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Abstract

Investigative studies of white matter (WM) brain structures using diffusion MRI

(dMRI) tractography frequently require manual WM bundle segmentation, often

called “virtual dissection.” Human errors and personal decisions make these manual

segmentations hard to reproduce, which have not yet been quantified by the dMRI

community. It is our opinion that if the field of dMRI tractography wants to be taken

seriously as a widespread clinical tool, it is imperative to harmonize WM bundle
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segmentations and develop protocols aimed to be used in clinical settings. The

EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization

through a series of steps that must be reproduced for every WM bundle. This article

is an observation of the problematic. A specific bundle segmentation protocol was

used in order to provide a real-life example, but the contribution of this article is to

discuss the need for reproducibility and standardized protocol, as for any measure-

ment tool. This study required the participation of 11 experts and 13 nonexperts in

neuroanatomy and “virtual dissection” across various laboratories and hospitals. Intra-

rater agreement (Dice score) was approximately 0.77, while inter-rater was approxi-

mately 0.65. The protocol provided to participants was not necessarily optimal, but

its design mimics, in essence, what will be required in future protocols. Reporting

tractometry results such as average fractional anisotropy, volume or streamline count

of a particular bundle without a sufficient reproducibility score could make the analy-

sis and interpretations more difficult. Coordinated efforts by the diffusion MRI

tractography community are needed to quantify and account for reproducibility of

WM bundle extraction protocols in this era of open and collaborative science.

K E YWORD S

bundle segmentation, diffusion MRI, inter-rater, intra-rater, reproducibility, tractography, white

matter

1 | INTRODUCTION

Diffusion MRI (dMRI) tractography reconstructs streamlines that

model the white matter (WM) neuroanatomy. The set of all streamlines

forms an object often called the tractogram (Catani & De Schotten,

2008; Jeurissen, Descoteaux, Mori, & Leemans, 2017). When specific

hypotheses about known pathways, that is, WM bundles, are investi-

gated, neuroanatomists design “dissection plans” that contain anatomical

landmarks and instructions to isolate the bundle of interest from this

whole brain tractogram (Bayrak et al., 2019; Catani & De Schotten,

2008; Catani, Howard, Pajevic, & Jones, 2002; Chenot et al., 2019; Hau

et al., 2016). From now on “dissection plans” will be referred as segmenta-

tion protocols. Bundles can be segmented to study WM morphology,

asymmetries, and then can be associated with specific functions (Catani

et al., 2007; Groeschel et al., 2014; Lee Masson, Wallraven, & Petit,

2017; Masson, Kang, Petit, & Wallraven, 2018) with approaches similar

to other brain structures (Lister & Barnes, 2009; Reitz et al., 2009).

Despite having similar anatomical definitions across publications, the

absence of common segmentation protocols for tractography leads to

differences that are for the most part unknown and unaccounted for.

We need to know how variable our measurements are if we want to be

able to have robust bundle-based statistics in the future. At the moment,

there are no standardized method being used by the community.

The need for a gold standard that quantifies human variability is well-

known and well-studied in other fields, such as automatic image segmen-

tation, cell counting, or in machine learning (Boccardi et al., 2011; Entis,

Doerga, Barrett, & Dickerson, 2012; Kleesiek et al., 2016; Piccinini, Tesei,

Paganelli, Zoli, & Bevilacqua, 2014). For applications such as hippocampi

or tumor segmentation, thorough assessments of reproducibility and

multiple iterations of manual segmentation protocols already exist

(Boccardi et al., 2015; Frisoni et al., 2015). These protocols were specifi-

cally designed to reduce the impact of human variability and help outcome

comparison in large-scale clinical trials across multiple centers (Frisoni

et al., 2015; Gwet, 2012). It is our opinion that the very same steps are

needed for every WM pathways in order to achieve reproducible results.

Our work is, in fact, an attempt to expose and clarify the necessity to

design harmonized protocols, quantify their reproducibility and take vari-

ability into accountwhen reporting results.

The reproducibility of manual bundle segmentation is likely to be

always lower than manual image segmentation. Image segmentation in

3D requires local decision-making, and the decision to include voxels or

not is directly done by raters. However, bundle segmentation requires

local decisions that possibly impact the whole volume as streamlines

reach outside of the scope of decisions made by raters. Since small or

large hand-drawn regions of interest (ROIs) or spheres are used to seg-

ment bundles, small mistakes can have far-reaching consequences.

Even if ROIs are fairly reproducible in a strict protocol, the resulting

bundles could be far from reproducible. This local-decision and global-

impact conundrum makes the design of reproducible protocols more

difficult and can potentially cause low agreement between raters.

1.1 | Bundle segmentation

Bundle segmentation is the action of isolating streamlines based on

neuroanatomical priors, using known regions where certain conditions
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need to be satisfied. Inclusion and exclusion ROIs are drawn and

defined at the voxel-level using coregistered structural images and

are subsequently used to select the streamlines produced by

tractography (Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007;

Catani et al., 2002; Ghaziri et al., 2015; Renauld, Descoteaux, Bernier,

Garyfallidis, & Whittingstall, 2016; Rozanski et al., 2017), as shown in

Figure 1. Streamlines can be included or discarded using inclusion

ROIs where streamlines are forced to traverse, and exclusion ROIs

that cannot be crossed. Known structures such as gray nuclei, gyri, or

sulci and recognizable signal signatures can be used as landmarks to

create a plan to follow for the segmentation (Catani et al., 2002;

Catani & De Schotten, 2008; Chenot et al., 2019; Hau et al., 2016). In

this work, the person performing the task of segmentation (i.e., drawing

the ROIs, following the protocol) will be referred to as rater. Manual

segmentation can be performed in software such as, but not limited to,

DTI studio (Jiang, Van Zijl, Kim, Pearlson, & Mori, 2006), Trackvis

(Wang, Benner, Sorensen, & Wedeen, 2007), exploreDTI (Leemans,

Jeurissen, Sijbers, & Jones, 2009), MITK Diffusion (Neher et al., 2012),

FiberNavigator (Chamberland, Whittingstall, Fortin, Mathieu, &

Descoteaux, 2014), or MI-Brain (Rheault et al., 2016) (Figure 1).

Once a bundle of interest is segmented from a tractogram, the

analysis varies according to the research question. It is common to

report asymmetry or group difference in bundle volume (Catani et al.,

2007; Chenot et al., 2019; Song et al., 2014), diffusion values within

the bundle of interest (average fractional anisotropy, mean diffusivity,

etc.) (De Erausquin & Alba-Ferrara, 2013; Kimura-Ohba et al., 2016;

Ling et al., 2012; Mole et al., 2016) or values along the bundle

(called profilometry and tractometry) (Cousineau et al., 2017; Dayan

et al., 2016; Yeatman, Dougherty, Myall, Wandell, & Feldman, 2012;

Yeatman, Richie-Halford, Smith, Keshavan, & Rokem, 2018). Spatial

distribution of cortical terminations of streamlines can help to identify

cortical regions with underlying WM connections affected by a condi-

tion (Behrens et al., 2003; Donahue et al., 2016; Johansen-Berg et al.,

2004; Mars et al., 2011; Rushworth, Behrens, & Johansen-Berg,

2005). Reporting the number of streamlines (e.g., streamline count in

connectivity matrix or density maps) is still very much present as a

way to compare groups (Girard, Whittingstall, Deriche, & Descoteaux,

2014; Jones, Knösche, & Turner, 2013; Sotiropoulos & Zalesky, 2017),

despite not being directly related to anatomy or connection strength

(Jones, 2010; Jones et al., 2013).

1.2 | Quantifying reproducibility in tractography

When performing segmentation, it is crucial that raters perform the

tasks as closely as possible to the dissection plan. Even if a single indi-

vidual performs all segmentations, the possibility of mistakes or erro-

neous decisions about landmarks exists (Boccardi et al., 2011; Entis

et al., 2012; Frisoni et al., 2015). High reproducibility is often an

assumption, if this assumption is false, the consequence could lead to

inconsistent outcomes and erroneous conclusions. To assess the level

of reproducibility of raters, identical datasets need to be segmented

blindly more than once (Frisoni et al., 2015; Gisev, Bell, & Chen, 2013;

Gwet, 2012). The literature on the subject, specifically for tractography,

is quite sparse. Reported values for intra-rater and inter-rater variability

are sometimes hidden in Section 2. However, it is common to report

measures such as volume or average FA, which do not directly relate to

spatial agreement (as detailed in Section 2.4), or to report variability of

the ROI drawn by raters instead of the resulting bundles. Finally, the

steps to perform the segmentation (the protocol) are not provided and

the framework for evaluation is not defined. Despite these limitations,

the general trend is that different bundles do not have the same level

of variability (ranging from 0.4 to 0.95) and that algorithmic choices

(e.g., diffusion tensor imaging vs. high angular resolution diffusion imag-

ing) have an influence on variability (Colon-Perez et al., 2016; Dayan,

Kreutzer, & Clark, 2015; Kaur, Powell, He, Pierson, & Parikh, 2014;

Kreilkamp et al., 2019; Voineskos et al., 2009; Wakana et al., 2007;

Yendiki et al., 2011). The first, and probably most complete, publication

on the subject of protocol reproducibility assessment was fromWakana

et al. (2007). The acquisition and algorithmic choices for tractography

could be considered suboptimal (low spatial/angular resolution, diffu-

sion tensor) and the framework inadequate for the now more common

large-scale collaborations. The publication, despite providing a robust

design, had a limited number of raters and duplicated data. The impor-

tance of reproducibility assessment, sparse literature on the subject,

and limited availability of protocols support the need for the work pres-

ented in this study.

To come back to tractography, the main message of our work is

simple: Any study involving a manual segmentation protocol must

provide a quantification of its measurement error, if it was never

F IGURE 1 Illustration of the dissection plan of the PyT using the
MI-Brain software (Rheault, Houde, Goyette, Morency, & Descoteaux,
2016). Three axial inclusion ROIs (pink, green, yellow), one sagittal
exclusion ROIs (orange), two coronal exclusion ROIs (light yellow), and
a cerebellum exclusion ROIs (red, optional). The whole brain
tractogram was segmented to obtain the left PyT. PyT, pyramidal
tract; ROIs, regions of interest
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assessed before. Any modifications to the experimental setup will

require a new assessment of the measurement error. Reporting mea-

surements, such as average fractional anisotropy (FA), volume, or

streamline count, without a sufficient reproducibility is potentially

problematic. Too low of an agreement score (e.g., below 30%) could

even mean an entirely different BOI/ROI is segmented, which

would hinder further analysis. Similarly to the The EADC-ADNI

Harmonized Hippocampal Protocol (HarP) (Frisoni et al., 2015),

future dMRI tractography protocols will have to be designed for

each bundle of interest. Groups of experts will have to propose

protocols, pick-and-choose the best features of each and design an

agreed upon set of rules, as it was undertaken for the HarP project

(Boccardi et al., 2015). As of this moment, efforts are being made

toward an inter-protocol variability study to evaluate the current

state of anatomical definitions present in the field, similar to the

HarP project (Boccardi et al., 2011). In this work, measurement

error is sometimes referred as variability, while reproducibility is

the capacity to reach the same results twice. Reproducibility of seg-

mentations from the same individual is referred to as intra-rater

agreement, while reproducibility of segmentation across raters is

referred to as inter-rater agreement.

In the field of neuroimaging, voxels are used as the typical repre-

sentation of data, while the available representation in tractography is

in the form of streamlines (i.e., sets of 3D points in space). Figure 2 is

a sketch of both representation. Several similarity measures exist to

compare voxel-wise segmentations, for example, Dice score. Most of

them have an equivalent formulation to compare sets of streamlines.

However, resulting values can widely vary as the spatial distribution is

not the same for both representations. Some measures related to

streamlines require the datasets to be exactly the same, for example,

Dice score, as streamline reconstructions are sets of discrete points

with floating point coordinates and not discrete grids like 3D images.

For this reason, comparison of streamlines is more challenging and

datasets that do not originate from the same source distance in millime-

ters is often the only available solution (Garyfallidis et al., 2017; Maier-

Hein et al., 2017). Automatic segmentation methods are becoming

more widespread. Methods such as, but not limited to, (Chekir, Des-

coteaux, Garyfallidis, Côté, & Boumghar, 2014; Garyfallidis et al., 2017;

Guevara et al., 2011; O'Donnell et al., 2017; O'donnell, Golby, &

Westin, 2013; Wassermann et al., 2016; Wasserthal, Neher, & Maier-

Hein, 2018; Yendiki et al., 2011; Zhang et al., 2018) aim to simplify the

work of raters. The typical standard of most automatic segmentation

method is to reach the accuracy of raters, thus it is crucial to truly quan-

tify human reproducibility in manual tasks. It is possible to envision a

scenario where an automatic method would not be as accurate as

human expertise but still useful to provide insight or even valid bio-

markers. In such a case, it is still useful to know how accurate human

expertise is, at least to provide comparisons.

F IGURE 2 Representation of the Dice Coefficient (overlap) for both the streamline and the voxel representation. For the purpose of a
didactic illustration, four streamlines are showed in a 2×5 “voxel grid,” the red and blue streamlines are identical. Each streamline is converted to a
binary mask (point-based for simplicity) shown in a compact representation. Voxels with points from three different streamlines will results in
voxels with three different colors, this can be seen as a spatial smoothing. The matrices on the right show values for all pairs (symmetrical). The
green and yellow streamline are not identical, which results in a streamline-wise Dice coefficient of zero. However, in the voxel representation
they have three voxels in common and the result is 2×3

5+3 = 0:75
� �
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1.3 | Summary of contributions of this work

Our PyT evaluation experiment serves as an “example” to convey the

point that tractography segmentation is not standardized and needs

to be addressed properly to make it quantitative, robust, and more

useful in the neuroimaging and human brain mapping literature.

We propose a framework to evaluate and quantify human repro-

ducibility of bundle segmentation from dMRI tractography. Obtaining

a measurement of rater (intra and inter) agreement is extremely rele-

vant to set an appropriate threshold for statistical significance. It is

also relevant for meta-analysis aiming to study large sets of publica-

tions and synthesize their outcomes. An account of human errors or

other sources of variability is necessary. The main goal of this publica-

tion is to promote the importance of the assessment of any new

“virtual dissection” protocol. We do not want to promote a given

dissection protocol but emphasize the fact that any new protocol,

including a new tractography algorithm and another bundle of interest

would require a new assessment.

A second contribution of this work is to investigate overlap,

similarity measures, and gold standard comparison designed for

tractography. Development of easily interpretable measures for

bundle comparison is necessary for large datasets. Overall, the voxel

representation is significantly more reproducible than the streamline

representation. The voxel representation is better suited for analysis

of tractography datasets (e.g., reporting volume instead of streamline

count). More details about these different representations and voxel/

streamline-wise measures will be detailed in Sections 2 and 3.

2 | METHOD

2.1 | Study design

Twenty-four participants were recruited and divided into two groups:

experts and nonexperts. The division was based on their neuroana-

tomical educational background. Participants working as researchers or

PhD students in neuroanatomy, neurology or with extended experience

in the field performing “virtual dissection” as well as neurosurgeons were

part of the experts group (11 participants). The nonexperts group was

composed of MSc, PhD student or PostDoc in neuroimaging, but with-

out any formal education in neuroanatomy (13 participants). All partici-

pants had knowledge of dMRI tractography in general as well as the

concept of manual segmentations of tractography datasets. Participa-

tion was voluntary and anonymous, recruitment was done individually

and participants from various laboratories in Europe and the United

States were solicited. The study was performed according to the

guidelines of the Internal Review Board of the Centre Hospitalier

Universitaire de Sherbrooke (CHUS).

Five independent tractograms and their associated structural/dif-

fusion images were used, each was triplicated (total of 15). One was

untouched, one was flipped in the X-axis (left/right), and one was

translated. This was done to ensure that the participants were not

aware they were performing reproducibility tasks. The symmetry of

the segmentation plan (no difference between hemispheres) and lack

of absolute frame of reference (coordinates) allowed these operations.

Then, all datasets were randomly named so the tasks could be per-

formed blindly for each participant. Participants were not aware of

the presence of duplicated datasets. Five tractotrams were used to

obtain stable averages, duplicated datasets were used to score the

intra-rater agreement and the multiple participants to evaluate inter-

rater agreement. The decision to separate participants in two groups

was made to generate additional data about reproducibility in real-life

conditions.

Figure 3 shows an overview of the study design. To evaluate

intra-rater reproducibility of rater #1, each triplicate was used to

compute reproducibility measures. Meaning that 5 (A-B-C-D-E) × 3

(1–2-3) values were averaged to obtain the intra-rater “reproduc-

ibility score” of a single rater. To evaluate inter-rater reproducibility

of rater #1, triplicates were fused and compared to all other raters

to obtain a reproducibility measure. Meaning that 5 (A-B-C-D-

E) × N (raters) values were averaged to obtain a single inter-rater

“reproducibility score.” To evaluate the reproducibility of rater #1

against the gold standard, the fused triplicates were also used.

Meaning that 5 (A-B-C-D-E) × 1 (gold standard) values were aver-

aged to obtain a single rater gold standard “reproducibility score.”

The results shown in Section 3 are average values from all raters in

each group. All reproducibility measures were computed using the

same approach.

2.2 | DWI datasets, processing, and tractography

Tractograms were generated from the preprocessed Human

Connectome Project (HCP) (Van Essen et al., 2013) diffusion weighted

image (DWI) data (three males and two females, healthy, 26–35 years

old) using three shells (1,000, 2,000, and 3,000) with 270 directions.

The b0, FA and RGB (colored FA) images were computed from DWI

to be used as anatomical reference during segmentation. Constrained

spherical deconvolution (CSD) using a FA threshold from a tensor fit on

the b = 1000 s/mm2 was used to obtain fiber orientation distribution

functions (fODF) (Descoteaux, Angelino, Fitzgibbons, & Deriche, 2007;

Tournier, Calamante, & Connelly, 2007) (spherical harmonic order 8) from

the b = 2000 s/mm2 and b = 3,000 s/mm2 shells. Probabilistic particle fil-

tering tractography (Girard et al., 2014) was subsequently computed at

30 seeds per voxel in the WM mask (FSL FAST [Woolrich et al., 2009])

to make sure sufficient density and spatial coverage were achieved. The

decision to use high-quality data was to maximize the quality of the

tractogram so it would not be a limiting factor for the segmentation

tasks. Moreover, it is now more and more common in clinical research to

reach resolution as high as 1.5 mm isotropic with multishell schemes,

such dataset generates tractograms on a similar quality range as

the HCP.

The CSD model was also used for bundle-specific tractography

(BST) to further improve density and spatial coverage of the bundle of

interest (Rheault et al., 2019). This was to ensure that the full extent

of the PyT was reconstructed and to ensure not to have criticisms
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from our experts in neuroanatomy complaining of a lack of fanning

(Pujol et al., 2015). A large model that approximates the corticospinal

tracts (CST), which encompass the PyT, was used to generate stream-

lines with a strong preference for the Z-axis (up-down). A similar PyT

reconstruction could have been achieved by generating millions and

millions of streamlines, which would have been heavy and cumbersome

from dissectionnists participants in the study. This approach was used

to increase the PyT reconstruction quality in (Chenot et al., 2019) and

demonstrated its usefulness.

Furthermore, only the general orientational priors was used

(globally helping the up/down orientation) during tractography and

not spatial/tissue priors was used. Meaning that globally results in

a whole brain tractogram that was seeded from tens of thousands

of voxels from a large region apparent to the CST. And these results

were fused to a conventional whole brain CSD probabilistic

tractogram. The resulting tractogram provided to the participants is

indistinguishable from a conventional one. The rationale for this

decision to use a more efficient seeding/tracking method to fill-up

the full spatial extent of the PyT, as opposed to generating 10–50

millions of streamlines.

To accommodate all participants and the wide range of com-

puter performance, tractograms were compressed using a 0.2 mm

tolerance error (Presseau, Jodoin, Houde, & Descoteaux, 2015;

Rheault, Houde, & Descoteaux, 2017) and commissural streamlines

were removed and datasets split into hemispheres. Each hemisphere

(of each subject) had approximately 500,000 streamlines.

2.3 | Dissection plan and instructions

Each participant received their randomly named datasets, a docu-

ment containing instructions for the segmentation and a general

overview of a segmentation as an example (see Supplementary

Information). The segmentation task consisted in 15 segmentations

of the pyramidal tract (left and right). The rationale behind the

decision to focus on this PyT bundle was first, that a well-defined

and well-known pathway was desired. Second, a dissection plan

made of small and large inclusion and exclusion regions was

desired. Finally, that the general shape was intuitive so the partici-

pants with no background in neuroanatomy could perform the

tasks. Segmentation involved using three WM inclusion ROIs

(internal capsule, midbrain, and medulla oblongata) and two exclu-

sion ROIs (one plane anterior to the precentral gyrus and one

plane posterior to the postcentral gyrus). The detailed segmenta-

tion plan is available in the Supporting Information (Chenot

et al., 2019).

Participants had to perform the segmentation plans, following

the instructions as closely as possible. The dataset order was pro-

vided in a spreadsheet file. Participants had to choose between two

software; Trackvis (Wang et al., 2007) or MI-Brain (Rheault et al.,

2016). This decision was made to guarantee that the data received

from all participants was compatible with the analysis. Metadata

such as date, starting time, and duration had to be noted in the

spreadsheet file. Upon completion, the participants had to send back

F IGURE 3 Representation of the study design showing N participants, each received five HCP datasets (listed and color coded) which were
replicated three times (original, flipped, translated). All participants had to perform the same dissection tasks, on the same anonymized datasets.
Intra-rater, inter-rater, and gold standard reproducibility were computed using the deanonymized datasets. More details are available in the
Supporting Information
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the same 15 folders with two tractography files in each, the left and

right pyramidal tract (PyT).

2.4 | Bundles analysis

Once returned by all participants, datasets were de-randomized to match

triplicates across participants. The duplicates (flipped and translated)

were reverted back to their native space and all datasets (images and

tractograms) were warped to a common space (MNI152c 2009 nonlinear

symmetrical) using the Ants registration library (Avants, Epstein,

Grossman, & Gee, 2008; Fonov et al., 2011) to simplify the analysis. With

all datasets having a uniform naming convention and in a common space,

the intra-rater and inter-rater reproducibility can be assessed.

2.4.1 | Individual measures

Reproducibility can be assessed using various measures. Average FA,

volume, and streamline count are the main attributes obtained directly

from files. They do not provide direct insight about reproducibility, but

one could expect that very similar segmentations should have very sim-

ilar values. However, segmentation could wildly differ across rater and

yet these measurements could be very similar. Average FA, volume, or

streamline count comparison do not provide any information about

reproducibility. Reporting values from bundles obtained via manual seg-

mentation using a protocol with unknown reproducibility scores is

uninterpretable. This is simply due to the fact that completely different

bundles can have the same measurements. This is why a confirmation

that raters following the same protocol obtain the “same” segmentation

is crucial, that is, high reproducibility. In this work, results for the left

and right PyT are averaged together without distinction, they are con-

sidered the same bundle during the analysis.

2.4.2 | Intra-rater and inter-rater

Each participant performed the same tasks on each triplicate. The goal of

this triplication is to evaluate intra-rater reproducibility. Since all partici-

pants had access to the same datasets, inter-rater reproducibility can be

assessed too. Figure 4 shows the effect of of spurious streamlines in seg-

mentation on reproducibility measurements.

F IGURE 4 Comparison of bundles and the impacts of spurious streamlines on the reproducibility measurements. Each block shows
streamlines on the left and the voxel representation on the right (isosurface). Block 2a and 3a shows the core (green/orange) and spurious
(red/pink) portion of the bundle. Block 2b and 3b only shows the core portion of the bundle. Table showing the reproducibility “score” between
bundles, VOX marks voxel-wise measures, and STR marks streamlinewise measures
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Computing the average value from all pairwise combinations pro-

vides an estimate of the agreement between multiple segmentations

of a same bundle. The deviation can also provide insights about the

consistency of these segmentations. Measurement values can be

between 0 and 1, such as Dice and Jaccard (Dice, 1945), meaning they

are independent of the size. Figure 4 shows bundles and how to inter-

pret these measures. Pearson's correlation coefficient obtained from

density maps provides insight into the statistical relationship and spa-

tial agreement between two segmentations (Hyde & Jesmanowicz,

2012). Each measure provides a way to interpret the data at hand, but

there is no single true measure to summarize intra-rater and inter-

rater agreement.

2.4.3 | Gold standard

When multiple raters provide segmentations from an identical dataset, it

is of interest to produce a gold standard. For a voxel representation, a

probability map can be constructed, where each voxel value represents

the number of raters that counted the voxel as part of their segmenta-

tion (Frisoni et al., 2015; Iglesias & Sabuncu, 2015; Langerak, van der

Heide, Kotte, Berendsen, & Pluim, 2015; Pipitone et al., 2014). This can

be normalized and then thresholded to obtain a binary mask representing

whether or not the voxel was segmented by enough rater. A threshold

above 0.5 is often referred to as a majority vote. The same logic can be

applied to streamlines, each streamline can be assigned a value based on

the number of raters that considered it part of their segmentation.

This can be seen in Figure 5 where increasing the minimal vote

threshold reduces the number of outliers and overall size. In this work,

the gold standard does not represent the true anatomy and should not

be interpreted as such. It simply represents the average segmentation

obtained from a tractogram. All elements that are not in a gold stan-

dard are true negatives and all the ones present are true positives. By

construction, the gold standard does not contain false positives or

false negatives. Binary classification measures are available such as

sensitivity or specificity. However, several other measures are avail-

able and each is a piece of the puzzle leading to a more accurate inter-

pretation (Chang, Zhuang, Valentino, & Chu, 2009; Garyfallidis et al.,

2017; Schilling et al., 2018).

To produce our gold standard, a majority vote approach was used

from the segmentations of the experts group, as their knowledge of

anatomy was needed to represent an average version of the bundle of

interest. In the context of this work, the gold standard is actually the

average segmentation from experts. For simplicity, the expression gold

standard was used as it is the best approximation of what can/could

be achieved by our group of experts. The vote was set at 6 out of

11 and each of the five datasets got its own left and right gold stan-

dard. Since the representation at hand is streamlines (which can be

converted to voxels), a streamline-wise and a voxel-wise gold stan-

dard was created. A majority vote approach is not necessarily optimal,

but in the context where experts could not collaborate beforehand or

after, this approach is adequate to obtain an average representation

of the segmentation.

3 | RESULTS

In the following sections, all reported values are medians and inter-

quartile ranges (IQR). This choice was made based on the fact that distri-

butions are often bounded and not Gaussian distributions. Captions of

figures report results as (Q2 [median]; Q3 − Q1 [IQR]), with a star (*) indi-

cating if the distributions are significantly different. All explicit compari-

sons between groups are statistically significant using a Mann–Whitney

rank nonparametric test for two independent samples (p < .01).

On average, experts produce “smaller” bundles than nonexperts,

their volume, and streamline count being lower than nonexperts

(−30% and − 60%), as it can be observed in Figure 6. This difference

between groups is statistically significant (p < .01). The range of

values for segmentation measures is wider for nonexperts, meaning

that either intra-rater or inter-rater variability is likely higher. As

mentioned earlier, this is useful insight about reproducibility but lacks

nuance and context. For example, despite obvious variation in vol-

ume and somewhat poor spatial overlap in segmentations (as shown

in Figures 7 and 8), the average FA measurement does not show

large variation. The fact that segmentations with low spatial overlap

have the same average FA shows that reporting this measurement to

gain insight about reproducibility of bundle segmentation is far from

optimal. Since bundles without any overlap could have the same

average FA, this measure is very difficult to interpret in terms of

reproducibility evaluation.

3.1 | Intra-rater evaluation

All reported values can be seen in Figure 7. The median intra-rater

overlap is represented by the voxel-wise Dice coefficient and is 0.75

for experts and 0.79 for nonexperts. Streamline-wise Dice coefficient

is much lower at 0.10 and 0.37 for both groups, respectively. A higher

Dice score value means that participants of a group are, on average,

more reproducible with themselves. The median density correlation is

equal (p < .01) at 0.900 for the experts and nonexperts group.

3.2 | Inter-rater evaluation

To minimize the influence of intra-rater reproducibility during the

evaluation of inter-rater reproducibility, the triplicate datasets were

fused into a single bundle. This was performed to approximate the

results as if participant segmentations had no intra-rater variability.

This leads to an underestimation of inter-rater variability but neces-

sary to separate sources of variability later in the analysis. Voxel-wise

Dice coefficient is on average higher between experts than between

nonexperts, at 0.62 and 0.67, respectively, while the streamline-wise

Dice coefficient is much lower at 0.11 and 0.18. The median density

correlation is higher between experts at 0.88 while nonexperts are at

0.71. The IQR is higher for the nonexperts group, meaning that the

similarity among nonexperts is not only lower but widely varies. All

reported values can be seen in Figure 8.
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3.3 | Gold standard evaluation

All reported values can be seen in Figures 9 and 10. Comparisons to

the computed gold standard show that on average experts and nonex-

perts obtain segmentation roughly similar to the average segmentation.

However, all measures show that segmentations from experts are on

average closer to the gold standard than those of nonexperts. This was

expected as the gold standard was produced using segmentations from

the experts group. Values for streamline-wise measures are lower for

Dice coefficient and density correlation, meaning that reproducibility is

F IGURE 5 Example of average segmentation, or gold standard, generation obtained from seven different segmentations, first row shows the
streamline representation and the second row shows the voxel represented as a smooth isosurface. From left to right, multiple voting ratios were
used 1

7 ,
3
7 ,

5
7 ,

7
7

� �
, each time reducing the number of streamlines and voxels consider part of the average segmentation. A minimal vote set at one

out of seven (left) is equivalent to a union of all segmentations while a vote set at seven out of seven (right) is equivalent to an
intersection between all segmentations

F IGURE 6 Measurements (Q2; IQR) related to individual files for both groups. The Average FA distribution for experts (0.49; 0.01) and
nonexperts (0.47;0.03) is not statistically different from each other. Similarly, the average length of experts (140.33 mm; 7.81 mm) and
nonexperts (138.70 mm; 11.29 mm) cannot be distinguished. Streamlines count of experts (2,893; 3564*) has a significant difference of
distribution from nonexperts (9,383; 12,368*). The same can be same from the volume distribution (34.00 cm3; 16.43 cm3*) for experts and
(48.74 cm3; 24.57 cm3*) for nonexperts. The lower and higher fences for nonexperts are much wider, indicating more variation in results
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harder to achieve using the streamline representation. This was a simi-

lar trend observed in intra-rater and inter-rater values.

Specificity and accuracy reach above the 95% for both groups

both for streamlines or voxels. Meaning that experts and nonexperts

alike classified the vast majority of true negatives correctly. Since

specificity is near a value of 1.0, the Youden score is almost equal to

sensitivity. All three measures take into account the true negatives,

which far outweigh the true positives, in our datasets, for this reason

they were removed from Figure 10 and shown only in the Supporting

Information. Sensitivity is much lower at 0.78 and 0.82 for experts

and nonexperts respectively, as both groups partially capture the gold

standard. Precision is higher for experts (0.92) than for nonexperts

(0.78), meaning that experts were providing segmentations approxi-

mately the same size as the gold standard while nonexperts were pro-

viding much bigger segmentations (that generally encompass the gold

standard). This explains the higher sensitivity and lower specificity of

nonexperts. The Kappa and Dice score is lower for experts at 0.83

and 0.62 while the nonexperts median is 0.79 and 0.67, respectively.

The Kappa score takes into account overlap with the probability of

randomly obtaining the right segmentation. Given the dimensionality

F IGURE 7 Measurements (Q2; IQR) related to pairwise comparison measures for intra-rater segmentations. The correlation of density maps
showed no statistically significant difference between the experts (0.90; 0.17) and the nonexperts (0.90; 0.17) groups. Distributions showed
statistically significant difference for both Dice score. The Dice score of streamlines shows a easily observable difference between experts (0.10;
0.39*) and nonexperts (0.37; 0.46*). The difference between distribution Dice score of voxels is less noticeable at (0.75; 0.15*) for experts and
(0.79; 0.14*) for nonexperts. The trend for the intra-rater reproducibility is that rater fails to select the same streamlines, but the ones that are
selected still cover approximately the same volume. IQR: interquartile range

F IGURE 8 Measurements (Q2; IQR) (Q2; IQR) related to pairwise comparison measures for inter-rater segmentations. The correlation of
density maps showed no statistically significant difference between the experts (0.82; 0.23*) and the nonexperts (0.77; 0.29*) groups. Similarly to
the intra-rater segmentation, distributions showed statistically significant difference for both Dice score. The Dice score of streamlines shows a
easily observable difference between experts (0.11; 0.14*) and nonexperts (0.18; 0.32*). While the distribution Dice score of voxels for experts
(0.63; 0.20*) and nonexperts (0.67; 0.18*) is more similar. Raters have difficulty to select the same streamlines, but overall capture similar volume.
IQR: interquartile range

F IGURE 9 Measurements (Q2; IQR) related to pairwise comparison measures against the gold standard. The correlation of density map
reaching (0.95; 0.04*) for experts and (0.88;1 5*) is statistically different between both groups. However, the Dice score of streamlines are not
statistically different at (0.39; 0.18) and (0.34; 0.34), respectively. The Dice score of voxel is relatively high at (0.82; 0.05*) for experts and (0.76;
0.13*) for nonexperts. Despite variations between rater, overall the participants remain around the same average segmentation and obtain more
agreement with the gold standard than with each other. IQR: interquartile range
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of our data, getting the right segmentation by accident is very low,

explaining why the Kappa and Dice score are very similar. It is impor-

tant to consider that the ratio of true negatives to true positives is not

the same for both representations (voxels vs. streamlines).

The computation of inter-rater reproducibility was performed

using the fused triplicate to minimize the influence of intra-rater

reproducibility. The approach to fuse the triplicate is an approxima-

tion, fusing more than three segmentations from the same datasets

would be necessary to perfectly evaluate intra-rater reproducibility.

However, the five datasets used for this study represent sufficiently

similar tasks to consider our approximation adequate for this work.

Preliminary analysis showed low correlation values, between a partici-

pant “score” for intra-rater reproducibility and inter-rater reproducibil-

ity. Correlation was between 0.2 and 0.4 for all measures, this

indicates that there is no clear link between the reproducibility of a

participant's own segmentations and the agreement with other

participants.

4 | DISCUSSION

4.1 | Evaluation of protocols

This work illustrates that intra-rater and inter-rater agreement is

far from perfect even when following a strict and “simple”

segmentation protocol. The intra-rater and inter-rater agreement

must be taken into account when researchers compare bundles

obtained from manual segmentations. When human expertise is

required for a project, it is crucial that people involved in the manual

segmentation process evaluate their own reproducibility, even if they

have sufficient neuroanatomy knowledge and extensive experience in

manual segmentation. This measure of error could increase the thresh-

old for statistical significance. In such case, either more datasets will be

needed or a better protocol for segmentation needs to be designed

(Boccardi et al., 2015; Gwet, 2012). The similarity between both groups

indicates that with the right protocol, it would be possible to train peo-

ple without anatomical background to perform tasks with results and

quality similar to experts.

Without such evaluation, it is impossible for experts and nonex-

perts alike to know beforehand how reproducible they are. Since

their “scores” vary with the protocol, the bundle of interest and pos-

sibly other factors, it is important to consider an evaluation before

performing large-scale segmentation procedure (Frisoni et al., 2015).

An alternative to guarantee more reproducible results is to design an

appropriate protocol for nonexperts and to perform tasks blindly

more than once. The results can then be averaged, which will make

outliers and errors easier to be identified. Various ideas can be con-

sidered to facilitate the tasks and increase reproducibility. Using mul-

tiple modalities, such as functional MRI or myelin map, to identify

important landmarks or allowing for wider ROIs delineation by

F IGURE 10 Measurements
(Q2; IQR) related to binary
classification measures against
the gold standard. The Kappa
score is only significantly
different for voxel (0.84; 0.06 and
0.80; 0.13) and not for
streamlines (0.60; 0.16* and 0.65;
0.41*). There is a high degree of

variability for precision and
sensitivity of streamlines (0.81;
0.19* and 0.50; 0.24* for experts)
and (0.59; 0.37* and 0.82; 0.44*
for nonexperts). These measures
are more reliable with the voxel
representation (0.92; 0.10* and
0.79; 0.17* for experts) and (0.78;
0.17* and 0.82; 0.44* for
nonexperts). The streamline
representation is always less
reproducible than the voxel
representation. The measures
such as accuracy and specificity
are not shown due to the fact
that both reach above 0.99 and
do not provide useful visual
insight. IQR: interquartile range
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adding a safe margin around each of them could help increase repro-

ducibility. However, requiring additional modalities would make seg-

mentation more specific, it may be of interested to segment a bundle

based only structural data (T1, dMRI). However, any modifications to

the current protocol, or any protocol for that matter, would create the

need for a new reproducibility assessment using a similar framework to

the one presented in this work. The conclusion remains the same, the

lack of quantification about the reproducibility of a protocol is by itself

problematic.

This study did not allow for collaboration and did not micro-

manage participants, meaning they were left with the instructions

without further intervention from the organizers. In a situation where

a segmentation plan can be defined in groups and techniques can be

improved along iterations of the plan, the intra-rater and inter-rater

agreement would likely go up. This study aimed at the evaluation of

participants following instructions from a protocol, similar to the ones

present in books, publications or online examples.

4.2 | Measures and representations

In this work, the intra-rater agreement was higher for nonexperts than

experts, without more information we could have concluded that non-

experts were more meticulous when they were performing their man-

ual segmentations. However, by looking at sensitivity and precision,

we can see that nonexperts had “bigger” segmentations. Experts are

likely stricter in their decision-making process, this could amplify the

local-decision and global-impact conundrum mentioned earlier. A

more liberal, less rigid, segmentation likely makes it easier to be repro-

ducible but does not necessarily make it valid. This is an example

showing the importance of having more than one type of measure to

obtain a complete picture.

In tractography, it is common to use a single measure to portray a

complex phenomenon. Most measures used are simplified to have eas-

ily interpretable results. The previous example shows the importance

of using more than one type of measurements to obtain a complete

picture of the reproducibility. “Reproducibility scores” are likely to vary

with the project and the bundle of interest. This needs to be addressed

as a community. The discrepancy between protocol quality, reproduc-

ibility, and conclusion put forward in the literature can be problematic.

For binary measures (accuracy and specificity), scores were both

above 95% as it is easy to discard true negatives and consequently

did not provide much insight. Similarly to the curse of dimensionality

in machine learning (Ceotto, Tantardini, & Aspuru-Guzik, 2011;

Verleysen & François, 2005), our datasets typically contain millions of

voxels (or streamlines), of which only a few thousands true positives

are considered during segmentation. Thus, the vast majority of true

negatives are rapidly discarded resulting in both accuracy and specific-

ity almost reaching 100%. Sensitivity provides more information, as

true positives are more difficult to get, since they are rarer in the

tractograms (few thousands out of millions) (Maier-Hein et al., 2017).

This needs to be taken into account using precision, as in some cases,

strict segmentation is encouraged because false positives are more

problematic than false negatives. Streamline-wise measures show

lower agreement, meaning that reproducible results are likely more

difficult to achieve with the streamline representation.

More complex measures need to be designed to fully capture the

complexity of tractography datasets and compare them, even across

datasets or for longitudinal studies. Currently, more advanced mea-

sures that capture fanning, spatial coherence, localized curvature and

torsion or spectral analysis are still rare, despite being used in other

neuroimaging fields (Cheng & Basser, 2018; Esmaeil-Zadeh, Soltanian-

Zadeh, & Jafari-Khouzani, 2010; Glozman et al., 2018; Lombaert,

Grady, Polimeni, & Cheriet, 2012).

4.3 | Tractography algorithms

Manual segmentation of deterministic tractograms is likely more

reproducible, since small differences in ROI placement will have a

smaller impact on the resulting bundle. The local-decision and global-

impact conundrum mentioned earlier is more obvious with probabilis-

tic tractography. Other tractography algorithms, such as global

tractography (Christiaens et al., 2015; Kreher, Mader, & Kiselev, 2008;

Mangin et al., 2013; Neher et al., 2012), are likely to have different

“reproducibility scores,” even with the same segmentation protocol.

Any change to the preprocessing could lead to unexpected change in

the reproducibility “scores.” For the purpose of this study, we provided

optimized tractograms for the bundles of interest (BOI) and our algo-

rithmic reconstruction choices may have influenced our results. How-

ever, this is in line with our main message, which is that every project

involving manual segmentation should come with its own reproduc-

ibility assessment. Hence, changing tractography algorithm would

require a re-evaluation of the reproducibility is considered as part of

important future work. For example, the project “TractEm” (Bayrak

et al., 2019) featured a framework to obtain 61 bundle of interests

from deterministic tractography and report some voxel-wise measures

for intra-rater and inter-rater reproducibility. However, this protocol

is likely optimized for specific datasets (BLSA, HCP). It also requires

registration and tractograms must be generated with DSI-Studio

(deterministic) only. Any deviation from this protocol would likely

change the reported reproducibility measures.

Using the same dataset and tractography algorithm, but increas-

ing or decreasing the number of streamlines, variation in step-size or

angular threshold could also change the reproducibility “scores.”

Another anatomical definition of the PyT having that definition taught

to participants in person instead of a simple PDF document or dissec-

tions of another BOI would likely lead to different reproducibility

“scores.” Other dataset could come with their own challenges, for

example, infants or aging population, where finding anatomical land-

marks could be harder and thus lead to lower reproducibility.

Such trend can be observed in numerous other studies where

investigation of the same bundle, different bundles or when different

algorithmic choice leads to a wide variety of reported reproducibility

“scores” (Colon-Perez et al., 2016; Dayan et al., 2015; Kaur et al., 2014;

Kreilkamp et al., 2019; Voineskos et al., 2009; Wakana et al., 2007;
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Wassermann et al., 2016; Yendiki et al., 2011). Similar generalization

difficulties and trends exist in the field of medical image segmentation

(Boccardi et al., 2011; Frisoni et al., 2015). However, the general con-

clusion remains that reproducibility needs to be quantified for each

specific project and protocol. Reproducibility “scores” cannot be easily

generalized and any attempt would be dangerous, as any deviation

from a known protocol creates the need for a new assessment. Aiming

for standardized and harmonized protocols that are agreed upon within

the field should be the main focus on the long term, such as (Bayrak

et al., 2019; Catani & De Schotten, 2008).

4.4 | Impact on analysis

If variability needs to be minimized further than the defined protocol, a

simple recommendation is to have a single rater performs each task mul-

tiple times or multiple raters perform each task multiple times (or a sub-

set of tasks). This way, it is guaranteed that each dataset is segmented

more than once, decreasing the error risk. Regardless of the decision

made, it is of great importance to quantify the reproducibility of manual

segmentation of raters involved in the project before doing any statistics

or group comparisons. This could drastically change the statistical signifi-

cance of results. As of now, to the best of our knowledge, human vari-

ability and errors are rarely considered. Measurements such as volume

and streamlines count can take into account the measurement error

(i.e., voxel-wise or streamline-wise Dice coefficient) as part of group vari-

ances. Combining the measurement errors with a group average can be

achieved by using, for example, the principle of pooled variance (Gwet,

2012; Peters, 2001). However, if the intra-rater “reproducibility score” is

too low, for example, below 30%, reporting such measurements is coun-

terproductive, as this will require much larger cohorts to reach statistical

significance. Taking into account the measurement error makes sense as

long as the same “thing” is being measured.

Sources of variability need to be accounted for to truly enable syn-

thesis of work across multiple centers. Even when automatic or semi-

automatic methods are used, they first need to be evaluated with agreed

upon measures and reach or surpass human standards. In a very thor-

ough longitudinal large-scale project across centers involving manual seg-

mentation, it would be desirable to acknowledge the variability across

timepoints, across scanners, and across rater into the analysis.

The extension to other bundles of interest or other segmentation

plans is not trivial and the only conclusion that stands is that agree-

ment is never 100% and that a unique measure is not enough to rep-

resent the whole picture for tractography segmentation. The desire to

simplify measures or have only one value to describe quality or repro-

ducibility of segmentations needs to be discouraged. The nature of

our datasets makes this task much more complex to interpret than 2D

or 3D images, and it is imperative that the field comes to understand

and agree on measures to report. This is more relevant than ever as

the field grows and now that open science is becoming more popular

and reproducibility studies are encouraged. Similarly to other neuro-

imaging fields, such as hippocampi segmentation, standardized proto-

cols need to be developed and designed to be used across multiple

centers without active collaboration or micromanagement.

4.5 | Future work

Future work includes the creation of a database containing bundle

segmentations and metadata from participants that will be available

online so further analysis can be done. This metadata could help

explain the variability, similar trend has been observed for most types

of measurements, medical images, or tractography segmentation

(Boccardi et al., 2011; Bürgel et al., 2009; Gwet, 2012). As for now, a

preliminary upload of the participants segmentation is available on

Zenodo (https://doi.org/10.5281/zenodo.2547024), which will be

updated. In this work, metadata was not used to evaluate duration as

a variable influencing reproducibility. Investigating the relationship

between variability and duration of a task or looking for bias (inter-

hemispheric or software influence) could be of interest for future

research. An online platform similar to the Tractometer (Côté et al.,

2013) or a Nextflow pipeline (Di Tommaso et al., 2017) is planned to

be released. Such a tool would be designed for researchers to quickly

submit data that is expected to have some level of agreement and

obtain their “reproducibility score.” This way protocols can be improved

and reproducibility can be taken into account in the analysis.

Protocols for many bundles need to be developed for various pur-

poses, such as clinical practice, synthesis of findings, and building

training sets for machine learning. The segmentation plan and instruc-

tions need to be defined clearly by panels of experts, and agreed upon

terminology (Mandonnet, Sarubbo, & Petit, 2018), to optimize repro-

ducibility and anatomical validity. The field of manual tractography

segmentation is decades behind fields such as gray nuclei or hippo-

campi manual segmentation on this matter. The latter has been refin-

ing segmentation protocols for the past decade and has already

reached the state harmonized segmentation protocol and was evalu-

ated with reproducibility in various settings (Apostolova et al., 2015;

Boccardi et al., 2011, 2015; Frisoni et al., 2015; Wisse et al., 2017).

5 | CONCLUSIONS

When trying to understand how similar WM bundles from dMRI

tractography are, at least three values need to be taken into consider-

ation: Dice coefficient of voxels showing how well the overall volume

overlaps, Dice coefficient of streamlines showing if the same stream-

lines were selected/discarded, and correlation of density map showing

if the streamlines are spatially distributed in a similar way. Results spe-

cific to our work on the pyramidal tract revealed that rater overlap is

higher for voxel-wise measures (approximately 70%) than streamline-

wise measures (approximately 20%).

In comparison to the group average, the results depict an ease to

identify true negatives, an adequate number of true positives, while

having a low number of false positives. The voxel and streamline rep-

resentations do not produce equal levels of reproducibility. Studies

reporting bundle asymmetry in terms of streamline count (streamline

based) will require a larger group difference than those reporting vol-

ume difference (voxel based). Our particular protocol served as a pow-

erful illustration of the importance of assessing the variability of
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human expertise when comparing population and provides interesting

insights on WM manual segmentation.

The lack of framework for reproducibility assessment, the sparse

literature on intra-rater and inter-rater variability in tractography and

the variation in the reported values across bundles, reconstructions,

datasets and other variables points to the importance our proposed

framework for evaluation, as a step forward. It is of importance to

reiterate that the intention of this study is not to propose/enforce a

processing pipeline for tractography and/or propose a new set of

rules for PyT segmentation. The diversity of reported values for repro-

ducibility shows that clearly defined processing and segmentation

protocol is necessary in this field. All data and metadata used in this

work are now publicly available (https://doi.org/10.5281/zenodo.

2547024) in the hope to stimulate discussions and more evaluations

in the future for other bundles and protocols. Better reproducibility of

results is needed and goes hand-in-hand with the open science move-

ment. A collaborative effort to evaluate and quantify human variability

is needed.
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