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For a system, a priori identifiability is a theoretical property depending only on the model and guarantees that its parameters can be uniquely determined from observations. This paper provides a survey of the various and numerous definitions of a priori identifiability given in the literature, for both deterministic continuous and discrete-time models. A classification is done by distinguishing analytical and algebraic definitions as well as local and global ones. Moreover, this paper provides an overview on the distinct methods to test the parameter identifiability. They are classified into the so-called output equality approaches, local state isomorphism approaches and differential algebra approaches. A few examples are detailed to illustrate the methods and complete this survey.

Introduction

The equations modeling a static or a dynamical system usually involve unknown parameters, most often assigned to physical quantities. Identification consists in estimating them from experimental data. From this perspective, we should be concerned with so-called identifiability issues.

Usually, a priori and practical identifiability are distinguished. A priori identifiability as defined in [START_REF] Walter | Identification of parametric models from experimental data[END_REF], also called structural identifiability, is a theoretical property depending only on the model. On the other hand, practical identifiability is based on experiments. Roughly speaking, practical identifiability analysis aims at investigating the fit of the model to experimental data. It is sometimes also called data-based identifiability. A detailed distinction with pros and cons between a priori and practical identifiability can be found in [START_REF] Saccomani | [END_REF]. In particular, it is explained that practical identifiability takes into consideration the role of the noise, the availability of data (limited or missing measurements, sampling times) or the persistency of excitations, what a priori identifiability does not. It may involve numerical procedures based on the analysis of the minima of likelihood-type functions.

The parameter identifiability issue, a priori or practical, has been deeply investigated over the years in distinct area and goes beyond the automatic control field. In statistics or econometry, the question of recovering the true values of the parameters from a finite of infinite observations is important for inference purposes, the reader may refer to [START_REF] Koopmans | Identification problems in economic model construction[END_REF][START_REF] Manski | Identification of endogenous social effects: The reflection problem[END_REF][START_REF] Evans | Compartmental modelling of the uptake kinetics of the anti-cancer topotecan in human breast cancer cells[END_REF] for examples. Here, the models under consideration are usually probabilistic. Clearly, the parameter identifiability issue has been broadly investigated in the field of biology as well. An exhaustive list of papers would be prohibitive but the reader may refer for example to [START_REF] Thomas | Effect of dose, molecular size, affinity and protein binding on tumor uptake of antibody or ligand: a biomathematical model[END_REF][START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF][START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophagemannose receptor[END_REF][START_REF] Dobre | Practical identifiability of photophysical parameters in photodynamic therapy[END_REF][START_REF] Chis | Structural identifiability of systems biology models: A critical comparison of methods[END_REF][START_REF] Raue | Comparison of approaches for parameter identifiability analysis of biological systems[END_REF][START_REF] Saccomani | [END_REF][START_REF] Varghese | A priori parameter identifiability in complex reaction networks[END_REF] to realize that this subject has drawn attention over the years and keeps on being of special interest, still very recently.

Practical identifiability and identification on one hand, a priori identifiability on the other hand, are conceptually different issues. In this paper, only a priori identifiability is under concern. The interest, as shown by an exhaustive literature dealing with, lies in that a priori identifiability is a necessary and so unavoidable property to be checked prior to any experimental parameters estimation. Indeed, identifiability is a prerequisite to the estimation of the system parameters to guarantee that they can be uniquely obtained whatever be the numerical estimation procedure that is used for. Such an issue is central in practice because a numerical algorithm may not be effective, in terms of convergence for instance, when several values are admissible (that is compatible with the input/output behavior). Several refined definitions of a priori identifiability have been proposed in the literature, mostly for continuous-time systems [START_REF] Glover | Parametrizations of linear dynamical systems: Canonical forms and identifiability[END_REF][START_REF] Grewer | Identifiability of linear and nonlinear dynamical systems[END_REF][START_REF] Soderstrom | Identifiability conditions for linear multivariable systems operating under feedback[END_REF][START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF][START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF][START_REF] Walter | Identification of parametric models from experimental data[END_REF][START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF] and to a much lesser extent for discrete-time systems [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF][START_REF] Nõmm | Further results on identifiability of discrete-time nonlinear systems[END_REF]. The definitions can be classified into several categories: analytical and algebraic, local and global. Moreover, some definitions consider the initial condition of the system while other ones do not (see for example [START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF] or [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF] and references therein).

The aim of this paper is two-fold. It is motivated by the fact that the relationships between the different definitions on a priori identifiability are not well established in the literature (see [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF][START_REF] Nõmm | Further results on identifiability of discrete-time nonlinear systems[END_REF] as some exceptions within the linear algebraic framework). The first objective of the present paper is to study the connections all over the definitions. The second objective of this paper is motivated by the matter on how identifiability can be tested. Several papers have investigated such an issue but they were restricted to special classes of systems (discrete ones in [START_REF] Nõmm | Further results on identifiability of discrete-time nonlinear systems[END_REF] or continuous ones in [START_REF] Boubaker | Structural idenfiability of nonlinear systems: an overview[END_REF][START_REF] Chis | Structural identifiability of systems biology models: A critical comparison of methods[END_REF][START_REF] Raue | Comparison of approaches for parameter identifiability analysis of biological systems[END_REF]). In the present paper, we give an overview for both deterministic continuous-time and discretetime systems and we point out the most relevant approaches according to the definitions. The approaches proposed in the literature essentially follow three main lines: the output equality approach [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF][START_REF] Walter | Identification of parametric models from experimental data[END_REF][START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF], the local state isomorphism approach [START_REF] Vajda | State isomorphism approach to global identifiability of nonlinear systems[END_REF][START_REF] Anstett | Identifiability of discrete-time nonlinear systems: The local state isomorphism approach[END_REF] and the differential algebra approach [START_REF] Ollivier | Le problème de l'identifiabilité structurelle globale: étude thérorique, méthodes effectives et bornes de complexité[END_REF][START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF][START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF][START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF]. We can also point out the special approach, not addressed here, devoted to structural linear systems and presented in [START_REF] Boukhobza | A graph theoretical approach to the parameters identifiability characterisation[END_REF]. The paper is organized as follows. In Section 2, definitions of identifiability are given for continuous and discretetime systems. The relations between the definitions are highlighted. Section 3 is devoted to the methods for testing the identifiability and the appropriate cases where each of them should be used are discussed. Finally, Section 4 is devoted to illustrative examples.

Definitions of identifiability

Consider the continuous-time nonlinear state space model Σ θc

Σ θc    ẋ(t) = f θ (x(t), m(t)) y(t) = h θ (x(t), m(t)) (1)
and the discrete-time state space model Σ θd

Σ θd    x k+1 = f θ (x k , m k ) y k = h θ (x k , m k ) (2) where x(t) (respectively x k ) ∈ X ⊆ R n is the state vector, m(t) (resp. m k ) ∈ M ⊆ R m is the input vector, y(t) (resp. y k ) ∈ Y ⊆ R p
is the output vector considered as the measurement, θ ∈ Θ ⊂ R l is the parameter vector. The i th component of the parameter vector θ is denoted by θ (i) , i = 1, . . . , l. The variable t ∈ R (resp. k ∈ N) refers to the continuous time (resp. discrete time). The functions f θ and h θ can be nonlinear and are parameterized by θ. The problem under consideration here is to test the a priori identifiability of θ, knowing the model (1) (resp. (2)). Hereafter, since only a priori identifiability is under concern, it will be assumed that the process and the model have the same identical structure (no characterization error), the input and output signals are noise-free and the input m(t) and the time interval over which the analysis is performed can be arbitrarily chosen. Furthermore, the vocable a priori will be omitted for short. In the following, the definitions are given as stated by the authors in their respective papers. However, for the sake of clarity, the notation has been unified.

The property of identifiability is said to be structural if it holds for all parameter values, except possibly for a set of null measure (set of special parameter values). The set of null measure leads to singularities where no conclusion about identifiability can be drawn. Hereafter, all the considered definitions will be structural although it is not systematically claimed. It is worth pointing out that the terminology "structural" may be considered as misleading. Indeed, as stressed in the introduction, structural may also refer, and without any link, to a priori. But since only a priori identifiability is investigated in this paper, it will not induce any confusion. Moreover, the distinction between local and global identifiability must be made. Local identifiability considers θ ∈ v(θ) ⊂ Θ where v(θ) is a neighborhood of θ while global identifiability considers θ ∈ Θ without any restriction. Clearly, local identifiability is a necessary condition for global identifiability. Analytical and algebraic definitions on identifiability is another major distinction to be made. This distinction deserves a special treatment and is detailed in next subsections.

Analytical definitions

Continuous-time systems

Consider the model (1). In the following, y(m(t), θ) denotes the input/output map of the model [START_REF] Walter | Identification of parametric models from experimental data[END_REF], that is the output trajectory from the given input m(t).

In this case, the initial condition x(0) is fixed, possibly unknown, but is omitted because it is disregarded. When the initial condition x(0) must be considered, the trajectory is denoted by y(x(0), m(t), θ). When the initial condition is unknown but its value has to be identified, x(0) is considered as an additional unknown parameter. In this case, the study is carried out on the extended parameter vector [θ T , x T (0)] T .

In Definitions 1 to 2 consider the structural identifiability of one given component parameter θ (i) (i ∈ {1, . . . , l}) of (1).

Definition 1. [1]

The parameter θ (i) is structurally locally identifiable if for almost all θ ∈ Θ, there exists a neighborhood v(θ) of θ, such that:

θ ∈ v(θ), y(m(t), θ) = y(m(t), θ) ⇒ θ(i) = θ (i) (3) 
Definition 2.

[1] The parameter θ (i) is structurally globally identifiable if for almost all θ ∈ Θ:

y(m(t), θ) = y(m(t), θ) ⇒ θ(i) = θ (i) (4) 
It is straightforward to assert that Definition 2 implies Definition 1.

Definitions 3 to 5 are more general since they apply for the identifiability property of every component of the parameter vector θ of the model Σ θc [START_REF] Walter | Identification of parametric models from experimental data[END_REF].

Definition 3. [1]
The model Σ θc is structurally locally identifiable if all the parameters θ (i) (i = 1, . . . , l) are structurally locally identifiable.

Definition 4. [1]

The model Σ θc is structurally globally identifiable if all the parameters θ (i) (i = 1, . . . , l) are structurally globally identifiable.

Definition 5. [1]

The model Σ θc is structurally non identifiable if there exists at least one parameter θ (i) which is structurally non identifiable.

Hence, it is straightforward to assert that Definition 3 implies Definition 1 and that Definition 4 implies Definition 2 .

For a given input m(t) and a given parameter vector θ, if different initial conditions x(0) are considered, there exists, in general, a set of output trajectories. Let ȳ(m(t), θ) denote this set of trajectories. However, after a transient time, two output trajectories from two different initial conditions can converge.

In this case, instead of considering the equality of trajectories as in previous definitions, the intersection of ȳ(m(t), θ) and ȳ(m(t), θ) must be considered. In [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF], the following definitions are then proposed.

Definition 6. [17]

The model Σ θc is globally identifiable in θ ∈ Θ if there exists an input signal m(t) such that:

ȳ(m(t), θ) = ∅, ȳ(m(t), θ) ∩ ȳ(m(t), θ) = ∅ ⇒ θ = θ (5) 
Local identifiability is defined as follows. The undistinguishability of θ and θ, through the experiences specified by

x(0) and M t1 t0 , is denoted θ ∼ θ.

Definition 9.

[23] The model Σ θc is structurally locally identifiable if, for almost all θ ∈ Θ, there exists a neighborhood v(θ) of θ, such that:

θ ∈ v(θ), θ ∼ θ ⇒ θ = θ (6) 
Definition 10. [START_REF] Vajda | State isomorphism approach to global identifiability of nonlinear systems[END_REF] The model Σ θc is structurally globally identifiable if, for almost all θ ∈ Θ:

θ ∼ θ ⇒ θ = θ (7) 
Hence, it is straightforward to assert that Definition 10 implies Definition 9.

Let us notice that in [START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF], the property of identifiability as defined in Definition 9 is called locally strongly x(0)-identifiability. In [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF], a more generic property of identifiability is defined for every x(0) ∈ X 0 where X 0 is an open and dense subset of X .

Let C N M [0; T ] (T ∈ R) be the set of all functions on [0; T ], which have continuous derivatives up to order N . Definition 11. [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF] The system Σ θc is structurally identifiable if there exists a time T > 0, a positive integer N , and open and dense subsets X 0 ⊂ X , Θ 0 ⊂ Θ,

M 0 ⊂ C N M [0; T ] such that the system Σ θc is x(0)-identifiable at θ through m(t), for every x(0) ∈ M 0 , θ ∈ Θ 0 and m(t) ∈ M 0 .
Let us notice that, in [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF], the structural identifiability is also called geometrical identifiability. It is also stressed that Definition 11 is the generic version of the definition of locally strongly x(0)-identifiability. Hence, Definition 11 implies Definition 10.

Moreover, it is worth noting that Definition 9 implies Definition 3. Indeed, if the model is identifiable over the time interval [t 0 ; t 1 ], an analysis over the time interval [t 0 ; t 2 ], with t 2 > t 1 does not provide any further information on the model identifiability. For the same reason, Definition 10 implies Definition 4.

The relations between the different analytical definitions on identifiability in continuous-time systems are summed up in Figure 1. Furthermore, Table 1 gives a summary of the previous definitions and their specificity on the considered time interval and input signal. The pecularities in terms of considered time interval and input signal are outlined. In particular, Definitions 1 to 5 consider a given input m(t), while Definitions 8 to 10 consider a class M t1 t0 of inputs m(t).

Discrete-time model

Consider the discrete-time model [START_REF] Saccomani | [END_REF]. Let {y(x 0 , m k , θ)} k1 k0 denote the input/output behavior of Σ θd [START_REF] Saccomani | [END_REF], that is the output trajectory of (2) generated from the known initial condition x 0 , for the input m k , over the time interval The following definition of local identifiability in a neighborhood is well known in the continuous-time case [START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF] and is adapted for the discrete-time case in [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF][START_REF] Nõmm | Further results on identifiability of discrete-time nonlinear systems[END_REF]. Definition 13. [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF] The model Σ θd (2) is said to be locally strongly x 0 -identifiable at θ through the input sequence

{m k } T 0 if there exists an open neighborhood v(θ) of θ, v(θ) ⊂ Θ, such that, for any θ ∈ v(θ) and θ ∈ v(θ), θ = θ ⇒ {y k (x 0 , m k , θ)} T 0 = {y k (x 0 , m k , θ)} T 0 ( 8 
)
Definition 14.

[19] The model Σ θd (2) is said to be structurally identifiable if there exist a T > 0 and open and dense subsets v(θ) ⊂ Θ and M T 0 ⊂ M such that the system Σ θd (2) is locally strongly x 0 -identifiable at θ through the input sequence {m k } T 0 for every x 0 ∈ X 0 .

It is thus straightforward to see that Definition 14 implies 13 as Definition 14 considers every x 0 ∈ X 0 . Definition 13 stands for local identifiability and is the direct counterpart of Definition 3. Definition 14 is the direct counterpart of Definition 11 for continuous-time systems. 

Algebraic definitions

The algebraic identifiability refers to the construction of the parameters from algebraic equations involving the input and the output. In the following, it is assumed that the functions f θ and h θ of the model (1) (resp. model ( 2)) are polynomials. In such a case, algebraic identifiability can be addressed as detailed below.

Continuous-time model

Algebraic identifiability can be characterized with the notion of differential field defined below.

Definition 15. [19]

A differential field is a field K equipped with a derivation δ : K → K, meaning that for x ∈ K and y ∈ K, it holds that δ(x + y) = δ(x) + δ(y) and δ(xy) = xδ(y) + yδ(x).

Definition 16. [28]

A dynamics is a finitely generated differential algebraic

extension D/K < m, y >.
This means that any element of D satisfies an algebraic differential equation with coefficients which are rational functions over K in the components of m, y and a finite number of their derivatives.

The parameters θ belong to a dynamics D/K < m, y >. 

P i (y(t), ẏ(t), . . . , y (N ) (t), m(t), ṁ(t), . . . , m (N ) (t))θ (i) - Q i (y(t), ẏ(t), . . . , y (N ) (t), m(t), ṁ(t), . . . , m (N ) (t)) = 0 ( 10 
)
where P i and Q i are polynomials depending on y(t), m(t) and a finite number N of their derivatives.

The relations between the different algebraic definitions of identifiability are summed up in Figure 2.

Def. 19 ⇔ Def. 18 ⇒ Def. 17 Definition 20. [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF][START_REF] Nõmm | Further results on identifiability of discrete-time nonlinear systems[END_REF] The model Σ θd is said to be algebraically identifiable if there exist a positive integer T , open and dense subsets X 0 ⊂ X , Θ ⊂ R l and M T 0 ∈ M, and a meromorphic

1 function φ : R l × R T +1 × R T +1 → R l , such that: det( ∂φ ∂θ ) = 0 ( 11 
)
and φ(θ, y 0 , . . . , y T , m 0 , . . . , m T ) = 0 [START_REF] Varghese | A priori parameter identifiability in complex reaction networks[END_REF] for every (θ, y 0 , . . . , y T , m 0 , . . . , m T ), satisfying the dynamics of the system, and

every (θ, x 0 , m 0 , . . . , m T ) ∈ Θ × X 0 × M T 0 .
According to Definition 20, several parameter values can be solution of [START_REF] Varghese | A priori parameter identifiability in complex reaction networks[END_REF].

Definition 19 which applies for continuous-time systems can also admit a discretetime counterpart, as proposed in [START_REF] Anstett | Chaotic cryptosystems: cryptanalysis and identifiability[END_REF].

Definition 21.

[29] The model Σ θd (2) is globally identifiable if and only if it can be written as a linear regression, such that, for i = 1, . . . , l:

P i (y k , . . . , y k+N , m k , . . . , m k+N )θ (i) - Q i (y k , . . . , y k+N , m k , . . . , m k+N ) = 0 (13) 
where P i and Q i are polynomials depending on m k , y k and a finite number N of their iterates.

It has been stressed that the distinction between Definitions 17 and 18 is the consideration of the uniqueness of the solution. The same distinction applies between Definitions 20 and 21. Hence, it is clear that Definition 21 implies Definition 20.

Table 3 gives a summary of algebraic definitions for continuous-time systems and their discrete-time counterparts whenever they exist.

of its domain, and at those singularities it must go to infinity like a polynomial (i.e., these exceptional points must be poles). Next section is devoted to an overview on the different methods for testing the parameter identifiability of continuous and discrete-time models, according to the considered definitions.

Continuous-time systems

Methods for testing identifiability

Output equality approach

The output equality approach consists in testing whether the equality of two output trajectories from the same initial condition, depending respectively on two parameter values, implies the equality of these parameters. If so, the parameters are identifiable. For continuous-time systems, this approach is directly derived from Definitions 3, 4, 5, 9, 10 and 11.

In general, the output equality approach only leads to a sufficient condition of identifiability. In the continuous-time case, it consists in testing, over a finite or infinite time interval, the following implication:

{y(x(0), m(t), θ)} = {y(x(0), m(t), θ)} ⇒ θ = θ (14) 
when x(0) and m(t) are given. This is also called the Taylor series expansion approach in [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF] because the output y(t) is approximated by its Taylor series expansion:

y(t) ≈ a 0 (θ) + a 1 (θ)t + a 2 (θ) t 2 2 + . . . ( 15 
)
where a i (θ) = lim

t→0 d i y(t) dt i , i = 1, . . . , i max .
A sufficient condition for structural global identifiability is:

a i (θ) = a i ( θ) ⇒ θ = θ, ∀i = 1, . . . , i max (16) 
It can be proven, as stressed in [START_REF] Margaria | Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences[END_REF] for instance, that an upper bound on the number of resulting algebraic equations and so the integer i max exists for rational function models but not in general. Hence, it is convenient to start with a limited number of derivatives and successively add more if necessary. In this respect, it is a sufficient condition.

In order to apply this method, the functions f θ and h θ should be derivable, of class C ∞ if i max tends towards infinity.

Remark 1. A quite similar approach is the Generating series approach. Unlike in the Taylor series approach where the series are generated with respect to the time domain, the series are in this case, generated with respect to the input domain. The generating series approach generalizes in some sense the Laplace transform approach for identifiability of linear models. It is based on the output function and its successive Lie derivatives. For the special case of a model with zero inputs, the Generating series approach and the Taylor series expansion are equivalent. The reader may refer to [START_REF] Walters | An introduction to ergodic theory[END_REF][START_REF] Chis | Structural identifiability of systems biology models: A critical comparison of methods[END_REF][START_REF] Petersen | Calibration, identifiability and optimal experimental design of activated sludge models[END_REF] for more details.

In the discrete-time case, the output equality approach is directly derived from Definitions 13, 14. The equality of the output trajectories is tested directly, sample by sample [START_REF] Nõmm | Identifiability of discrete-time nonlinear systems[END_REF]. The following theorem gives a sufficient condition of global identifiability.

Theorem 1. [19]

The model Σ θd (2) is structurally identifiable for almost all θ ∈ Θ if, for all x 0 ∈ X 0 , m k ∈ M, there exists T ∈ N * , such that:

{y k (x 0 , m k , θ)} T 0 = {y k (x 0 , m k , θ)} T 0 ⇒ θ = θ (17) 
The positive integer T corresponds to the number of iterations required for [START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF] to hold. Similarly to the continuous-time case, if T becomes very high, the previous relation cannot be proved. In this case, no conclusion about structural identifiability can be made. As T is a priori unknown, Theorem 1 is only a sufficient condition of identifiability.

Equations ( 16) and ( 17) address local or global identifiability. For local identifiability, a neighborhood of θ must be considered to ensure the uniqueness of the solution. For instance, the equation θ 2 = 1 is locally identifiable for θ ∈ R since it admits two solutions. On the other hand, if we consider two neighborhood v 1 (θ) and v 2 (θ) around the solutions +1 and -1, there exists a unique solution.

As an alternative, the local state isomorphism approach presented in next subsection leads to a necessary and sufficient condition of identifiability but holds for controlled systems only.

Local state isomorphism approach

The local state isomorphism approach, only proposed for continuous-time systems in [START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF][START_REF] Vajda | State isomorphism approach to global identifiability of nonlinear systems[END_REF], allows to test identifiability in the sense of Definitions 3, 4, 5, 9, 10 and 11, for the special class of models Σ θf g described by:

Σ θf g    ẋ(t) = f θ (x(t)) + g θ (x(t))m(t) y(t) = h θ (x(t)) (18) 
where m(t) ∈ M. The approach is based on the isomorphism theorem [START_REF] Sussmann | Existence and uniqueness of minimal realizations of nonlinear systems[END_REF].

Essentially, this theorem states that if the system Σ θf g is locally reduced (locally observable and controllable) and is conjugate to another system, up to an isomorphism, the system is identifiable if this isomorphism is unique and is the identity.

Let x(t 0 , θ) (resp. x(t 0 , θ)) denote the initial condition of system Σ θf g (resp. of system Σ θf g ). When the parameter is disregarded, the short notation x(t 0 ) is used.

Theorem 2.

[23] Assume that the system ( 18) is locally reduced at x(t 0 ) for almost all θ ∈ Θ. Σ θf g and Σ θf g have the same input-output behavior for any m(t) up to time t 1 > 0 if and only if there exists a local state isomorphism ϕ : X0 → X 0 such that for any x(t) in the neighborhood X0 ∈ X of x(t 0 ), the following conditions are met:

(i) rank( ∂ϕ(x(t)) ∂x(t) T ) = n, (ii) ϕ(x(t 0 , θ)) = x(t 0 , θ) (iii) f θ (ϕ(x(t))) = ∂ϕ(x(t)) ∂x(t) T f θ (x(t)) (iv) g θ (ϕ(x(t))) = ∂ϕ(x(t)) ∂x(t) T g θ (x(t)) (v) h θ (ϕ(x(t))) = h θ (x(t)) (19) 
The equality (i) tests whether ϕ is a diffeomorphism. Equalities (ii) to (v) refer to conditions respectively involving the initial state, the controlled dynamics and the output function, of the system [START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF]. If for almost any θ and θ for which the system ( 18) is locally reduced at x(t 0 ), if Equalities (i)-(v) lead necessarily to θ = θ and ϕ(x(t)) = x(t), then the system (18) is globally identifiable.

A discrete-time counterpart has been proposed in [START_REF] Anstett | Identifiability of discrete-time nonlinear systems: The local state isomorphism approach[END_REF] for systems admitting the general form (2). The nonlinear systems are no longer restricted to be affine with respect to the input. On the other hand, the dynamics f θ and the output map h θ of Σ θd must be polynomial. It is said that Σ θd is a K-system, the state space X of Σ θd being assumed to be a K-space, that is a topological space X together with an algebra of polynomial functions on X .

For discrete-time systems, identifiability can be tested in the sense of Definitions 13, 14.

Let x k0 (θ) (resp. x k0 ( θ)) denote the initial condition of system Σ θd (resp. system Σ θd ).

Theorem 3. [START_REF] Anstett | Identifiability of discrete-time nonlinear systems: The local state isomorphism approach[END_REF] If Σ θd (2) is a canonical K-system, then it is structurally identifiable if and only if there exist N > 0, an open subset X 0 ∈ X , some dense subsets Θ and M N 0 ∈ M, such that, ∀x k0 (θ) ∈ X 0 , ∀x k ∈ X , ∀m k ∈ M N 0 , for almost all θ ∈ Θ and θ ∈ Θ, for any K-system isomorphism ϕ : Σ θd → Σ θd , (a) ϕ(x k0 (θ)) = x k0 ( θ)

(b) f θ (ϕ(x k ), m k ) = ϕ(f (x k , m k )) (c) h θ (ϕ(x k ), m k ) = h θ (x k , m k ) (20)
implies that θ = θ.

The local state isomorphism may involve heavy computations to check if system (18) (resp. ( 2)) is locally reduced and to solve (i)-(v) (resp. (a)-(c)) for θ and ϕ.

Differential algebra approach

The differential algebra approach is based on algebra and allows to test identifiability in the sense of Definitions 17, 18, 19, for continuous-time systems and of Definitions 20, 21, for discrete-time systems. It is assumed that the functions f θ and h θ of the model (1) (resp. model ( 2)) are polynomials. However, let us notice that identifiability based on differential algebra for systems with non polynomial or non-rational functions can be addressed using Padé and power series approximations (see [START_REF] Jain | A priori parameter identifiability in models with non-rational functions[END_REF]). In the continuous-time case (see [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF][START_REF] Ljung | On global identifiability for arbitrary model parametrizations[END_REF]), the model ( 1) is transformed, by eliminating the state variable x(t) considered as unknown, into an implicit relation depending on the input, the output, a finite number of their derivatives and the parameter. It is why this method is also called input/output relation approach. Let us notice that this terminology is somehow abusive when uncontrolled systems are considered since m(t) is not involved in this particular case.

For continuous-time models, the input/output relation verifies the general form:

L 1 (θ, y(t), . . . , y (s) (t), m(t), . . . , m (s) (t)) = 0 ( 21 
)
where s is the observability index [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF] of the model (1), defined as follows. Consider f i θ as the i th composition of the function

f θ , f i θ (x(t)) f θ (f i-1 θ (x(t))) ∀i ≥ 1 andf 0 θ (x(t))
x(t). The observability index s is a positive integer such that ∀x(t) ∈ X where X is a neighborhood of x(t):

rank ∂ h θ (x(t)), (h θ • f θ )(x(t)), . . . , (h θ • f s-1 θ )(x(t)) ∂x(t) = s rank ∂ h θ (x(t)), (h θ • θ f )(x(t)), . . . , (h θ • f s-1 θ )(x(t)), (h θ • f s θ )(x(t)) ∂x(t) = s (22)
Global identifiability in the sense of Definition 19 is tested by differentiating the relation ( 21) l times (being l the dimension of the parameter vector θ), in order to get as many independent equations as unknowns. From this set of equations, we check if the relation

θ (i) = Q i (y(t), ẏ(t), . . . , m(t), ṁ(t), . . .) P i (y(t), ẏ(t), . . . , m(t), ṁ(t), . . .) (23) 
can be obtained for every parameter vector component θ (i) .

For discrete-time models, the input/output relation generically reads:

L 1 (θ, y k , . . . , y k+s , m k , . . . , m k+s ) = 0 [START_REF] Anstett | Identifiability of discrete-time nonlinear systems: The local state isomorphism approach[END_REF] where s also corresponds to the observability index.

Global identifiability in the sense of Definition 21 is tested by iterating l times (being l the dimension of the parameter vector θ), the relation [START_REF] Anstett | Identifiability of discrete-time nonlinear systems: The local state isomorphism approach[END_REF] in order to get as much independent equations as unknowns. From this set of equations, we check if the relation

θ (i) = Q i (y k , . . . , m k , . . . , m k+s ) P i (y k , . . . , y k+s , m k , . . .) (25) 
can be obtained for every parameter component θ (i) .

Regardless of whether continuous-time or discrete-time systems are considered, the elimination of the state can be performed with the Gröbner bases approach [START_REF] Buchberger | An algorithm for finding a basis for the residue class ring of zero-dimensional polynomial ideal[END_REF], the characteristic set approach [START_REF] Ritt | Differential algebra[END_REF] or the resultant approach [START_REF] Wang | Elimination theory, methods and practice[END_REF].

In general, for the input/output relation approach, the initial conditions on the state are not considered since they are eliminated. However, in [START_REF] Denis-Vidal | Some effective approaches to check the identifiability of uncontrolled nonlinear systems[END_REF][START_REF] Denis-Vidal | System identifiability (symbolic computation) and parameter estimation (numerical computation)[END_REF][START_REF] Saccomani | Parameter identifiability of nonlinear systems: the role of initial conditions[END_REF], it is shown that the input/output relation approach can fail when the system starts at specific initial condition and, in this particular case, a specific treatment must be made.

The outcome of the differential algebraic approach is that, not only it allows to conclude on the parameter identifiability but it also gives the value of the parameters. However, this approach may be not appropriate for high dimensional system since its requires high order derivatives (iterates) of the outputs.

The different approaches to test identifiability and the related definitions are summed up in Table 4. In this regard, the paper [START_REF] Villaverde | Structural identifiability of dynamic systems biology models[END_REF] gives interesting motivations to call for such an approach along with a methodology to cope with computational complexity. The paper [START_REF] Tunali | New results for identifiability of nonlinear systems[END_REF] also calls to this approach by using differential geometry. Such a framework, rests on, now, standard tools, such as Lie brackets of vector fields or the orbit theorem (see for example [START_REF] Hermann | Nonlinear controllability and observability[END_REF] for key references). In the context of differential algebra, the paper [START_REF] Sedoglavic | A probabilistic algorithm to test local algebraic observability in polynomial time[END_REF] investigates the local algebraic observability, considering the parameters as special constant state variables too. The issue of checking such a property is addressed through a computer algebra standpoint.

Output equality

Actually, a probabilistic semi-numerical algorithm that proposes a solution in polynomial time is given. Some examples are examined with the help of a Maple implementation of the algorithm (see the reference website therein). Identifiability has also been considered as a special observability property in [START_REF] Busvelle | New results on identifiability of nonlinear systems[END_REF]. The main idea is to consider an input-output mapping of a state space model and to characterize identifiability as the one-to-one property of this mapping. As a result, such an approach can be relevant for testing local identifiability in the sense of definitions related to undistinguishability of trajectories. The use of sophisticated results of o-minimal geometry, and especially the existence of stratifications for subanalytic sets (see [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF] for technical background) allows to prove that observability and identifiability are generic properties under weak assumptions on the system and the dimension of the output (see Theorem 5 in [START_REF] Busvelle | New results on identifiability of nonlinear systems[END_REF]).

In general, all the presented approaches require symbolic computation tools, as Maxima, Maple or Matlab, for instance. Open source softwares are also available from the community. The software GenSSI (recently upgraded to GenSSI 2:0 [START_REF] Ligon | GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models[END_REF]) is based on the generating series approach. DAISY (Differential Algebra for Identifiability of SYstems) is a software tool to perform structural identifiability analysis for linear and nonlinear dynamic models described by polynomial or rational ordinary differential equations (ODE) equations [START_REF] Bellu | DAISY: A new software tool to test global identifiability of biological and physiological systems. computer methods and programs in biomedicine[END_REF] (available on line at https://daisy.dei.unipd.it/). COMBOS [START_REF] Meshkat | 3rd, On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and combos: a novel web implementation[END_REF], which is based on differential algebra, is a readily accessible internet application tool for structural identifiability analysis of linear or nonlinear ODE models with commonly found polynomial or rational function terms. STRIKE-GOLDD [START_REF] Villaverde | Structural identifiability of dynamic systems biology models[END_REF] (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition) is a MATLAB toolbox that analyses the local structural identifiability, observability, and invertibility of (possibly nonlinear) dynamic models of ODEs. SIAN (Structural Identifiability ANalyser) is another tool, recently presented in [START_REF] Hong | SIAN: a tool for assessing structural identifiability of parametric odes[END_REF] and involves comparisons of the performances with former ones including GenSSI 2:0, DAISY, COMBOS. It aims at assessing a priori identifiability of parametric ODEs. It is written in Maple and available at https://github.com/pogudingleb/SIAN. The paper [START_REF] Hong | Global identifiability of differential models[END_REF] gives the theoretical foundations of this algorithm. Finally, the paper [START_REF] Karlsson | An efficient method for structural identifiability analysis of large dynamic systems[END_REF] describes a Mathematica implementation of the probabilistic semi-numerical algorithm described in [START_REF] Sedoglavic | A probabilistic algorithm to test local algebraic observability in polynomial time[END_REF]. This algorithm has revealed a great efficiency to determine (local) a priori identifiability for large scale dynamic systems.

To conclude, it should be stressed that it is well admitted that many approaches have been proposed in the literature but there isn't a generic method suitable for any non linear case and it is difficult to choose the appropriate one beforehand.

However, the following general comments on the respective limitations can be made. Taylor and Generating series approaches suffer from the fact that the minimum number of required derivatives (forward iterates in the discrete-time case), except for some specific cases recalled in Subsection 3.1 cannot be known beforehand or may not exist for general nonlinear systems. Furthermore, the equations to be solved for the recovery of the parameters may lead to intricate algebraic equations. Hence, those approaches are suitable for small size systems.

Differential algebra-based approaches can be practical if applied to models involving polynomial or rational functions (with some exceptions as stressed in Subsection 3.3). However, powerful algebraic methods can be used and the underlying algorithms converge in a finite number of steps. As for the similarity transformation approach, the model should be locally reduced, i.e. controllable and observable. Furthermore, the complexity to solve the equations may stand as a limitation for large scale highly nonlinear systems.

Next section is devoted to few examples.

Examples

Academic example

Consider the following non autonomous continuous-time state-space model

   ẋ1 (t) = x 1 (t)x 2 (t) + m(t) ẋ2 (t) = θ + x 1 (t)m(t) (26) 
with output y(t) = x 1 (t) and where θ is a constant parameter. The objective is to illustrate the differential algebra approach to test the algebraic identifiability of the parameter θ. From this perspective, it must be obtained an input/output relation in the general form [START_REF] Boubaker | Structural idenfiability of nonlinear systems: an overview[END_REF]. It turns out that the input/output relation reads:

ÿ(t)y(t) -ẏ(t)( ẏ(t) -m(t)) -y 2 (t)(θ + y(t)m(t)) -u(t)y(t) = 0
Hence, algebraic identifiability is fulfilled since the relation ( 23) holds. Indeed, the parameter θ can be easily obtained and reads:

θ = ÿ(t)y(t)-ẏ(t)( ẏ(t)-m(t))-u(t)y(t) y 2 (t)-y(t)m(t)
It is also interesting to illustrate Remark 2 in the context of differential algebra.

Let us recall that it consists in considering identifiability as algebraic observability, the parameters being understood as special constant state variables. To this end, let us add to the equations ( 26) a third component defined as x 3 (t) = θ with the constraint ẋ3 (t) = 0. It turns out the the resulting augmented system is algebraically observable since the following equalities, only involving the input, the output and a finite number of derivatives, can be obtained.

x 1 (t) = y(t)

x 2 (t) = ẏ(t)-m(t) y(t)

x 3 (t) = ÿ(t)y(t)-ẏ(t)( ẏ(t)-m(t))-u(t)y(t) y 2 (t)-y(t)m(t)

In order to illustrate the different approaches, the local state isomorphism approach is applied on the system [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF].

It can be shown that system [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF] is locally reduced at 0. Equations ( 19) lead to the following: Eq. ( 19)-(ii): ϕ(0) = 0

Eq. ( 19)-(v):

ϕ 1 (x(t)) = x 1 (t)
Eq. ( 19)-(v):

x 1 (t)ϕ 2 (x(t)) + m(t) = x 1 (t)x 2 (t) + m(t) ⇒ ϕ 2 (x(t)) = x 2 (t)
Eq. ( 19)

-(v): θ + x 1 (t)m(t) = θ + x 1 (t)m(t) ⇒ θ = θ
Eq. ( 19)-(i): rank

  1 0 0 1   = 2
Thus, it leads to ϕ(x(t)) = x(t) and θ = θ, showing that θ is globally identifiable.

The output equality approach can also be applied on system [START_REF] Xia | Identifiability of nonlinear systems with application to HIV/AIDS models[END_REF]. The conditions ( 14) lead to:

y( θ) = y(θ) ⇒ x 1 (t) = x 1 (t) ẏ( θ) = ẏ(θ) ⇒ x 1 (t)x 2 (t) + m(t) = x 1 (t)x 2 (t) + m(t) ÿ( θ) = ÿ(θ) ⇒ x 1 (t)x 2 2 (t) + x 2 (t)m(t) + θx 1 (t) + x 2 1 (t)m(t) + ṁ(t) = x 1 (t)x 2 2 (t) + x 2 (t)m(t) + θx 1 (t) + x 2 1 (t)m(t) + ṁ(t) (27) 
The last equation implies that θ = θ. Consequently, θ is identifiable.

Tumor targeting by antibodies model

Consider the following state-space model describing tumor targeting by antibodies [START_REF] Thomas | Effect of dose, molecular size, affinity and protein binding on tumor uptake of antibody or ligand: a biomathematical model[END_REF]: (2) x 2 (t) -(θ (1) + θ (5) )x 1 (t) + m(t) ẋ2 (t) = θ (1) x 1 (t) -θ (2) x 2 (t) -θ (3) x 2 (t)(α -x 3 (t))+ θ (4) x 3 (t) -θ (3) x 2 (t)β(δ -x 4 (t)) + θ (4) x 4 (t) ẋ3 (t) = θ (3) x 2 (t)(α -x 3 (t)) + θ (4) x 3 (t) ẋ4 (t) = θ (3) x 2 (t)β(δ -x 4 (t)) -θ (4) x 4 (t) ẋ5 (t) = θ (5) x 1 (t) [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] where the model output is y(t) = x 5 (t), the initial condition is x(0) = 0 and the parameter vector θ = [θ (1) , θ (2) , θ (3) , θ (4) , θ (5) ] T . The parameters α, β and δ are known real constants.

                         ẋ1 (t) = θ
The identifiability problem for this model has been addressed in several papers like [START_REF] Denis-Vidal | Identifiability of some nonlinear kinetics[END_REF] and [START_REF] Chappell | Global identifiability of the parameters of nonlinear systems with specified inputs : a comparison of methods[END_REF]. Let us show how the local state isomorphism performs to test the identifiability of the parameter vector θ. Let us notice that system [START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] is locally reduced at 0. Equations ( 19) lead to the following:

Eq. ( 19)-(ii): ϕ(0) = 0 Eq. ( 19)-(v): ϕ 5 (x(t)) = x 5 (t) Eq. ( 19)-(iv):

∂ϕ 1 (x(t)) ∂x 1 (t) = 1, ∂ϕ 1 (x(t)) ∂x 2 (t) = ∂ϕ 1 (x(t)) ∂x 3 (t) = ∂ϕ 1 (x(t)) ∂x 4 (t) = ∂ϕ 1 (x(t)) ∂x 5 (t) = 0
Eq. ( 19)-(iii):

             θ(2) ϕ 2 (x(t)) -( θ(1) + θ(5) )ϕ 1 (x(t)) θ(1) ϕ 1 (x(t)) -θ(2) ϕ 2 (x(t)) -θ(3) ϕ 2 (x(t))(α -ϕ 3 (x(t)))+ θ(4) ϕ 3 (x(t)) -θ(3) ϕ 2 (x(t))β(δ -ϕ 4 (x(t))) + θ(4) ϕ 4 (x(t)) θ (3) ϕ 2 (x(t))(α -ϕ 3 (x(t))) + θ (4) ϕ 3 (x(t)) θ (3) ϕ 2 (x(t))β(δ -ϕ 4 (x(t))) -θ (4) ϕ 4 (x(t)) θ (5) ϕ 1 (x(t))              =                1 ϕ 1 (x(t)) x 2 (t) ϕ 1 (x(t)) x 3 (t) ϕ 1 (x(t)) x 4 (t) ϕ 1 (x(t)) x 5 (t) 0 ϕ 2 (x(t)) x 2 (t) ϕ 2 (x(t)) x 3 (t) ϕ 2 (x(t)) x 4 (t) ϕ 2 (x(t)) x 5 (t) 0 ϕ 3 (x(t))
x 2 (t)

ϕ 3 (x(t)) x 3 (t) ϕ 3 (x(t))
x 4 (t) 2) x 2 (t) -(θ (1) + θ (5) )x 1 (t)

ϕ 3 (x(t)) x 5 (t) 0 ϕ 4 (x(t)) x 2 (t) ϕ 4 (x(t)) x 3 (t) ϕ 4 (x(t)) x 4 (t) ϕ 4 (x(t)) x 5 (t) 0 0 0 0 1                ×              θ ( 
θ (1) x 1 (t) -θ (2) x 2 (t) -θ (3) x 2 (t)(α -x 3 (t))+ θ (4) x 3 (t) -θ (3) x 2 (t)β(δ -x 4 (t)) + θ (4) x 4 (t) θ (3) x 2 (t)(α -x 3 (t)) + θ (4) x 3 (t) θ (3) x 2 (t)β(δ -x 4 (t)) -θ (4) x 4 (t) θ (5) x 1 (t)

             (29) 
Equation ( 29) leads to: θ1 = θ 1 , θ2 = θ 2 , θ5 = θ 5 , ϕ 1 (x(t)) = x 1 (t) and ϕ 2 (x(t)) = x 2 (t).

At this step, it is impossible to go further without linearity assumption of ϕ. To tackle such a problem, the method proposed in [START_REF] Denis-Vidal | Identifiability of some nonlinear kinetics[END_REF] consists in differentiating the i th equation of ( 19)-(iii) with respect to x i (t) and getting new combinations of first partial derivatives. This yields:

θ3 = θ 3 , θ4 = θ 4 , ϕ 3 (x(t)) = x 3 (t) and ϕ 4 (x(t)) = x 4 (t).
Eq. ( 19)-(i) leads to:

rank            1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1            = 5 (30) 
All in all, θ = θ and ϕ(x(t)) = x(t). Consequently, the system ( 28) is globally identifiable. Let us note that since polynomial nonlinearities are involved in the model, a differential algebra approach would also be suited to test the global identifiability.

Pharmacokinetic model

Consider the model of glucose-oxydase pharmacokinetics investigated in [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophagemannose receptor[END_REF] and given by the state-space representation: [START_REF] Walters | An introduction to ergodic theory[END_REF] with initial condition x(0) = (C 0 , 0, C 0 , 0) T and where all the time invariant quantities are real constants. The parameter vector is θ = (β 1 , β 2 , k a ) T . The constants k c , α 1 , α 2 and V m are known.

                         ẋ1 (t) = α 1 (x 2 (t) -x 1 (t)) - k a V m x 1 (t) k c k a + k c x 3 (t) + k a x 1 (t) ẋ2 (t) = α 2 (x 1 (t) -x 2 (t) ẋ3 (t) = β 1 (x 4 (t) -x 3 (t)) - k c V m x 3 (t) k c k a + k c x 3 (t) + k a x 1 (t) ẋ4 (t) = β 2 (x 3 (t) -x 4 (t) y(t) = x 1 (t)
Since model ( 31) is uncontrolled, the local state isomorphism approach cannot be applied. Here, we illustrate the use of the differential algebra approach. The characteristic set approach is used to perform the state elimination. A software like Maxima (available online at http://maxima.sourceforge.net) can be an efficient tool to this end. Actually, it allows to compute, whenever it exists, the characteristic set of the output differential ideal. A brute approach, based on the consideration of (31), does not permit to obtain such a characteristic set. However, if the state x 2 (t) is considered as an additional measurement, since it is known as the unique solution of the second equation of [START_REF] Walters | An introduction to ergodic theory[END_REF], from the first equation of (31), the quantity x 3 (t)/k a can be derived and considered as known.

Thus, the quantity

x 3 (t)/k a 1 + x 3 (t)/k a + x 1 (t)/k c
is known as well. Therefore, the elimination of the state is performed on the model [START_REF] Walters | An introduction to ergodic theory[END_REF] with the output vector

y(t) = (y 1 (t), y 2 (t), y 3 (t), y 4 (t)) = x 1 (t), x 2 (t), x 3 (t)/k a 1 + x 3 (t)/k a + x 1 (t)/k c , x 3 (t) k a .
In this case, the approach succeeds in delivering the relation L 1 [START_REF] Boubaker | Structural idenfiability of nonlinear systems: an overview[END_REF] which reads:

                     ÿ4 (t)y 2 4 (t)k c k a + ẏ4 (t)y 2 4 (t)k c (β 1 + β 2 )k a + y 2 4 (t)y 3 (t)k c V m β 2 -(y 3 3 (t)y 4 (t) -y 2 3 (t)y 4 (t)+ y 3 3 (t))V 2 m -(-y 3 (t)y 4 (t) ẏ4 (t)- y 2 3 (t)y 4 (t) ẏ4 (t))k c V m -(y 2 3 (t)y 2 4 (t) + y 2 (t) k c y 2 3 (t)y 4 (t)+ y 2 3 (t)y 4 (t))α 1 k c V m = 0 (32) 
As shown in [START_REF] Verdière | Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophagemannose receptor[END_REF], from the analysis of (32), the parameters k a , β 1 and β 2 are globally identifiable. Actually, they can be expressed in the form (23) (not given here because of lack of place). Thus, the model ( 31) is structurally globally identifiable.

Cryptanalysis applications

In this subsection, it is shown how identifiability can be used for the sake of To obtain the input/output relation [START_REF] Anstett | Identifiability of discrete-time nonlinear systems: The local state isomorphism approach[END_REF] that is L 1 = 0, the observability index s of system (39) must be calculated. It turns out that s is equal to the dimension of the system, that is s = n = 2. Indeed, rank

        ∂h θ (x k ) ∂x (1) k ∂h θ (x k ) ∂x (2) k ∂(h θ • f θ )(x k ) ∂x (1) k ∂(h θ • f θ )(x k ) ∂x (2) k         = rank   1 0
2θ (1) x k θ (2)

  = 2, (41) rank  
              ∂h θ (x k ) ∂x (1) k ∂h θ (x k ) ∂x (2) k ∂(h θ • f θ )(x k ) ∂x (1) k ∂(h θ • f θ )(x k ) ∂x (2) k ∂(h θ • f 2 θ )(x k ) ∂x (1) k ∂(h θ • f 2 θ )(x k ) ∂x (2) k                = (42) rank      1 0
2θ (1) x

(1) k θ (2) A B      = 2 (43) 
with A = 4(θ (1) ) 2 x

(1)

k (θ (1) (x (1) 
k ) 2 +m k +θ 2 x

(2) k )+θ (2) θ (3) and B = 2θ (1) θ (2) (θ (2) x

(2)

k + m k + θ (1) (x (1) k ) 2 ).
set of equations: θ (1) y 2 k+2 + θ (2) θ (3) y k+1 -y k+3 + m k+2 + θ (2) θ (4) m k+1 = 0 θ (1) y 2 k+3 + θ (2) θ (3) y k+2 -y k+4 + m k+3 + θ (2) θ (4) m k+2 = 0 θ (1) y 2 k+4 + θ (2) θ (3) y k+3 -y k+5 + m k+4 + θ (2) θ (4) m k+3 = 0 [START_REF] Hong | Global identifiability of differential models[END_REF] It is not possible to write the set of equations ( 45) and ( 46) under the form (13), except for θ (1) : 

P 1 (
Consequently, the relations (25) are only satisfied for θ (1) and thus, only θ (1) is identifiable.

Conclusion

This paper has provided an overview on the definitions of a priori identifiability for both deterministic continuous-time and discrete-time systems. The main objective was to clarify and classify the definitions, having in mind that the literature suffers from a profusion of them. Next, different methodologies to test the identifiability have been presented, again for both continuous and discrete-time systems, and correlated to the definitions they apply to. Efficient softwares proposed in the literature, in particular involving symbolic computation, have been recalled. Some basic and more practical-oriented examples have illustrated the different approaches. It is well-admitted that no universally applicable approaches exist. However, the required conditions for an approach to be used have been highlighted to ease the choice of practitioners potentially interested in.

Testing a priori identifiability is still a challenging task insofar as the computational complexity increases rapidly with the dimension of the system and highly depends on the type of nonlinearity as well. We should end up with this survey by outlining that, since a few years, data-based approaches had tremendous success in many different area, including automatic control. In this context, for the sake of identifiability, sensitivity analysis deserves a special attention. Indeed, several works (see [START_REF] Dobre | Global sensitivity and identifiability implications in systems biology[END_REF] as an interesting one) have attempted to bridge a connection between sensitivity and identifiability and further work is still needed. Broadly speaking, sensitivity analysis quantifies how the model output changes in response to changes in parameter values. Hence, a parameter which is not identifiable induces a model output to be insensitive to it. Such a property allows to demonstrate the non identifiability of a parameter or to select the most relevant parameters. For recent papers dealing with applications, the reader may refer for example to [START_REF] Marquis | Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model[END_REF] in biology or [START_REF] Machala | Global sensitivity analysis for modeling the free-flight behavior of an artillery projectile[END_REF] in ballistic.

  Definitions 1 to 5, the time interval under consideration is [0; +∞[. However, it is clear that in the case of a finite time interval [a; b] ⊂ [0; +∞[ (where a and b are finite real values), Definitions 1 to 5 still hold but only on [a; b].
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 1 Figure 1: Relations between the different analytical definitions of identifiability in continuoustime systems
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 2 Figure 2: Relations between the different algebraic definitions of identifiability in continuoustime systems

  cryptanalysis. For a long while, chaos-based encryption has been the subject of intensive researches. Roughly speaking and among distinct scrambling methods, chaos-based encryption involving discrete-time systems consists in injecting a message acting as the input signal m k in a chaotic dynamics with state vector x k . The resulting output y k expressed as a function of x k and m k is the cryptogram. It is conveyed from the cipher to the decipher. The parameters of the chaotic dynamics are considered as the secret key. Algebraic cryptanalysis (in the context a so-called chosen plaintext attack) consists in recovering the secret key from the knowledge of the structure of the chaotic system, the input and the cryptogram. The computational complexity of the recovery determines the level of strength or weakness of the encryption. This kind of attack is thus related to the identifiability problem. It is actually independent from the dynamics which is exhibited, chaotic or not, and thus, can be very effective. It is illustrated in performed using the Gröbner bases.
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  Definition 7. The model Σ θc is locally identifiable in θ ∈ Θ if there exists an

	input signal m(t) and an open neighborhood v(θ) of θ, such that (5) holds.
	Since the definitions just above do not consider the whole trajectory, it is
	straightforward to see that Definition 4 implies Definition 6 and Definition 3
	implies Definition 7.
	Closely related notions, explicitely invoking the property of distinguishability
	have been proposed in 8. Let M t1 t0 denote the set of admissible inputs, that is
	measurable and bounded, and defined over a finite interval of time [t 0 ; t 1 ]. In
	Definitions 8 to 10 below, the output y(t) of the model (1) from the known
	initial condition x(0), for any input m(t) ∈ M t1 t0 , over the time interval [t 0 ; t 1 ]
	is denoted by {y(x(0), m(t), θ)} t1 t0 .
	Definition 8. [23] The parameters θ ∈ Θ and θ ∈ Θ, are undistinguish-
	able through the experience specified by x(0) and M t1 t0 if {y(x(0), m(t), θ)} t1 t0 =
	{y(x(0), m(t), θ)} t1 t0 , for all m(t) ∈ M t1 t0 .

Table 1 :

 1 Summary of analytical definitions for continuous-time models

	Authors	Definitions Time interval	Input signal	Initial condition x(0)
	[Walter et. al ] Def. 1 to 5	[0; +∞[	given m(t)	given x(0)
	[Ljung et. al ]	Def. 6 to 7	[0; +∞[	given m(t)	set of x(0)
	[Vajda et. al ] Def. 8 to 10	[t 0 ; t 1 ]	class of admissible m(t)	given x(0)
	[Tunali et. al ]	Def. 9	[t 0 ; t 1 ]	class of admissible m(t)	given x(0)

[Moog et. al ] Def. 11 [t 0 ; t 1 ] class of admissible m(t) set of x(0)

Table 2

 2 

	Local	Def. 3	Def. 13
	Analytical		
	Global	Def. 11	Def. 14

gives the correspondences between analytical definitions for continuous-time systems and their discretetime counterparts, whenever they exist.

Continuous-time systems Discrete-time systems

Table 2 :

 2 

Correspondences between analytical definitions for continuous-time systems and their discrete-time counterparts

  Definition 19. [17] The model Σ θc is globally identifiable if and only if it can be written as a linear regression, such that, for i = 1, . . . , l:

	Definition 18 means that the parameter vector θ can be written as a unique
	rational fraction of polynomials depending on m(t), y(t) and a finite number of
	their derivatives. Hence, it can be straightforwardly claimed that Definition 18
	implies Definition 17. It defines global identifiability of the model Σ θc which
	can be equivalently redefined as follows.
	Definition 18. [28] The parameter vector θ is said rationally identifiable if
	and only if it belongs to K < m, y >.

Definition 17.

[START_REF] Diop | Nonlinear observability, identifiability and persistent trajectories[END_REF] 

The parameter vector θ is said algebraically identifiable if and only if it is algebraic over the differential field K < m, y >.

Definition 17 means that θ is algebraically identifiable if and only if it is the solution of an algebraic equation depending on m(t), y(t) and a finite number of their derivatives, of the form: L(θ, y(t), ẏ(t), . . . , m(t), ṁ(t), . . .) = 0

[START_REF] Dobre | Practical identifiability of photophysical parameters in photodynamic therapy[END_REF] 

Solving the algebraic equation (

9

) with unknown θ may lead to several solutions. Hence, Definition 17 refers to local identifiability. However, if the uniqueness of the parameter value is under concern, rational identifiability must be considered.

Table 3 :

 3 Summary of algebraic definitions for continuous-time systems and their discrete-time counterparts

Table 4 :

 4 The different approaches to test identifiability and the related definitions to they

apply Remark 2. It should be mentioned that other approaches to test identifiability have been proposed, considering that identifiability can be viewed as a generalization of observability by considering parameters as constant state variables.

A meromorphic function is a function differentiable in all but possibly a discrete subset

the following.

Example 1

Consider the encryption scheme where the input signal m k acting as the plaintext to be encrypted is injected in the following chaotic map [START_REF] Barbot | Observability bifurcations: application to cryptography[END_REF]:

System ( 33) is of the form (2), with:

The initial condition is x 0 = (x

) 0 ) T . The identifiability of the parameters vector θ = (θ (1) , θ (2) ) T (l = 2), acting as the secret key of the encryption scheme is tested using the output equality approach.

For k = 0, 1, 2, the values of the output trajectory {y k (x 0 , m k , θ)} 2 0 , denoted for brevity y k (θ), are:

The conditions (17) read:

(2) 0

Equation ( 36) is trivial. Assuming that x

(1) 0 = 0 and x (2) 0 = 0, Equation (37) leads to θ(1) = θ (1) and then Equation ( 38) leads to θ(2) = θ (2) . Consequently, Theorem 1 holds for T = 2 and the parameters θ (1) and θ (2) are structurally globally identifiable. It is worth noting that x (1) 0 = 0 and x (2) 0 = 0 is a set of zero measure and leads to a singularity where no conclusion on identifiability is 515 possible. For cryptanalysis purposes, it means that the secret key can be easily determined and shows that this encryption scheme is not secure despite of the complexity dynamics which is exhibited.

Example 2 520

Consider the encryption scheme where the secret message m k is injected into the chaotic Hénon map:

System ( 39) is of the form (2), with:

Here, the identifiability of the parameter vector [θ (1) , θ (2) , θ (3) , θ (4) ] T (l = 4) is tested using the differential algebra approach. The state vector elimination is Hence, the equations of the system (39) must be iterated once yielding:

Maxima software, incorporating the Gröbner basis approach, allows to perform the state elimination and finally, the input/output relation L 1 = 0 reads θ (1) y 2 k+1 + θ (2) θ (3) y k -y k+2 + m k+1 + θ (2) θ (4) 

Next, the input/output relation ( 45) is iterated l -1 = 3 times, leading to the