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Review

The Mediodorsal Thalamus: An Essential Partner
of the Prefrontal Cortex for Cognition

Q21 Sebastien Parnaudeau, Scott S. Bolkan, and Christoph Kellendonk

ABSTRACT
Deficits in cognition are a core feature of many psychiatric conditions, including schizophrenia, where the severity of
such deficits is a strong predictor of long-term outcome. Impairment in cognitive domains such as working memory
and behavioral flexibility has typically been associated with prefrontal cortex (PFC) dysfunction. However, there is
increasing evidence that the PFC cannot be dissociated from its main thalamic counterpart, the mediodorsal thal-
amus (MD). Since the causal relationships between MD-PFC abnormalities and cognitive impairment, as well as the
neuronal mechanisms underlying them, are difficult to address in humans, animal models have been employed for
mechanistic insight. In this review, we discuss anatomical, behavioral, and electrophysiological findings from animal
studies that provide a new understanding on how MD-PFC circuits support higher-order cognitive function. We argue
that the MD may be required for amplifying and sustaining cortical representations under different behavioral con-
ditions. These findings advance a new framework for the broader involvement of distributed thalamo-frontal circuits in
cognition and point to the MD as a potential therapeutic target for improving cognitive deficits in schizophrenia and
other disorders.

Keywords: Behavioral flexibility, Mediodorsal thalamus, Prefrontal cortex, Schizophrenia, Thalamo-cortical connec-
tivity, Working memory
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The thalamus is a heterogeneous structure located deep in the
brain that has been traditionally viewed as a simple gateway for
relaying information from the sensory periphery to the cortical
end station (1,2). This concept has roots in the 19th century,
when neurologists used clinical or experimental brain lesions
to map sensory and motor abilities onto cortical areas. Sub-
sequently, histology and lesion-induced retrograde degenera-
tion of cortical targets were employed to parcel the thalamus
into subnuclei with distinct projection patterns to circum-
scribed cortical areas. Placed just several synapses from the
sensory and motor periphery, and exhibiting a relatively
homogenous cellular structure in comparison with the cortex,
the computational power of the thalamus was considered
limited (1,2).

While the effects of sensory and motor cortex lesions or
stimulations were relatively easy to interpret, the conse-
quences of frontal lobe ablations were more complicated to
describe. In Frontal Lobe Function and Dysfunction (1), Levin
et al. synthesized the decades of work that established what
would eventually be termed the prefrontal cortex (PFC) as an
important center for personality, emotion, and cognitive func-
tion,. This classic work paved the way for the first reportsQ1 that
showed striking resemblance between the cognitive deficits
observed in patients with frontal lesions and in those with
schizophrenia (3,4). In the past 30 years, modern brain-imaging
techniques confirmed the association between altered pre-
frontal functionQ2 and cognitive deficits, leading to the influential

hypothesis that cognitive symptoms, especially those in the
executive function domain, arise from a dysregulation of PFC
activity (5–7).

Yet, just as with sensory and motor cortical areas, the PFC
receives dense innervation from anatomically prescribed
thalamic counterparts, most prominently from the mediodorsal
thalamus (MD) (8). However, unlike sensory and motor thalamic
nuclei, the MD exhibits minimal connectivity with either sen-
sory or motor pathways and instead receives its driving input
directly from various PFC areas. Moreover, lesions of the MD
typically induce cognitive dysfunctions that are reminiscent of
those observed following prefrontal lesions (9,10). These
observations indicate that PFC function cannot be divorced
from that of its interconnected thalamo-frontal circuitry. While
it has been proposed on anatomical grounds that the MD
serves as a relay station between distinct prefrontal areas
(2,11), the unique contributions of the MD toward PFC-
dependent cognition remain largely enigmatic.

An understanding of how MD-PFC circuitry contributes to
cognition is of growing clinical interest. Recently, studies have
reported MD dysfunction along with abnormal thalamo-frontal
connectivity in several mental disorders, including schizo-
phrenia (12,13). Thus, a clearer anatomical and functional
understanding of thalamo-frontal circuitry appears essential to
elucidate how its alteration may contribute to cognitive
dysfunction in psychiatric conditions. Here we provide an
overview of recent behavioral and electrophysiological findings

ª 2017 Society of Biological Psychiatry. 1
ISSN: 0006-3223 Biological Psychiatry - -, 2017; -:-–- www.sobp.org/journal

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55

56
57

58
59

60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81

82
83

84
85

86
87

88
89

90
91

92
93

94
95

96
97

98
99

100
101

102
103

104
105

106
107

108
109

110
111

112
113

114

115
116

117
118

REV 5.5.0 DTD ! BPS13382_proof ! 12 December 2017 ! 5:53 pm ! ce

Biological
Psychiatry

Delta:1_surname
Delta:1_surname
Delta:1_surname
https://doi.org/10.1016/j.biopsych.2017.11.008
http://www.sobp.org/journal/www.sobp.org/journal
admin
Highlight
Please remove the coma

admin
Sticky Note
Unmarked set by admin

admin
Highlight
Please replace by PFC

admin
Highlight

admin
Highlight
Replace by "Sébastien"



in primates and rodents, giving new insights on how MD-PFC
circuits interact to support higher-order cognitive function. We
then review the evidence for altered thalamo-frontal circuitry in
mental disorders and discuss how these alterations may
contribute to cognitive deficits.

ANATOMY OF MD-PFC CIRCUITS

Based on anatomical and functional data, dorsal thalamic
nuclei have been categorized into two types (14). First-order
thalamic nuclei are characterized by their functional response
patterns to sensory stimuli or motor activity, consistent with
their close connectivity with the sensory periphery and primary
motor pathways. In contrast, higher-order thalamic nuclei
receive few or no sensory inputs from the periphery but can be
anatomically defined by its driving afferents from the cortex
(14). These thalamic structures are thereby linked to the higher-
order processing that has conventionally been attributed to the
cortex alone. Higher-order thalamic nuclei include the MD, the
pulvinar, and the posterior, intralaminar, and midline nuclei [but
see Rovo et al.(15)]. In this review, we focus on the MD that
displays a unique set of topographically organized
interconnections with the PFC. Since excellent and detailed
reviews of MD-PFC anatomy exist (2,16,17), we just depict in
Figure 1 the main components of these circuits.

THALAMO-FRONTAL CIRCUITS AND WORKING
MEMORY: BEHAVIORAL AND
ELECTROPHYSIOLOGICAL STUDIES

Patients with thalamic lesions often exhibit amnesic syn-
dromes similar to those observed in patients with hippocampal
lesions, likely due to damage to the mammillothalamic tract or
anterior thalamic nucleus (18,19). However, lesions more

circumscribed t Q3o the MD have been associated with deficits in
executive functions, similar to those deficits observed in
patients with frontal lobe dysfunction (19–21). Unfortunately,
patients often exhibit damage to several thalamic areas, thus
limiting inferences about the precise role of the MD. Therefore,
research has turned to animal models in which MD function
can be directly manipulated. Those studies implicate a role for
the MD in working memory, behavioral flexibility, and goal-
directed behavior (10).

Behavioral Evidence for a Role of MD-PFC Circuits
in Working Memory

Working memory is defined as a transient holding, processing,
and use of information on the scale of seconds. Baddeley and
Hitch proposed an influential model of working memory based
primarily on work in humans and defined by two independent
subsystems—a visual-spatial sketch pad and a phonological
loop—that are coordinated by a central executive controlling
the flow of information between them (22). For obvious rea-
sons, it is challenging to apply this model across species. In
animal research, working memory can be defined as a delay-
dependent short-term memory of an object, a stimulus, or a
location that is used within a testing trial but not between trials,
as opposed to reference memory, which is typically acquired
with repeated training and persists for days (23).

Classic studies in primates have shown that MD lesions
diminish performance in delayed-response tasks, a standard
assay for working memory (24,25). Although findings are not
consistent (26–32), rodent-study literature also supports a role
for the MD in working memory. Q4Rodent studies have typically
employed spatially guided delayed-response tasks, in which
the animal is required to retain a memory trace of a recently
sampled maze location during a delay period and is then
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primates and mice. (A) Schema of the topographic
organization of mediodorsal thalamus (MD)–
prefrontal cortex (PFC) circuits in (left panel) the
macaque Q17and (right panel) the mouse [based on
Jones (2) Q18]. In nonhuman primates, the medial mag-
nocellular region is interconnected with the orbito-
frontal cortex, the central parvocellular region with
the dorsolateral PFC Q19, and the lateral multiform part
with the premotor cortical area. In rodents, the
medial segment of MD shares connections with the
ventral-medial PFC (prelimbic and infralimbic
cortices, medial orbitofrontal cortex ). The central
part of the MD is interconnected with the lateral
orbitofrontal cortex , and the lateral MD with the
dorsal-medial PFC (anterior cingulate and acces-
sory motor cortices). (B) Schema of the ultrastruc-
tural organization ofMD-PFC circuits. MD relay cells
send widespread projection to cortical layer I and

topographic projections to layers II, III, V, and possibly VI [although see Kuramoto et al. (121)]. MD terminals make contactswith pyramidal projection neurons (Pyr)
as well as inhibitory interneurons including parvalbumin-expressing basket cells (Bas) (122–125). In primates, most cortical input to the MD stems from layer VI
pyramidal cells that send projections to topographically interconnected MD regions (126,127). In contrast, layer V pyramidal neurons, known as driving inputs,
appear to innervate the MD in a nonreciprocal manner, with one prefrontal area innervating several MD subregions (128). Overall, this organization suggests that
MD-PFC circuitry functions in intimately interconnected open loops rather than strictly parallel and independent units. AI, agranular insular; cen, central medi-
odorsal thalamus; Cg1, cingulate cortex 1; CL, centrolateral thalamic nucleus; CM, centromedian thalamic nucleus; DL, dorsolateral prefrontal cortex; DM/Cg,
dorsomedial/cingulate cortex; lat, lateral mediodorsal thalamus; LO, lateral orbitofrontal cortex; M1 and M2, primary and secondary motor cortex; mc, magno-
cellular mediodorsal thalamus; med, medial mediodorsal thalamus; mf, multiform mediodorsal thalamus; MO, medial orbitofrontal cortex; OFC, orbitofrontal
cortex; pc, parvocellular mediodorsal thalamus; PC, paracentral thalamic nucleus; PF, parafascicular nucleus; PrL, prelimbic cortex; PV, paraventricular thalamic
nucleus; TRN, thalamic reticular nucleus; VO, ventral orbitofrontal cortex.
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prompted to select the opposite location to receive a reward
(delayed nonmatching-to-sample [DNMS] task). Many studies
have reported deficits after lesions or inhibition of the MD using
variants of the DNMS task (33–41). Although in some of these
studies lesions may have extended to adjacent regions,
including the anterior thalamus (33–35), the MD, unlike the
anterior thalamus, does not seem to play a role in spatial-
reference memory (42). Moreover, deficits in DNMS working
memory tasksQ5 following MD lesions have also been observed
in operant settings, where spatial requirements are more
limited (37,40,43–45). Several studies have also found that
DNMS deficits were dependent on the length of the delay
(37,41,44,45), suggesting that the MD may be particularly
involved in the maintenance of representations critical for task
performance as opposed to general task learning.

Spatial working memory in rodents is known to depend on
medial PFC (mPFC) function (46–48). Analogous deficits
observed following MD lesions could therefore be due to a
disconnection of MD-mPFC circuitry (39), thus raising ques-
tions regarding the unique contributions of each structure to
working memory processes. Using optogenetic tools, a recent
study examined the involvement of MD-to-mPFC and recip-
rocal mPFC-to-MD pathways in a DNMS T-maze task (49).
Inhibition of either pathway led to a decrease in performance in
a delay-dependent manner, while inhibition of MD-to–lateral
orbitofrontal cortex (OFC) projections had no impact on
behavior. The temporal resolution of optogenetic inhibition
further allowed assessing the significance of reciprocal MD-
mPFC circuits during discrete phases of the DNMS spatial
working memory task. While initial spatial sampling did not
require MD-mPFC activity in either direction, spatial choice
specifically required the mPFC-to-MD pathway but not the
MD-to-mPFC pathway. In contrast, the delay period relied on
reciprocal interactions across both structures (49). This

observation is strikingly circuit specific as inhibition of ventral
hippocampal inputs to the mPFC during the sample phase, but
not the delay phase, robustly impaired performance (49,50).
Together, these data suggest that while the direct ventral
hippocampal–to-mPFC pathway is involved in the encoding of
the spatial location during the initial sample phase, reciprocal
activity between the MD and the mPFC supports short-term
maintenance of working memory during the delay. Moreover,
top-down inputs from the mPFC-to-MD guide successful
memory retrieval or choice selection (Figure 2A).

Thalamo-frontal Synchrony During Working
Memory

The above data point to functional interactions between the
MD and the PFC in working memory. But how do both struc-
tures interact at the physiological level? In the DNMS T-maze
working memory task, MD-mPFC synchronous local field
potential activity in the ranges of theta (4–12 Hz) and beta
(13–20 Hz) frequencies increases hand in hand with task
learning (41). Moreover, in trained mice, the spiking of indi-
vidual MD neurons has been shown to synchronize with mPFC
local field potentials in the beta range during the choice phase
of the task when working memory demand is highest (41).

Two findings support the functional relevance of MD-mPFC
beta synchrony in working memory processes. First,
decreasing MD activity delays task acquisition as well as the
increase of MD-mPFC synchrony. Second, decreasing MD
activity disrupts the choice phase–specific enhancement of
MD phase locking to mPFC beta oscillations (41). Interestingly,
a more refined analysis specific to the task phase of MD-PFC
beta synchrony suggests bidirectional information flow going
from the MD to the mPFC during the delay and from mPFC to
the MD during the choice phase (49). This dynamic shift in
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O Figure 2. Thalamo-prefrontal interactions dur-

ing working memory. (A) Schematic depictions of
thalamo-prefrontal interactions during a delayed
nonmatching-to-sample T-maze working memory
task in the mouse. (Left panel) During the sample
phase, spatial encoding is supported by inputs
from the ventral hippocampus (vHip) to the
medial prefrontal cortex (mPFC) [based on
Spellman et al. (50)]. (Middle panel) On its
recruitment by the mPFC, the mediodorsal thal-
amus (MD) is critical for amplifying and sustaining
cortical activity during the delay, which is critical
for task performance [based on Bolkan et al.
(49)]. (Right panel) mPFC-to-MD projections
participate in memory retrieval or choice selec-
tion [based on Bolkan et al. (49) and Schmitt
et al. (56)] and may serve as a relay station to
areas involved in motor function, such as the
primary motor cortex (M1). (B) Sustained cortical
activity during the working memory delay relies
on cross talk between the MD and the mPFC.
(Left panel) Schematic depiction of six mPFC
neurons exhibiting sequential increased activity
across the delay phase (0–60 seconds). (Right
panel) Elevated activity is dependent on local
cortical connectivity as well as on thalamo-

cortical input. Inhibiting MD-to-mPFC projections reveals that local cortical circuits may not be sufficient to maintain mPFC neuronal activity across
the entire delay period. This sustained activity of mPFC neurons across delay requires MD inputs. Sec, seconds.
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directionality of MD-PFC synchrony suggests that choice-
phase beta synchrony may serve the retrieval or selection of
motor-related working memory information via mPFC-to-MD
connections, consistent with the behavioral impact of inhibit-
ing this projection.

Modulation of thalamo-frontal synchrony has also been
observed in other cognitive tasks (51,52). In a two-alternative
discrimination task in which rats must discriminate between
two odors and use this information to guide subsequent
decision making, synchronous activity between the MD and
piriform cortex and MD-OFC circuits dynamically shifts
according to task demands. During initial odor sampling, MD
neurons exhibited enhanced phase locking to both and piri-
form cortex and OFC theta oscillations, followed by a strikingly
specific increase in phase locking to OFC beta oscillations
immediately preceding the subsequent choice (53). These
findings suggest that the MD, as has been proposed before,
may be a critical subcortical node for linking cortical areas
involved in processing cognitive information (11). The choice-
specific modulation of MD-OFC beta synchrony is also remi-
niscent of the above described MD-mPFC beta synchrony
during working memory–guided spatial selection, potentially
indicating that thalamo-frontal beta synchrony is a general
circuit mechanism supporting action selection guided by
working memory.

The MD Sustains Delay-Elevated Activity in the
mPFC

The fact that inhibiting MD inputs to the mPFC during the delay
phase impairs later choice performance in the DNMS task
suggests that mPFC activity during the delay carries, in an MD-
dependent manner, information critical for the maintenance of
short-term memory.Q6 Almost 50 years ago, Joaquin Fuster (54)
proposed a potential neural correlate for the maintenance of
short-term memory when he recorded, in the dorsolateral PFC
(dlPFC) of monkeys, neurons whose activity remained elevated
across the entire delay period of a delayed-response task. In a
subsequent study, Alexander and Fuster (55) revealed the
same neural signature in MD neurons. Employing PFC cooling,
they further showed that delay activity in MD neurons, along
with behavioral performance, depended on PFC activity. This
pioneering article provided the first evidence of functional in-
teractions between the two structures and led to the hypoth-
esis that the maintenance of PFC activity during working
memory requires reverberatory activity within the MD-PFC
circuit (55).

Two recent rodent studies, by Bolkan et al. (49) and Schmitt
et al. (56), examined the impact of MD inhibition on PFC delay-
period activity in a two-alternative forced-choice task and the
above-described DNMS T-maze task. Both studies uncovered
populations of mPFC neurons with elevated spiking during the
delay. Rather than being active during the entire delay, indi-
vidual neurons exhibited brief bouts of elevated activity much
shorter than the total delay length. As each neuron displayed
elevated activity at distinct temporal offsets from the delay
onset, the ordering of neurons according to peak time of firing
within the delay revealed a sequential activation across the
population that spanned the entire delay duration (49,56). This
population-distributed delay activity, which has also been

observed in monkey and rodent models via several previous
studies (57–61), is interpreted to reflect the encoding of
memory in synaptically connected populations of neurons (59).

In the studies of Bolkan et al. (49) and Schmitt et al. (56),
elevated mPFC activity indicated correct performance during
the subsequent choice phase and was critically dependent on
MD inputs for its sustained maintenance across the delay
(49,56). Strikingly, the impact of MD inhibition on elevated
mPFC delay activity was temporally specific in both studies.
While mPFC neurons with elevated spiking during the early
delay period were not impacted by manipulations of MD
activity, mPFC neurons with peaks later in the delay were
highly dependent on MD inputs (49,56). This finding suggests
that delay-period activity is unlikely to derive from the MD.
Instead, the MD may serve as a substrate for the amplification
and maintenance of delay representations first generated in
the PFC.

Findings from Schmitt et al. further support this model (56).
First, temporally restricted inhibition of PFC activity at distinct
delay time points equivalently disrupted behavioral perfor-
mance, while inhibition of MD activity had diminished impact
on behavior at early time points. In addition, similar to the PFC,
MD neurons displayed elevated delay activity. However, MD
delay activity was critically dependent on PFC activity even at
early delay time points (56). Together these findings suggest
that the MD, and perhaps other higher-order thalamic nuclei
(62), may be recruited by the PFC to amplify or sustain cortical
representations as memory decays across time or in particu-
larly demanding cognitive tasks (Figure 2B). Indeed, both
global MD inhibition and pathway-specific MD-to-mPFC inhi-
bition impaired performance in the DNMS T-maze task only at
longer delays, leaving behavior intact at shorter delays (41,49).
Further supporting this hypothesis, broadly enhancing MD
excitability not only improved performance in both the DNMS
T-maze task and the two-alternative forced-choice tasks
(49,56) but also enhanced the connectivity within local PFC
circuits and increased PFC delay-period information in the
two-alternative forced-choice task (56).

Although the above-discussed studies are broadly in
agreement regarding this proposed model of thalamo-frontal
interactions during working memory, there are still in-
consistencies. For example, previous primate studies (63–66)
observed explicit stimulus or spatial representations in thal-
amus delay-period activity, while Schmitt et al. (56) provide
compelling evidence for MD representations that lack infor-
mation content. The reasons for these inconsistencies are sure
to be manifold, including species, subcircuit, and task-design
differences. More studies, including MD single-unit studies
along with cortical electrophysiological recordings during
working memory tasks, will be required to clarify the role of
thalamo-prefrontal Q7interactions in working memory.

THE ROLE OF THE MD IN GOAL-DIRECTED AND
FLEXIBLE BEHAVIORS

The Role of the MD in Behavioral Flexibility

Behavioral flexibility reflects the ability of an individual to
respond and adjust to changes in the environment. It can be
tested using reversal-learning or set-shifting tasks. Both
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behaviors require adaptation by switching stimulus-outcome
and/or response-outcome associations, yet both have been
shown to depend on distinct prefrontal areas. Reversal
learning has been linked to lateral OFC function. OFC lesions in
primates and rodents (67–71) generally induce perseveration in
reversal-learning tasks [though see Rudebeck et al. (72)],
meaning that animals with lesions tend to stick to a previously
learned rule or strategy that is no longer relevant. In contrast,
set-shifting tasks requiring multiple associations within
different sensory sets instead rely on the mPFC in rodents and
on the dlPFC in primates (73).

Although the literature concerning the role of the MD in
behavioral flexibility reports conflicting findings (24,26,74,75),
one repeatedly reported finding is an increase in perseverative
behavior following the introduction of lesions or manipulations
of MD activity similar to that observed following an OFC lesion.
Perseveration has been observed in many task contexts,
including water-maze (76), strategy-reversal (28,77), and
operant-reversal-learning tasks (41). The MD and the OFC may
therefore work in concert to act on or update old strategies
during reversal learning.

Of note, some studies reporting impairments in reversal
learning did not attribute the deficit to perseverative behavior
(78,79). In a probabilistic reward-guided task involving three
different stimuli, monkeys with lesions of the magnocellular
portion of the MD exhibited a maladaptive switching strategy
on reversal in reward contingency. That is, monkeys did not
perseverate in responding to the previously rewarded stimulus,
but they instead shifted their selections across all stimuli and
were unable to persist in selecting the best-rewarding option,
unless they had an extended choice history on that option (79).
These findings suggest that the magnocellular portion of the
MD may support the representation of recent stimulus choices
and thus facilitate rapid stimulus-outcome contingency
learningQ8 .

In tasks involving multiple stimuli and outcomes, the ability
to keep track of recent choices and their associated outcomes
is crucial, especially during reversal, when a rapid update of
stimulus-outcomeQ9 is needed. In monkeys, some neurons in the
magnocellular and parvocellular MD have been shown to in-
crease firing when the animal was making cue-guided actions
and when they were receiving feedback after response (65).
Thus, in behavioral flexibility tasks, the MD may stabilize an
online representation of stimuli-outcome associations within
the cortex, possibly the OFC, similar to the findings described
above involving MD-mPFC circuits in working memory. Future
neurophysiological studies monitoring both MD and OFC
activity during reversal-learning tasks combined with tempo-
rally precise optogenetic manipulations could directly test
whether amplifying and sustaining cortical representations is a
general principle by which the MD supports cognition.

The Role of the MD in Goal-Directed Behavior

Behavioral flexibility is not a unitary process; it involves several
potentially dissociable cognitive components. For example,
flexible behavior often requires an animal to integrate the
relationship or contingency between actions and their out-
comes, which additionally entails an accurate representation
of the outcome value. The sensitivity to changes in

action-outcome contingencies can be tested in contingency-
degradation tasks during which the outcome is presented
independent of the action. The representation of the outcome
value, on the other hand, can be tested in outcome-
devaluation tasks, in which action-outcome associations
remain intact while only the value of the outcome is diminished
(80–83). In rodents there is strong evidence for deficits in
contingency-degradation tasks following MD manipulations,
suggesting that the MD is important for the representation of
action-outcome associations and/or the updating of such
representations following changes in the environment (84–86).

Whether the MD also supports an accurate representation
of the outcome value is still unsettled. Some studies in rats and
in monkeys reported deficits in outcome-devaluation tasks
when the MD was lesioned before learning the action-outcome
contingency but not when it was ablated just before devalua-
tion of the outcome (84,87,88). However, several studies failed
to find any deficit following MD lesion or inhibition (86,89).
These discrepancies are likely due to the different task designs
and MD-manipulation methods. Further work will therefore be
needed to determine whether the MD and its related networks
support outcome-value representation.

Associative learning and flexible adaptation frequently also
involve environmental stimuli that need to be associated with
the outcome. The ability of environmental stimuli to influence
action can be tested in a pavlovian-to-instrumental transfer
(PIT) paradigm. PIT includes three phases: 1) pavlovian training
in which stimuli are associated with specific outcomes,
2) instrumental training in which the same outcomes are
associated with specific responses, and 3) a PIT in which the
conditioned stimulus is tested for its ability to trigger the action
that shares the same outcome. Pharmacogenetic inhibition of
the MD in mice that were Q10restricted to the PIT testing phase did
not impair instrumental transfer (86), suggesting that the MD is
not involved in retrieval of stimulus-outcome or action-
outcome associations [but see Ostlund and Balleine (87)].
Strikingly, inhibition of the MD restricted to the pavlovian
training phase did not affect learning of the association
between the stimuli and the outcomes, yet it later impaired
instrumental transfer (86). MD activity during pavlovian training
may therefore be important for assigning incentive properties
to the conditioned stimulus, which is later required to bridge
the learned stimulus-outcome association across contexts.
Such a role has been hypothesized for the basolateral amyg-
dala , which shares, as the MD does, reciprocal projections
with the PFC (90–92).

DISTINCT MD-PFC CIRCUITS FOR DISTINCT
COGNITIVE FUNCTIONS

Overall, work over the past 15 years demonstrates a role for
the MD in distinct cognitive behaviors that rely on different
prefrontal regions. As such, we described above that in
rodents, MD inhibition alters both working memory and
reversal learning, functions that are supported by the mPFC
and the OFC, respectively. Based on the predominately parallel
nature of thalamo-frontal circuits, it may be inferred that OFC
function is tightly linked to the central MD (magnocellular MD in
monkey), dorsal mPFC function is tightly linked to the lateral
MD, and ventral mPFC function is tightly linked to the medial
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MD (parvocellular MD in monkeys) (Figure 1A). Different
thalamo-cortical circuits may therefore regulate different
behaviors.

Nevertheless, a key question to resolve is the extent to
which these parallel thalamic circuits support an overarching,
common function, such as sustaining cortical representations,
for instance, or whether their processing is more singular to the
cognitive processing carried out by their cortical partners.
Future studies with refined targeting of individual MD sub-
regions will be needed to address this question. Moreover, it is
still unclear which cortical layers and cortico-thalamic pro-
jections are critical for these different behaviors. Is a closed-
loop, deep-layer MD circuitry sufficient for amplifying and
sustaining cortical representationsQ11 or is there a requirement of
additional processing through superficial layers? Layer-
specific targeting of inhibitory opsins using transgenic Cre
mouse lines in combination with layer-specific imaging or
in vivo physiology will be able to address such questions.

RELEVANCE FOR CLINICAL RESEARCH

Numerous studies have found anatomical and/or functional
abnormalitiesQ12 in either the thalamus or thalamo-cortical circuits
of patients with psychiatric disorders such as major depressive
disorderQ13 (93,94), obsessive-compulsive disorder (95), eating
disorders (96), posttraumatic stress disorder (97), bipolar dis-
ordersQ14 , and schizophrenia (13,98). Cognitive dysfunction is a
common feature of most if not all psychiatric diseases (99).

In schizophrenia, cognitive symptoms are considered core
to the disease and have been linked to the functional outcome
of patients (100). While in healthy persons, the MD is activated
during cognitive testing in tasks that involve working memory
and attention (101,102), this activation has been shown to be
decreased in patients with schizophrenia (103–106). However,
localizing thalamic dysfunction to thalamic nuclei such as the
MD using imaging methodologies is challenging due to a lack
of contrast and resolution.

More recent evidenceQ15 also suggests abnormal functional
connectivity between the MD and its prefrontal counterparts in
patients with schizophrenia. Decreased correlation in MD and
dlPFC activity has been measured under resting conditions, an
observation also made in individuals at risk for psychosis
(98,107–109). Strikingly, the decrease in functional connectivity
was most prominent in those persons who later converted to
full-blown illness, suggesting a role in the pathogenesis of the
disease (108,110). Of note, decreased functional connectivity
may have a structural basis (110–112); however, the exact
relationship between the alterations in functional and
anatomical connectivity still needs to be clarified.

Decreased functional MD-PFC connectivity has also been
measured in patients during cognitive testing (106,113,114). In
this context, Marenco et al. recently described that thalamo-
frontal white matter connectivity was reduced in patients,
and this reduction correlated with the level of dlPFC functional
activation and performance in a working memory task (111)
[see also Giraldo-Chica et al.(115)]. This finding may so far
be the strongest evidence for an involvement of decreased
anatomical connectivity in cognitive deficits.

Thalamo-cortical disturbances in schizophrenia likely
extend beyond a simple MD-PFC dysconnectivity. Indeed,

reduced thalamo-prefrontal connectivity has been associated
with thalamic hyperconnectivity to sensory and motor cortices,
raising the possibility of a general dysfunction of thalamo-
cortical circuits (98,108). In addition, the thalamic reticular
nucleus, which is a key inhibitory node for the entire thalamo-
cortical system, has also been implicated in schizophrenia
(116–118). Since imaging studies are largely correlative, it is
difficult to determine the origin of these circuit abnormalities.
Future longitudinal clinical studies tracking functional and
structural connectivity in high-risk individuals will provide
insight into the primary structure(s) involved in the pathogen-
esis of thalamo-cortical abnormalities. Furthermore, animal
studies will be critical for establishing causality and could
address questions such as whether decreased MD-mPFC
connectivity induced during development triggers hyper-
connectivity to sensory cortices.

Regardless of the proximal causes of thalamo-frontal dys-
connectivity, the animal studies described here suggest its
possible involvement in cognitive deficits. Enhancing MD
function may stabilize cortical representations critical for
working memory and other cognitive functions and thus be a
promising therapeutic approach for improving cognition in
mental disorders. New technologies aimed at localized or
circuit-specific interventions such as blood-brain barrier
opening induced by focused ultrasound (119) and noninvasive
deep brain stimulation (120) could offer an opportunity to
achieve this goal in humans.
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