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Abstract. A cockpit (also called a flight deck) is an interactive environment of

an aircraft that enables both pilot and first officer to monitor and control the

aircraft systems. Allowing the crew to control aircraft systems through display

units by using a keyboard and cursor control unit is one of the main features in

the new generation of cockpits based on the ARINC 661 standard. Aircraft

manufacturers are now investigating the deployment of touch interactions in

future cockpits and ARINC 661 standard (supplement 7) extends it for that

purpose. While touch interactions have demonstrated benefits in terms of per-

formance (from the user point of view), their dependability is an important issue

that has not been addressed so far. This paper proposes an interaction technique

for touch devices called Brace Touch that aims at increasing the dependability of

touch interactions by providing solutions to address development, natural and

operation faults.

Keywords: Human-computer interaction � Interaction techniques �

Fault-tolerance � Dependability � Usability

1 Introduction

The evolution of cockpits in large civil aircraft has followed two different paths:

• Small increments/evolutions targeting identified problems or integrating new

equipment (similar to existing technology) into an existing cockpit;

• Significant steps/evolutions resulting in complete re-design of the cockpit including

control and displays. Examples of such evolutions include the glass cockpit (where

large display units were included in the flight deck) and more recently interactive
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cockpits compliant with ARINC 661 specifications [3] where interaction takes place

through mouse-like input devices and keyboards.

In parallel with these evolutions, multi-touch interfaces have appeared in most

environments including mobile technologies, flight entertainment systems, and con-

sumer electronics. Such interfaces have demonstrated benefits related to the fact that

the output device (screen) integrates input management (touch device) thus bridging

the (usual) gap between input and output in user interfaces. These systems have also

demonstrated benefits in terms of performance for triggering commands by exploiting

multi-finger interactions that can reduce the number of unnecessary modes.

Changing interaction in cockpits brings a set of issues that already appeared when

interactions in the cockpit evolved from “physical interactions” (by manipulating

physical knobs and reading information on dials) to software controls mainly based on

the ARINC 661 specification [3]. Often considered as reliable means to trigger com-

mands, devices such as pushbuttons, rotators and safe-guarded physical buttons are

now common in the flight deck. However, these devices generate significant weight

load and bring maintenance issues in terms of augmentation of cockpit functions [6].

This is a key issue as these physical components are directly linked to the aircraft

systems they control, resulting in the fact that evolutions (of the aforementioned sys-

tems) are likely to require modifications to the components themselves or their orga-

nization in the cockpit. This is extremely costly as tuning part of the cockpit is likely to

have broad implications for the aircraft and its operation [24]. Local changes might

affect performance, and ultimately require adaptation of procedures and flying crew

training going far beyond the system itself. Bringing touch interactions to commercial

cockpits offers potential advantages to pilots, airlines, and aircraft manufacturers. Pilots

may benefit (beyond the touch advantages presented above) from their familiarity with

touch interactions on personal devices. Airlines and manufacturers could benefit from

reduced hardware installation complexities, easier maintenance and reduced training.

Replacing hard-wired physical controls with touchscreens could therefore ease devel-

opment, facilitate upgrades, reduce weight, and improve pilot interaction as argued in

[8]; and this is why AEEC produced a supplement of ARINC 661 for touch [4].

Providing multi-touch interactions for the command and control of civil aircraft

would be another significant evolutionary step as far as cockpits design is concerned.

However, together with the benefits presented above, multi-touch interfaces bring a set

of issues that are still to be solved prior to making them “certifiable” and thus

deployable for command and control of (safety) critical interactive systems. These

issues affect multiple properties such as reliability, fault-tolerance, and usability.

Our previous work [22] and [21] mostly addressed the modeling aspects of multi-

touch interactions and their use for cockpit applications to deal with development faults

by providing a dedicated formal description technique based on high-level Petri nets

[20]. This paper builds on that previous work and focuses on the dependability aspects

of multi-touch interactions from a holistic point of view, addressing development

faults, natural faults, and operation faults (according to the taxonomy from [6]). To this

end, we propose a new interaction technique called Brace Touch (introduced in [12])

where the empirical evaluation of its usability is demonstrated. This interaction



technique allows flying crew to interact with touchscreens even under turbulence [11],

which one of the main usability problems for touch interactions in cockpits, together

with muscular fatigue and postures, as studied by Airbus human factors experts [8].

The remainder of this paper is organized as follows. The next section describes the

underlying hardware, software, and interaction techniques for touchscreens. Section 3

identifies the dependability aspects of touch interactions. Section 4 presents the design

and the principles of Brace Touch interaction together with a precise description of its

behavior. Section 5 presents our proposal for addressing the dependability of Brace

Touch interactions, including development, operation, and natural faults. Section 6

concludes the paper and highlights future directions.

2 Touch Interactions

This section introduces the usability and user experience (UX) aspects of touch

interactions before focusing on touch device hardware, software and interaction

aspects.

2.1 Usability and UX (Operations)

As presented above and argued in [36] (much before the advent of multi-touch inter-

actions on personal and mobile devices), touch interactions provide the advantage of

bridging the gap between input and output allowing users to interact without any

artificial input device such as stylus or mouse. Interaction thus does not occur remotely

but directly at the fingertip of the users, and early work such as [26] has demonstrated

that touch screens can provide better performance for task completion. Such benefits do

not come without disadvantages. First, current user interfaces are designed for inter-

action with mice or trackpads that provide higher levels of precisions that the so-called

“fat finger”. Fingers occlude small targets during selection and this reduced precision

results in higher error rates on small targets. Beyond fingers, hands and arms increase

occlusion on large touch screens. These issues have been at the center of recent

research in human-computer interaction and solutions have identified new touch

interaction techniques such as offering a fixed cursor offset [34], enlarging the target

area [32], and providing on-screen widgets to facilitate selection [1].

This paper proposes a similar approach presenting the Brace Touch interaction

technique designed to guarantee a reasonable level of usability even in the context of

moderate or severe turbulence. In other work on compensating for vibration during

touch interaction, [11] has shown that users stabilized their hand by resting on the

bezels, i.e., the non-interactive part of the screen, in order to select targets with

accuracy. However, as the hand is stabilized on the bezel only a small proportion of a

large display can be reached. The Brace Touch interaction aims at increasing accuracy

and reducing errors during turbulence while allowing interaction with the entire

touchscreen.



2.2 Hardware

A touchscreen consists of a pointing device (touch sensor) combined with a display

(e.g., LCD or CRT). The pointing device is responsible for capturing (X,Y) coordinates

on the touch sensor and dispatching this information to the software component (ex-

ploiting a dedicated driver). There are multiple touch screen technologies but this paper

focusses on the four main categories available on the market (beyond research pro-

totypes): resistive, capacitive, surface acoustical wave (SAW) and infrared (IR). The

interested reader can find a full review on touch technologies in [40].

Resistive technology consists of two conductive layers separated by an isolating layer

(pierced with very small holes in a grid manner). On finger contact, the two layers get in

contact at the closest location of a hole, creating a new voltage. This technology is cheap,

contaminant-proof and works with any pointed object (not only a finger). However, it has

poor screen clarity and does not support multi-touch. Moreover, such technology

requires pressure, which may interfere with user interaction and performance.

Capacitive technology uses the user’s body capacitance to detect contact on the

screen. This technology is largely used on smartphones since Apple’s first iPhone in

2007. It offers excellent clarity and supports multi-touch, but only detects body contact.

Infrared technologies consist of IR LEDs and photodetectors organized as a grid.

The IR light is stopped by an opaque object contacting the screen. IR technology offers

excellent screen clarity, supports multi-touch, and is very robust to the environment.

However, such technology remains expensive.

Surface acoustic wave technology uses piezo transducers that emit and receive

ultrasonic Raleigh waves along the bezels of the screen. On contact, the finger partially

absorbs the wave which results in a temporary loss of amplitude in the received wave.

This technology is cheap and offers excellent visual quality. However, it requires the

user to press (rather strongly) on the screen (thus potentially reducing user perfor-

mance) and it only supports two contact points.

This multiplicity of technologies demonstrates the maturity of the domain and the

fact that diversity can be addressed at the hardware level to tolerate and possibly

remove hardware faults. For instance, on the input side, it would be possible to

combine a layer of capacitive technology on top of a resistive touchscreen. The main

touchscreen manufacturers do not provide information about the frequency of hardware

transient failures, but 10−5 is informally put forward by manufacturers. Such a com-

bination would be a path towards deployment of tactile screens for Development

Assurance Levels (DAL) B or C applications [13] by bringing together diversity,

redundancy and segregation at the hardware level.

2.3 Software

Even though hardware can significantly vary from one touch screen to another, most

programming toolkits offer the same low level events and information: a location (X,Y)

on the screen, an event type Down, Move, or Up and a touch id to identify continuous

Move events. This id allows identifying that the second move event received has been

performed by the same finger as the first move. Apart from this common basis, par-

ticular hardware can enrich the touch information with physical data such as pressure,



finger contact area, or finger orientation. All this information may be used to design

touch interaction techniques (as presented in Sect. 2.4).

Many dedicated programming toolkits exist for the development of multi-touch

interactive applications, including libraries from hardware platform manufacturers such

as Google, Microsoft, or Apple. Such toolkits usually support the user interface

guidelines defined by the manufacturer and are more or less in line with the ISO

standard on touch devices [25]. The number of users and the iterative correction of

defects are typical arguments put forward to argue for the reliability of this layer.

However, despite some work on the use of formal methods for input device driver

description [2], OS manufacturers do not provide information about the reliability

means used in the development of that layer.

2.4 Touch Interaction

Touch interaction techniques are highly dependent on the low-level events produced by

the hardware. As seen in the previous section, most platforms only provide touch

location, the event type, and an identification number of the finger (id). These events

enable designers to build temporal interactions (e.g., dwelling), spatial interactions [7],

and spatio-temporal interactions such as gestures [27]. Other interactions rely on

hardware capturing particular physical data such as pressure [12], finger contact area

[23], or finger orientation [41]. Finally, finger identification consists in linking a touch

event to a particular finger; this problem has proved difficult even though some research

contributions are promising using geometrical analysis of touch points [5], using

additional camera input [15], biometric data [37], or additional hardware worn on the

fingers [28].

These elements provide the basic underlying language on top of which touch

interaction techniques have to be built. For instance, a horizontal movement of the

finger on the surface of the screen will trigger a higher level event called a swipe in

most platforms. This swipe event is only triggered if the quantity of horizontal

movement is large enough and if no additional fingers have been pressed during the

movement. Only work from [22] has addressed the formal definition of touch inter-

action techniques that are usually crafted jointly by user interface designers and

developers. Interaction techniques are thus usually of low reliability and exhibit faults

at operation time. Detection of development faults is only addressed by testing which

cannot be exhaustive due to the very nature of interactive systems [29]. Beyond that,

the inner nature of interaction techniques might be more or less fault-tolerant (as shown

in Fig. 1). In case of a hardware failure of a line on the touchscreen hardware grid, the

swipe in Fig. 1(a) might not be recognized even though the operator has correctly

performed the gesture. In Fig. 1(b) the swipe gesture is now an upside-down V shape

that could still be recognized even in the presence of several hardware touch screen

lines failures. However, these more complex gestures come with a cost in terms of

usability (more movements and thus more time) and their use must be the result of a

thorough analysis of the usability-dependability trade-off, such as the ones presented in

[17] for standard non-touch interaction techniques.



3 Fault Model for Touch Interactions

As for any kind of computing systems, multi-touch interactive systems can be subject

to faults at development and operation time but may also be subject to natural faults

(such as bit flips due to cosmic rays). Interactive cockpits are a specific kind of

command and control system and, as such, the entire taxonomy of faults presented in

[6] applies. The fault model considered in the current paper does not include malicious

faults because, during operation, the cockpit can be considered as a closed world and

development is carefully monitored.

Our research work aims at contributing to the dependability of touch interaction by

considering development, natural, and operation faults. Due to space constraints, the

current paper focusses on operation faults for touch interactions but we present in this

section how to address other faults.

Addressing Development Faults. We propose to address development faults by using

formal description techniques and dedicated verification mechanisms. However, due to

the very nature of interactive systems, specific methods are required that are able to

handle:

– Concurrency: for instance to represent multiple concurrent interactions with mul-

tiple fingers on the touch screen;

– Dynamic instantiation of objects: for instance, when fingers are added and removed

from the touch screen, their reference must be captured by models;

– Quantitative time, as most interaction techniques include temporal evolutions: for

instance, the time between two touch events required to trigger a double-tap higher

level event;

– Large number of states: for instance, current requirements for touch screen in

aircraft cockpit mandate the management of up to 20 fingers on a given touch

screen. Such a large number of fingers make it possible to use complex interaction

such as finger clustering [21] exhibiting a very large state space.

For this reason, we propose to use a formal description techniques called ICOs [31]

that covers these needs and has been used for describing in a complete and unam-

biguous way all the components of the previous generation of interactive cockpits [9].

Addressing Natural Faults. We consider here a similar fault model as the one pre-

sented in [16] with a focus on erroneous control (transmission of a different action from

the one done by crew members – e.g., sending a swipe event while the user has

performed a long tap) and inadvertent control (transmission of an action without any

crew member action). These faults can be addressed by extending touch technologies

Fig. 1. Tolerance of swipe touch interaction techniques to hardware faults (loss of a line in the

hardware grid) – (a) non tolerant (b) tolerant



with self-checking capabilities as was done with interactive cockpits [16] but this is not

presented here due to space constraints. In addition, the diversity and redundancy of

hardware platforms as presented above would increase tolerance to natural faults.

Addressing Operation Faults. In aircraft cockpits, operation faults typically fall in

the classification of human errors either being intentional (called violation) or non-

intentional (called mistakes, lapses, or slips depending on their type [35]). While such

errors may have multiple sources, some of them are induced by the user interface

design itself [38], but they can result from the operation environment too. For touch

interactions, there is a need for safeguards against undesirable and potentially dan-

gerous environmental conditions, such as turbulence, that might be precursors for each

error type presented above. This paper proposes an interaction technique that aims at

reducing operation faults triggered by turbulence.

4 Brace Touch to Improve Dependability of Touch

Interactions

4.1 Principles of Brace Touch

The primary design intention of Brace Touch is to allow users to mechanically stabilize

touch interactions by concurrently placing multiple fingers onto the display. Selections

and other interactions are then completed by the user issuing a recognizable gesture

while the other stabilizing contacts are maintained on the display. For example, Fig. 2

shows the index finger selecting an item by tapping while all of the other digits of the

hand are pressed onto the display.

Brace Touch uses the multi-touch capabilities of contemporary touchscreens to give

users two alternative ways of completing selections. First, when the interaction envi-

ronment is stable (i.e., no turbulence), users can select items by simply tapping on them

with a single finger, which allows convenient touchscreen interaction in a manner

similar to that used on current mobile devices. Second, during turbulence, braced

selections can be made when certain selection criteria are satisfied. These selection

criteria involve waiting until at least four concurrent contacts are registered on the

touchscreen, then selecting the item (if any) beneath the last-placed contact when it is

removed from the display. In this way, the user can place four fingers of one hand (e.g.,

all but the index finger) onto the display – thereby stabilizing their hand on the display–

then complete a gesture on the target using their index finger (a fifth contact) to select

Fig. 2. Illustration of the brace touch interaction concept



it. Subsequent selections can be made by dragging the four initially placed contacts

across the display, then gesturing again with the index finger – there is no need to lift

all fingers off the display when completing a series of selections.

Our experimental validation of Brace Touch (results briefly described in Sect. 5)

compared user performance with three different variants of the terminating selection

gesture: double tap, dwell (a long press), and force-press. As double-tap is the most

usable (better efficiency and higher satisfaction), we detail this technique in the fol-

lowing sections).

4.2 Hardware and Software Architecture of Brace Touch Interaction

Figure 3 shows the general software architecture to manage touch events in order to

provide brace touch interaction. The architecture is mapped onto the generic ARCH

architecture for interactive systems [10] (left-hand side of Fig. 3). As a result, the

hardware and drivers belong to the physical interaction level, finger management and

brace interaction models to the logical interaction level. We present the formal

description of each element of this logical interaction level using the ICO description

technique [31].

For each user action, the hardware driver produces raw touch events with basic

information (e.g., the event type and a touch id). The finger manager handles those

events and manages creation and destruction of finger models. The finger model pro-

cesses low-level events provided by the hardware layer and offers data consultation and

update services. The brace interaction model handles interaction logic from the finger

manager and produces higher-level events (brace touches) dispatched to interested

applications.

4.3 Behavioral Description of Brace Touch Using ICOs

Informal Description of the ICO Formal Notation. The ICO (Interactive Cooper-

ative Objects) notation is a formal description technique devoted to interactive systems.

Using high-level Petri nets [20] for dynamic behavior description, the notation also

Fig. 3. High-level software architecture of brace interaction



relies on an object-oriented approach (dynamic instantiation, classification, encapsu-

lation, inheritance and client/server relationships) to describe the structural or static

aspects of systems. ICO notation objects are composed of four components: a coop-

erative object for the behavior description, a presentation part (i.e. Graphical Interface),

and two functions (activation and rendering) describing the links between the coop-

erative object and the presentation part. The interested reader can find more information

in [31]. ICO addresses all the issues presented in the previous sections including

representation of dynamic instantiation of input devices (fingers) which is not

addressed in other modelling techniques. For instance, ICO uses the capabilities of

Petri nets to describe tokens’ creations which are used in models to represent input

devices such as fingers on a touchscreen. In the following sections, we will use the

following formalism to describe ICO models: places, events, and transitions.

Finger Behavioral Model. The finger model handles touch information through the

Info place (center of Fig. 4). The model provides accessors services to touch data

through getTouchInfo which is accessible by other models to get information about a

given finger. The information of the finger can be modified using the update service

called by the low level architecture to store a new value for the finger. Finally, the

terminate service handles finger model removal (triggered when the finger is not in

contact with the touchscreen anymore).

Finger Manager Behavioral Model. The finger manager is a model responsible for

managing the set of fingers currently on the touch screen. That model received raw

events from the platform and abstracted them away in meaningful information in terms

of interaction. Figure 5 shows an abstract model of the behavior of the finger manager

(the full ICO model cannot be presented due to space constraints). In this view, places

are represented with ovals, transitions with rectangles, event transitions by rectangles

with italic text, produced events in italic font alongside the producing transition, and

conditions of transition activation under the transition name, separated by a horizontal

line.

Fig. 4. ICO behavioral model of a finger using ICO notation



In Fig. 5, place Fingers stores the references to the finger models (one per finger

currently present on the touchscreen). As Brace interaction relies on double tap for

target selection, the finger used to perform this interaction will leave (for a short period

of time) the surface of the touch screen and will come back at the same location.

According to the finger model, leaving the surface would require removing the finger

from the pool of fingers. The Brace model thus handles this short disappearance by

storing fingers in the Pending Fingers place. In order to disambiguate an Up-Down

from the same finger with an Up and Down from two different fingers, we chose a

temporal and geographical logic. Thus, on finger Up, the reference to the finger model

is set in place Pending Fingers for a duration defined in the PendingTimer transition. If

a Down event is received before the time has elapsed, its location is compared with the

location of the finger when Up occurred. If the location is close enough (a parameter in

the model), the same finger model is updated and set back into Fingers and a fin-

gerRecovered event is raised (Down/sameLocation). A copy of the reference of that

finger model is also stored in RecoveredFingers.

Down events correspond to the arrival of a new finger on the touchscreen. When

this occurs, a new finger model is instantiated (by the finger manager) and its reference

is stored in IncomingFingers. If the Down event corresponds to a finger that was in the

pending state, the information stored in IncomingFingers is filtered with SameFinger,

thus preventing the creation of a new finger model. Finally, on update, the finger model

is updated and fingerUpdated event is raised so the information (e.g., the location on

the screen) is updated in the corresponding finger model.

Figure 6 shows the finger manager model pending process using the ICO notation.

PendingTimer, timed transition is set to 500 ms which corresponds to the maximum

time allowed to the user to perform a double tap. Finally, the geographical disam-

biguation logic consists in verifying that the Down event received lies within 30px

from the previous Up event location (see shapeProcessing transition performing the

proximity calculation).

Brace Touch Interaction Behavioral Model. Figure 7 shows an abstract view of the

Brace Touch interaction behavior in a similar way as we presented the finger manager

in Fig. 5.

Fig. 5. Abstract behavioral model of the finger manager



The Brace Touch Interaction model listens to the events produced by the Finger

Manager namely fingerAdded, fingerPending, fingerRemoved and fingerRecovered

events, the production of which was detailed in the previous section.

On fingerAdded, the reference of the created finger model is stored in place Fin-

gers. According to Brace Touch design [12], a double tap is specified as two con-

secutive taps within 500 ms, a tap being a consecutive Up and Down with the same

finger on the same location (spatial threshold of 30 pixels). Thus, on finger Up and

Down, the finger manager produces respectively fingerPending and fingerRecovered,

unless the finger does not touch the screen again, in which case a fingerRemoved event

is received. On fingerRecovered, the braceEvent_tap is raised and the reference to the

finger model is stored in WaitingSecondTap.

If a second tap is not initiated within the time frame specified in TimerBetweenTaps,

the double tap interaction is exited and the reference to the finger model is stored back in

Fingers. The second tap interaction has the same behavior as the first tap, apart from the

validation of the double tap interaction: if the time between the first tap and the second

Fig. 6. Part of the finger manager behavior filtering new fingers from returning fingers

Fig. 7. Abstract model of Brace Touch interaction behavior



tap is less than 500 ms, braceEvent_doubleTap is raised. Otherwise, the second tap is

considered as a single tap following a first tap.

Due to space constraints we cannot present the ICOmodel of brace interaction but its

main features have been highlighted. It is important to note that these models can be

analyzed using knowledge from Petri nets theory, such as computing locks and traps as

well as P and T invariants [18]. These verification techniques allow interaction designers

to assess the correctness of a given model (absence of deadlock) and also evaluate the

compatibility between models (e.g., the events produces by a model are consumed by an

upper model). The formal analysis performed by the development platform called

PetShop [18] supports the detection of development faults.

5 Dependability and Usability of Brace Touch

While a formal notation was presented in previous section to deal with software

development faults of interaction techniques in general and Brace Touch interaction in

particular, dealing with natural and operational faults is required to bring such concepts

into real operation in aircraft cockpits. We have briefly mentioned diversity, redun-

dancy and segregation in hardware technologies for touch devices as a mean to address

hardware faults.

Natural faults could affect software (via bit flips, for example) but also operators

(via vibration of the touch device). As for natural software faults, self-checking tech-

niques for interactive widgets and interaction techniques as presented in [39] could

support detection and removal of faults in touch interactions. However, touch inter-

actions are more sensitive to natural faults such as turbulence that will trigger unin-

tentional operational faults. Brace Touch interaction aims at reducing the effect of

turbulence on operational faults for touch interactions.

However, as presented in [17] the introduction of dependability mechanisms might

affect negatively usability of the interactive system. It was thus important to assess the

impact on the overall performance of braced interaction to ensure that the technique

does not slow down operation. This is demonstrated in Fig. 8: in vibrating conditions,

braced interaction with selection using double-tap has a similar (though slightly slower)

performance to non-braced interactions in non-vibrating conditions.

Fig. 8. Target selection times with Braced and Single-Finger selections in static (left) and

vibrating (right) conditions [12].



In [12], Cockburn et al. report results of an experiment examining three different

forms of braced selections in turbulent and static environments. Turbulence was sim-

ulated using a Mikrolar motion platform, with a seat and touchscreen mounted on the

platform. The three bracing variants differed in the gesture used for completing a

selection: doubletap, dwell (long press) and force threshold (not considered further in

this paper). Participants also completed selections using traditional single-finger tap-to-

select modalities, with this data serving as a baseline comparator for the braced

selection methods. Additionally, in one portion of the experiment, participants were

allowed to choose whether to complete selections using braced touch (placing multiple

fingers on the display) or normal hand postures (using a single finger without bracing,

terminated with a doubletap, dwell or force-press).

Figure 8 summarises the usability study of Brace Touch looking at performance

(a) and user errors (b). Selection time results using the three bracing methods and

equivalent single-finger selections in static (pink bar) and turbulent (bleu bar) settings.

As expected, in static settings single-finger selections are faster than braced selections,

but when vibration is present, braced selections were significantly faster and more

accurate than single-finger selections. In tasks where participants were free to choose

whether or not to use braced postures, 88% of double-tap users chose to use bracing

when vibration was present, compared to only 19% when static. This suggests that

users were aware of the benefits provided by bracing and appropriately chose to use it

to overcome interaction problems stemming from vibration.

Two types of errors were analysed: false-negative selections, in which subjects tried

but failed to complete a selection; and wrong-target selections, in which a target other

than the intended one was selected. Figure 8(b) summarises the results of errors from

the user study. The histogram highlight the strong tolerance to vibrations of Brace

Touch with respect to false negatives. Value of wrong target selection (not as good as

false negatives) was influenced by the tasks performed by the users which were related

to aircraft operations with which they were not familiar. In [12], Cokburn et al. show

that for the later tasks, wrong target selection errors with Brace Touch disappeared and

that in 87.3% of selections, subjects elected to use braced selections during vibrations.

According to Avizienis et al.’s taxonomy [6], as far as touch screens are concerned,

vibrations would belong to natural faults triggering non-intentional human-made faults

during operation, and would correspond to slips in the human error classifications [35].

Looking at the interaction itself, the operator decides intentionally to interact with the

touch screen and to use (preferably) Brace Touch interactions in cases of turbulence

[12]. However, while interacting, the user might unintentionally make errors that will

prevent Brace Touch interaction from being performed. For instance, in Brace, the

index finger is meant to be the finger used for performing the double-tap while the other

fingers are constantly touching the touch device. Vibrations might make other fingers

(especially the little finger) bounce and thus trigger unintentional double-taps. We have

extended the behavior of Brace Touch to detect the position of index fingers (which can

be deduced from the relative position of the other fingers) and discard spurious double-

taps triggered by the other fingers. Due to space constraints, we do not present the ICO

model here, but the approach is the same as the one presented in Brace Interaction

model.



6 Conclusion and Perspective

New interactive technologies are making their way into command and control positions

of safety critical systems. This is due to the new type of work and new type of data that

operators have to manipulate, but also because those technologies are now pervasive

and used in everyday life. This paper presented a contribution to the dependability of

touch interactions to be deployed in real life contexts such as aircraft cockpits.

We have presented a formal description technique dedicated to interactive system

description that addresses the problem of development faults in interaction techniques.

We used that formal description technique to model a new touch interaction technique

called Brace Touch that is able to avoid operational natural faults. We also shown that

Brace Touch does not jeopardize the usability of touch interactions, providing good

performance, recall, and user satisfaction.

This work cannot be separated from design aspects of interactive systems that

include how to present information to the operators, and more precisely, the size and

the colors of objects. Previous work [14] has highlighted that vibrations affects per-

ception and thus there is a need to address the entire interaction loop (perception,

cognition, and action). This is what will be done in future studies that could lead to user

interface guidelines for touch interfaces in transportation. It is important to note that

previous work on model-based approaches for usability engineering [33] and interac-

tion reconfigurations [30] provide some bases to address that problem.
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