
HAL Id: hal-03003811
https://hal.science/hal-03003811

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncovering Hidden Block Structure for Clustering
Luce Le Gorrec, Sandrine Mouysset, Iain S. Duff, Philip A. Knight, Daniel

Ruiz

To cite this version:
Luce Le Gorrec, Sandrine Mouysset, Iain S. Duff, Philip A. Knight, Daniel Ruiz. Uncovering Hidden
Block Structure for Clustering. European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD 2019), Sep 2019, Würzburg, Germany. pp.140-
155, �10.1007/978-3-030-46150-8_9�. �hal-03003811�

https://hal.science/hal-03003811
https://hal.archives-ouvertes.fr

Uncovering Hidden Block

Structure for Clustering

Luce le Gorrec1(B), Sandrine Mouysset1, Iain S. Duff2,3, Philip A. Knight4,
and Daniel Ruiz1

1 Université de Toulouse - IRIT, 2 rue Camichel, Toulouse, France
luce.le-gorrec@strath.ac.uk, {sandrine.mouysset,daniel.ruiz}@enseeiht.fr

2 R7l, STFC Rutherford Appleton Laboratory, Didcot, OX OX11 0QX, UK
iain.duff@stfc.ac.uk

3 CERFACS, Toulouse, France
4 University of Strathclyde, Richmond Street, Glasgow, UK

p.a.knight@strath.ac.uk

Abstract. We present a multistage procedure to cluster directed and
undirected weighted graphs by finding the block structure of their adja-
cency matrices. A central part of the process is to scale the adjacency
matrix into a doubly-stochastic form, which permits detection of the whole
matrix block structure with minimal spectral information (theoretically a
single pair of singular vectors suffices).

We present the different stages of our method, namely the impact of the
doubly-stochastic scaling on singular vectors, detection of the block struc-
ture by means of these vectors, and details such as cluster refinement and
a stopping criterion. Then we test the algorithm’s effectiveness by using it
on two unsupervised classification tasks: community detection in networks
and shape detection in clouds of points in two dimensions. By comparing
results of our approach with those of widely used algorithms designed for
specific purposes, we observe that our method is competitive (for commu-
nity detection) if not superior (for shape detection) in comparison with
existing methods.

Keywords: Clustering and unsupervised learning · Spectral
clustering · Doubly-stochastic scaling · Community detection · Shape
detection

1 Introduction

Grouping together similar elements among a set of data is a challenging example
of unsupervised learning for which many so-called clustering techniques have
been proposed. A classical way to cluster elements consists in finding blocks in
matrices used to represent data—such as adjacency matrices, affinity matrices,
contingency tables or a graph Laplacian.

The link between spectral and structural properties of matrices is a moti-
vating factor behind many existing clustering algorithms [12,16,28]. To extract
multiple clusters, classical spectral algorithms recursively split the nodes in two

_https://doi.org/10.1007/978-3-030-46150-8 9

sets by means of the signs of a given singular vector or eigenvector. This can
be costly since each partition into two clusters requires a new vector to be com-
puted. Moreover, the returned partition at each iteration may be a poor fit to
the natural block structure in the matrix (an example is shown in the right-
most plot of Fig. 2, where the red separation line does not match the blocking).
Other existing methods [20,24,30] rely on spectral embedding with various graph
Laplacian matrices. Such methods require a priori knowledge of the number of
clusters.

In this paper, we present a novel approach to spectral clustering. Our aim is
to be able to find clusters in a strongly connected, directed weighted graph. We
work with a matrix A that represents the weighted adjacency graph.

The main novelty of our method is to use a doubly-stochastic scaling of the
matrix A before extracting spectral components. That is we find two positive
diagonal matrices D and F so that all the row sums and column sums of the
scaled matrix P = DAF are equal to one. We show in Sect. 2 that the scaling
improves the fidelity of the structural information contained in the leading sin-
gular vectors of P. In particular, we only need to compute a few singular vectors
to obtain significant information on the underlying structure without any prior
information on the number of blocks. Additionally, working with singular vectors
of P makes it feasible to analyse directed graphs, and can provide an accurate
clustering when the graph structure is distinctly asymmetric.

The paper is structured as follows. In Sect. 2 we outline the connection
between the singular vectors of a doubly-stochastic matrix scaling and its block
structure. In Sect. 3 we use tools from signal processing to detect clustering infor-
mation in the vectors. Section 4 is dedicated to the rearrangement of the blocks:
we have to collate information provided by left and right singular vectors and
further refinement may be necessary when we iterate our process by analysing
several singular vectors in turn. We also present a bespoke measure we have
designed to evaluate the quality of the clustering, and to derive a stopping cri-
terion. Empirical results using benchmark data sets are provided in Sect. 5 to
indicate the effectiveness of our algorithm and finally we present some concluding
remarks in Sect. 6.

2 Doubly-Stochastic Scaling

Scaling a matrix into doubly-stochastic form is always possible if the matrix
is bi-irreducible, that is there exist no row and column permutations that can
rearrange A into a block triangular form [29]. If A is the adjacency matrix of a
strongly connected directed graph then it is bi-irreducible so long as its diagonal
is zero free. If necessary, we can add nonzero terms to the diagonal without
affecting the underlying block structure.

The following theorem is a straightforward consequence of the Perron–
Frobenius theorem [17,26].

Theorem 1. Suppose that S ∈ R
n×n is symmetric, irreducible, and doubly-

stochastic. The largest eigenvalue of S is 1, with multiplicity 1, and the associated

eigenvector is equal to a multiple of e, the vector of ones. If S has total support–

that is S can be permuted symmetrically into a block diagonal structure with

k irreducible blocks, then the eigenvalue 1 has multiplicity k. A basis for the

corresponding eigenvectors is

{v1,v2, . . . ,vk},

where vpq for p ∈ {1, . . . , k} is given by

vpq =

{

1, for all q in block p
0, otherwise.

If we compute an eigenvector of such a matrix S associated with the eigen-
value 1 then it will be of the form

x = a1v1 + a2v2 + · · · + akvk.

By forcing x to lie in the orthogonal complement of the constant vector e, it is
reasonable to assume that the ai are distinct. Since these vectors are formed by
a disjoint partition of {1, . . . , n} we can identify the precise contribution from
each block, and then characterise the partition exactly using the set

{a1, . . . , ak}.

Indeed, reordering x according to the block structure puts it in piecewise con-
stant form. Conversely, symmetrically permuting rows and columns of S accord-
ing to the ascending order of entries from x reveals the block structure of S.

As a corollary of Theorem 1, consider an non-symmetric but still doubly-
stochastic matrix P. Both PPT and PT P are also doubly-stochastic, and the
results of Theorem 1 apply. Suppose then that we compute the principal left
and right singular vectors of P. If either PPT or PT P exhibits some block
structure, then the dominant singular vectors of P have contributions from each
of the corresponding basis vectors. Thus we can directly identify the row and/or
column block structure of P using the same trick as for the matrix S.

Our algorithm is designed for matrices that are perturbations of matrices
with total support. If the matrix has a structure that is close to block diagonal,
the leading singular vectors can be assumed to have a structure similar to the
piecewise constant form. The impact of a small perturbation on the scaling of
a block diagonal matrix can be found in [11, §2.1]. If we then look for steps in
the computed vectors we should be able to reveal some underlying approximate
block structure, or at least some row blocks (respectively column blocks) that
are weakly correlated with each other. To find a doubly-stochastic scaling we
use the Newton method described in [18]. Typically, this is very cheap to do,
requiring only matrix–vector products.

To emphasize the power of the doubly-stochastic scaling compared to other
spectral clustering techniques, we use a small example in Fig. 1 to illustrate how
the spectral information may vary when extracting eigenvectors from either the
Laplacian or from the doubly-stochastic matrix. In this example, the graph has

three distinct clusters that are loosely linked together. To ensure bi-irreducibility
the diagonal of the adjacency matrix of the graph is set to 10−8 times the identity
matrix, before scaling to doubly-stochastic form. In the lower half of Fig. 1 we
see the numerical structure of the eigenvectors used to identify the clusters. The
lower graph is a sorted version of the upper. For the Laplacian we have illustrated
the eigenvectors of the two smallest positive eigenvalues (the Fiedler vector in
blue) and for the stochastic scaling we have used the two subdominant vectors.
In the case of the Laplacian matrix, we can see that the eigenvectors cannot
easily resolve the clusters (the same is also true for the normalised Laplacian,
too). On the other hand, for the doubly-stochastic scaling we can use either of
the vectors to resolve the clusters perfectly and unambiguously.

As we said in Sect. 1, it is possible to iterate our process of finding and
analysing singular vectors to refine our clustering. Such an iterative process
needs to analyse different singular vectors at each step to obtain additional
information. In [11, §4], we describe our implementation.

3 Cluster Identification

A key stage in our algorithm is to identify clusters using the largest singular
vectors of the doubly-stochastic bi-irreducible matrix P. We note that we are
assuming no a priori knowledge regarding the number of clusters nor the row
and column permutations that may reveal the underlying block structure.

Fig. 1. Two matrix representations of a graph and their corresponding eigenvectors
(Color figure online)

Partitioning algorithms that work on vectors analogous to the Fiedler vector
divide the matrix in two parts according to the signs of the vector entries. But
thanks to our previous doubly-stochastic scaling we are able to see more than two
blocks, as explained in Sect. 2. If PPT or PT P has an underlying nearly block
diagonal structure, its leading eigenvectors are expected to have nearly piecewise
constant pattern when reordered according to the size of their entries, as in the
right bottom plot of Fig. 1. Our problem is thus to detect steps in the reordered
vector, which we choose to view as a signal processing issue. In fact, this vector
can be considered as a 1D signal whose steps are to be detected. Hence, we
proceed in our cluster detection by applying tools from signal processing, in
particular using a convolution product between the current singular vector and
a specific filter. The peaks in the convolution product correspond to edges in the
signal. These tools have the added bonus of not needing prior knowledge of the
number of clusters.

We have chosen to use the Canny filter [4], which is widely used in both
signal and image processing for edge detection. To optimise edge detection it
combines three performance criteria, namely good detection, good localization,
and the constraint that an edge should correspond to a peak in an appropriate
convolution. In order to satisfy these criteria the Canny filter uses an operator
constructed from the convolution product of the output Signal-to-Noise Ratio
(SNR) and a localization function (the filter). The optimal localization function
is the first derivative of a Gaussian kernel [4].

Much effort has gone into refining our implementation of edge detection to
make it optimal for our particular application. When using the filter for the
convolution we can vary a parameter that we call the sliding window size. The
window size determines whether the filter has a narrow support and has a steep
profile (as happens with a small window) or a broad support and a smoother
profile (with a big window), as shown in Fig. 2(a). A small window can create
many peaks whereas a larger one will detect fewer edges.

Fig. 2. (a) The filter for different sliding window sizes; (b) Convolution products; (c)
Step detection (Color figure online)

To avoid the side effects of the window size on the convolution product the
step detection is performed with two window widths of size n/30 and n/150
respectively where n is the size of the vector. We then sum both convolution

results in order to detect the principal peaks and to make sure that our steps
are both sharp and of a relatively significant height.

Figure 2(b) shows an example of how the sliding window can affect the step
detection using the 480×480 matrix rbsb480 from the SuiteSparse collection [8].
We can see from this figure that the peaks corresponding to steps in the vector
are better identified using this sum. In Fig. 2(c), the associated right singular
vector is plotted indicating the quality of the steps detected by the filters. In
contrast, the horizontal red line in Fig. 2(c) indicates the bipartitioning suggested
by the Fiedler vector. This presumes that there are precisely two clusters and
the separation is not aligned with any of the steps indicated by the singular
vector.

It is possible for the edge detector to identify spurious clusters. In [11, §6]
we give an illustrative example and also describe how to deal with this issue
in general by validating peaks and also by incorporating additional information
provided by other singular vectors to resolve the boundaries between blocks with
high precision.

4 Cluster Improvement

We now explain how to merge the different clusters found for each individually
analysed singular vector, as well as those found on rows and columns once the
iterative process is over. We then present a bespoke measure to evaluate the
quality of our clustering which allows us to amalgamate some small clusters.
Using the measure, we develop a stopping criterion to determine convergence of
the iterative process.

Throughout this section we illustrate our comments with the rbsb480

matrix [8] because of its interesting fine block structure on both rows and
columns. We observe that in Figs. 3 and 4, we are not presenting a clustering in
a formal sense, but simply an overlapping of the independent row and column
partitions.

4.1 Overlapping the Clusterings

Each time our algorithm analyses a right (respectively left) singular vector of
the matrix it may find a row (respectively column) partition of the matrix. Of
course, the resulting partition may be different for every analysed vector and we
need to merge them in an embedded manner. This process is illustrated in Fig. 3,
where the first detection step identifies only 4 row clusters and 5 column clusters,
while the second left and right singular vectors suggest a different picture with
3 row clusters and 4 column clusters. These new clusters are complementary
to the first set and the merged clustering gives 12 row clusters and 20 column
clusters with fairly well separated sub-blocks in the resulting reordered matrix,
as shown in the left-hand plot in Fig. 4.

As we can see from our tests on rbsb480, it may be sensible to analyse
several vectors in turn and merge these results. However, this can be overdone

Fig. 3. Cluster identification using different singular vectors

and we may produce a very fine partitioning of the original matrix. This issue is
illustrated in the right-hand plot of Fig. 4, where 3 steps have been merged to give
a fine grain clustering (with 48 by 100 clusters) and motivates our development
of an effective method for amalgamating blocks.

Fig. 4. Recursive cluster identification obtained by analysing several vectors in turn

4.2 Quality Measure

We base our cluster analysis on the modularity measure from [23]. Modularity
can be interpreted as the sum over all clusters of the difference between the
fraction of links inside each cluster and the expected fraction, by considering a
random network with the same degree distribution.

We can evaluate our row clustering using the modularity of our doubly-
stochastic matrix PPT given by the formula

Qr =
1

n

rC
∑

k=1

(

vT
k PPT vk −

1

n
|Jk|2

)

. (1)

Here, n is the number of rows in P, rC is the number of row clusters and |Jk|
is the cardinality of cluster k. The equation is easily derived from the definition

of modularity from [1], noticing that 2m = n in the doubly-stochastic case.
In a similar way, we derive a quality measure Qc for the column clustering by
considering the matrix PT P and summing over the sets of column clusters.

In [11, §7.1] we prove that the quality measure falls between the bounds

0 ≤ Qr ≤ 1 −
1

rC

, (2)

with the upper bound being reached only when the rC clusters have the same
cardinality.

Despite issues with the so-called resolution limit [13], modularity is still one
of the most widely used measures in the field of community detection and we are
comfortable in employing it here. Furthermore, in the specific case of k-regular
graphs, many measures including the Newman and Girvan modularity behave
similarly [6]. Since doubly-stochastic matrices can be considered as adjacency
matrices of weighted 1-regular graphs most common quality measures can be
expected to give similar results.

To avoid tiny clusters as in the right plot of Fig. 4, we recursively amalgamate
the pair of clusters that gives the maximum increase in modularity measure.
The algorithm stops naturally when there is no further improvement to be made
by amalgamating pairs of clusters together. A proof that this method always
provides a local maximum can be found in [11, §7.2] where it is also shown that
it is computationally cheap.

The amalgamation process prevents an explosion in the number of clusters
and gives some control over the amount of work for testing the rC(rC −1)/2 pos-
sibilities and is applied after overlapping the clusterings obtained independently
for each singular vector.

As a stopping criterion, we compare the quality of the clustering updated by
the amalgamation process, Qupd

r with that obtained immediately beforehand,
Qref

r . There are four possibilities to consider.

– If Qupd
r < Qref

r we reject the update.
– If Qupd

r > Qref
r but the number of clusters increases we accept the update

only if there is a sizeable jump in modularity taking into account the upper
bound in (2). We compare the quality measure increase with its theoretical
potential increase using the ratio

ρ =
Qupd

r − Qref
r

1
nbClustref − 1

nbClustupd

.

The threshold can be tuned to control the number of iterations we take and
the granularity of the clustering. In tests, a threshold value between 0.01 and
0.1 seems to be effective.

– If Qupd
r > Qref

r and the number of clusters does not increase, we accept the
update.

– If the clusterings are identical up to a permutation then we can terminate the
algorithm, which is equivalent to rejecting the update.

5 Applications

We illustrate the performance of our algorithm in community detection in
Sect. 5.1 and we test it on shape detection using the Scikit-learn package
[25] in Sect. 5.2.

5.1 Community Detection

We first test our algorithm on simple networks. To ensure bi-irreducibility with
minimal effect on the clusters we set the diagonal to 10−8.

Before the detection phase, we remove dominant entries (>0.55) from the
scaled matrix since they give rise to near-canonical eigenvectors that tend to
lack well defined steps. From the first iteration, we consider each dominant entry
as an already identified block when looking at the projected eigenvector of the
matrix, as explained in [11, §3]. These large entries are associated with struc-
tures not strongly linked to communities, such as hub or pendant nodes, and we
incorporate them during the amalgamation process to optimise modularity once
our algorithm has converged.

We have compared our algorithm (US) against four established community
detection algorithms from the igraph package [7], namely Walktrap (WT) [27],
Louvain (ML) [2], Fast and Greedy (FG) [5], and Leading Eigenvector (LE)
[22]. WT and ML are specifically designed to work on graph structures directly
whereas LE focuses (like ours) on exploiting spectral information. FG is a natural
greedy algorithm to optimise the modularity. WT and ML have been shown to
be among the three best community detection algorithms in a recent study [31].

We have applied these algorithms to four datasets of 500 node networks gen-
erated with the Lancichinetti–Fortunato–Radicchi benchmark (LFR) [19] which
is widely used in community detection because its characteristics are close to
those of real-world networks. Each dataset corresponds to a different average
degree k. More details are given in Table 1.

Table 1. Parameters for benchmark generation

Parameter Value

Number of nodes 500

Average degree k {10,20,40,75}

Maximum degree 2 × k

Degree distribution

exponent

−2 Exponent of the power law used to

generate degree distribution

Community size

distribution exponent

−1 Exponent of the power law used to

generate community size distribution

We test the behaviour of community detection algorithms using the network
mixing parameter, which quantifies the strength of a community structure. Ini-
tially, it measures the strength of a node’s community membership by computing

the ratio between its links outside the community and its degree. The greater
the mixing parameter for each node, the weaker the community structure. The
network mixing parameter µ is the mean value of the nodal mixing parameters.

We measure the accuracy of the community structures returned by the algo-
rithms by using the Normalised Mutual Information (NMI). This is a measure
taken from information theory (see for instance [15]). It measures the deviation
between two candidate partitions with no requirement that they have the same
number of blocks and is widely used in the community detection field [31]. The
NMI takes its values in [0, 1], and is equal to 1 when the two partitions are
identical.

The results are shown in Fig. 5. Each plot corresponds to a different value
of k. In each plot, we have generated 50 networks for each µ value and display
the mean value of the NMI. We remark that we can pair existing algorithms
in terms of performance: ML and WT, where NMI is close to 1 even for large
values of µ, and FG and LE where NMI decreases rapidly. Our algorithm falls
between the two groups.

Fig. 5. Curves of NMI for FG, LE, ML, WT, US

We note that the two groups tend to behave similarly in terms of NMI when
increasing k. This can be explained by the constraints on the network that result
in larger communities for large k values, as shown in Fig. 6. Here, two adjacency
networks from our dataset have been plotted with µ = 0.3. The matrix in the
left plot has an average degree k = 10 and 40 communities, whereas for the
matrix in the right plot k = 75 and there are 5 communities. It is known that
large communities are more accurately detected by most community detection
algorithms. But it seems that it is not the only factor that makes our algorithm
work better for large k, as its NMI curves are more sensitive to k than FG and LE.

We have tested whether this behaviour may be due to the fact that, in very
sparse networks, leading eigenvectors may be associated with features other than
the community structure [14]. Thus, we have compared the accuracy of two

Fig. 6. Adjacency matrices of two networks

versions of our algorithm. In the first we add 10−8 to the diagonal entries of A

(USd). In the second we add a perturbation to the whole matrix (USw): this
version works with A + ǫeeT where A is the adjacency matrix of the network.
We have set ǫ to 0.15 as is often suggested with Google’s Pagerank [3]. The
results of both algorithms can be viewed in Fig. 7 for two different values of k.
We observe that the two versions behave similarly when k = 75, whereas USw
(blue curve) is much more accurate than USd (pink curve) for k = 20.

Fig. 7. Curves of NMI for USd and USw (Color figure online)

To complete this study, we have investigated the behaviour of WT, ML, USd
and USw with increasing k. The results are shown in Fig. 8. We see that ML,
WT and USw first improve their accuracy, seem to reach a threshold and finally
worsen for the largest value of k. USd also improves its accuracy, but does not
worsen when k reaches its maximum test value.

Hence, although our algorithm does not beat all existing community detec-
tions algorithms on very sparse networks, it is able to correctly detect communi-
ties better than some widely-used purpose-built algorithms. Moreover it seems to
be a very encouraging alternative when the networks become denser as it retains
its accuracy in these circumstances. Indeed, we will see in Sect. 5.2 that it is
very good at detecting block structures in affinity matrices, and such matrices
are nothing but adjacency matrices of weighted complete graphs.

Finally, our algorithm is not constrained to work with only symmetric matri-
ces and so provides a versatile tool for community detection in directed graphs
even when these graphs have unbalanced flows, i.e. an imbalance between links
that enter and then leave a subgroup. Moreover, WT and ML, which both sym-
metrize the matrix by working on A+AT , produce spurious results in this case.

Fig. 8. NMI curves of ML, WT, USd, USw for some k values

An example is shown in Fig. 9, where two communities are connected in an asym-
metric fashion, and the partitions suggested by the algorithms are shown. Thus
by working on the normal equations of the scaled matrix we are able to perfectly
detect the community structure of the graph, while both WT and ML fail.

Fig. 9. Detecting asymmetric clusters

5.2 Shape Detection

To show the potential of our algorithm for other clustering tasks, we have tested
it on datasets from the Scikit-learn package [25]. To enable a quick visual
validation, we have used it to detect, through their affinity matrices, coherent
clouds of points in two dimensions with 1500 points for each dataset. The affinity
matrix [24] of a set of points {xi ∈ R

p, i = 1...n} is the symmetric matrix with
zeros on the diagonal and

Ai,j = exp

(

−
‖xi − xj‖

2

2σ2

)

,

elsewhere. The accuracy of our method strongly depends on the choice of the
Gaussian parameter σ. We follow the prescription in [21] to take into account
both density and dimension of the dataset. Since the affinity matrix has a zero
diagonal we enforce bi-irreducibility as before by adding 10−8 to the diagonal.

As for community detection, we preprocess by removing dominant entries in the
scaled matrix. In postprocessing we reassign these entries to the cluster that
contains their closest neighbour in Euclidean distance.

Fig. 10. Comparison between clustering algorithms

As a baseline, we have compared it with the clustering algorithms from the
Scikit-learn package. The results for five of these algorithms are provided
in Fig. 10. Here each row corresponds to a specific two-dimensional dataset, and
each column to an algorithm. The points are coloured with respect to the cluster
they have been assigned by the algorithm. The rightmost column gives the results
for our method when we stop after the analysis of a single eigenvector. It is clear
that this vector provides enough information to roughly separate the data into
coherent clusters for all the datasets whatever their shape. The NMI is given in
Table 2, following the same order as in Fig. 10 for the datasets. We see that our
algorithm always achieves the best score except for two datasets: the fourth for
which one element has been misplaced by the postprocessing and the third for
which our algorithm still has a NMI larger than 0.9. We also note that, except
for DBSCAN, all these algorithms need to know the number of clusters.

Table 2. NMI for the clusterings shown in Fig. 10

MiniBatch
Kmeans

Spectral
Clust.

Agglo.
Clust.

DB
SCAN

Gaussian
mixture

Our
method

2.9 × 10−4 1 0.993 1 1.3 × 10−6 1

0.39 1 1 1 0.401 1

0.813 0.915 0.898 0.664 0.942 0.902

0.608 0.942 0.534 0.955 1 0.996

1 1 1 1 1 1

6 Conclusions

We have developed a spectral clustering algorithm that is able to partition a
matrix by means of only a few singular vectors (sometimes as few as one), mainly
thanks to the spectral properties of the doubly-stochastic scaling. Moreover, our
method does not need to know the number of clusters in advance and needs
no artificial symmetrization of the matrix. We have illustrated the use of our
algorithm on standard data analysis problems, where we are competitive with
methods specifically designed for these applications. However, it is more versatile
than those classical algorithms because it can be applied on matrices from very
diverse applications, simply needing adaptive post- and pre-processing to be used
on specific applications.

Fig. 11. Detection of co-clusters

In future work we aim to customise our method for co-clustering since it
naturally detects rectangular patterns in square matrices. In Fig. 11 we compare
our algorithm with the spectral co-clustering algorithm designed by Dhillon in
[9]. We observe that Dhillon’s algorithm misplaces elements of the 8 cluster

matrix whilst our algorithm succeeds in recovering the ground truth structure.
While we have to keep in mind that these co-clusterings have to be understood
as the overlapping of independent clusterings on the matrix rows and columns,
and that it is shown in [10] that the intertwining between row and column
clusters is an important factor in co-clustering quality, our preliminary results
are most encouraging. A study of the algorithm complexity is ongoing, as well
as an efficient implementation. For now, a simple Matlab implementation can be
found in the Data Mining section of the webpage http://apo.enseeiht.fr/doku.
php?id=software.

References

1. Bagrow, J.P.: Communities and bottlenecks: trees and treelike networks have high
modularity. Phys. Rev. E 85(6), 066118 (2012)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8, 679–698 (1986)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

6. Conde-Cespedes, P.: Modélisation et extension du formalisme de l’analyse relation-
nelle mathématique à la modularisation des grands graphes. Ph.D thesis, Université
Pierre et Marie Curie (2013)

7. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Syst. 1695, 1–9 (2006)

8. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1–14 (2011)

9. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph
partitioning. In: Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2001, pp. 269–274. ACM
(2001)

10. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2003, pp. 89–98. ACM (2003)

11. Duff, I., Knight, P., Le Gorrec, L., Mouysset, S., Ruiz, D.: Uncovering hidden block
structure. Technical report TR/PA/18/90, CERFACS, August 2018

12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
13. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.

Nat. Acad. Sci. 104(1), 36–41 (2007)
14. Fortunato, S., Hric, D.: Community detection in networks: a user guide. CoRR

abs/1608.00163 (2016)
15. Fred, A.L.N., Jain, A.K.: Robust data clustering. In: CVPR, no. 2, pp. 128–136.

IEEE Computer Society (2003)
16. Fritzsche, D., Mehrmann, V., Szyld, D.B., Virnik, E.: An SVD approach to identi-

fying metastable states of Markov chains. Electron. Trans. Numer. Anal. 29, 46–69
(2008)

17. Frobenius, G.: Ueber matrizen aus nicht negativen elementen. Sitzungsber. Königl.
Preuss. Akad. Wiss, 456–477 (1912)

18. Knight, P.A., Ruiz, D.: A fast algorithm for matrix balancing. IMA J. Numer.
Anal. 33(3), 1029–1047 (2013)

19. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

20. Lei, J., Rinaldo, A., et al.: Consistency of spectral clustering in stochastic block
models. Ann. Stat. 43(1), 215–237 (2015)

21. Mouysset, S., Noailles, J., Ruiz, D.: Using a global parameter for gaussian affinity
matrices in spectral clustering. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M.,
Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS, vol. 5336, pp. 378–390.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92859-1 34

22. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 036104 (2006)

23. Newman, M.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)
24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-

rithm. In: Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS 2001, pp. 849–856. MIT Press
(2001)

25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

26. Perron, O.: Zur theorie der matrices. Mathematische Annalen 64(2), 248–263
(1907)

27. Pons, P., Latapy, M.: Computing communities in large networks using random
walks (long version). arXiv Physics e-prints, December 2005

28. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
29. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic

matrices. Pacific J. Math. 21, 343–348 (1967)
30. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416

(2007)
31. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community

detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)

