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ABSTRACT
In this paper, the economic optimisation of cold stores with a dynamic electricity
price is studied. The main cost in cold storage is energy, and the combination of
three factors make the optimisation of cold-room costs difficult to achieve. First, the
temperature inside the cold rooms must be maintained within the allowed range,
and complex thermodynamic processes make predicting temperatures a hard task.
Second, production schedules that induce higher risks of compressor wear, and thus
high maintenance costs, have to be avoided. Third, the price of electricity, which
is known in advance, varies during the day. In this paper a cold store model is
presented, which includes a fixed cost payment when the compressor production
level changes, as well as an Artificial Neural Network model for the temperature. A
Dynamic Programming solution is presented to solve simple cases and a matheuristic
algorithm is designed to solve the general case. The matheuristic is compared to a
linear solver, and performs better overall. Finally, managerial insights are derived
from this study. The impact of storage capacity on operating costs is evaluated, and
the influence of the fixed cost value on the electricity cost value of the optimised
production schedules is discussed.
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1. Introduction

The cold storage industry consumes considerable amounts of energy. In 2002, the Inter-
national Institute of Refrigeration estimated that cold stores used between 30 and 50
kWh/m3/year, while the total cold storage volume in Europe was estimated between 60
and 70 million m3. The ICE-E (Improving Cold storage Equipment in Europe) project
1, funded by the European Union and run from 2010 to 2012 concluded that the poten-
tial energy savings in European cold stores range from 30% to 40%, going up to 72% in
some cases, with one of the possible means of energy saving being improvements in the
production and distribution of cold. In this section, the general contexts of electricity
production and cold storage in Europe are first presented. The potential of cold storage
for economic optimisation is then discussed, and, finally, the structure of this paper is
presented.

∗Corresponding author. Email: samuel.vercraene@insa-lyon.fr
1Improving Cold storage Equipment in Europe, https://ec.europa.eu/energy/intelligent/projects/en/

projects/ice-e.
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Figure 1. Instances of SPOT price over two different days.

1.1. Context of electricity production

A critical issue with regard to the synchronous electrical grid of Continental Europe
is the balance between electricity supply and demand. Since production resources can
be subject to operating constraints (e.g. scheduled maintenance on a power plant) or
unplanned exogenous events (e.g. meteorological events for solar or wind energy), energy
consumption must be controlled. This is called demand side management. One of the
incentive mechanisms to encourage consumers to modulate their electricity consumption
according to the production and demand is the modulation of the price of electricity.
This mechanism is common in smart grid systems.

In Europe, an increasing number of industries are offered the possibility to pay the
SPOT price for their electricity. The SPOT price is an hourly price published around
12 pm for the next day based on supply and demand forecasts by the European Power
Exchange 2. Therefore, the SPOT price is known and deterministic for at least the next
12 hours and at most the next 36 hours. This tariff can be financially advantageous in
industries where production can be rescheduled easily in order to take full advantage of
the low prices opportunities. Figure 1 presents two instances of SPOT price scenarios.

1.2. Context of cold storage

The aim of cold storage is to maintain stored goods in a given temperature range.
Temperature control is paramount for cold storage since a failure might cause damage
to the stored goods, and in the case of edible products, health hazards.

Cold stores are highly complex, nonlinear systems. The macro-organisation of a cold
store can generally be described as follows.

First, one or several compressors, condensers, and an expansion valve convert a
coolant from a gas state to a liquid state, and in so doing consume electricity.

Since the compressors are the main electricity consumer of the system, with approx-
imately 80% of the total electricity consumption, in the rest of this paper we group the
electric consumption of the condensers together with that of the compressors.

2EPEX SPOT SE, https://www.epexspot.com.
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Figure 2. Diagram of a cold store.

The coolant in a liquid state is stored in a tank. Several evaporators physically present
in the cold rooms pump liquid coolant from the tank and transfer the heat from the
cold room to the coolant, which decreases the temperature in the cold room. Doing
so converts some of the liquid back into gas. Meanwhile, several complex exchanges of
energy with the exterior of the cold room, the stored goods, the staff, and so on increase
the temperature in the cold room.

From an energy management point of view, this can be expressed more simply as
several compressors that convert electricity to cold stored in a tank. This cold is taken
from the tank and sent to the cold rooms by the evaporators, and the cold is then
consumed by way of several mechanisms (see Figure 2). Aside from the efficiency of each
element (compressor and evaporator), the thermal losses are functions of the gradient
between the internal temperatures (tank, cold room) and the outdoor temperature which
has strong variations depending on the time and the season. Since the energy loss at a
given time depends on the gradient between internal and outdoor temperature, moving a
production block forward or backwards in time may impact the total energy production
required on the complete time horizon.

Due to thermal phenomena that generate premature wear, compressors are subject
to a risk of failure when they start-up. This can lead to costly maintenance or even the
replacement of the machine. The efficiency of a compressor depends on its production
level. Thus, the thermal power output as a non-linear function of the electric power
input. In this paper the production levels of the compressors are considered discrete
(which is realistic based on professional practices) and the wear is modeled as a fixed
cost when starting a compressor.

Evaporators are the second main energy consumer of the system. Generally, several
on/off controlled evaporators are present in each cold room. The set of evaporators in
a cold room can thus be seen as a single evaporator with several discrete production
levels.

The temperature forecast in a cold room as a function of the evaporator production
level based on a physical model is complex and specific to each installation. Several
nonlinear exchanges of energy and nonlinear behavior of the cold production system
itself make classical thermodynamic models inefficient or intractable for this context.
As described by [Ruano et al., 2006] it is possible to get around this problem with
Artificial Neural Networks (ANN), which allow one to model nonlinear functions of
multiple variables, provided one has enough training data.
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1.3. optimisation opportunity

The thermal inertia of the cold rooms offers a potential for economic optimisation, by
taking advantage of low price opportunities to lower the internal temperature of the
cold room. Given that the tanks of modern cold stores enable one to cover around an
hour of maximal evaporator consumption of frost energy, the tank can also be designed
and used for economic optimisation.

The temperature control of cold rooms generally involves a constant hysteresis mech-
anism without energy cost optimisation. Given that the cost of electricity is known in
advance and that the temperature can be forecast efficiently with an ANN, temperature
control can be optimised from an economic point of view.

In this paper we focus on finding the optimal control of frost energy production
and distribution of frozen stores. The objective is to minimise the total operating cost,
including the time-varying production cost and the maintenance cost, while respecting
the store’s operating constraint, i.e. maintaining the cold rooms’ temperature between
its bounds.

The paper is organised as follows. In Section 2, existing works on optimising temper-
ature control problems are discussed. In Section 3, we propose a mathematical model
of cold stores. In Section 4, a dynamic programming algorithm is presented to optimise
a simple case of the model, and in Section 5, a matheuristic algorithm is presented
which allows us to optimise the general model. In Section 6, temperature forecast meth-
ods are discussed. A numerical validation of the matheuristic is presented in Section
7. In Section 8, the impact of the storage size on operating costs, as well as the fixed
cost influence on the optimised schedules, are discussed. Finally, Section 9 presents a
conclusion and some perspectives.

2. Literature Review

Energy efficiency is a growing concern in industry. The factory of the future where
energy consumption or gas emissions are adequately controlled has been called an ”eco-
factory” [May et al., 2016] and has been the subject of several optimisation studies (see
e.g. Absi et al. [2016]).

In this paper we focus on minimising the functioning costs of a cold store. Section 2.1
presents some similar nonlinear lot-sizing problems found in the literature. Section 2.2
presents the more specific problem of temperature control, which has been studied in
the industrial sector as well as the residential sector. Section 2.3 presents existing work
using matheuristics in lot-sizing context. Then, as a conclusion of the literature review,
Section 2.4 presents the contributions of this paper.

2.1. Lot-sizing

An analogy can be made between our problem and a special case of the single-stage,
single-item Capacitated Lot-sizing and Scheduling Problem (CLSP). The frost produc-
tion facility can be viewed as a single production server with a fixed setup cost. Frost
losses in the cold room can be seen as demands, and the cold room itself as a capacitated
storage. A review on the modeling of industrial extensions of lot sizing problems is pro-
posed by Jans and Degraeve [2008]. Another review, on the single-item version of the
dynamic lot-sizing problem and many of its extensions, can be found in Brahimi et al.
[2017]. The considered problem is also reminiscent of the One-Warehouse Multi-Retailer
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(OWMR) [Gayon et al., 2017], where a centralised warehouse must satisfy the demand
of several retailers at each time step, while minimising its production and holding costs.

In our case the thermal losses are a function of the internal temperature of the cold
room. By analogy with the CLSP, the demand is a function of the stock level. The
demand is also a function of the production level and the outdoor temperature.

Examples of stock-dependent demand in inventory management can be found for
example in Jolai et al. [2006] and Pal et al. [2006] in the discrete case, and in Teng
and Chang [2005] in the continuous case. Panda et al. [2010] give an example of stock-
dependent demand for the specific case of the OWMR. In these works, the demand is
considered to be linear in the stock level, which results in an exponential evolution of
the stock level.

2.2. Optimal Temperature Control

The optimal temperature control problem in buildings has mainly been studied in the
context of buildings occupied by humans (in this respect, see [Shaikh et al., 2014] for a
review).

Being able to forecast the temperature is necessary in order to control its evolution.
Different types of models can be found in the literature which various complexities.
Those models can be classified into two categories: physical models and data based
models.

For the former, some authors use a simpler physical model called first order model
[Sonderegger, 1977; Ha et al., 2006], that describes the heat exchanges between the cold
room and the outside air using a first order differential equation

C
dθ(t)
dt

= Pt −
1
R

(
θ(t)−Θext

t

)
The small number of parameters makes them easy to estimate based on historical data,
by solving a constrained ordinary least-squares problem. The differential equation can
then be solved and the resulting model discretised for use in a linear program. This first-
order model is analog to the linear stock-dependent demand used in lot-sizing problems
[Jolai et al., 2006; Pal et al., 2006; Teng and Chang, 2005; Panda et al., 2010] resulting
in an exponential stock level evolution.

Alternatively, others use a complete physical model that aims at describing the whole
frost production system [Hovgaard et al., 2013]. However, those models require knowl-
edge or estimation of many physical parameters, for example the enthalpy of the coolant
before and after compression, the thermal capacity of the goods stored in the cold rooms,
or the thermal resistance of the walls of the cold rooms.

An other way to obtain a temperature forecast model is to use a data-based approach.
Artificial neural networks (ANNs) have been shown to be efficient tools for the forecast
of parameters in manufacturing process [Cook and Shannon, 1992]. In the same way
Ruano et al. [2006] use ANNs and argue that they are a suitable tool to produce adequate
forecasts for temperature control, whereas physical models are more costly to develop
and therefore better suited to the conception phase of a building. With our historical
temperature data, Figure 3 shows a comparison between the predictions from a first-
order model [Sonderegger, 1977; Ha et al., 2006], and an ANN model. Clearly, the ANN
provides a superior forecast in our case.

While some authors [Lu et al., 2005; Ferreira et al., 2012] have chosen to minimise
the environmental impact of the system by using energy consumption as the objective
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Figure 3. Discretised ANN prediction compared to real temperature and to the linear model on a given day.

function, others [Ha et al., 2006; Hovgaard et al., 2013] focus on economic optimisation
by minimising the total cost of energy consumption. Other optimisation criteria have
been considered as well, such as the discomfort felt by the inhabitants of the building
[Ferreira et al., 2012; Ha et al., 2006] because of the temperature changes.

As far as we know, the work closest to our concern in the literature on cost optimi-
sation, in a context of temperature control of multiple cold rooms, is Hovgaard et al.
[2013].

They model a three cold-room facility with one compressor. The objective is to min-
imise the cost to maintain the temperature of the three cold rooms within a certain
range.

All the frost energy produced by the compressor is directly transferred to the cold
rooms, so there is no active energy storage (like a tank of coolant).

They use a first-order model modeling heat exchanges between the air inside the cold
room, the outside air, the coolant, and the stored food. This requires estimating several
physical parameters based on historical data. Hovgaard et al. [2013] add a penalty to
the objective function for considering the compressor wear due to by changes in its
consumption level. The considered penalty is quadratic in the difference in compressor
power over subsequent time steps and also serves to improve the convergence of their
non-convex solving method.

2.3. Matheuristics

Matheuristics are algorithms that combine elements of metaheuristics and exact solving
such as mathematical programming.

As shown in Ball [2011], matheuristics have been successfully applied to a wide variety
of problems. In particular, capacitated lot-sizing and scheduling problems have been
addressed by Guimarães et al. [2013] and Bayley et al. [2018] by applying a column-
generation based matheuristics and a Benders decomposition matheuristics respectively.

Ball [2011] provides a survey on matheuristics and proposes a classification into three
classes. 1) decomposition approaches, where the problem is decomposed into subprob-
lems which are solved to optimality; 2) improvement heuristics, where mathematical
programming is used to improve an initial solution found by some heuristic method;
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and 3) approaches using mathematical programming to generate approximate solutions,
where a relaxation of the problem is solved to optimality. The approach proposed in
our paper, which is a column-generation based matheuristic, arguably falls into both
categories 2) and 3) of this classification.

2.4. Contributions with respect to the literature

In this paper the temperature control problem in a cold store with several cold rooms and
active energy storage is considered. This problem is modeled as a capacitated nonlinear
lot-sizing problem. The objective is to minimise both the cost of the energy consumption
and the fixed cost payments at each compressor start-up. The latter allow one to account
for compressor wear, a concern which was reported to us by a cold-store manager.

The work closest to our concern is Hovgaard et al. [2013]. We extend their work in
several directions: 1) the possibility to use the tank as an active storage is considered;
2) several compressors may be used simultaneously; 3) an ANN temperature forecast,
which is simpler to establish, is used; and 4) according to the people of the profession
the fixed cost paid at each compressor start-up is more realistic than the quadratic cost
modeled in Hovgaard et al. [2013].

Our problem is solved with a column-generation-based matheuristic. The subproblem
of the column-generation-based matheuristic is a dynamic programming that uses an
artificial neural network for the temperature forecast. The performance of the solution
method is validated by comparing it with the performance of a MILP solver applied to
a linear approximation of our problem. Finally, we derive managerial insights such as
the impact of the storage capacity on the annual operation costs of a cold store, as well
as the impact of a fixed-cost payment at each compressor start-up on the number of
start-ups, on the time between consecutive start-ups, and on the electricity cost.

3. Model

3.1. Parameters

External parameters Let T = {0, 1, . . . , T} be the set of time periods. For each
period t ∈ T , the price of electricity is denoted Ct and the outdoor temperature is
denoted Θext

t .

Compressors Let L̂ be the set of production levels for the compressors. During one
period in level l ∈ L̂, the frost power injected into the tank is denoted P̂l and the
electric power consumed is denoted Êl. Note that the relationship between P̂l and Êl is
not linear in our case. The initial compressors’ production level (during period t = 0)
is L̂0. Switching the compressors from a production level l to a production level l′ leads
to a maintenance cost Ml,l′ . This switch can be done at the beginning of each period,
except for period t = 0.

Tank The maximal quantity of frost energy stored in the Tank is denoted S. Let S0
be the initial storage level of the tank. The quantity in the tank cannot be negative.

Evaporators Let K = {1, . . . , K} be the set of cold rooms and Lk be the set of
production levels for evaporators in cold room k ∈ K. During one period at level l ∈
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Lk, the frost power injected in cold room k is denoted Pk,l and the electric power
consumption is denoted Ek,l. Let Pk be the set of frost powers that can be injected in
the room k such that Pk = {Pk,l}l∈Lk

. The initial evaporators’ production level (during
period t = 0) for cold room k is Lk,0. The production level can be changed at the
beginning of each period, except for period t = 0.

Cold rooms For each cold room k ∈ K let Ek be the set of possible temperatures for
room k. Given an evaporator production level l ∈ Lk, an outdoor temperature Θext

t and
a current temperature θk,t at the beginning of period t ∈ T , the temperature forecast
function Fk yields the temperature in period t+ 1 in cold room k ∈ K.

θk,t+1 = Fk(Pk,l,Θext
t , θk,t).

For cold room k ∈ K, let Θk and Θk be the maximal and minimal allowed temperature
inside the room, with Θk,Θk ∈ Ek. The initial temperature for cold room k is Θk,0.

3.2. Mathematical program

To simplify the formulation we define T −T = T \{T}.

Decision variables

• st ∈ [0, S] is the frost energy stored at the beginning of period t ∈ T .
• θk,t ∈ [Θk,Θk] is the temperature inside cold room k ∈ K at the beginning of

period t ∈ T .
• xl,t ∈ {0, 1} indicates if the compressors’ production level is set to l ∈ L̂ at the

beginning of period t ∈ T .
• yk,l,t ∈ {0, 1} indicates if the evaporators’ production level is set to l ∈ Lk in cold

room k ∈ K at the beginning of period t ∈ T .
• zl,l′,t ∈ {0, 1} indicates if the compressor production level changes from level l ∈ L̂

to level l′ ∈ L̂ at the beginning of period t ∈ T .

Objective The objective is to minimise the total cost including maintenance costs,
the energy consumption costs for compressors, and the energy consumption costs for
evaporators.

min f =
∑
t∈T

∑
l∈L̂

∑
l′∈L̂

zl,l′,tMl,l′ + Ct

∑
l∈L̂

xl,tÊl +
∑
k∈K

∑
l∈Lk

yk,l,tEk,l

 (1)
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Constraints

st +
∑
l∈L̂

xl,tP̂l = st+1 +
∑
k∈K

∑
l∈Lk

yk,l,tPk,l ∀t ∈ T −T (2)

θk,t+1 = Fk

∑
l∈Lk

yk,l,tPk,l,Θext
t , θk,t

 ∀k ∈ K, t ∈ T −T (3)

∑
l∈L̂

xl,t = 1 ∀t ∈ T (4)

∑
l∈Lk

yk,l,t = 1 ∀k ∈ K, t ∈ T (5)

xl,t + xl′,t+1 − 1 ≤ zl,l′,t+1 ∀l, l′ ∈ L̂, t ∈ T −T (6)
xL̂0,0 = 1 (7)
s0 = S0 (8)

yk,Lk,0,0 = 1 ∀k ∈ K (9)
θk,0 = Θk,0 ∀k ∈ K (10)
0 ≤ st ≤ S̄ ∀t ∈ T (11)

Θk ≤ θk,t ≤ Θk ∀k ∈ K, t ∈ T (12)
xl,t, yk,l,t, zl,l′,t ∈ {0, 1} ∀k ∈ K, l, l′ ∈ L, t ∈ T (13)

Flow constraints (2) ensure the conservation of the frost energy stored in the tank.
Constraints (3) specify the temperature evolution in all rooms. Constraints (4) and (5)
impose the unicity of the production level for compressors and evaporators in each cold
room, respectively. Constraints (6) ensure that the fixed maintenance cost is paid when
the production level of the compressors changes. Constraints (7) to (10) set the initial
state. Constraints (11) and (12) limit the capacity of the tank and the temperature in
the rooms, respectively. Then, Constraints (13) specify the binary decision variables.

The model, outside of constraints (3), is linear. In our case, functions Fk are imple-
mented by nonlinear ANNs. The ANNs make a good temperature forecast, but linearis-
ing their sigmoid activation function finely enough to preserve forecasting performance
induces too many binary variables for efficient use in a MILP solver.

4. Dynamic programming

The minimisation problem presented in the previous section, including an ANN, can be
solved with dynamic programming.

4.1. Problem reformulation

Let us first define the stock evolution function. With s the stock level at the beginning
of period t, l ∈ L̂ the production level of the compressors, and lk ∈ Lk the production
level of the evaporators in room k, we define S(s, l, l1, . . . , l|K|) as the stock level at the
beginning of period t+ 1 such that

S(s, l, l1, . . . , lK) = s+ P̂l −
∑
k∈K

Pk,lk (14)
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Let V = {vt|t ∈ T } be the set of vertices with vt = 〈t, lt, st, θ1,t, . . . , θK,t〉, t ∈ T ,
lt ∈ L̂, st ∈ [0, S̄], and θk,t ∈ Ek ∀k ∈ K. With the same notation, the set of arcs
is denoted A = {(vt, vt+1)|t ∈ T −T} with st+1 = S(st, lt, l1,t, . . . , lK,t), lk,t ∈ Lk, and
θk,t+1 = Fk(Pk,lk,t

,Θext
t , θk,t) ∀k ∈ K. Then, the weight Hvt,vt+1 on the arc (vt, vt+1) ∈ A

is defined as

Hvt,vt+1 = Ct

(
Êlt +

∑
k∈K

Ek,lk,t

)
+Mlt,lt+1 (15)

Finding the cost-optimal production schedule is equivalent to finding the shortest
path from the initial state v0 =

〈
0, L̂0, S0,Θ1,0, . . . ,ΘK,0

〉
to a final state vT (that

could be any vertex of the last period) in the graph {V ,A}.

4.2. discretisation

The time complexity of this dynamic program is |V|.
∏
k∈K |Pk|. Because st and θk,t are

continuous, the vertex set V is infinite so it is not possible to solve this problem in the
general case with the dynamic program. Therefore, the first approximation is to make
V finite.

With

εθk =
Θk −Θk

N θ
k

the temperature step and N θ
k the number of temperature steps, let

E ′k = {[Θk,Θk + εθk[, . . . , [Θk − εθk,Θk[}

be the discrete temperature set for cold room k ∈ K.
In the same way, with

εs = S̄

N s

the storage step and N s the number of storage steps, let

S ′ = {[0, εs[, , . . . , [(N s − 1)εs, S̄[}

be the discrete storage set.
With a naive implementation, where the temperatures and storage are rounded at

each time step, the discretisation accumulated errors are T.εθk and T.εs at the end of
the time horizon. In order to reduce the discretisation error, the dynamic programming
is computed forward and the vertices are labelled with variables denoting real temper-
atures (one per cold room) and real storage values. For a given vertex, these variables
correspond to the values of temperatures and storage that would be found, without dis-
cretisation, following the best path found so far from the initial vertex v0 to the current
vertex. During the solving, for a given combination of frost powers (for compressors
and evaporators), the successor of a vertex at period t is computed based on its real
temperatures and real storage. First, the real temperatures and real storage at period
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t+ 1 are computed based on real temperatures and real storage, then the successor (at
period t+ 1) is found such that its range of temperatures and storage contains the real
temperatures and real storage found for period t+1. This procedure guarantees that for
any vertex, its real temperatures and real storage values are in its range of temperatures
and storage.

4.3. Complexity

The dynamic program loops over each antecedent vt of each vertex vt+1 ∈ V for t ∈ T −T
and computes the cost Hvt,vt+1 of each corresponding arc (vt, vt+1) ∈ A.

For each t > 0, the number of vertices for period t is |L̂|·|S ′|·
K∏
k=1
|E ′k|. For t = 0, there is

only one vertex, v0. Therefore, the total number of vertices is |V| = T ·|L̂|·|S ′|·
K∏
k=1
|E ′k|+1.

Moreover, each vertex in V has at most |L̂| ·
K∏
k=1
|Lk| successors. Therefore, the total

number of arcs in the graph is |A| ≤ |L̂| ·
K∏
k=1
|Lk| · |V|.

Since computing the cost Hv,vt+1 requires summing the electrical consumptions of the
evaporators of each cold room, the corresponding time complexity is O(K).

Therefore, the time complexity of the dynamic program is

O(K · |A|) = O(|K| · |L̂| ·
K∏
k=1
|Lk| · |V|)

= O(K · |L̂| ·
K∏
k=1
|Lk| · (T · |L̂| · |S ′| ·

K∏
k=1
|E ′k|+ 1))

= O(K · T · |S ′| · |L̂|2 ·
K∏
k=1
|Lk||E ′k|)

As a result, it is not realistic to solve a problem with more than one cold room (i.e.
not realistic for |K| > 1).

5. Solution method

As explained in the previous section, it is not possible to solve the general problem with
a linear programming solver because the model includes an ANN in some constraints. It
is not moreover possible to use the discretised dynamic programming formulation with
more than one cold room because the graph would be too large.

We use a matheuristic that combines a set partitioning formulation of our problem
with the dynamic programming applied cold room per cold room, and a local search.

5.1. The matheuristic framework

Algorithm 1 presents our matheuristic framework. We first initialise the pool of pro-
duction profiles Ωk for each cold room k ∈ K (line 2). The initialisation is done using

11



Algorithm 1: The matheuristic framework
1 for all cold room k ∈ K do
2 initialise Ωk, the pool of production profiles for room k ;
3 end
4 s :=solveSPP({Ωl|l ∈ K}, ∅), the current solution ;
5 tabu := {s}, the list of previous solutions ;
6 s∗ := s, the best known solution;
7 while Stopping criteria not met do
8 for all cold room k ∈ K do
9 Ωk := {ω(s∗, k),generateNeighborhood(s, k)} ;

10 end
11 s := solveSPP({Ωk|k ∈ K}, tabu) ;
12 tabu := tabu ∪ {s} ;
13 if f(s) < f(s∗) then
14 s∗ := s ;
15 end
16 end
17 Return s∗;

the dynamic programming independently on each room. This procedure is presented
in Section 5.2. With the initial pools Ωk ∀k ∈ K, the Set Partitioning Problem SPP
is solved (line 4). Section 5.3 presents how our problem can be reformulated to a SPP
with fixed costs and how it is solved in our case. The the initialisation of the solution
then finishes in line 5 where a tabu list is initialised with the first solution s.

For each iteration of the algorithm, the following procedure is followed. Every pool of
production profiles Ωk is recomposed with two production profiles. The first production
profile is ω(s∗, k) the production profile of room k in the best known solution s∗. The
second is a generated neighbor of the current solution s (see Section 5.4). Then, the
SPP presented in Section 5.3 is solved (line 11) with a time limit t̄SPP . All the solutions
contained in the tabu list are forbidden in the SPP to make sure of generating a new
current solution at every iteration of the algorithm. The new current solution found by
the SPP is added to the tabu list (line 12) and the best known solution is updated if the
cost of the current solution is lower than the cost of the previous best-known solution
(line 14). The iterations continue until the stopping criterion is met. In our case the
stopping criterion is a time limit.

5.2. Initial pools creation

The pool of production profiles Ωk for a given cold room k ∈ K is initialised using
dynamic programming. Because the graph becomes too large when more than one cold
room is considered, we simplify the problem: the other cold rooms k′ ∈ K with k′ 6= k
are neglected and the frost and electrical consumption of these cold rooms are set to
0 for each period t ∈ T . As a result, the set of vertices V = {〈t, lt, st, θk,t〉|t ∈ T } is
reduced.
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5.3. Set partitioning problem

With λk,ω ∈ {0, 1} for all k ∈ K, where ω ∈ Ωk is a decision variable that indicates
if the energy production profile ω is selected, and Eω,t the evaporator electrical power
consumption of ω at time step t, the problem can be reformulated as a set partitioning
problem with fixed costs as follows.

min f =
∑
t∈T

∑
l∈L̂

∑
l′∈L̂

zl,l′,tMl,l′ + Ct

∑
l∈L̂

xl,tÊl +
∑
k∈K

∑
ω∈Ωk

λk,ωEω,t

+ srelaxt Crelax


(16)

st +
∑
l∈L̂

xl,tP̂l = st+1 +
∑
k∈K

∑
ω∈Ωk

λk,ωPk,ωk,t
∀t ∈ T −T (17)

∑
l∈L̂

xl,t = 1 ∀t ∈ T (18)

∑
ω∈Ωk

λk,ω = 1 ∀k ∈ K (19)

xl,t + xl′,t+1 − 1 ≤ zl,l′,t+1 ∀l, l′ ∈ L̂, t ∈ T −T (20)
xL̂0,0 = 1 (21)
s0 = S0 (22)

−srelaxt ≤ st ≤ S̄ ∀t ∈ T (23)∑
k∈K|ω(sol,k)∈Ωk

λk,ω(sol,k) ≤ |K| ∀sol ∈ tabu (24)

xl,t, zl,l′,t, λk,ω ∈ {0, 1} ∀k ∈ K, l, l′ ∈ L, t ∈ T , ω ∈ Ωk (25)
srelaxt ≥ 0 t ∈ T (26)

Note that this formulation is now linear because it does not contains the nonlinear
forecast function F . To ensure the feasibility of the problem, the mathematical program
in Section 3.2 is slightly modified by introducing a relaxation of the constraints 0 ≤ st.
Hence a decision variable srelaxt ≥ 0 is defined for the relaxation, and constraints (23)
replace the constraints 0 ≤ st. Then a large penalty Crelax cost per unit of relaxation
is added to the objective function.

With ω(sol, k) denoting the production profile of room k in the solution sol, con-
straints (24) ensure that all solutions in the tabu set of previously found solutions
cannot be selected again as an optimal solution.

In Algorithm 1, the function solveSPP({Ωk|k ∈ K}) is called. This function solves the
set partitioning problem (with the relaxation on minimal stock, and tabu constraints)
with a MILP solver and yields the best solution found within a maximal execution time.

5.4. Generate neighborhood

At each iteration of Algorithm 1, the function generateNeighborhood(s, k) is called to
generate a new production profile for the cold room k ∈ K given the current solution s.

The generation of the neighborhood uses a slightly modified version of the dynamic
programming presented in Section 4. As for the initial pool creation, the dynamic pro-
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gram is solved with only one cold room, V = {〈t, lt, st, θk,t〉|t ∈ T }. However, the
consumption of electricity and frost power from the other cold rooms is not considered
null. With

P̄ s
k,t =

∑
k′∈K|k′ 6=k

Pk′,lk′,t(s)

the sum of the frost power consumption of the other rooms for the current solution s,
and

Ēs
k,t =

∑
k′∈K|k′ 6=k

Ek′,lk′,t(s)

the sum of the electric power consumption of the other rooms for the current solution
s, the equations (14) and (15) are modified as follows

S(s, l, l1, . . . , lK) = s+ P̂l − Pk,lk − P̄ s
k,t (27)

and

Hvt,vt+1 = Ct
(
Êlt + Ek,lk,t

+ Ēs
k,t

)
+Mlt,lt+1 . (28)

Note that the values P̄ s
k,t and Ēs

k,t are considered constant when the dynamic program for
room k is solved. The production profile generated when solving this dynamic program
is returned by the function generateNeighborhood(s, k).

6. Temperature Forecast

Several types of heat exchange exist in the system. Without being exhaustive, the air
inside the cold room exchanges heat with the outside air when the doors are opened,
and the walls of the cold room themselves exchange heat with the air of the cold rooms
located on either side. Heat exchanges also take place between the air and the staff in
the cold room, the foodstuffs in the cold room, the floor of the room that is heated to
avoid slipping on it, and so on. Given all these heat exchanges and given that some of
them are uncertain, the temperature forecast is complex.

Another problem is access to the data. Our data history is limited to the temperature
of the air in the cold room, the temperature outside the building and the power injected
into the cold room at each period.

As presented in Section 2.2, three main types of models can be found in the literature:
simple thermodynamic models, complex thermodynamic models, and Artificial Neural
Networks. As a simple thermodynamic model does not perform an efficient temperature
forecast, and a complex thermodynamic model requires data that are harder to collect
and are specific to each cold store, an Artificial Neural Network model has been chosen.
An ANN model can work with generic inputs that are monitored in every cold store,
such as the internal temperature of the cold rooms and the power consumed by the
evaporators.
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6.1. Artificial Neural Networks

As Artificial Neural Networks have been proved effective to model complex thermody-
namic systems in the context of temperature control [Ruano et al., 2006]. One ANN
per cold room has been trained with one year of historical data and a 10-minute time
step. The ANN training and hyper-parameter tuning follow a standard cross-validation
procedure: the days of data are randomly divided into three sets of equal size: a training
set, a validation set, and a testing set. This ensures that the variety of data is similar
in each data set: hot days, week days, holidays, and so on. The ANNs with different
sets of hyperparameter values are trained on the training set, and their performances
are compared on the validation set. Once the best model has been selected, the test set
can be used to provide an unbiased estimation of its performance.

The resulting ANNs have two layers : one hidden layer containing between 1 and 10
neurons with a sigmoid activation function and one output layer with a single neuron
and a linear activation function. To output a temperature prediction at time t+ 1, the
ANN uses as inputs the temperature value at time t, the frost power injected into the
cold room at time t and the outdoor temperature at time t.

In the next subsection, a linear approximation of the ANN model is presented.

6.2. Linear Forecast approximation

Figure 4 presents an instance of linearisation for a real cold room. The figure shows the
relative evolution of the temperature at the next time step given the current temperature
and power level of the evaporators. The linearisation of the temperature forecast for
room k ∈ K is done with a simple linear regression with the same slope for each
power level ak and a constant offset bk,l per power level l ∈ Lk. Since this linearisation
depends on the value of the outdoor temperature Θext

t which varies at each time period
in our model, it is necessary to compute T linearisations, one for each time period.
These computations can be ran offline. In the mathematical program, the linearisation
coefficients depend on the time period: ak and bk,l become ak,t and bk,l,t.
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Figure 4. Linear approximation (solid lines) of an ANN forecast with Θext
t = 15◦C.

As shown in Figure 5, this new approximated temperature forecast model is not as
efficient as the ANN forecast. However it is the simplest feasible linearisation and it
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Figure 5. An ANN linear approximation prediction compared to real temperature and ANN prediction on a
given day. Temperature limits are denoted by solid lines.

allows us to replace the nonlinear constraints (3) in the model presented in Section 3.2
by the constraints

θk,t+1 = ak,tθk,t +
∑
l∈Kl

bk,l,tyk,l,t ∀k ∈ K, t ∈ T −T

and then use a MILP solver.
This linearisation will be useful in the next section to validate the solving method.

7. Numerical validation of the matheuristic

In this section we present some numerical results which allow us to validate the
matheuristic proposed in Section 5. Sixteen instances are designed to model a wide
range of industrial-sized cold stores. First, the interest of the two main mechanisms
of the algorithm, besides the initialisation, is demonstrated. Then, the matheuristic is
compared on these instances to a MILP solver within a time limit, and is shown to
outperform it most of the time.

The program used for the comparison was coded in Java 1.8.0 45 and runs on a CPU
Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz. The Set partitioning Problem was solved
with CPLEX 12.8. The same version of CPLEX was used as the MILP solver.

7.1. Description of instances

Modelling a cold store requires two kinds of information: characteristics of the physical
elements of the frost production and distribution system (evaporators, compressors,
storage, etc.) and historical data from the cold rooms in order to train the temperature
model.

During this work, we had access to the characteristics and historical data of one real,
industrial cold storage warehouse located in the north of France, with three cold rooms.
In order to test the matheuristic algorithm on a set of diverse instances, 16 instances
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were generated by extrapolation from the available data.
These instances use technical characteristics of real frost production systems. How-

ever, since the data of only three cold rooms was available, the three models trained on
historical data were tweaked to obtain a higher variety of cold-room models. This was
done by applying a multiplicative coefficient to the thermal losses of one of the three
original models, which produced a new model.

The resulting models were used to form the 16 instances which model industrial-size
cold stores with one to ten cold rooms.

The instances are named following a nomenclature based on the number of cold
rooms it contains. The first letter of the instance name ”S”, ”M”, ”L” and ”H” indicates
whether the cold storage represented by the instance is small sized, medium sized, large,
or huge.

Along with those instances, real electric price data from the European Power Ex-
change is used. The price used is the SPOT Price, which varies hourly. The SPOT price
is different every day, and its value is highly dependent on the hour of the day, as well
as the season. Sixteen days of SPOT price were selected semi-randomly from historical
data between 2012 and 2017, so as to span a variety of months of the year.

For all instances, the fixed-cost matrix Ml,l′ is defined as follows: Ml,l′ = mM , where
m is the number of compressor start-ups induced by the transition from state l to
state l′. Significantly, when the fact of transitioning from state l to state l′ induces no
compressor start-up, then Ml,l′ = 0. The value used for M is 7 e as a rough estimation
of the cost of one start-up, based on the cost of a compressor and the average number
of start-ups in a compressor’s lifespan.

Table 1 presents some characteristics of the instances used as well as the SPOT day
selected for each instance.

Table 1. Instances and SPOT price scenarios.
Instance SPOT day |K| |L|

∑
k
|Lk| S̄ (kWh)

S1 01/07/2014 1 2 3 17
S2 28/10/2015 1 3 3 25
S3 15/07/2012 1 6 4 25
S4 30/04/2013 1 4 5 17
S5 27/04/2016 1 7 5 17
M1 12/03/2015 3 4 11 50
M2 25/01/2016 3 7 12 50
M3 15/07/2013 3 7 15 50
M4 30/06/2015 3 7 13 33
M5 22/04/2017 4 7 12 50
L1 19/03/2014 5 7 19 33
L2 29/10/2014 6 10 24 42
L3 14/08/2012 7 10 28 50
H1 01/01/2017 9 10 38 67
H2 07/09/2017 10 10 42 83
H3 27/02/2012 10 10 39 100

7.2. Parameters of the matheuristics

For the numerical experiments presented thereafter, the following parameter values are
used in the matheuristic.

The optimisation horizon is 24 hours with a 10-minute time step, resulting in 144 time
steps. The time step duration is based on industrial practices. Moreover, the historical
data collected from the cold rooms use a 10-minute time step.

The number of temperature steps N θ
k and the number of storage steps N s for the

discretisations presented in Section 4.2 are N θ
k = 600 and N s = 15.
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The time limit used depends on the size of the instance. Time limits are 60 seconds,
10 minutes, 30 minutes, and 2 hours for instance sizes S, M, L, and H respectively.

7.3. Evaluation of mechanisms used in the matheuristic

Table 2. Evaluation of mechanisms
Standard Without Without

Instance (euros) local search tabu
S1 60.04 0.00% 0.00%
S2 65.08 0.00% 0.00%
S3 54.83 0.00% 0.00%
S4 24.2 0.00% 0.00%
S5 19.86 0.00% 0.00%
M1 188.45 1.64% 0.83%
M2 179.47 3.17% 0.71%
M3 0.62 0.52% 0.52%
M4 106.75 3.78% 2.12%
M5 186.82 0.00% 0.00%
L1 189.31 4.48% 3.95%
L2 291.32 0.00% 0.00%
L3 300.52 0.78% 0.63%
H1 377.6 0.00% 0.00%
H2 284.7 0.37% 0.37%
H3 449.59 0.49% 0.49%

Average 0.95% 0.60%

Table 2 presents the results obtained with different configurations of the algorithm.
Column ”Standard” contains the value obtained with the algorithm presented in Section
5.

The following column contains the gap between the value of the first column and
the value obtained after the initialisation step, without local search. The gap is always
positive: since the local search is performed after initialisation, the value obtained with
the local search can only be equal to or better than the initialisation value.

The last column contains the gap between the value of the first column and the value
obtained after a local search but without using a tabu list. The value obtained using a
tabu list is always equal to or better than the value without a tabu list.

This table demonstrates that the best configuration uses both a local search and a
tabu list.

7.4. Performance of the matheuristic: comparison with a MILP solver

In this section the performance of the matheuristic is tested. Given that the nonlinear
temperature forecast does not allow us to use a mixed integer linear programming solver
directly, the benchmark must be made with a linear temperature model, to be able to
compare the matheuristic with a MILP model solved with CPLEX. Therefore, in this
section, both the matheuristic and the MILP solver use the simplified and linearised
version of the temperature forecast presented in Section 6.2.

Table 3 presents a comparison of the results obtained by the matheuristic and a linear
programming algorithm in equal time over 144 time steps. The time limits used depend
on the instance and are those presented in Table ??.

Column ”Math. Cost” contains the results of the optimisation with the matheuristic,
while column ”MILP Cost” contains the results of the optimisation with the MILP
solver. The best lower bound obtained by the solver is presented in column ”MILP
Gap”. Finally, Column ”Math. vs MILP” presents the performance gap between the
matheuristic and the linear solver.
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Table 3. Comparing MILP Solver and Matheuristic over a 24-hour horizon
Instance Math. Cost MILP Cost MILP Gap Math. vs MILP

S1 38.06 41.04 38.04% -7.26%
S2 38.53 42.52 40.87% -9.38%
S3 106.04 106.91 38.39% -0.81%
S4 40.19 50.50 49.71% -20.42%
S5 31.34 38.76 44.74% -19.14%
M1 260.74 293.18 26.53% -11.06%
M2 338.32 357.53 20.55% -5.37%
M3 137.67 143.16 27.50% -3.83%
M4 181.93 199.36 32.63% -8.74%
M5 230.87 284.27 37.85% -18.78%
L1 251.58 262.08 23.36% -4.01%
L2 430.10 467.67 24.98% -8.03%
L3 166.61 169.92 17.97% -1.95%
H1 642.34 698.40 22.02% -8.03%
H2 455.66 520.70 26.23% -12.49%
H3 676.52 770.38 22.67% -12.18%

Average -9.47%

The results show that the matheuristic performs significantly better than the MILP
solver within the allowed time, with an average difference of 9.47% in favor of the
matheuristic.

However, this table does not allow us to estimate the absolute performance of the
matheuristic. The MILP gap between the value of the best integer solution and the best
lower bound is still very large, with values ranging from 17.97% and 49.71%, depending
on the instance. Therefore, even if the matheuristic performs significantly better than
the MILP solver, there is no guarantee that the solution obtained by the matheuristic
is close to optimal.

In order to compare the matheuristic and the MILP solver with a smaller MILP gap,
the same comparison is performed over 72 time steps, that is, an optimisation horizon
of 12 hours instead of 24 hours. While the same days of SPOT price as those presented
in Table 1 are used, the starting time alternates between 12 am and 12 pm so as to
cover both halves of the day equally. Table 4 presents the results of this comparison.

Table 4. Comparing MILP Solver and Matheuristic over a 12-hour horizon
Instance Start time Math. Cost MILP Cost MILP Gap Math. vs MILP

S1 12 am 16.26 16.26 0.00% 0.00%
S2 12 pm 21.57 21.57 0.00% 0.00%
S3 12 am 37.46 36.92 0.00% 1.45%
S4 12 pm 23.51 23.51 0.00% 0.00%
S5 12 am 14.11 14.08 0.00% 0.23%
M1 12 pm 111.30 113.45 9.64% -1.89%
M2 12 am 143.71 144.30 7.01% -0.41%
M3 12 pm 75.07 76.36 17.08% -1.69%
M4 12 am 68.85 68.94 16.02% -0.12%
M5 12 pm 92.39 92.74 21.07% -0.38%
L1 12 am 90.53 91.13 13.10% -0.66%
L2 12 pm 215.87 226.39 19.47% -4.65%
L3 12 am 166.61 169.92 17.97% -1.95%
H1 12 pm 296.31 299.05 10.71% -0.92%
H2 12 am 163.65 163.10 12.64% 0.34%
H3 12 pm 330.51 333.02 11.57% -0.76%

Average -0.71 %

When optimising over a time horizon of 12 hours instead of 24 hours, it can be seen
that the matheuristic is still a bit better than the MILP solver on average, but the
performance gap between both resolution methods is largely reduced. This time, the
MILP solver is able to find certified optimal solutions for the smallest instances. On
most of these instances, the matheuristic finds optimal (S1, S2, S4) or almost optimal
(S5) solutions. However, a performance gap exists on instance S3.
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This gap is due to the discretisation described in Section 4.2, which is performed to
apply the dynamic programming algorithm. In this paper, parameter values N θ

k = 600
and N s = 15 are used as a compromise between execution time and solution quality.
When using parameter values N θ

k = 1200 and N s = 45, the matheuristic is able to
find an optimal solution in 10 minutes. However, we could not use those values for the
comparison with the MILP solver, since the algorithm would then take more than 12
hours to complete the initialisation step on the largest instances.

Note that although the linear approximation temperature model presented in Section
6.2 is a very simple one, the matheuristic still performs better than the MILP solver
overall. In addition, the matheuristic allows us to use the more efficient nonlinear ANN
temperature forecast. Therefore, it is a better optimisation method for an industrial
application.

8. Managerial insights

In order to present results for a realistic medium-sized industrial cold store within a
tractable computation time, Instance M3 is used for the simulations presented in this
section. An example of an optimised production schedule obtained with the matheuristic
algorithm is presented in Figure 6.

The following data are plotted, in this order: the electrical consumption of the com-
pressor, the electrical consumption of the evaporators, the quantity of cold energy con-
tained in the storage, the cumulative cost, and the SPOT price over the day.

In the rest of this section, the matheuristic is used to perform analyses on 6 years of
SPOT data. In order to reduce the high computation time required by the simulations,
we perform a clustering of the SPOT price daily scenarios, and the medoids are used as
representatives of each cluster.

Two analyses are then conducted: the first analysis focuses on the design of the tank,
by considering the evolution of the operating costs depending on the size of the tank;
and the second analysis focuses on the modeling of the wear of the compressors.

8.1. Price clustering

The clustering of the 2189 days of SPOT price data is computed using a Partition
Around Medoids (PAM) algorithm. The number of 10 clusters is used as a good trade-
off between simulation time and quality of the approximation, as a smaller number of
clusters seems to simply discriminate only on the basis of the mean value of the prices,
ignoring the variance. The resulting clustering is shown in Figure 7.

8.2. Storage design

The cold store model considered in the present work includes an active energy storage
that acts as a buffer between the production and distribution of cold. This storage can
be used in addition to the thermal inertia of the cold rooms to take advantage of the
variations of the electricity price, by storing energy when the price is low and using the
stored energy when the price is high.

The optimised production profiles for the medoid of each cluster are computed for
different storage capacities. The cost values are presented as a function of the storage
capacity for each medoid in Figure 8. The cost values of each medoid obtained are
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Figure 6. Example of a production schedule.

then multiplied by the cardinal of the corresponding cluster. Summing the resulting
quantities over all clusters gives an approximation of the operating cost from 2012 to
2017, for each storage capacity.

Figure 9 shows the estimated annual expenses as a function of storage capacity. Using
the energy storage as a buffer for avoiding electricity consumption during moments of
peak prices can allow savings of up to 50 % for the considered medium-sized cold store.
In the considered example, the savings stop growing when the storage capacity goes
over 125 kWh, which is significantly higher than standard storage capacities for a cold
store of this size, but not unrealistic. Therefore, if such a cold store has a small storage
capacity, investing in a larger storage could result in considerable savings in operating
costs.

8.3. Compressor start-ups

As expressed in Section 1.2, our model includes a fixed cost payment at each change
in the production level of the compressors. In these numerical experiments, we set the
fixed cost matrix so that the fixed cost is paid only at compressor start-ups, which is
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Figure 8. Evolution of optimised cost depending on storage capacity for each medoid price. The same symbols
as in the previous figure are used for each medoid.

where the risk of failure is most important. In the previous numerical results, this value
was fixed at e7, as the result of an estimation of the cost of a compressor start-up
based on the replacement cost of a compressor, and on the average number of start-
ups in a compressor lifespan. In this section, we evaluate the impact of the start-up
cost value on the time between consecutive start-ups and on the electricity cost part
of the cost function. As in the previous section, the optimisation is performed on each
medoid price scenario, with different start-up cost values. The resulting profiles are then
counted as many times as there are elements in the corresponding cluster. This produces
estimations of statistics on the time between consecutive start-ups and estimations of
annual electricity costs.

As seen in Figure 10, the average time between start-ups rises sharply as soon as the
start-up cost is set to a non-null value, as it jumps from 3 hours with no start-up cost
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Figure 9. Evolution of annual expenditures depending on storage capacity.
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Figure 10. Time between start-ups as a function of start-up cost. Dotted lines denote the median values and
symbols denote the average values.

to 5.5 hours with a e3 fixed cost. Little change can be seen however when the start-up
cost ranges from e3 to e15. Then when using a e20 value, the average time between
start-ups grows over 8 hours. The maximum time between start-ups jumps from 7 to
10 hours when the start-up costs become strictly positive, and barely changes when the
fixed cost increases further, suggesting a limit imposed by the thermal inertia of the
cold room. The minimal time also changes from 20 minutes to 2 to 4 hours when a
start-up cost is used. Therefore, we can conclude that the inclusion of a start-up cost
decreases the total number of start-ups and increases the time between start-ups.

Figure 11 displays the annual electricity cost as a function of the start-up cost value.
As expected, the function is increasing in the start-up cost value. As the start-up cost
increases, the relative weight of the electricity cost in the objective function decreases.
However, the function seems to display different growth rates. It grows at a regular
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Figure 11. Annual electricity cost as a function of start-up cost value.

rate from e0 to e5, then slows down to a lower rate between e5 and e10. Finally,
the growth rate increases slightly between e10 and e15 and reaches its maximal value
between e15 and e20. Therefore, even though the chosen value of e7 was the result
of a rough approximation, it can be deduced from the two previous graphs that any
value between e5 and e10 gives similar production profiles, in terms of time between
consecutive start-ups as well as in electricity cost. In relation to the annual cost with
no start-up cost, using a e5 start-up cost results in a 5% increase in electricity costs,
while using a e10 start-up cost results in a 6% increase.

In conclusion, we have shown that the start-up cost is an efficient way to avoid having
many compressor start-ups in a short amount of time, and that the fixed cost value does
not significantly influence the electricity cost.

9. Conclusion

In this paper a column generation-based matheuristic algorithm is presented for solving
the temperature control problem in a cold store with several cold rooms. The objective is
to minimise energy and maintenance costs by acting on both production (compressors)
and distribution (evaporators) of cold energy, and using thermal energy storage as buffer.
The proposed matheuristic algorithm uses dynamic programming to find production
schedules for each cold room separately. It then uses mathematical programming to
solve a set-partitioning problem that employs the results of dynamic programming as
a pool of exploitable columns. After the initialisation phase, a local search phase is
performed, again using dynamic programming and solving a set-partitioning problem
to produce neighbors suitable to the current solution. A tabu list is maintained during
execution to ensure solution diversity.

The matheuristic algorithm is compared to a MILP solver over instances of various
industrial sizes built with data from real cold stores, using real SPOT electricity prices.
The comparison shows that the matheuristic performs better than a MILP solver used
with a time limit on both a 24-hour time horizon and, to a lesser extent, a 12-hour
horizon. On instances where the MILP finds an optimal solution, the solution found
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by the matheuristic is either optimal or within a few percentage points of optimality.
Moreover, as opposed to the MILP solver, the matheuristic algorithm can also be used
with a nonlinear temperature forecast. In our case, nonlinear artificial neural networks
are trained on historical data and produce a better forecast than a first order linear
forecast based on thermodynamic considerations.

Finally, the algorithm is used to estimate annual costs of one medium-sized instance
of a cold store. It allows us to conclude that using dedicated energy storage in order to
decrease electricity consumption during peak prices allows for savings of up to 50% of
the running costs, including electricity costs as well as a fixed start-up cost that models
the maintenance over the long term due to starting up the compressors many times. We
show that the fixed start-up costs for the compressors significantly increase the average
time between compressor start-up, from 3 to 6 hours, without producing a significant
increase in electricity consumption costs.

The main implications of our research work concerns the evaluation of the schedules
produced by our algorithm in real cold stores. While the algorithm produces cheap
production schedules given our cold store model, it is yet to prove that those production
schedules are indeed efficient in practice. Another implication is the use of a probabilistic
temperature forecast. The temperature evolution is subject to variations due to random
events, such as door openings. Moreover, the dynamic program used to create production
schedules for individual cold rooms is compatible with the use of a probabilistic model.
Finally, an application of this research to the optimisation of temperature control outside
of cold storage, such as the residential sector, office buildings, or data centers, could be
considered.
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