
HAL Id: hal-03003689
https://hal.science/hal-03003689v1

Submitted on 13 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Sentences as Semantic Representations in Large
Scale Zero-Shot Learning

Yannick Le Cacheux, Hervé Le Borgne, Michel Crucianu

To cite this version:
Yannick Le Cacheux, Hervé Le Borgne, Michel Crucianu. Using Sentences as Semantic Representations
in Large Scale Zero-Shot Learning. ECCV 2020 workshop Transferring and adapting source knowledge
in computer vision (TASK-CV), Aug 2020, Glasgow, United Kingdom. �hal-03003689�

https://hal.science/hal-03003689v1
https://hal.archives-ouvertes.fr


Using Sentences as Semantic Representations in
Large Scale Zero-Shot Learning
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Abstract. Zero-shot learning aims to recognize instances of unseen classes,
for which no visual instance is available during training, by learning mul-
timodal relations between samples from seen classes and corresponding
class semantic representations. These class representations usually con-
sist of either attributes, which do not scale well to large datasets, or word
embeddings, which lead to poorer performance. A good trade-off could
be to employ short sentences in natural language as class descriptions.
We explore different solutions to use such short descriptions in a ZSL
setting and show that while simple methods cannot achieve very good
results with sentences alone, a combination of usual word embeddings
and sentences can significantly outperform current state-of-the-art 3.

1 Introduction and Related Work

Zero-shot learning (ZSL) is useful when no visual samples are available for cer-
tain classes, provided we have semantic information for these classes [11]. It is
then possible to train a model to learn the relations between the visual and
semantic features using seen classes, for which both modalities are available;
these relations can later be employed to classify instances of unseen classes, for
which no visual sample is available during training, based on their semantic class
prototypes[18,7,24,12,13]. The semantic information can consist of vectors of at-
tributes, e.g. binary codes for “has fur”, “has stripes”, etc. if classes are animal
species. In a large-scale setting, it can be impractical to devise and provide at-
tributes for hundreds or even thousands of classes. Word embeddings are then
typically used to represent classes. However, a large performance gap still exists
between these two types of class representations [14].

An ideal solution could be to use short natural sentences to describe each
class, as this is less time-consuming than providing comprehensive attributes and
can be more visually informative than word embeddings derived from generic
text corpora. The use of sentences as class descriptions in ZSL is not well stud-
ied. Some works already employed sentences for ZSL, but not in a convenient
setting. For instance, Akata et al. [1] rely on 10 sentences per image instead

3 A short version of this article was published in the Task-CV workshop @ECCV 2020
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of 1 per class. Ba et al. [15] and Elhoseiny et al. [6] use tf-idf from large text
collections such as Wikipedia articles and different neural architectures to ob-
tain semantic representations. Zhu et al. [28] generate visual features from noisy
text description (again from Wikipedia articles) using Generative Adversarial
Network. These works as well as others such as [5,22] tend to focus on fine-
grained recognition and explicitly or implicitly assume that classes are similar
(consisting for example of birds species) and that class descriptions will contain
specific information (for example regarding the beak, the wings, the plumage...).
On the other hand, we focus on generic object recognition and make close to
no assumption regarding the nature of these descriptions. The closest work to
ours is probably Hascoet et al. [9], in which different methods to obtain pro-
totypes from WordNet definitions are evaluated, but reported performance is
significantly below that of usual word embeddings.

In this article, we explore several ideas to leverage sentences to build seman-
tic embeddings for ZSL and show that this can significantly outperform previous
best reported performance. These proposals are easy to implement and compu-
tationally light. We provide the code4 as well as the corresponding embeddings
which can be used out-of-the-box as better quality semantic representations.

2 Proposed Method

To deal with a zero-shot learning (ZSL) task, one considers a set Cs of seen
classes used during training and a set Cu of unseen classes that are available
for the test only, with Cs ∩ Cu = ∅. Each class is also associated to a semantic
class prototype sc ∈ RK that characterizes it. Let us consider a training set
{(xi, yi), i = 1 . . . N} with labels yi ∈ Cs and visual features xi ∈ RD. The goal
of the ZSL task is to learn a compatibility function f : RD ×RK → R assigning
a similarity score to a visual sample x and a class prototype s. It is usually a
parametrized function that is learned by minimizing a regularized loss L:

1

N

N∑
i=1

|Cs|∑
c=1

L(f(xi, sc), yi) + λΩ[f ] (1)

where Ω is a regularization term weighted by λ. Once f is learned, the testing
phase consists in determining the label ŷ ∈ Cu corresponding to a visual sample
x such that ŷ = arg max

c∈Cu
f(x, sc).

A simple linear model is presented in Section 2.1. Our contribution presented
in Section 2.2 consists in leveraging sentences to build semantic prototypes sc

2.1 Linear ZSL model.

We adopt a linear ridge regression model, in which semantic prototypes are
projected into the visual features space so as to minimize a regularized least

4 https://github.com/yannick-lc/zsl-sentences

https://github.com/yannick-lc/zsl-sentences
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square loss. This choice is motivated by the good and consistent results of this
model in [14], as well as its low computational cost and ease of reproducibility.
The choice of the visual space as the projection space is based on [25], which
argues that this choice enables to mitigate the hubness problem [23]. Results
with other models from [8] are provided in Section 3.3.

The visual features {x1, . . . ,xN} are extracted with a pre-trained network, so
that xn ∈ RD,D the dimension of the visual space. We thus have a corresponding
training matrix X ∈ RN×D. The semantic representations {s1, . . . , sC} of the C
seen (training) classes lie in RK . We write T = (t1, . . . , tN )> ∈ RN×K the
semantic representations associated with each training sample xn with label yn
so that tn = syn

.

The resulting loss for the ridge regression with parameters Θ ∈ RK×D is

1

N
‖X−TΘ‖2F + λ‖Θ‖2F (2)

where λ a hyperparameter weighing the `2 regularization penalty ‖Θ‖2F , and
‖·‖F is the Frobenius norm. This minimization problem has a closed-form solu-
tion:

Θ = (T>T + λNIK)−1T>X (3)

During the prediction phase, given a testing sample x and the semantic rep-
resentations {s′1, . . . , s′C′} of the C ′ unseen classes, s′c′ ∈ RK , we predict label
ŷ corresponding to the class whose prototype’s projection is closest to x:

ŷ = argmin
c′

‖x−Θ>sc′‖2 (4)

2.2 Sentence-Based Embeddings

A simple baseline consists in averaging the embeddings of the words in the defini-
tion, as is usually done for class names consisting of several words: if a sentence s
describing a class has N words with respective embeddings {w1, . . . ,wN}, then

the corresponding semantic representation is s = 1
N

∑N
n=1 wn. We call this base-

line the Defaverage approach. However, as illustrated in Fig. 2, not all words are
equally important in a short sentence description. We therefore explore the use
of attention mechanisms: the sentence embedding is a weighted average of the
embeddings of its words, so that more important words contribute more to the
result. We consider two ways to achieve this.

Visualness Based Approach The first, called the Defvisualness approach, aims
to estimate how “visual” a word is. For a given word wn, we thus collect the
100 most relevant images from Flickr using the website’s search ranking. We
obtain representations {ri1, . . . , riM} with 2048 dimensions (rm ∈ R2048) using a
pre-trained ResNet (see Section 3.1). We then measure the average distance of
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vectors rim to the mean vector r̄i = 1
M

∑M
m=1 r

i
m to obtain the additive inverse

of the visualness vi:

vi = − 1

M

M∑
m=1

‖rim − r̄i‖2 (5)

We hypothesize that words with high visual content have features close to each
other, so that the quantity vi from Equation 5 can be used as a qualitative
measure of the intuitive concept of how “visual” a given word is. Examples of
words with high and low visualness shown in Section 3.4 tend to confirm that
this hypothesis is reasonable.

Figure 1 shows the distribution of the inverse of the visualness for the 4059
words from class names and WordNet definitions of classes from [8]. Equation 5
is then used to obtain weights for each word based on its visualness in order
to use a weighted average of the word embeddings from a definition as class
prototype. As the initial scale of the average distances / negative visualnesses is
arbitrary, a temperature τ is introduced in the softmax to weigh each word, so
that the resulting sentence embedding is

s =

N∑
n=1

exp(vn/τ)∑N
k=1 exp(vk/τ)

wn (6)

The value τ is cross-validated on the validation set – see Section 3.1. In practice,
this often leads to selecting τ = 5.

Fig. 1. Inverse of the visualness (low values correspond to high visualness) for the 4059
words from class names and WordNet definitions.

Learned Attention Based Approach A second approach called Defattention
aims to learn to predict the visualness vi of word wi from its embedding wi ∈ RK

such that vi = θ>wi, where θ are learned parameters. Equation 5 can then be
used to create a prototype from a class’ definition. As the vi are directly learned,
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it is no longer necessary to account for their initial scale. We can thus discard
the temperature in the softmax by setting τ = 1 in Equation 5.

Different ways could be considered to learn θ. A straightforward approach
could consist in randomly initializing θ along with Θ from Equation 2, com-
puting visualnesses vi = θ>wi, computing class prototypes sc using the vi and
Equation 5, computing T and finally computing the loss from Equation 2; we
could then use back-propagation and gradient descent to update θ and Θ until
convergence.

However, we instead take advantage of the closed-form solution from Equa-
tion 3 and proceed as follows: we randomly initialize θ and compute class pro-
totypes sc and T using Equation 5 as previously. We then directly estimate Θ
using the closed-form solution from Equation 3, and use this value to compute
the loss in Equation 2. We then back-propagate the gradient and perform gradi-
ent descent on θ only, the value of Θ being estimated with Equation 3 at each
iteration. We repeat this process for 50 “epochs”. An illustration of the resulting
weights from both approaches is shown in Fig. 2.

The resulting sentence embeddings can then be compared to the standard
class prototypes obtained by embedding the class name (Classname approach).
Since recent results show that hierarchical and graph relations between classes
contain valuable information [8], in the Classname+Parent approach we com-
bine the Classname prototype with the prototype of its parent class.

Finally, we experiment with different combinations of the base approaches:

– Classname+Defaverage,
– Classname+Defvisualness
– Classname+ Defvisualness +Parent .

All these combinations simply consist in finding a value µ ∈ [0, 1] such that the
combined prototype is s = µs1 + (1 − µ)s2, given s1 and s2 the prototypes of
two approaches.

3 Experiments

3.1 Settings

Selecting hyperparameters. Hyperparameter values such as λ in Equation 2
or τ in Equation 5 are selected by cross-validation on seen classes, keeping 200
of the 1000 seen training classes as unseen validation classes. The model is then
retrained on all 1000 training classes with the selected values.

When several prototypes s1 and s2 are combined with s = (1 − µ)s1 + µs2,
µ ∈ [0, 1], for instance in the Classname+Defaverage or Classname+Defvisualness
approaches, µ is also considered to be a hyperparameter and its value is selected
by cross-validation along with the other hyperparameters. In these cases, it leads
to surprising results with a frequently selected value of µ = 0.7, meaning the
combined prototype is 70% from the definition prototype and 30% from the
classname prototype, even though the definition alone performs far worse than
the classname alone. Nonetheless, this still led to consistent results.
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On the other hand, when combining a prototype with the prototype of its
parent class, cross-validation tended to yield very inconsistent and unstable val-
ues. When combining a prototype with its parent prototype, we therefore fixed
µ = 0.25 (meaning 75% base class and 25% parent class) for all methods and
all word embeddings. Note that in the Classname+Defvisualness and Class-
name+ Defvisualness +Parent approach, the prototype from the parent class
is also built with Classname+Defvisualness, and the value of µ is the same as the
one selected for the child class.

Pre-trained word embeddings. We used widely adopted pre-trained embed-
dings available on the Internet for Word2vec [16], FastText [3] and Glove [20].
We used a Word2vec embedding model pre-trained on Wikipedia as we found
it gave better results than other version, such as a Word2vec embedding model
trained on Google News. For the same reason, we used FastText and Glove mod-
els pre-trained on Common Crawl. We used a 300-dimension version for all three.
The pre-trained embedding models were downloaded from the following links:

– Word2vec: https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
(English version trained on Wikipedia).

– Fasttext: https://fasttext.cc/docs/en/english-vectors.html (version
trained on Common Crawl with 600B tokens, no subword information).

– Glove: https://nlp.stanford.edu/projects/glove/ (version trained on
Common Crawl with 840B tokens).

For Elmo [21], we similarly adopted a pretrained version obtained from
https://allennlp.org/elmo. We used the original version with 93.6 million
parameters, pre-trained on the 1 Billion Word Benchmark. Elmo embeddings
have dimension 3× 1024 (a 1024-dimensional embedding from each of the three
layers). For the sake of simplicity we combine the three layers using the same
weight of 0.33 to obtain a single 1024-dimensional representation for each word,
as weights fine-tuned for our specific task gave similar results.

Visual and semantic features. Visual features are obtained from the last
pooling layer of a ResNet [10] model pre-trained on ImageNet [4]. They therefore
have 2048 dimensions. We use the ResNet-101 implementation of PyTorch [19].
Visual features are normalized to have unit `2-norm.

Classname ZSL embeddings are obtained from synsets as follows: a synset
in WordNet [17] can consist of several lemmas, each lemma consisting of several
words. The prototype of a lemma is the mean of the embeddings of its words
when such embeddings exist in the pre-trained model. The prototype of the
synset and thus of the class is the mean of the prototypes of its lemmas. In
the approximately 6 (depending on the pre-trained embedding) cases where no
word from any lemma had an embedding in the pre-trained model, we used the
embedding from the word “thing” as class prototype. All semantic prototypes
are `2-normalized, for the Classname approach as well as all the others.

https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://fasttext.cc/docs/en/english-vectors.html
https://nlp.stanford.edu/projects/glove/
https://allennlp.org/elmo
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Table 1. Comparison of approaches on ImageNet with a linear model. Best previous
reported result is 14.1 in [8]; the result marked with * corresponds to the same setting
(use of Classname with Glove embeddings).

Word2vec FastText Glove Elmo

Classname 12.4 14.8 14.5* 10.9
Classname+Parent 13.4 15.9 15.4 11.4

Defaverage 9.7 10.6 10.0 8.7
Defvisualness 10.5 10.9 10.5 9.5
Defattention 10.5 11.0 10.2 9.5

Classname+Defaverage 14.6 17.2 16.9 12.2
Classname+Defvisualness 14.8 17.3 16.8 12.1
Classname+Defvisualness+Parent 15.4 17.8 17.3 12.5

Evaluation protocol We measure ZSL accuracy on the large-scale ImageNet
dataset, with synsets as classnames and corresponding WordNet definitions as
sentences. We also use the WordNet hierarchy to determine parent classes. We
employ the experimental protocol of [8], with the same ResNet features and,
especially, the same train/test splits since [8] evidenced significant structural
bias with previous popular splits. Glove embeddings are employed in [8]; we also
compare with Word2vec and FastText [2], as well as Elmo contextual embeddings
using pre-trained embeddings available on the Internet (details are provided in
the supplementary material). The ZSL model is a ridge regression from the
semantic to the visual space as it gives good, consistent and easily reproducible
results (see [14]).

3.2 Results with Linear Model

Results are shown in Table 1. The baseline Defaverage approach performs poorly
compared to the usual Classname approach. Attention provides a slight improve-
ment (both Defvisualness and Defattention give comparable results), but still does
not match Classname, even though attention weights seem reasonable (some
examples are shown in Fig. 2). The use of parent information improves results
compared with Classname alone, which is consistent with [8] where the best
methods make use of hierarchical relations between classes.

The combination of Classname and Def approaches brings significantly bet-
ter scores than either separately. Surprisingly, while any Def alone has lower per-
formance than Classname alone, the best trade-off obtained by cross-validation
is 70% definition and 30% classname in every case, meaning that the definition
has a much stronger presence than the class name in the resulting embedding.

The word embedding method has an impact on performance; FastText con-
sistently ranks above the other methods. Elmo has surprisingly low performance
including with fine-tuned attention, even though one could expect attention to
be more effective here as Elmo considers the role of the word in the sentence.
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Fig. 2. Illustration of attention scores on some test classes. Left : weights from
Defvisualness after softmax (the temperature is τ = 5 so differences are less pronounced
than initially). Right : weights learned with Defattention, with FastText embeddings.

3.3 Results with Other Models

We report results with the best performing prototypes for a few other ZSL
models in addition to the linear model already described. We specifically report
results for models used in [8] (except for graph-convolutional models which use
a different setting). For ConSE [18], DeViSE [7] and ESZSL [24], we use the
implementation from [8]. We report results averaged over 5 runs with different
random initializations of parameters for ConSE and DeViSE. Since the other
models use closed-form solutions, it is not necessary to report results averaged
over several runs as there is no variance in the results. We also provide results
with another simple linear model, consisting in a ridge regression from the vi-
sual to the semantic space. This model is called LinearV → S , as opposed to
LinearS → V which is the ridge regression model from the semantic to the visual
space described in Section 2.1.

We report results with the best class prototypes as determined in Table 1 of
the main paper, i.e. the ones obtained with the Classname+Defvisualness+Parent
approach with the FastText embeddings. These prototypes will be made available
to the community along with the others. Top-1, top-5 and top-10 accuracies for
the models mentioned above with these prototypes are provided in Table 2.

Table 2. Top-k ZSL accuracy for different models, using the
Classname+Defvisualness+Parent prototypes constructed from FastText embeddings.

top-1 top-5 top-10

LinearS → V 17.8 43.6 56.7
LinearV → S 9.1 26.2 36.7
ESZSL 16.3 40.6 52.4
ConSE 12.7 31.8 42.4
DeViSE 14.0 38.3 52.1
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Fig. 3. Top: words with highest visualness. Bottom: words with lowest visualness. The
visualness of a word is the inverse of the mean distance (shown in parenthesis) to the
mean representation of visual features from the top 100 corresponding images from
Flickr, see Section 3.4. Top 1 image with no copyright restriction is displayed.

3.4 Illustration of visualness

We provide a few examples of the words with the highest and lowest visualness
in Figure 3, as well as the corresponding inverse visualness (the mean distance
to the mean feature representations for images associated with this word) and
the corresponding top image result with no copyright restriction from Flickr.

4 Conclusion.

To scale zero-shot learning to very large datasets it is important to solve the
problem of providing class prototypes for many classes. The use of class name
embeddings scales better than the provision manually-defined attributes but the
resulting performance is nowhere near. We suggest that low-cost textual content,
consisting in one sentence per class, can bring substantial performance improve-
ments when combined with class name embeddings, when they are processed
with the proposed approaches. The improved class prototypes for ImageNet are
available at https://github.com/yannick-lc/zsl-sentences.

Beyond the case of zero-shot learning, other tasks are known to suffer from
an incomplete semantic information, such as image retrieval, classification [31]
or annotation [29]. The work we presented in this article can thus benefit to
these tasks, in particular when one addresses large-scale datasets. Predicting
automatically the important words into sentences with regard to their visualness
leads to semantic representation that can be mixed to visual representation to
build intrinsic multimedia representations [30] that can be used to address cross-
modal retrieval [26] and classification [27].

https://github.com/yannick-lc/zsl-sentences
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est neighbors in high-dimensional data. Journal of Machine Learning Research
11(Sep), 2487–2531 (2010)

24. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot
learning. In: International Conference on Machine Learning. pp. 2152–2161 (2015)

25. Shigeto, Y., Suzuki, I., Hara, K., Shimbo, M., Matsumoto, Y.: Ridge regression,
hubness, and zero-shot learning. In: Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases. pp. 135–151. Springer (2015)

26. Tran, T.Q.N., Le Borgne, H., Crucianu, M.: Aggregating image and text quantized
correlated components. In: Computer Vision and Pattern Recognition. Las Vegas,
USA (june 2016)

27. Tran, T.Q.N., Le Borgne, H., Crucianu, M.: Cross-modal classification by com-
pleting unimodal representations. In: ACM Multimedia 2016 Workshop:Vision and
Language Integration Meets Multimedia Fusion. Amsterdam, The Netherlands (oc-
tober 2016)

28. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial
approach for zero-shot learning from noisy texts. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 1004–1013 (2018)

29. Znaidia, A., Le Borgne, H., Hudelot, C.: Tag completion based on belief theory
and neighbor voting. In: Proceedings of the 3rd ACM conference on International
Conference on Multimedia Retrieval (ICMR). pp. 49–56. ACM (2013)

30. Znaidia, A., Shabou, A., Le Borgne, H., Hudelot, C., Paragios, N.: Bag-of-
multimedia-words for image classification. In: Pattern Recognition (ICPR), 2012
21st International Conference on. pp. 1509–1512. IEEE (2012)

31. Znaidia, A., Shabou, A., Popescu, A., Le Borgne, H., Hudelot, C.: Multimodal fea-
ture generation framework for semantic image classification. In: ACM International
Conference on Multimedia Retrieval (ICMR 2012) (june 2012)


	Using Sentences as Semantic Representations in Large Scale Zero-Shot Learning

