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Abstract

A large variety of fields such as biology, information retrieval,

image segmentation needs unsupervised methods able to gather

data without a priori information on shapes or locality. By

investigating a parallel strategy based on overlapping domain

decomposition, we present a toolbox which is a parallel im-

plementation of two fully unsupervised kernel methods respec-

tively based on density-based properties and spectral properties

in order to treat large data sets in fields of pattern recognition.

1 Introduction

Many fields from Social Science to Medicine and Biology gen-

erate large amount of data to analyze. Clustering aims at parti-

tioning data sets in clusters in order to group data points with

a similarity (or affinity) measure. Kernel clustering methods

have become an increasingly popular tool for machine learning

[1]. These methods rely on the use of positive definite kernel

functions which enable them to operate in a high-dimensional

feature space and provide, in particular, interesting spectral

properties [2]. The kernel representation implies defining a

fully similarity matrix which can be computational costly when

dealing with large amount of data. Parallel implementation are

thus considered. Some efficient implementations were inves-

tigated for several supervised kernel methods such as Support

Vector Machines or Gaussian Processes [3, 4] and we propose

to extend this purpose for unsupervised kernel methods gath-

ered in a Toolbox called ParKerC.

In this paper, we first focus on the parallel strategy of the

ParKerc toolbox based on domain decomposition to treat large

data sets. Then, a fully unsupervised version of two widely

used kernel based clustering methods [5] - Mean shift [6] and

Spectral clustering [2] - based respectively on kernel density

estimation and eigen decomposition of similarity matrix is pro-

posed. Finally, some tests on both benchmark data sets and

image segmentation are performed.

2 ParKerC Toolbox

In this section, we present the principle of the proposed tool-

box: the parallel strategy of domain decomposition with over-

lapping and how to set the overlapping bandwidth.

The code of the ParKerC toolbox is written in FORTRAN

90 using MPI library to handle the communication between

processors.

2.1 Principle

The principle of the parallel toolbox is based on domain de-

composition with overlaps. Let consider a data set S =
{xi}i=1..n ∈ R

p. This data set is included in a domain. We di-

vide the domain in q sub-domains, thus defining q sub-sets. By

assigning a sub-domain to each processor, a processor applies

independently the clustering algorithm on the corresponding

sub-set and provides a local partition.

For each sub-domain, the number of clusters is automati-

cally determined, within a maximum number of clusters. This

heuristic avoids us to fix the targeted number of clusters.

The final number of clusters, noted k, will be provided after

the grouping step.

This grouping step is dedicated to link the local partitions

from the sub-domains thanks to the overlap and the following

transitive relation: ∀xi1
, xi2

, xi3
∈ S,

if xi1
, xi2

∈ C1 and xi2
, xi3

∈ C2

then C1 ∪ C2 = P and xi1
, xi2

, xi3
∈ P (1)

where C1 and C2 are two distinct clusters and P is a larger

cluster which includes both C1 and C2. By applying this tran-

sitive relation (1) on the overlap, the connection between sub-

sets of data is established and provides a global partition.

We can implement this algorithm using a Master-Slave

paradigm as summarized in Algorithms 1 and 2.

2.2 Overlapping bandwidth

The idea is to consider an uniform distribution where the n data

points are equidistant. To define the uniform distance between

the points, we consider both the dimension of the problem as

well as the density of points in the given p-th dimensional data

set. In fact, the data set S is included in a p-dimensional box

bounded by ρd the largest distance between pairs of points in

each dimension d of S:

ρd = max
1≤i,j≤n

|xid − xjd|, ∀d ∈ {1, .., p}.



Algorithm 1 Parallel Algorithm: Master

1: Pre-processing step

1.1 read the global data and the parameters

1.2 compute the uniform distance δ (see equation 2)

1.3 compute the overlapping bandwidth α
1.4 split the data into q sub-sets

2: Send δ and the data sub-sets to the slaves

3: Perform the Clustering Algorithm on its sub-set

4: Receive the local partitions and the number of clusters

from each slave

5: Grouping Step

5.1 Gather the local partitions in a global partition with the

transitive relation (1)

5.2 Output a partition of the whole data set S and the final

number of clusters k

Algorithm 2 Parallel Algorithm: Slave

1: Receive δ and its data sub-set from the Master

2: Perform the Clustering Algorithm on its sub-set

3: Send its local partition and its number of clusters to the

Master

So the uniform distance, noted δ, could be defined as fol-

lows:

δ =

(∏p
i=1 ρi

n

)

1

p

. (2)

From this distance, the overlapping bandwidth α is set as a

multiple of δ in order to be able to merge the clusters with the

transitive relation.

In the following, we present two widely used kernel clus-

tering methods, check their suitability with a domain decom-

position strategy and adapt their inherent parameters. The first

method, Mean Shift in section 3, relies on a non-parametric es-

timator of density gradient for locating the maxima of the den-

sity function called mode. The second method, spectral cluster-

ing in section 4, based on eigen-decomposition of kernel affin-

ity matrix is used in pattern recognition or image segmentation

to cluster non-convex domains without a priori on the shapes.

3 Mean shift

Introduced by Fukunaga and Hostetler [6], mean shift method

considers the points in the feature space as a probability density

function. Dense regions in feature space corresponds to local

maxima (or mode). The clusters are then associated with the

modes.

3.1 Algorithm

Mean shift associates each data point in R
p with the nearby

peak of the data set’s probability density function. For each

data point, mean shift defines a window around it and computes

the mean of the data points which belong to this window. Then

it shifts the center of the window to the mean and repeats the

algorithm till it converges. In other words, the window shifts to

a more denser region of the data set.

Algorithm 3 Mean shift Algorithm

Input: data set S = {xi}i=1..n ∈ R
p, bandwidth h

At the iteration (t), for each data point xi ∈ S,

1. Compute mean shift vector m(xi)
(t)

2. Move the density estimation window to m(xi)
(t)

3. repeat till convergence i.e ‖m(xi)
(t+1) − m(xi)

(t)‖ ≤
threshold

3.2 Justification

Mean shift relies on kernel density estimation. Kernel density

estimation [7] (also called the Parzen window technique [8]) is

the most popular non parametric density estimation method.

Given a kernel K, a bandwidth parameter h, kernel density

estimator for a given set of n p-dimensional points is:

f(x) =
1

nhp

n
∑

i=1

K (h, x − xi) (3)

Mean shift is based on Gradient ascent on the density con-

tour [9]. So, for each data point, we perform gradient ascent on

the local estimated density until convergence.

So:

∇f(x) =
1

nhp

n
∑

i=1

K ′ (h, x − xi) (4)

where K ′(h, x) is the derivative of K(h, x). The stationary

points obtained via gradient ascent represent the modes of the

density function. All points associated with the same stationary

point belong to the same cluster. By assuming that g(h, x) =
−K ′(h, x), the following quantity m(x), called mean shift, is

computed as follows:

m(x) =

∑n
i=1 g (h, x − xi) xi

∑n
i=1 g (h, x − xi)

− x (5)

With this strategy of searching the maximum of local den-

sity, this method does not require to fix the number of clusters.

This implies that mean shift can be run in sub-sets of S
and if a cluster relies on several sub-domains then the transitive

relation (1) will merge the clusters.

3.3 Tuning parameters

As said in the previous section, the number of clusters is auto-

matically defined. But Mean Shift is sensitive to the selection

of bandwidth h. A small h can slow down the convergence

whereas a larger one can speed up the convergence and merge

two modes. We can define it automatically by considering the

bandwidth h as a multiple of the uniform distance δ defined

by (2). The initialization of Mean Shift is done by choosing

randomly observation in data set.



4 Spectral clustering

Spectral clustering uses eigenvectors of a matrix, called Gaus-

sian affinity matrix, in order to define a low-dimensional space

in which data points can be clustered.

4.1 Algorithm

Assume that the number k of targeted clusters is known (we

will see how to automatically determine it). Algorithm 4

presents the different steps of spectral clustering. First, the

spectral clustering consists in constructing the affinity matrix

based on the Gaussian affinity measure between points of the

data set S. After a normalization step, the k largest eigenvec-

tors are extracted. So every data point xi is plotted in a spectral

embedding space of Rk and the clustering is made in this space

by applying K-means method. Finally, thanks to an equiva-

lence relation (step 6.), the final partition of data set is defined

from the clustering in the embedded space.

Algorithm 4 Spectral Clustering Algorithm

Input: data set S = {xi}i=1..n ∈ R
p, number of clusters k

1. Form the affinity matrix A ∈ R
n×n defined by:

Aij =

{

exp
(

−
‖xi−xj‖2

(σ/2)2

)

if i )= j,

0 otherwise,
(6)

2. Construct the normalized matrix: L = D−1/2AD−1/2

with Di,i =
∑n

j=1 Aij ,

3. Assemble the matrix X = [X1X2..Xk] ∈ R
n×k by

stacking the eigenvectors associated with the k largest

eigenvalues of L,

4. Form the matrix Y by normalizing each row in the n × k
matrix X,

5. Treat each row of Y as a point in R
k, and group them in

k clusters via the K-means method,

6. Assign the original point xi to cluster j when row i of

matrix Y belongs to cluster j.

4.2 Justification

The sub-domain decomposition implies to study if the de-

composition will have an impact on the final partition. From

the definitions of both the Gaussian affinity Aij between

two data points xi and xj and the Heat kernel K(t, x) =
(4πt)− p

2 exp
(

−‖x‖2/4t
)

in free space R∗
+ ×R

p, we can inter-

pret the Gaussian affinity matrix defined by (6) as discretization

of heat kernel by the following equation:

Aij = (2πσ2)
p

2 K
(

σ2/2, xi − xj

)

. (7)

So, we can prove that eigenfunctions for bounded and free

space Heat equation are asymptotically close [10]. With Finite

Elements theory, we can also prove that the difference between

eigenvectors of A and discretized eigenfunctions of Kt is of an

order of the distance between points include inside the same

cluster. This means that applying spectral clustering into sub-

domains resumes in restricting the support of these L2 eigen-

functions which have a geometrical property: their supports are

included in only one connected component.

Thus, the overlapping domain decomposition does not alter

the global partition because the eigenvectors carry the geomet-

rical property and so, the clustering property.

4.3 Tuning parameters

Spectral clustering depends on two parameters: the Gaussian

affinity parameter σ and the number of clusters k. The Gaus-

sian affinity matrix (6) is widely used and depends on a free

parameter σ. It is known that this parameter affects the results

in spectral clustering and spectral embedding [11]. From the

definition of δ defined by (2) in which we consider the case of

an uniform distribution in the sense that all pair of points are

separated by the same distance δ in the box of edge size Dmax,

we can state that clusters may exist if there are points that are

at a distance no more than a fraction of δ.

The number of clusters k is determined by partitioning the data

set from 2 to a maximum number, denoted k max and then the

similarity matrix is reordered per cluster. So k is defined from a

measure based on the ratio of the Frobenius norms of the affin-

ity measure between distinct clusters and within clusters [12].

The value of k that minimizes this ratio becomes the optimal

number of clusters.

4.4 Efficient method to compute dominant eigenvectors

for the Spectral Clustering Algorithm

In step 3 of algorithm 4, we have to compute the k max eigen-

vectors corresponding to the k max dominant eigenvalues of

the matrix L (normalization of the affinity matrix A). To deter-

mine these k max dominant eigenvectors, one can use LAPACK

library, especially the routine DSYEV that computes all the

eigenvalues and eigenvector of a symmetric matrix.

But why compute all the eigenvectors when we need only

the k max dominant ones? An alternative to the routine DSYEV

is the subspace iteration method [13]. There is different algo-

rithms corresponding to this method. Algorithm 5 is an effi-

cient and practically one.

This method can be seen as the power method that com-

putes the dominant eigenpair extended to a set of vectors.

An important parameter of this method is the size m of the

subspace: a larger m accelerates the convergence (decreases

the number of iterations) but requires a larger memory size but

above all a more expensive computation of the spectral decom-

position of the Rayleigh quotient H of size m × m.

Numerical comparisons between the subspace iteration

method and the use of DSYEV are presented in section 5.1.



Algorithm 5 Subspace iteration method with Raleigh-Ritz pro-

jection

1: Input: Symmetric matrix A ∈ R
n×n, k max the number

of required dominant eigenvectors, m, subspace size (>=
k max)

2: Output: k max dominant eigenvectors Vout

3: Generate an initial set of m orthonormal vectors V ∈
R

n×m;

4: repeat

5: Compute Y such that Y = A · V
6: V ←− orthonormalisation of the columns of Y
7: Rayleigh-Ritz projection applied on matrix A and or-

thonormal vectors V
7.1 compute the Rayleigh quotient H = V T · A · V .

7.2 compute the spectral decomposition of H
X · Λout · XT = H .

7.3 compute Vout = V · X .

8: Convergence analysis step: save eigenpairs that have

converged

9: until ( not k max dominant eigenvalues computed)

5 Results

We present in this section some results: first, in subsection 5.1,

performance results to compare the subspace iteration method

and DSYEV to compute the eigenvectors ; then, in subsections

5.2 and 5.3, clustering results to validate our parallel approach

on both data sets and images.

5.1 Comparison between the subspace iteration method

and DSYEV

To compare the two methods, the data sets is a checkerboard

with 23 clusters (see Figure 1). There are 5 data sets where

the number of points by block is 602, 702, 802, 902 and 1002.

The topology of this example is interesting because it presents

clusters that are not easily linearly separated as shown in Fig-

ure 1 when K-means is applied on it by randomly choosing 23
observations from the dataset as initial centers.

Table 1 gives the time to perform the spectral clustering

with DSYEV and the subspace iteration method for two decom-

position of the domain: 4 × 4 and 4 × 8 (see Figure 2); we

assign a processor by sub-domain. For each data set size and

domain decomposition, we indicate the maximum number of

points on a sub-domain; that gives us an indication of the max-

imum amount of computation by processor.

As we are looking for k max clusters by sub-domain, we

have set the size of the subspace in the subspace iteration

method at m = 10 × k max.

As we can observe in Table 1, the subspace iteration

method gives better results with all the 4×4 decomposition ex-

amples and for two 4×8 decomposition ones when we reached

a certain amount of points by sub-domain. We can also notice

that this maximum number of sub-domain is just an indication:

for a quasi-equivalent maximum number of points (6800 for

the {602, 4 × 4} case and 7000 for {802, 4 × 8} ones), the

Figure 1. Data set (602 points per block) and K-means results

(one color per cluster)
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Figure 2. Data set for performance testing: decomposition by

4×4 and 4×8 domains in block dash-dot lines (602 points per

block)

computation times are not the same at all. We must take into

account the properties of the affinity matrix that depend on the

distribution of points in the sub-domain.

This is an interesting result, especially when we will con-

sider image clustering, because with images, each pixel is con-

sidered as a point and then every sub-domain has the same large

number of points to process.

5.2 Application to clustering data sets

To validate our domain decomposition approach, we present

in Figure 3 some results on four different data sets from a

clustering benchmark https://cs.joensuu.fi/sipu/

datasets/. The characteristics of the data sets are summa-

rized in the table 2.

Each problem is solved by using spectral clustering or mean

shift methods, in sequential (1×1) and in parallel (2×2 square-

partitioning). In these experiments, which compare the two

methods, the number of sub-domains is small. Of course, this

number can be increased and will depend essentially on the

number of processors available.

We tuned the parameters as explained in the theoretical sec-

tions: δ is computed as described in subsection 2.2 ; we used

it to define the Gaussian affinity parameter σ for the spectral

clustering (subsection 4.3), the bandwidth for the mean shift as

h (3.3) and the overlapping bandwidth α (2.2).

We can notice that spectral clustering gives expected results

for all problems both in sequential and in parallel (the num-

ber of exhibited clusters are between parenthesis). In contrary,

mean shift have good results when the clusters are convex but
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number of points 4 × 4 4 × 8
by sub-domain max DSYEV SubIter max DSYEV SubIter

602 6800 476 s 426 s 4000 137 s 191s

702 9100 921 s 725 s 5500 355 s 404 s

802 11800 2098 s 1328 s 7000 677 s 761 s

902 15000 5106 s 2525 s 9000 1554 s 1523 s

1002 18400 10244 s 5278 s 11000 3955 s 2619 s

Table 1. Comparisons between DSYEV and SubIter: time in seconds, max is the maximum number of points on a sub-domain

unbalance spiral Compound3 jain

Nb points 6500 312 219 373

Nb Clusters 8 3 3 2

Table 2. Number of points and number of clusters of the four

selected examples
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Figure 3. Examples of data set segmentation

poor ones with non-convex clusters; we tried different values

of h = C × δ and, among the results, we present the best ones.

With no post-treatment (for instance, merging using transitiv-

ity), the results of mean shift method on non convex shapes are

not exploitable.

5.3 Application to image segmentation

For image segmentation, the domain decomposition is applied

geometrically on the image and also on the brightness distribu-

tion (or color levels). Thus, the kernel function is applied on

geometrical and brightness/color data. The kernel function K

at a pixel x will be decomposed according to the spatial and

color vectors as:

Khr,hs
(x) = K (hs, xs) K (hr, xr) (8)

where xs ∈ R
2 is the spatial vector of the pixel x and xr ∈ R

3

is the 3D color level vector of x and hs and hr are respec-

tively the spatial and color parameters. We apply in parallel

both spectral clustering and mean shift on a geometrical pic-

ture as shown in Figure 4 and Figure 5. From the partition

of both methods, we compute the mean color of each cluster

(the average color of all the points which belong to the same

cluster) and we plot this mean color at the corresponding geo-

metrical pixels. Figure 4 represents distinct colored geometri-

cal shapes which are well separated. Mean Shift and Spectral

Clustering segment all the shapes and color easily. The sec-

ond example inspired by the works of the Swiss artist Sophie

Taeuber-Arp has different colored geometrical blocks which

are not well separated. We can see that the segmentation is

not perfect and some colored clusters are merged. Neverthe-

less the main shapes of the painting can be distinguished. For

image application, a post processing step must be investigated

to merge clusters that share the same geometrical and/or color

information to reduce the number of clusters.

(a) Original image (b) Mean shift (5 × 4)

(c) Spectral clust. (5 × 4)

Figure 4. Results of parallel clustering methods on an image

(275 × 194)



(a) Original painting

(b) Mean shift (5 × 4) {1605 clusters}

(c) Spectral clustering (5 × 4) {1400 clusters}

Figure 5. Results of parallel clustering methods on a painting

(500 × 200)

6 Conclusion and perspectives

We have validated the two parallel methods, both with data sets

and images. We will continue our tests on larger problems to

fully validate our FORTRAN code. These kernel methods of-

fer different clustering analysis. Spectral clustering, based on

connected components, can partition clusters with uniform dis-

tribution and circular shapes. Mean shift, relied on a density-

based approach, can separate clusters even when they are con-

nected by few points.

On the theoretical part, we want to investigate some other

expressions of δ to better approximate the data distribution (for

instance replace the euclidean distance by L1−norm) for a bet-

ter estimation of the tuning parameters. We also plan to investi-

gate different kernel functions such as sigmoı̈d and polynomial

kernels and add other kernels methods in the toolbox such as

Kernel K-means [14].
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