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 

Abstract— We consider the radiation characteristics of a THz 

antenna made of a circular dielectric rod decorated with conformal 

graphene strip and illuminated by the field of a line magnetic current. 

The strip has arbitrary angular size and location and its surface 

impedance is characterized with Kubo theory. Our mathematically 

accurate analysis uses a dedicated hypersingular integral equation for 

the current induced on the strip. Discretization of this equation is 

carried out by the Nystrom-type method, which has a guaranteed 

convergence. We study the dependences of the powers radiated and 

absorbed in this configuration and also the directivity of antenna 

emission, in wide frequency range from 0 to 10 THz. They show very 

interesting interplay between the broadband inverse photonic-jet 

effect of lens-like dielectric rod and two types of resonances: on the 

moderate-Q plasmon modes of graphene strip and on the extremely 

high-Q whispering-gallery modes of the circular rod. 

Index Terms— circular dielectric rod, graphene strip, line current, 

integral equation, plasmon, inverse photonic jet 

I. INTRODUCTION 

OTH in THz and shorter frequency ranges, a ubiquitous

element of almost every sensor is an integrated lens 

antenna, which concentrates the incoming electro-

magnetic waves on a miniature receiving circuit. Perhaps, the 

simplest design of a lens is a uniform optically transparent 

sphere or, in two-dimensional (2-D) case, circular cylinder, or 

rod. This is because such a sphere or a rod produces a 

remarkable near-field phenomenon, which at first obtained the 

name “nanojet” and later became known as “photonic jet” [1-

2]. In fact, it should be, probably, called “electromagnetic jet” 

(EMJ), because this phenomenon can be found in all frequency 

ranges, if only the relative dielectric permittivity of sphere or 

rod is 4   and its radius is 2R  , where  is the free-

space wavelength [1,2]. If the radius gets larger, EMJ  
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Fig. 1. Cross-section of a dielectric rod with a conformal graphene strip 

illuminated by a magnetic line current 

becomes more intensive and concentrated. This is, in fact, a 

phenomenon of imperfect near-field focusing, which can be 

explained, in essence, using the geometrical optics (GO). 

Hence, it is broadband and, in the 2-D case, takes place both in 

the E-polarization case (electric field is parallel to the rod) and 

H-polarization one (magnetic field is parallel to the rod). Note 

that the focusing can be enhanced greatly by making the 

sphere of rod discrete, i.e. made of concentric layers, with their 

dielectric constants mimicking the Luneburg lens [3,4]. 

 According to the reciprocity theorem of classical electro-

magnetics, if a point source is placed into EMJ area then, in 

the far zone, a sharp lobe of the angular radiation pattern 

appears. This far-field collimation can be also called “inverse 

EMJ” effect; in 2-D, it was studied in [5].  

 Besides of the GO effects, any finite-size dielectric object is 

an open resonator, which possesses a discrete spectrum of 

natural modes, The Pointing theorem tells that such mode 

frequencies can be only complex valued, i.e. the associated Q-

factors are always finite, because of the radiation losses. Out 

of all dielectric objects, those, which are circular at least in 

some cross-section, stand out, supporting the whispering-

gallery (WG) modes. In ideal sphere and circular rod, WG 

modes have Q-factors, exponentially growing up with radius, 

or mode index, that kills performance of rough commercial 

codes [6-8]. Note that both EMJ and inverse-EMJ effects on 

finite-radius rod are spoiled by the “ignition” of a WG mode 

because its near field starts dominating over the GO field [5]. 

Today, nanotechnologies open new opportunities in the 

design of many optical and photonics devices, and frequently 

this is connected to the use of graphene. Besides of the DC 
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tunability of its electron conductivity defined by the chemical 

potential, frequency, temperature, and relaxation time, a major 

feature of micro and nanosize graphene samples is their ability 

to support plasmon modes in the THz to infrared ranges 

[9,10]. Both flat and curved graphene strips attract attention 

today as easily fabricated tunable components of plasmonic 

antennas, waveguides, and sensors [11-15]. Recently, in [16] it 

was shown that a resonance graphene strip placed into the 

EMJ area of a circular dielectric rod enhances greatly the near 

field without increasing the radius or refractive index.  

Guided by the reciprocity principle, in this work we 

consider the radiation a THz range line magnetic current in the 

presence of a circular dielectric rod, decorated with a 

conformal strip of graphene. Our aim is to study the inverse-

EMJ effect, i.e. the far-field directivity enhancement and how 

can it be controlled with the aid of graphene strip. In our 

analysis, we combine the Maxwell boundary-value problem 

with the Kubo conductivity of graphene, considered as a zero-

thickness layer with complex surface impedance [9]. 

As it was pointed out to earlier [17,18], such a study is 

equivalent to accurate quantification of the Purcell effect, i.e. 

the modification of the power, radiated by a point source (in 2-

D) in the presence of composite open cavity: dielectric rod

with graphene strip. Note that description of this effect with 

the aid of a simplified quantity called “Purcell factor” [18] is 

not accurate and should be replaced with numerical analysis. 

 As circular rod is a simple shape, the center of gravity of a 

trusted numerical technique is associated with consideration of 

the graphene strip. Commercial code treatments of zero-

thickness strip meet certain difficulties (see Introduction in 

[19]), however, several convergent methods, developed earlier 

to study the scattering from perfectly electrically conducting 

(PEC) strips are available. Among them, we have two 

analytical regularization techniques: regularizing method-of-

moments and Riemann-Hilbert Problem (RHP) method, and a 

Nystrom-type discretization with Chebyshev quadratures [19-

21]. The use of these mathematically justified methods allows 

solving the considered problems quickly and with controlled 

accuracy even in the sharp WG-mode resonances.  

Important examples of such analyses cover flat graphene 

strip scattering in [12,14]. Plasmon-mode resonances in the 

scattering and absorption by the gratings of coplanar graphene 

strips were analyzed in [19-21]. The accurately studied curved 

graphene configurations are restricted to fully covered circular 

dielectric rod [22-24] and parabolic reflector in air [25].   

In our analysis, we use the technique of [16], extensively 

validated there and adapted here to the line current excitation.   

II. MATHEMATICAL MODEL

Consider a cylindrical time-harmonic ( i te  ) wave emitted 

by a magnetic-line current located near to a circular dielectric 

rod, the outer boundary of which is partially covered with 

conformal strip of graphene. The cross section of such antenna 

configuration by the coordinate plane 0z   is presented in 

Fig. 1. Here, R  is the radius of the rod, 2  is the angular 

width of the graphene strip, 2 2 2     is the angular width 

of the slot, and 
sD  is the distance from the source to the rod. 

The electromagnetic field is Н-polarized. 

Considering the case of 
zH  field not depending on z , we 

obtain the following 2-D problem. Find the function ( , )zH r  , 

which satisfies (i) the Helmholtz equation with the 

wavenumber ,Ik  or IIk  for all r R , (ii) the dual boundary 

condition at r R : on the strip arc,  0: ,| |L r R      ,  

02 ( )I II I II

z zE E ZZ H H    , 
I IIE  ,  (1) 

and on the slot arc,  0: ,| |S r R      , 

I II

z zH H ,  
I IIE         (2) 

(iii) the Sommerfeld radiation condition at infinity, and (iv) the 

local power finiteness condition (a.k.a. edge condition). 

Here, 
0 1/ZZ   is the graphene surface impedance,   is 

the surface conductivity, 
0Z  is the impedance of the free 

space, index I (II) is assigned to the inside (outside) domain 

filled with nonmagnetic material having permittivity ( )I II  , 

and , ( / )I II I IIk   , where c is the speed of light. 

The incident cylindrical wave, (1)

0 ( | |)inc I

z sH H k r r  , is 

emitted by the magnetic line current, placed at the point 
sr . 
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The total field can be presented as the Fourier series 

 
 

 

1,,

2,

/ , ,

/ , ,

I in

n n nnI II

z
inc II in

z n n nn

C J k r e d r R
H

H C H k r e h r R













 
 






    , (4) 

Here, ( ), ( ),I II

n n n nd J k R h H k R    ( )
n

J   and ( )
n

H   are 

the Bessel and Hankel first kind functions, the prime means 

differentiation in argument, and (1,2),nC  are unknown 

coefficients, which should be found. Such a field satisfies the 

Helmholtz equation and the radiation condition.  

Following [16], we derive a dual series equation for the 

unknown coefficients 
qx , linearly related to 

(1,2),qC . Using the 

parametric representations [26] of the integral operators with 

hyper-singular and logarithmic kernels, we reduce it to a 

boundary hyper-singular integral equation. Applying a 

Nystrom-type method with the Chebyshev quadratures, we 

discretize that equation as follows:  

1
, 1,..., ,

N

q qp p qp
x A x b q N


         (5) 

where 0( ) /q q qb f t Z   are known,  2

01 qZ i Z t  , and the 

elements of the matrix take the form, 





1 2 2 21
1 2 02

2

0 0

1

2

0 0 0

( 1) 1 ( )

ln 2 2 ( ) ( ) / ( 1) / (2 2)

2 (1 ) ( , ) / ( 1),

qq q q

N
q

s q s q

s

q q q

A Z B N B t

T t T t s N

t K t t N









       

 
     

 




    (6) 
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Using (3), the right part can be written as follows: 

 
1

( ) ( )

( )

s

s

in in

n n s n n nn

in in

n n s nn

f J H kr H H W e e
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where the omitted arguments of Bessel and Hankel functions 

are, respectively, Ik R  and IIk R , and other quantities are 

   1

0 1 2 01
, cos ( )( )nn

K t t W B n B n n t t 
 


     , (9) 

   
1

1

n I n n II n nW J J H H



 


, (10) 

1 1/ ( )I IIB kR    ,   2

221

2 I II I IIB kR    


     (11) 

Besides, 
0(s qT t  is Chebyshev polynomial of the first kind, 

and  
0qt  is zero of  Chebyshev polynomial of the second kind. 

The matrix equation (5) has strict diagonal predominance. 

The convergence of solution of (5) with N→∞ is guaranteed 

by the theorems of approximation of hyper-singular operators 

with the aid of quadratures [27,28]. 

Further we compute and discuss several characteristics, 

which depend on the frequency and size of the graphene strip. 

In the far zone, the total field is a cylindrical wave 
1/2( ) ( )(1/ ) ikr

zH r i kr e   (12) 

with the following parts of the angular radiation pattern, 

  0cos( )
( ) ( ) ( ), ,

ikr

in sc in e
     

      (13) 

  1

2,( )n in

sc n nn
i h C e 

 


   (14) 

The total radiation power is, by definition, 

 
21 2

0
0

( )radP kZ d





        (15) 

and then the substitution of (13) and (14) leads to 

2 *

0/ 1 2Re( ( ) ) ,sin

rad n n n sn
P P y y J kr e

 


  
    (16) 

where 
1

2,( n

n n ny i h C   and the normalization constant is the 

radiation power of the line in free space,  
1

0 02P kZ


 . 

The absorption power consists of two parts, corresponding 

to the power, absorbed in the lossy graphene strip, 

 
2

Regrph

absP Z R v d



 




        (17) 

and the power absorbed in the lossy dielectric rod, 

1 2 *

1,2 | | | | Im ( ) ( )diel I I

abs I m I m mm
P R C J k R J k R  






   (18) 

Thus, the radiation efficiency (the quantum yield efficiency 

in the language of the Purcell effect) is the ratio, 

/ ( )grph diel

rad rad abs absP P P P    (19) 

Fig. 2. The far-field computation error as a function of the order of 

interpolation in the Nystrom type discretization.  

The far-field directivity is the ratio of the power, radiated in 

the main-lobe direction, 
max , to the total radiated power, 

 
21

0 max2 ( ) ,radD kZ P 


      (20) 

Note that the line-current directivity in the free space is 1. 

Important part of the modeling is the description of the 

surface impedance of graphene. We use the Kubo formalism 

[9], according to which the graphene surface impedance, up to 

the visible-light frequencies, is given by 

     
1

0 intra 0 1( ) 1/ /Z Z i Z c   


   , (21) 

where 

  2 2 1 1 1

1 ( ) ( ) 2ln 1 exp( ( ) )e B c B c Bc q k T k T k T         , 

eq  is the electron charge, 
Bk  is the Boltzman constant, T  is 

the temperature, is the reduced Planck constant, τ is the 

electron relaxation time and μc is the chemical potential. 

As known, a strip of graphene can be considered as a 

plasmon surface wave Fabry-Perot resonator [12,16,21]. If 

| | 1Z , and neglecting the strip curvature, the approximate 

empiric equation for the plasmon modes is obtained as 

 sin Re 2 0plas R    ,       (22) 

 
1/2 2( ) / 2 1 ( ) ( )plas I II I IIk Z O Z                (23)

Here,   is the phase of the coefficient of reflection of the 

plasmon wave from the strip edge; the best fit is / 4  . 

The roots of (22) determine the natural frequencies of the 

plasmon modes Pm, whose fields are symmetric (m = 1,3,…) 

and anti-symmetric (m = 2,4, …) w.r.t. the strip middle point, 

 
1 21

0 12
( ) ( ) ( ).m I IIm Z cc R O Z     

      (24) 

IV. NUMERICAL RESULTS

First of all, to check the convergence we compute the error, 

max max( ) ( ) ( ) / ( )P rad rad rade N P N P N P N (25) 

in the far-field power, as a function of the discretization order, 

with respect to the power computed at 
max 50N  . These plots 

are presented in Fig. 2 and serve as the code validation. The 

antenna parameters are explained in the inset. 
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(a) 

(b) 

(c) 

Fig. 3. Spectra of normalized radiation (a) and absorption power (b) and 

directivity (c) as a function of the frequency for the dielectric rod without 

grapheme strip (red), with grapheme strip (black), and for the grapheme strip 

in the free space (blue). The dotted line on panel (c) depicts the main lobe 

radiation angle. Dielectric rod has radius of R = 50 m and permittivity 

2.4  . Graphene width is L = 10 m. The source is on the x-axis at the 

distance 50 nmsD  from the rod. 

(a) 

(b) 

(c) 

Fig.4. The same in Fig. 3, however for 5 μm, 2.5 μms L   

At first, we assume that the rod is lossless and 0.diel

absP  In 

Figs. 3 to 5, we present the spectral dependences, up to 10 

THz, of (a) radiation power, (b) absorption power, and (c) 

directivity and the angle of the main lobe, 
max (dotted lines). 
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(a) 

(b) 

(c) 

Fig. 5. The same in Fig. 3, however for 100 m, 0.1 msR D   . 

The parameters of graphene and dielectric are the same for 

all figures: 1 ps  , 300KT  , 0.5 eVc  , and 2.4.   

The source coordinates are taken on the x-axis all times. 

In Figs. 3 and 4, the rod radius is R = 50 m and the strip 

width, L R , is different, 10 mm and 2.5 mm, respectively. 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 6. Normalized far-field angular radiation patterns in and near to some of 

the peaks of absorption power in Figs. 3-5, and near field portraits in the 

peaks. 

   As the plasmon frequency scales as inverse square-root of 

strip width (see (24)), in the latter case the plasmon resonance 

P1 shifts to twice higher frequency than in the former case. It 

can be seen that the excitation of the plasmon mode adds to the 

radiation power (or Purcell factor) of antenna, however, at the 

expense of the spike in the absorption power. In the upper-

THz range, the resonances on the WG modes appear, which 

are absent on the absorption plots because the rod is assumed 

lossless. A shift of the source from the rod plays little role. 

The plots of the directivity of emission on panels (c) reveal 

very interesting interplay of three effects. One of them has GO 

nature – this is inverse EMJ effect, which is displayed as a 

remarkable steady growth of D with frequency from 1 in static 

limit to some 10 at 10 THz. The main lobe looks in the 

direction of 180 .o   However, this growth is spoiled by the 

plasmon resonance P1, accompanied with a deep drop in the 

directivity. This is because the natural field of the first-order 

plasmon mode has the “dipole” pattern, with strong backward 

radiation (i.e. in the direction of 0  ). Note that, in the case 

of wider strip (Fig. 3 (c)), this happens to be enough to “over-

keel” the main lobe direction. If the strip is narrower (Fig. 4 

(c)), the resonance P1 appears at higher frequencies, where the 

inverse-EMJ effect is stronger, and then no resonance “over-

keel” happens.  

1
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(a) 

(b) 

(c) 

Fig. 7. The same characteristics as in Fig. 5, however for the lossy dielectric 

rod, 2.4 0.01i   . For comparison, the lossless rod data are also shown. 

The plots in Fig. 5 show similar results, however for twice 

wider rod decorated with wide strip of graphene. In this case, 

the radiation power (i.e. the full-wave Purcell factor) display a 

Fig. 8. Radiation efficiency as a function of frequency in the case of lossless 

dielectric rod. Antenna parameters are explained in the inset. 

Fig. 9. Comparison of radiation efficiencies versus the frequency in the case 

of lossless (black) and lossy (green) dielectric rod. 

periodic sequence of sharper and sharper spikes at higher 

frequencies. These are the resonances on the WG modes of the 

circular rod, H1m (m = 1,2, …), that have Q-factors, 

exponentially growing with azimuth index m. They are absent 

on the plots of the absorption power as the rod is assumed 

lossless. They spoil the directivity (i.e. the inverse-EMJ effect) 

in the same manner as the plasmon-mode resonance, although, 

unlike the latter, they cannot “over-keel” the main lobe. 

To support our understanding of the behavior of the antenna 

directivity as a function of the frequency, we visualize, in Fig. 

6, three sets of the normalized far-field radiation patterns and 

the near-field portraits. The former are plotted both in and off 

the resonances, and the latter are shown only in the resonances. 

In the case of plasmon resonance, they demonstrate enhanced 

backward radiation (a), (e) and near field, which sticks to the 

graphene strip (b), (f). The main lobe, in this resonance, looks 

backward direction.  

1
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(a) 

(b) 

(c) 

Fig. 10. Color maps of the normalized radiated (a) and absorbed (b) powers 

and the directivity (c) of emission versus the frequency and the strip angular 

width, for antenna with the other parameters being the same as in Fig. 9. 

In the case of the resonance on the WG-mode H1,25, see 

panels (c) and (d), there are as many as 50 comparable lobes in 

the far-field pattern and 50 bright spots in the near field, inside 

the dielectric rod. Still, the main lobe of radiation looks in the 

forward direction even in the resonance.  

Keeping in mind that even the best of available dielectric 

materials are lossy, we have also checked how these losses 

affect the above discussed antenna characteristics. In the 

language of the Purcell effect, this is equivalent to account of 

non-radiation decay rate due to both dielectric and graphene 

losses. The corresponding results are presented in Fig. 7 for 

the case of 2.4 0.01.i    They show that the plasmon-mode 

resonance and associated drop in the directivity is almost 

intact. However, now the WG-modes appear as small but sharp 

spikes in the normalized absorption power. The plots of the 

radiation power and the directivity become smoother because 

the Q-factors of WG modes are now spoiled.  

Finally, we discuss the radiation efficiency of the studied 

photonic antenna. This is the same as quantum yield efficiency 

in terms of the Purcell effect. The frequency dependences of 

this quantity are presented in Figs. 8 and 9 for the lossless rod 

and lossy rod, respectively. As could be expected, the 

radiation efficiency drops in the plasmon resonances, however, 

this drop is only a few per cent as it has the order of (Re )O Z . 

In similar manner, if the rod is lossy then the efficiency drops 

in the WG-mode resonances; here the drops have the order of 

(Im )O  . 

More complete understanding of the variation of the above 

discussed characteristics with frequency and strip size, for the 

other parameters taken as in Fig. 9, is provided by the color 

maps in Fig. 10. Here, one can easily discriminate between the 

WG-mode resonances, which have fixed frequencies, and 

plasmon-mode resonances, which follow equation (24). 

V.  CONCLUSIONS 

We have presented the results of the accurate study of the 

modification of the H-polarized radiation emitted by magnetic 

line current, due to isotropic circular dielectric rod decorated 

with graphene strip. Our results, obtained by a mathematically 

grounded in-house algorithm based on judicious solution of 

the hypersingular integral equation, have shown that such 

antenna is able to produce well-collimated radiation in the far 

zone, due to the inverse EMJ effect. However, this broadband 

collimation is spoiled if the frequency hits one of the natural 

frequencies, which are of two kinds: of the medium-Q strip-

plasmon modes and of the extremely high-Q rod WG modes. 

What appears to be important for applications, only the 

plasmon-mode resonances are tunable with the aid of DC bias, 

which changes the chemical potential of graphene. This makes 

possible electrically controlled binary operation of antenna at a 

fixed frequency, via the main lobe blinking in the forward 

direction. Note that if the strip were a PEC one, then the 

plasmon modes and the associated resonances would be 

absent. In this case, the strip mostly screens the rod from the 

source and the EMJ effect is spoiled. 

We would like to emphasize that our code, besides of the 

controlled accuracy, is very fast: the plots and maps presented 

above are computed within dozens of minutes on a moderate 

desktop computer. 
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