Guntinas-

Lichius, J. Popp, R. Tauler, A. de Juan, Combining multiset resolution and 

segmentation for hyperspectral image analysis of biological tissues, Anal. Chim. 

Acta. 881 (2015) 24–36. doi:10.1016/j.aca.2015.04.053. 

[17] R. de Juan, Anna; Rutan, S. and Tauler, Two-Way Data Analysis: Multivariate 

Curve Resolution – Iterative Resolution Methods, in: B. Brown, S. D. ; Tauler, R. 

and Walczak (Ed.), Compr. Chemom., Elsevier, 2010: pp. 325–344. 

[18] J. Jaumot, A. de Juan, R. Tauler, MCR-ALS GUI 2.0: New features and 

applications, Chemom. Intell. Lab. Syst. 140 (2015) 1–12. 



23 
 

doi:10.1016/j.chemolab.2014.10.003. 

[19] R. Tauler, Multivariate curve resolution applied to second order data, Chemom. 

Intell. Lab. Syst. 30 (1995) 133–146. doi:10.1016/0169-7439(95)00047-X. 

[20] W. Liu, K. Yuan, D. Ye, Reducing microarray data via nonnegative matrix 

factorization for visualization and clustering analysis, J. Biomed. Inform. 41 (2008) 

602–606. doi:10.1016/j.jbi.2007.12.003. 

[21] Y. Zhang, X. Liu, Machine learning techniques for mass spectrometry imaging data 

analysis and applications, Bioanalysis. (2018) 10–13. doi:10.4155/bio-2017-0281. 

[22] R. Rodríguez-Pérez, L. Fernández, S. Marco, Overoptimism in cross-validation 

when using partial least squares-discriminant analysis for omics data: a systematic 

study, Anal. Bioanal. Chem. 410 (2018) 5981–5992. doi:10.1007/s00216-018-1217-

1. 

[23] M. Ojala, Permutation Tests for Studying Classi er Performance, J. Mach. Learn. 

Res. 11 (2009) 1833–1863. doi:10.1109/ICDM.2009.108. 

[24] H. Abdi, Signal Detection Theory ( SDT ), (1966) 1–9. 

[25] S. Wold, E. Johansson, M. Cocchi, PLS: Partial Least Squares Projections to Latent 

Structures, in: 3D QSAR Drug Des. Vol. 1 Theory Methods Appl., 1993. 

 

 

 

 

 



24 
 

 

Table 1. Percentage of both R and S cell lines in xenografts, replicate number of either the 

same or different tumors (mice) and code of the image sections analyzed. 

Percentage 
of cell 
lines  

Replicate of 
the same 

tumor 

Replicate 
number of 

different tumors 

Image 
code 

100% R a 1 100R1a 

100% R b 1 100R1b 

100% R c 1 100R1c 

100% R - 2 100R2 

100% S a 1 100S3a 

100% S b 1 100S3b 

100% S c 1 100S3c 

 
100% S - 2 100S4 

90% R 

(10% S) 

- 1 90R5 

90% R 

(10% S) 

- 2 90R6 

90% S 

(10% R) 

- 1 90S7 

90% S 

(10% R) 

- 2 90S8 

90% S 

(10% R) 

- 3 90S9 

50% S 

(50% R) 

- 1 50R10 

50% S 

(50% R) 

- 2 50R11 
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Table 2. Real vs. estimated % of R cell line in heterogenous tumor samples as predicted in 

the analyzed MS images by PLS-DA. 

 

Image Real % of R Estimated % of R 

90R5 90  79  

90R6 90  91 

90S7 10  14  

90S8 10  74  

90S9 10 8  

50R10 50 39  

50R11 50  76  
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Figures 

 

Figure 1. (a) Graphical representation of the strategy used for PLS-DA-oriented pixel 

selection for the 100R1b image. (b) grayscale images (left side) and selected tumoral pixels 

for further classification tasks (right side) for all images.   
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Figure 2. Mean spectrum of pixels from images of R class (black), mean spectrum of the 

MS pixels from images of S class (red) and VIP values higher than 10 (green).VIP are 

normalized and spectra dived in 3 ranges of masses (250-450, 450-650, 650-900) for a 

better visualization.  Most relevant m/z values for discrimination among R and S class 

have been displayed. 
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Figure 3. Distribution of R and S tumor populations in the heterogenous images. 
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