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REGULAR ARTICLE
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Key Points

• AML cytogenetic sub-
groups share a set of
330 altered genes that
correlate with myeloid
differentiation, leukemic
stemness, and relapse.

• The unbiased
CODEG22 score,
including 4 stemness
genes and 18 differen-
tiation genes, can help
in the risk stratification
of AML patients.

Advances in transcriptomics have improved our understanding of leukemic development and

helped to enhance the stratification of patients. The tendency of transcriptomic studies to

combine AML samples, regardless of cytogenetic abnormalities, could lead to bias in differential

geneexpressionanalysis becauseof thedifferential representationofAMLsubgroups.Hence,we

performedahorizontalmeta-analysis that integrated transcriptomic data onAML frommultiple

studies, to enrich the less frequent cytogenetic subgroups and to uncover common genes

involved in the development of AML and response to therapy. A total of 28 Affymetrix

microarray data sets containing 3940AML sampleswere downloaded from theGeneExpression

Omnibus database. After stringent quality control, transcriptomic data on 1534 samples from 11

data sets, covering 10 AML cytogenetically defined subgroups, were retained and merged with

the data on 198 healthy bone marrow samples. Differentially expressed genes between each

cytogenetic subgroup and normal samples were extracted, enabling the unbiased identification

of 330 commonly deregulated genes (CODEGs), which showed enriched profiles of myeloid

differentiation, leukemic stem cell status, and relapse. Most of these genes were downregulated,

in accordancewith DNAhypermethylation. CODEGswere then used to create a prognostic score

based on the weighted sum of expression of 22 core genes (CODEG22). The score was validated

with microarray data of 5 independent cohorts and by quantitative real time-polymerase chain

reaction in a cohort of 142 samples. CODEG22-based stratification of patients, globally and into

subpopulations of cytologically healthy and elderly individuals, may complement the European

LeukemiaNet classification, for a more accurate prediction of AML outcomes.

Introduction

Acute myeloid leukemia (AML) is a group of genetically heterogeneous hematological malignancies
characterized by the accumulation of blasts in the bone marrow (BM), peripheral blood, and other
tissues.1 AML is the most common acute leukemia in adults, with a median age of 65 years at diagnosis
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and an incidence rate ranging between 3 and 5 per 105 patients per
year.2,3 Although most patients with AML respond to induction
therapy, the global survival rate after 5 years does not exceed 50% for
young patients and is,20% for older patients.4 Therapeutic advances
may arise from the discovery of genes and pathways that participate in
the development and therapeutic resistance of malignant cells, as well
as from better patient stratification. According to the World Health
Organization and European LeukemiaNet (ELN) recommendations,
patients with AML can be stratified based on their underlying genetic
defects into 3 risk groups: favorable, intermediate, and adverse.
Although advances in genomic technologies have permitted the
identification of several somatic mutations (CEBPA, NPM1, FLT3)
that have improved stratification of patients,5,6 some patients classified
with intermediate and adverse risks do not relapse after therapy and
may require adjustment to their treatment. Hence, novel prognostic
methods are being proposed to improve risk stratification and guide
the decision to treat with intensive chemotherapy or allograft.

Several transcriptomic analyses have been conducted in an attempt to
identify the key players in leukemia and to develop prognostic gene
expression signatures that can improve treatment.7-12 However, the
limited number of patients in individual cohorts has led to the combined
analysis of all AML samples, regardless of their cytogenetic
abnormalities. Therefore, deregulated genes in rare AML cytogenetic
subgroupsmay have lowweight in such global analyses, comparedwith
those from the more frequently occurring subgroups. In addition,
extensive studies have been performed to identify prognostic gene
expression signatures in leukemic stem cells (LSCs),9,11-14 which
are considered key players in resistance to therapy and relapse.15

However, recent studies have demonstrated that relapse in AML does
not enrich in cells with LSC capacities and that leukemic-regenerating
cells arising after chemotherapy are molecularly distinct from therapy-
naive LSCs.16,17 This finding suggests that genes deregulated in AML
blasts at diagnosis may harbor valuable prognostic information that is
not captured when establishing LSC signatures.

Different cytogenetic abnormalities in AML affect similar biological
pathways that are interconnected at the molecular level. Indeed,
increased proliferation and inhibition of differentiation are hallmarks
of AML, regardless of the underlying genetic defects. In this study,
we identified genes and pathways that were consistently deregu-
lated across AML cytogenetic subgroups. For this purpose, we
integrated the transcriptomic data of 1534 high-quality AML BM
samples, from 11 studies, and 198 healthy control BM samples. In
contrast to previous studies that pooled all samples, we separately
compared each AML cytogenetic subgroup to the control samples,
to determine karyotype-specific differentially expressed genes
(DEGs), from which we identified a set of commonly deregulated
genes (CODEGs) that was used to create a robust prognostic
score. This unbiased score was powerful in the risk stratification of
patients with AML in multiple cohorts.

Methods

Data set assembly, quality control, and normalization

Affymetrix data were downloaded as raw CEL files from the Gene
Expression Omnibus (GEO) database and were merged into 1 data
set (supplemental Methods). The R/Bioconductor18,19 Simpleaffy,
and arrayQualityMetrics packages were used to extract quality
measurement of the samples,20,21 which were filtered based on
exclusion and inclusion criteria.22 High-quality AML samples

(n5 1534) were retained by using stringent quality controls and robust
multichip average (RMA), normalized with RMAexpress software.

Differential gene expression

In this study, we included in the respective cohorts only AML BM
samples that were collected at diagnosis and before any
treatments. Pairwise comparisons between each of the 10 AML
karyotypes (.10 samples each) and the control normal samples
were performed using significance of microarrays23 on samples
before and after batch adjustment.24 Cutoffs of log2-fold change
.1.5 and value of q , 0.05 were applied for differential gene
expression analysis.

Enrichment and protein-protein interaction analyses were performed
with Bioconductor’s topGO package,25 the STRING database,26 and
Cytoscape software.27 Gene Set Enrichment Analysis (GSEA)28,29

was applied to the normalized data setsGSE76009, GSE65625, and
GSE24759. Methylation (HM450) analysis was performed on the
AML TCGA (The Cancer Genome Atlas) data set.

Model training and score calculation

The RNA-seq expression profiles for 173 TCGA patients with AML
were downloaded from cBioPortal for Cancer Genomics (https://
www.cbioportal.org/). Transcripts per million were log2-transformed
[log2(x 1 1)]. Expression levels of the CODEGs were extracted and
subjected to gene-wise scaling and centering, then used to train a
regularized Cox regression model.30 The least absolute shrinkage se-
lector operator (LASSO) algorithm, implemented in the glmnet R
package,31,32 was used to fit the model while enabling 10-fold cross-
validation. The process was repeated 10 times with random sampling.
The average of the penalty parameter l across the different runs was
used in the LASSO algorithm to calculate a weighted gene expression
score related to 22 genes. The LASSO algorithm performs powerful
regularized linear regression analysis. Using cross-validation, it cal-
culates a penalty score from the training data set and uses this score to
penalize regression coefficients, forcing those of overfitting covariates
to be exactly 0. Thus, if many genes are highly coexpressed and
have high collinearity, LASSO will exclude all of them except 1. In
our case, the algorithm reduced the number of variables in the
regression model to 22 genes. The prognostic power of CODEG22
comes from the weighted sum of expression of all 22 genes as
representative of the 330 identified CODEGs. The CODEG22
score (Si) can be calculated for each patient (i), after gene-wise
data centering and scaling, using the following equation:

Si ¼ðKIF20A3 2 :0248601Þ1 ðGJB63 2 :0848232Þ
1 ðRBP73 2 :0103166Þ1 ðCMTM23 :06520813Þ
1 ðTMEM563 2 :0735862Þ1 ðQPCT3 2 :0161931Þ
1 ðTNFAIP83 2 :0938626Þ1 ðGRK63 :01749494Þ
1 ðLGALSL3 :09348018Þ1 ðGZMB3 :08201227Þ
1 ðNELL23 2 :0691075Þ1 ðPLEKHA53 2 :001375Þ
1 ðMIB13 2 :0003759Þ1 ðSLC14A13 2 :0372602Þ
1 ðBMX3 2 :0370195Þ1 ðSPINK23 :03872767Þ
1 ðUROD3 :06157859Þ1 ðIL1R23 :18730502Þ
1 ðFGFBP23 :09119795Þ1 ðCYP4F23 2 :0541509Þ
1 ðVNN13 :07210614Þ1 ðNRXN23 :01338192Þ

A median threshold was used to stratify the patients into high- and
low-score groups.
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Model validation

The score was validated on 5 independent cohorts from 4 microarray
data sets, GSE6891,33 GSE10358,34 GSE12417,8 and ALFA-
0701,35 using RMA-normalized data.36 The score was also validated
on the Beat-AML RNA-sequencing (RNA-seq) data set using
transcripts per million–normalized data,37 and by using real-time
quantitative polymerase chain reaction (qPCR) on a retrospective
cohort of 142 patients from the French Innovative Leukemia Organi-
zation (FILO; BB-0033-00073, GOELAMSthèque/FILOthèque, Co-
chin Hospital, Paris, France). Survival analysis was performed and
visualized in the R environment, using the survival38 and survminer39

packages, respectively40 (supplemental Methods).

Results

Characteristics and filtering of downloaded

AML samples

Microarray data for 3940 AML samples (28 data sets), performed
on the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array,
were downloaded from the GEO database (Figure 1A). This
platform was chosen because it is widely available and offers broad
genome coverage.41,42 The use of 1 platform is crucial to avoid the
variabilities in signal strength that could result from different
sensitivities and specificities between probes from different plat-
forms.43 To reduce any factors that may affect gene profiles, only
arrays of bulk BM samples, collected from adult patients with AML
with known cytogenetics at diagnosis, were considered for further
analysis (n 5 2312; 11 data sets). We thus excluded samples of
unconfirmed origin and those from pediatric AML, peripheral blood,
and purified cells (Figure 1B; supplemental Table 1). Raw data from
the retained samples were merged and assessed for RNA quality,
hybridization quality, and heterogeneity, which resulted in the
exclusion of 778 outliers and low-quality samples (Figure 1B;
supplemental Figure 1A; supplemental Table 1). The raw data from
the remaining 1534 high-quality samples were then merged with
a set of 198 unsorted normal BM samples, normalized, and batch
adjusted for further analysis (supplemental Figure 1B; supplemental
Table 2). The AML samples were representative of 12 different
karyotypes, of which the cytogenetically normal (CN) subgroup was
the most abundant (69.8%). The t(6;9) and del(5q) samples were
excluded because of their low frequency (,10 samples), restricting
the analysis to 10 cytogenetic subgroups (Figure 1C; supplemental
Table 2). When these stringent filtering steps were followed, the
distribution of cytogenetic subgroups was similar to that previously
determined by Papaemmanuil et al (supplemental Table 3).5 An
extensive multicentric, high-quality data set of cytogenetically
diverse AML and normal BM samples was created (GSE147515),
offering the opportunity to perform in-depth and powerful analyses.

AML subgroups share a common set of deregulated

genes and pathways

Regardless of their genetic abnormalities, AML subtypes may share
common molecular features with therapeutic potentials. To identify
common deregulated genes across subgroups, we performed
horizontal data integration, which has the capacity to increase both
statistical power and material heterogeneity compared with methods
used in previous studies.41,44 Indeed, a classic comparison of pooled
AML samples, regardless of abnormalities, identified 1391 differentially
expressed genes (DEGs; Figure 2A). This approach could be skewed

by the overrepresentation of the CN-AML group compared with
infrequent cytogenetic subgroups, but analysis of each subgroup
separately would prevent such bias. Hence, we performed a pairwise
comparison between each of the 10 AML subgroups and normal BM,
to identify karyotype-specific DEGs. As expected, most DEGs
(96.4%) obtained by the karyotype-specific approach in CN-
AML were also identified in the pooled strategy, whereas only
3.6% of the deregulated probes were not captured (Figure 2A). In
contrast, between 19% and 57% of the probes deregulated in
less frequent subtypes, representing 292 to 1471 probes, were
not detected in the pooled approach. More than 60% of DEGs
(fold change .1) in each of the cytogenetic subgroups were
downregulated in AML, compared with normal BM (Figure 2B).
Enrichment analysis of DEGs showed that upregulated and
downregulated genes contributed to common biological pathways
in all karyotypes (Figure 2C), suggesting that global gene
enrichment could be commonly associated with all cytogenetic
subgroups. A total of 330 common DEGs (CODEGs) were
identified across the 10 AML subgroups (Figure 3A; supplemental
Table 4), of which 311 genes were downregulated, whereas 18 genes
and 1 noncoding RNAwere upregulated in AML subgroups, compared
with normal BM. Hierarchical clustering and principal component
analysis confirmed that CODEGs were sufficient to differentiate
between AML and control samples, but not between AML
subgroups (Figure 3B-C). This result indicates that CODEGs
are deregulated in association with disease development,
independent of cytogenetic abnormalities. The empirical distri-
bution of CODEGs showed consistent left-shifted expression
distribution in the AML subgroups, compared with normal BM,
indicating a lower expression profile that reflected overrepresented
downregulated genes (Figure 3D). Interestingly, the expression
profile of CODEGs, particularly of downregulated genes, correlated
with their methylation profile and with the mutation status of the
methylation regulators (supplemental Results).

CODEGs correlate with myeloid differentiation,

LSC status, and relapse

Protein-protein interaction analysis showed that 75% of CODEGs
were highly interconnected with many downregulated hub genes
(supplemental Figure 2A). To identify altered biological processes
across AML subgroups, we performed functional enrichment analysis
separately on upregulated and downregulated CODEGs. The data
showed that upregulated CODEGswere involved in positive regulation
of cell proliferation and embryo development, whereas downregulated
genes were enriched in pathways related to hematopoietic differen-
tiation and immune responses (supplemental Figure 2B; supplemental
Table 5). Therefore, we investigated changes in the expression of
CODEGs during normal myeloid differentiation by applying GSEA to
the GSE24759 data set.45 Interestingly, upregulated CODEGs were
consistently enriched in stem and progenitor cells, whereas down-
regulated CODEGs were enriched in more mature populations (Figure
4B; supplemental Table 6). Using FAB (French-American-British)
information, available for 268 AML samples, we analyzed the average
expression profile of upregulated and downregulated CODEGs
throughout AML maturation. The average expression of upregulated
genes was shown to decrease gradually in AML throughout matura-
tion (supplemental Figure 3). This is consistent with the fact that
upregulated genes were increasingly depleted throughout normal
myeloid differentiation. In contrast, the variability between FAB
subtypes was less pronounced for downregulated genes, where M6
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showed higher expression than the M0 to M5 subtypes (supplemental
Figure 3). Furthermore, we evaluated the correlation of CODEGs with
LSC status in the GSE76009 data set.12 The results showed that
upregulated CODEGs were enriched in leukemic stem cells with
engraftment potential (LSC1), whereas downregulated CODEGs
were enriched in cells with no engraftment potential (LSC2; Figure
4C). Moreover, we compared upregulated and downregulated genes
in the CODEG signature to functionally defined hematopoietic stem
cells (HSCs) and LSC signatures.9,12 Collectively, the Venn diagrams
revealed that upregulated CODEGs contain 4 LSC-related genes
(FLT3, SPINK2, TGIF2, and CDK6), of which 2 genes (FLT3 and
SPINK2) are also HSC related (supplemental Figure 4). On the other
hand, only 16 of 311 downregulated CODEGs were shown to be
downregulated in LSCs, including GZMB, which is part of our score.
Together, these data indicate that upregulated CODEGs are mostly
AML-related genes, whereas downregulated CODEGs, which are
enriched during myeloid differentiation, do not overlap with HSC-
related genes. To determine whether upregulated genes could be
markers of chemoresistance and aggressiveness, we performed
GSEA on the GSE66525 data set46 that contained paired diagnosis
and relapse AML samples. Remarkably, upregulated CODEGs were

enriched in AML samples at relapse, whereas downregulated genes
were enriched in samples at diagnosis (Figure 4D). Moreover, we
identified the core genes that were positively enriched in relapse
samples from the GSE6652546 and GSE8353347 data sets and
compared them with the CODEG22 genes. Taking all analyses
together, among the 18 upregulated CODEGs identified (supplemen-
tal Figures 5 and 6), 7 genes (PLEKHA5, DNM1, MLLT11, CDK6,
RABEP2, DNMT3A, and TGIF2) were enriched at relapse in both the
GSE66525 (supplemental Figure 5) and GSE83533 (supplemental
Figure 6) data sets. Among those, only PLEKHA5 was present within
the CODEG22 subset. This gene correlated with good prognosis in
the training data set and had a negative coefficient in the score. In
contrast, SPINK2 did not increase at relapse, and yet, it had positive
coefficients in CODEG22 score and correlated with poor prognosis
across multiple data sets.

Regularized linear regression applied to CODEGs

generates a prognostic score in AML

Because CODEGs correlated with LSC status and response to
therapy, we used them to establish a prognostic signature of core
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genes that correlated with clinical outcomes. The TCGA AML data
set was chosen to train the model because, unlike other available
data sets, it was obtained by RNA-seq,48 which offers a better
representation of gene expression independent of microarray
platform. Hence, the LASSO algorithm was applied, using
CODEGs as initial predictors. This method generated a simple
prognostic AML signature calculated for each patient based
on the combined weighted expression of 22 genes, CODEG22
(supplemental Table 7).

Importantly, in the training cohort, patients with a high CODEG22
score showed shorter overall survival (OS) and event-free survival
(EFS), than did patients with low score (Table 1: OS time: 8 vs
56.3 months; EFS time: 5.8 vs 20.8 months). The CODEG22
score was not associated with sex, white blood cell count,
percentage of blasts, NPM1 mutation or the internal tandem
duplication of the FLT3 gene (FLT3-ITD). However, patients with

high CODEG22 score had higher median age, lower incidences
of favorable cytogenetics, and higher incidences of poor
cytogenetics (Table 1).

Recently, ELN recommended the inclusion of ASXL1, TP53, and
RUNX1 molecular mutations in prognostications for patients with
AML.6 Hence, we validated the CODEG22 score using the new
ELN guidelines on the TCGA data set, which has whole-exome
sequencing data. Our score remained prognostic after accounting
for these mutations, and it improved the prognostic power of the
multivariate model containing ELN molecular mutations (FLT3-ITD,
NPM1, biallelic-CEBPA, ASXL1, TP53, and RUNX1), cytogenetic
abnormalities, age, and WBC. We also verified the correlation of
CODEG22 with a wide spectrum of recurrent AML mutations
covering many functional groups (supplemental Table 8). Fisher’s
exact test revealed that CODEG22 did not correlate with most
of these mutations, except for TP53 and WT1 mutations, which
were enriched in the high- and low-score groups, respectively.
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Figure 3. Identification of 330 CODEGs across cytogenetic subgroups. (A) Schematic Venn diagram highlighting the CODEGs. (B) Heat map showing the expression

levels of CODEGs in AML and normal BM samples. Centered gene expression is represented in a blue (low expression) to red (high expression) color gradient. Hierarchical

clustering of samples was performed using Euclidean distance as a dissimilarity measure and average linkage, and that of genes was performed with Pearson correlation and

average linkage. (C) Principal component analysis of samples based on the expression profile of the 330 commonly deregulated genes. Colors represent karyotypes, with red

for control samples. (D) Empirical cumulative distribution (ECDF) for the expression of the 330 commonly deregulated genes across AML subgroups. Red points indicate the

maximum distance between expression in the control and AML samples. The Kolmogorov-Smirnov goodness-of-fit test was used to test the similarity of distribution between

control and AML samples.
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Figure 4. Enrichment analyses of the CODEGs in AML. (A) A network of Gene Ontology biological processes that are enriched in upregulated (red nodes) and

downregulated (blue nodes) genes. Node size is proportional to fold enrichment, and edge width and transparency are proportional to the number of shared CODEGs.

(B) GSEA of CODEGs throughout normal myeloid differentiation (GSE24759 data set). A differentiation hierarchy representing analyzed hematopoietic populations (left);
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Nonetheless, the score remained prognostic in a multivariate
analysis after adjustment for these mutations and other risk factors
(supplemental Tables 9 and 10).

The prognostic power of CODEG22 was independently validated
on 2 well-annotated AML microarray data sets, which include
various cytogenetic subgroups (supplemental Results). Indeed,

a high CODEG22 score correlated with poor OS and EFS (Figure
5A-B). The model retained its prognostic significance in the
cytogenetically abnormal subset (Figure 5C-D), and it remained
prognostic after adjustment for age and cytogenetic abnormalities
(supplemental Results). Likewise, the score was also validated on
the Beat-AML RNA-seq data set (supplemental Results).

Figure 4. (continued) heat maps summarizing GSEA results on upregulated and downregulated CODEGs, respectively. For each square in the heat maps, a ranked list of DEGs

between denoted populations A and B was generated, the enrichment of upregulated (middle) and downregulated (right) CODEG genes was examined against the ranked list,

and an enrichment score was generated. Heat map colors correspond to the normalized enrichment score in population A vs B. *Significant enrichments with nominal P , .05

and false discovery rate ,0.05. HSC1, CD1331 CD34dim HSCs; HSC2, CD382 CD341 HSCs; CMP, common myeloid progenitor; GMP, granulocyte/monocyte progenitor;

MEP, megakaryocyte/erythroid progenitor; GRAN3, granulocyte (neutrophil); EOS, eosinophil; BASO, basophil; MONO2, monocyte, Ery5, CD342 CD712 GlyA1 erythroid;

and MEGA2, megakaryocyte. (C) GSEA of upregulated and downregulated genes in leukemic stem cell positive (LSC1) vs negative (LSC2) populations (GSE76009 data set).

(D) GSEA of upregulated and downregulated genes in AML samples at diagnosis vs relapse (GSE66525).

Table 1. Descriptive table of CODEG22 score in the TCGA RNA-seq training cohort (N 5 173)

Parameter TCGA training cohort (N 5 173) Low score subset (n 5 87) High score subset (n 5 86) P Test type

Sex

Female 81 (46.8) 39 (44.8) 42 (48.8) .71 Pearson’s x2 test

Male 92 (53.2) 48 (55.2) 44 (51.2)

Age, median (range) 58 (18-88) 54 (18-81) 62.5 (21-88) ,.001 Wilcoxon test

WBC, median (range) 17 (0.4-297.4) 13.6 (0.4-297.4) 28.3 (0.7-171.9) .13 Wilcoxon test

Blast percentage, median (range) 72 (30-100) 73 (30-100) 71.5 (30-98) .28 Wilcoxon test

Karyotype

Abnormal karyotype 95 (55.9) 48 (55.8) 47 (56) .99 Fisher’s exact test

Normal karyotype 75 (44.1) 38 (44.2) 37 (44)

Molecular risk groups

Favorable 33 (19.4) 27 (31.4) 6 (7.14) ,.001 Pearson’s x2 test

Intermediate 92 (54.1) 45 (52.3) 47 (56)

Poor 45 (26.5) 14 (16.3) 31 (36.9)

Cytogenetic abnormalities

Normal karyotype 75 (44.1) 38 (44.2) 37 (44) ,.001 Fisher’s exact test

t(15;17) 16 (9.41) 13 (15.1) 3 (3.57)

t(8;21) 7 (4.12) 6 (6.98) 1 (1.19)

Inv(16) 10 (5.88) 8 (9.3) 2 (2.38)

Intermediate risk cytogenetics 21 (12.4) 8 (9.3) 13 (15.5)

Complex cytogenetics 22 (12.9) 4 (4.65) 18 (21.4)

Poor-risk cytogenetics 19 (11.2) 9 (10.5) 10 (11.9)

CN-AML mutations

NPM1 mt 43 (57.3) 22 (57.9) 21 (56.8) .99 Pearson’s x2 test

NPM1 wt 32 (42.7) 16 (42.1) 16 (43.2)

FLT3-ITD2 59 (78.7) 29 (76.3) 30 (81.1) .78 Fisher’s exact test

FLT3-ITD1 16 (21.3) 9 (23.7) 7 (18.9)

Events

No relapse 91 (52.6) 48 (55.2) 43 (50) .6 Pearson’s x2 test

Relapse 82 (47.4) 39 (44.8) 43 (50)

Survival parameters

OS time (median), mo 18.1 56.3 8 ,.001 Log-rank test

EFS time (median), mo 9.8 20.8 5.8 ,.001 Log-rank test

Data are the number of patients (percentage of entire set or subset), unless otherwise noted.
mt, nutation; wt, wild-type.
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Figure 5. Patients with AML stratified based on high and low CODEG22 score. (A-B) OS and EFS of patients including all cytogenetic abnormalities from the

GSE6891 (A) and the GSE10358 (B) data sets. (C-D) OS and EFS of patients with CA-AML from the GSE6891 (C) and GSE10358 (D) data sets. (E) OS and EFS of

patients with CN-AML from the GSE10358 data set. (F) OS of all patients from CN-AML cohorts 1 and 2 available in the GSE12417 data set. (G) OS, EFS, and RFS of all
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CODEG22 stratifies patients with AML with

CN karyotype

As mentioned, normal cytogenetics represent .50% of de novo
AML. The mutational status ofNPM1,CEBPA, and FLT3 genes has
recently helped in stratification of patients in this AML subgroup.6

However, a high proportion of patients with CN-AML do not carry
these mutations and are considered to have intermediate risk. The
CODEG22 score efficiently stratified patients with CN-AML from
the GSE10358 data set (Figure 5E; OS and EFS, P , .001) and
remained efficient after adjustment for age, NPM1 mutation, and
FLT3-ITD status (supplemental Table 11). Moreover, inclusion of
CODEG22 score in the model containing age, NPM1 mutation,
and FLT3-ITD status (multivariate model 1) strongly improved its
predictive power (supplemental Table 11; OS likelihood ratio test
[LRT] P 5 4.2 3 1025; EFS LRT P 5 2 3 1025). The CODEG22
score was also tested on 2 CN cohorts from the GSE12417 data
set,8 annotated only for age and OS. A high CODEG22 score was
significantly associated with poor OS in both cohorts (Figure 5F;
cohort 1: OS P5 .003; cohort 2: OS P5 .01), with shorter median
OS time (supplemental Table 12) and with poorer survival probability
(supplemental Table 13), compared with the low-score group, which
remained significant after adjustment for age (supplemental Table 13;
cohort 1: OS hazard ratio [HR] 5 2.35, P 5 .005; OS HR 5 1.52,
P 5 .038). Altogether, these results indicate that the CODEG22
score is prognostic of patients with CN-AML, independent of age and
NPM1/FLT3-ITD status.

CODEG22 stratifies elderly patients with AML

Refinement of the prognosis is particularly challenging for
elderly patients with AML who poorly respond to chemotherapy.
The robustness of the CODEG22 score was examined in the
ALFA-0701 data set that includes patients with AML, mainly
.50 years old.35 In this phase 3 clinical trial, patients were treated
with classic chemotherapy either alone or in combination with
Gemtuzumab ozogamicin. Results showed that the CODEG22
score was independent of sex, age, WBC, karyotype, cytogenetic
risk, cytogenetic abnormalities, treatment arm, NPM1 mutation, or
FLT3-ITD status (supplemental Table 14). It is noteworthy that
70.8% of patients with a high score relapsed after therapy,
compared with 52.8% of patients with a low score. Indeed, the
high-score group had more adverse relapse-free survival (RFS),
OS, and EFS, than did the low-score group (Figure 5G), with
shorter median survival times (supplemental Table 14; RFS: 12.5
vs 28.7 months, P5 .01; OS: 19.2 vs 27.3 months, P5 .029; and
EFS: 8.6 vs 14.1, P 5 .047) and poorer survival probability
(supplemental Table 15; RFS HR 5 1.74, P 5 .012; OS HR 5 1.53,
P5 .024; and EFS HR5 1.42, P5 .041). In addition, the CODEG22
score remained prognostic after adjustment for age, treatment, and
cytogenetic risk (supplemental Table 15; RFS HR5 1.81, P5 .008;
OS HR 5 1.52, P 5 .028; and EFS HR 5 1.53, P 5 .016) and
enhanced the predictive capacity of the multivariate RFS model
(supplemental Table 15; LRT result improved from .216 to .024).
These results show that CODEG22 score can be a valuable
marker to aid in stratifying elderly patients with AML.

CODEG22 score stratifies intermediate and adverse

risk group patients

The cytogenetically diverse GSE61885 and GSE10358 data sets
were split into favorable, intermediate, and adverse risk groups, and
the prognostic power of CODEG22 score was examined within
these populations. Results showed that our score could identify
good responders to therapy within the intermediate and adverse
groups from both data sets (supplemental Figure 7). However, the
score could not identify poor responders within the favorable
subtype (data not shown).

CODEG22 score outperforms the LSC17 score in

survival prediction

So far, the most efficient prognostic score is based on upregulated
genes in the LSC1 compared with the LSC2 population.12 The
LSC17 score, based on 17 genes, was trained on the microarray
GSE6891 data set, whereas the CODEG22 score was trained on
the TCGA RNA-seq data set. Therefore, the GSE10358, an
independent microarray data set with a broad range of annotations
(supplemental Table 16), was used to compare the 2 scores. Global
univariate analysis of EFS showed equal significance of the 2
scores (Wald P , .001), with higher HR for CODEG22 compared
with LSC17 (supplemental Table 17; HR, 2.31 vs 1.95). The 2
scores remained significant in a multivariate OS model containing
both of them, in addition to age and cytogenetic abnormalities.
However, the CODEG22 score outperformed the LSC17 score in
a multivariate EFS model containing the 2 scores, age, and
cytogenetic abnormalities (supplemental Table 17; CODEG22:
EFS HR, 1.63, P 5 .016; LSC17: EFS HR, 1.45, P 5 .064).
Moreover, univariate analysis of the CN-AML subgroup showed that
the LSC17 score was less powerful than the CODEG22 score in
predicting both OS (HR, 2.15 vs 2.63) and EFS (HR, 1.98 vs 2.85;
supplemental Table 18). Only the CODEG22 score remained
significant in multivariate models containing the 2 scores, age, and
NPM1/FLT3-ITD status (supplemental Table 18; OS HR, 1.94, P5
.037; EFS HR, 2.23, P5 .007). Overall, these results show that the
CODEG22 score is independent of LSC content and could be
a stronger prognostic predictor of AML survival than LSC17.

CODEG22 score is validated by real-time qPCR in

a retrospective cohort

Given the global robustness of the CODEG22 score on public
transcriptomics data sets, we sought to validate it retrospectively by
using real-time qPCR on an AML cohort from the FILO. A total of
142 BM samples from patients with AML belonging to different risk
groups were analyzed (supplemental Table 19). Although the model
correlated with risk groups and age, it was independent of sex and
percentage of blasts (supplemental Table 20). It was prognostic on
both OS and EFS (Figure 5H; OS log-rank P 5 .002; EFS log-rank
P 5 .03), with shorter OS and EFS times (supplemental Table 20;
OS median time of 23.5 months vs not reached; P 5 .002; EFS
median time of 11.7 vs 28.3 moths, P 5 .032) and poorer survival
probability (supplemental Table 21; OS HR, 2.13, P 5 .003; EFS

Figure 5. (continued) patients from the ALFA-0701 cohort. (H) OS and EFS of patients with AML from the retrospective real-time qPCR (qRT-PCR) FILO cohort (n 5 142).

CODEG22 scores above and below the median in each cohort are labeled high (in red) and low score (in blue), respectively. A log-rank test was used to compare the survival

curves of the high and low score subsets.

27 OCTOBER 2020 x VOLUME 4, NUMBER 20 COMMON DEREGULATED GENES ACROSS AML SUBGROUPS 5331



HR, 1.58, P 5 .033) for the high CODEG22 score compared with
the low score. These results show that the score is unbiased,
independent of microarray platforms and could be implemented in
clinical practice.

Discussion

Relapse remains a major limitation in the treatment of AML,
particularly in elderly patients. Nevertheless, discovery of driver
genes and improved patient stratification, based on recent
advances in transcriptomics, have refined the treatment in many
cases. Although next-generation sequencing progressively
supplants the use of microarray platforms, the large amount of
microarray data sets accumulated during the past 2 decades
remains an extensive mine of unexploited information for
identifying genes and pathways sustaining aggressiveness and
chemoresistance of malignant cells. The true originality of our
meta-analysis lies in the use of a horizontal integration strategy
to create a large data set (GSE147515) that combines AML
samples from multiple studies.

Our method allowed for investigation of common features of
differential gene expression across multiple cytogenetic AML
subgroups, compared independently and separately to normal
BM samples. The investigation required a large number of AML
samples that would be accessible only through horizontal
integration of data from multiple studies. Although RNA-seq is
the current method of choice for high-throughput transcriptomic
data analysis, the number of public RNA-seq data sets for AML
remains small. On the contrary, horizontal data integration is
feasible with Affymetrix microarrays. In this study, we used the
Affymetrix GeneChip Human Genome U133 Plus 2.0 Array for
this purpose because of its wide availability and well-known
genomic coverage (.1500 well-annotated and high-quality sam-
ples). In contrast, our prognostic model was developed using RNA-
seq data and was validated using both microarray and real-time
qPCR, proving that the method is platform independent.

Although data for ;4000 AML samples were publicly available in
the GEO database, ;20% of the samples had to be excluded for
lack of annotation. Moreover, almost all CN-AML samples lacked
annotation for mutations in the FLT3, NPM1, and CEBPA genes,
which would have been otherwise incorporated. In fact, most data
sets lack sufficient clinical annotation for reanalysis, raising an alert
on the limited availability of clinical data associated with public data
sets.49 Nevertheless, thanks to the high number of data sets, we
were able to assemble a large cohort of 1732 AML and normal BM
samples. Usually, classic comparison of pooled AML samples
results in the overrepresentation of CN samples, whereas genes
from many infrequent cytogenetic subgroups remain underrepre-
sented. To overcome this problem, we performed pairwise
comparisons between each of the 10 AML subgroups with normal
BM and identified karyotype-specific DEGs, among which the
expression of 330 genes were commonly altered in all subgroups.

Remarkably, most of the CODEGs were downregulated, suggest-
ing a possible epigenetic regulation. Increased DNA methylation
has been associated with AML progression.50,51 In agreement, we
observed high DNA methylation of most downregulated CODEGs.
This result could be explained by the decline of diverse mature cells
and blockage of differentiation of blasts. Unfortunately, the absence
of DNA methylation data for normal BM prevents a clear validation

of our assumption. However, hypermethylation of CpG islands during
AML progression depends onDNMT3A,52 which was present among
the upregulated CODEGs. According to the literature, inactivating
mutations in DNMTs correlated with decreased methylation, but only
for 10% of CODEGs. These data further support the concept of
increased hypermethylation in AML, which reinforce the possibility
of using DNA hypomethylating agents for karyotype-independent
treatment of AML.53

Despite the tendency toward gene downregulation, 19 CODEGs
were upregulated and thus may be therapeutic targets (supple-
mental Results). Among these, DNMT3A and FLT3 are frequently
mutated and are hallmarks of high-risk AML.5 FLT3, SPINK2, and
CDK6 have been found to be upregulated in LSCs.12 MLLT11 and
ANKRD28 have been identified in rare chromosomal transloca-
tions, whereasCDK6 and SOX4 have been experimentally linked to
AML (supplemental Data). More interestingly, other genes were
either listed among upregulated genes in transcriptomic analyses
(ATP6V0A2, PDGFC, RABEP2, SINHCAF, and TGIF2), but were
never investigated, or never described in AML (DNM1, MIB1,
NRXN2, PLEKHA5, ZBTB8A, and ZBTB10) (supplemental Data).
The latter merit further functional investigation, for instance, by gene
silencing in stem cells, as described for the genes identified in the
LSC signature.54 This recommendation is supported by the fact that
upregulated CODEGs were found upregulated in LSCs com-
pared with bulk AML, whereas downregulated genes showed the
opposite. In hematopoiesis, upregulated CODEGs were con-
stantly enriched in stem cells and progenitors, whereas down-
regulated CODEGs were enriched in committed cells. This finding
suggests that, as in normal differentiation, a gradient of gene
expression still exists throughout AML hierarchy and that LSCs
maintain the expression of a pool of common genes involved in
HSC maintenance and proliferation.

The unbiased CODEG22 score was independent of current
prognostic factors: age, cytogenetics, and molecular abnormalities.
Although multiple AML gene expression signatures have been
established during the past 2 decades, Ng et al recently proposed
a simple model, called LSC17,12 which outperformed previous
prognostic scores in the stratification of adult11,13,55 and pediatric
AML.12,56 They proposed that the strength of the LSC17 model
comes from the biological properties of LSCs, which may confer
resistance to therapy. However, the absence of the favorable
cytogenetic group in their data set could have affected the initial
LSC gene list used to generate the LSC17 score. Indeed, LSC17
was recently reported to perform poorly on the favorable subgroup
in pediatric AML.56 Likewise, our score could not identify poor
responders within the favorable subtype, despite taking t(8;21) and
t(9;11) translocations into account while identifying CODEGs. This
result suggests that the mechanisms of relapse in the favorable
subgroups, especially for samples harboring CBF mutations,
may be different from those of the other subgroups and require
special attention. In addition, it has been reported that Ara-C
resistance and relapse could also result from the evolution of
non-LSC populations.16,17 The CODEG22 model is based on
a mixed signature that combines genes related to both stemness
(4 genes) and myeloid differentiation (18 genes). The result of the
comparison with the LSC17 signature demonstrated that the
prognostic power of the CODEG22 score comes, at least partially,
from blast-enriched genes, indicating that molecular markers of
differentiation in AML contain valuable prognostic information that
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should not be underestimated in the prediction of a patient’s
survival. Indeed, it has been reported that the mechanisms shaping
drug tolerance and the subsequent relapse in acute leukemia can
be present in relapse-fated cells at diagnosis.57,58 Seven upregu-
lated CODEGs were also increased at relapse, suggesting that
cells expressing these genes are selected by chemotherapy or that
chemotherapy can induce their expression in relapse-fated cells.
We speculate that the prognostic power of CODEG22 score could
be associated with mechanisms related to drug resistance in
relapse-fated cells at diagnosis.

Of interest, the CODEG22 score stratified patients within the
intermediate- and adverse-risk group in the training cohort and
also stratified cytogenetically abnormal AML (CA-AML) and CN-
AML subgroups, as well as elderly patients from independent data
sets. This finding suggests that CODEG22 may complement ELN
classification for more accurate prediction of the disease out-
come, independent of NPM1 or FLT3 status. The accuracy of
prognostic models in AML can benefit from incorporating multiple
data types, including gene expression data.59 Indeed, our results
indicate that CODEG22 can improve stratification of patients
when combined with ELN classification. We also validated our
results through a retrospective model using real-time qPCR. The
expression of signature genes in clinical routine can be easily
evaluated by real-time qPCR. A score can be calculated for each
patient by using the weighted sum of signature gene expression
for use in clinical practice. Nevertheless, further prospective
validation, both outside and within clinical trials, is necessary to
confirm these findings.

In summary, using robust analysis of differential gene expression,
we identified a common set of DEGs across AML cytogenetic
subgroups, which included crucial genes that are worth testing as
targets in future treatments. Ara-C combined with an anthracycline
remains the worldwide standard for the treatment of young patients
with AML.60 Hence, risk stratification of patients remains the main
option for defining treatment intensity and deciding whether to
perform allogeneic stem cell transplantation. We created a prognostic
model of AML using differentiation markers, which proved to be robust
and unbiased and could complement the ELN classification for more
accurate prediction of clinical outcomes.
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35. Castaigne S, Pautas C, Terré C, et al; Acute Leukemia French Association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo
acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study [published correction appears in Lancet. 2018;391(10123):838.].
Lancet. 2012;379(9825):1508-1516.

36. Lim WK, Wang K, Lefebvre C, Califano A. Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks.
Bioinformatics. 2007;23(13):i282-i288.

37. Tyner JW, Tognon CE, Bottomly D, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526-531.

38. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New York: Springer; 2000.

5334 NEHME et al 27 OCTOBER 2020 x VOLUME 4, NUMBER 20

https://www.bioconductor.org/packages/release/bioc/html/topGO.html
https://www.bioconductor.org/packages/release/bioc/html/topGO.html


39. Kassambara A, Kosinski M. survminer: Drawing Survival Curves using ’ggplot2’. Available at: https://rdrr.io/cran/survminer. Accessed 14 October 2020.

40. Ibrahim S, Dakik H, Vandier C, et al. Expression Profiling of CalciumChannels and Calcium-Activated PotassiumChannels in Colorectal Cancer.Cancers
(Basel). 2019;11(4):561.

41. Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray data sets. PLoS Med. 2008;
5(9):e184.

42. Nehme A, Cerutti C, Dhaouadi N, et al. Atlas of tissue renin-angiotensin-aldosterone system in human: A transcriptomic meta-analysis. Sci Rep. 2015;5:
11035.

43. Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CMT, Beyene J. Data integration in genetics and genomics: methods and challenges. Hum Genomics
Proteomics. 2009;2009:869093.

44. Nehme A, Mazurier F, Zibara K. Comprehensive Workflow for Integrative Transcriptomics Meta-Analysis. In: Kobiessy F, Alawieh A, Zaraket FA, Wang K,
eds., et al. Leveraging Biomedical and Healthcare Data, London, UK: Academic Press; 2019:1-16.

45. Novershtern N, Subramanian A, Lawton LN, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011;
144(2):296-309.

46. Hackl H, Steinleitner K, Lind K, et al. A gene expression profile associated with relapse of cytogenetically normal acute myeloid leukemia is enriched for
leukemia stem cell genes [letter]. Leuk Lymphoma. 2015;56(4):1126-1128.

47. Li S, Garrett-Bakelman FE, Chung SS, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia.Nat Med.
2016;22(7):792-799.

48. Ley TJ, Miller C, Ding L, et al; Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
[published correction appears in N Engl J Med. 2013;369(1):98]. N Engl J Med. 2013;368(22):2059-2074.

49. Quackenbush J. Learning to share. Sci Am. 2014;311(1):S22.

50. Jiang Y, Dunbar A, Gondek LP, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 2009;113(6):1315-1325.

51. Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;
17(1):13-27.

52. Spencer DH, Russler-Germain DA, Ketkar S, et al. CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell.
2017;168(5):801-816.e13.

53. Gardin C, Dombret H. Hypomethylating Agents as a Therapy for AML. Curr Hematol Malig Rep. 2017;12(1):1-10.

54. Kaufmann KB, Garcia-Prat L, Liu Q, et al. A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency. Blood. 2019;
133(20):2198-2211.

55. Levine JH, Simonds EF, Bendall SC, et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell.
2015;162(1):184-197.

56. Duployez N, Marceau-Renaut A, Villenet C, et al. The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid
leukemia. Leukemia. 2019;33(2):348-357.

57. Shlush LI, Mitchell A, Heisler L, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104-108.

58. Dobson SM, Garcı́a-Prat L, Vanner RJ, et al. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess
Distinct Metabolic Programs. Cancer Discov. 2020;10(4):568-587.

59. Gerstung M, Pellagatti A, Malcovati L, et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic
syndromes. Nat Commun. 2015;6(1):5901.

60. De Kouchkovsky I, Abdul-Hay M. “Acute myeloid leukemia: a comprehensive review and 2016 update”. Blood Cancer J. 2016;6(7):e441.

27 OCTOBER 2020 x VOLUME 4, NUMBER 20 COMMON DEREGULATED GENES ACROSS AML SUBGROUPS 5335

https://rdrr.io/cran/survminer

