
HAL Id: hal-03003527
https://hal.science/hal-03003527v1

Submitted on 28 Mar 2020 (v1), last revised 8 Apr 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A global probabilistic study of the ocean heat content
low-frequency variability: Atmospheric forcing versus

oceanic chaos
Guillaume Sérazin, Alexandre Jaymond, Stephanie Leroux, Thierry Penduff,
Laurent Bessières, W. Llovel, Bernard Barnier, Jean-Marc Molines, Laurent

Terray

To cite this version:
Guillaume Sérazin, Alexandre Jaymond, Stephanie Leroux, Thierry Penduff, Laurent Bessières,
et al.. A global probabilistic study of the ocean heat content low-frequency variability: Atmo-
spheric forcing versus oceanic chaos. Geophysical Research Letters, 2017, 44 (11), pp.5580-5589.
�10.1002/2017GL073026�. �hal-03003527v1�

https://hal.science/hal-03003527v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A global probabilistic study of the Ocean Heat

Content low-frequency variability: atmospheric

forcing versus oceanic chaos

Guillaume Sérazin
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A global 1/4◦ ocean/sea-ice 50-member ensemble simulation is used to dis-

entangle the low-frequency imprints of the atmospherically-forced oceanic

variability and of the chaotic intrinsic oceanic variability (IOV) on the large-

scale (10◦ x10◦) ocean heat content (OHC) between 1980 and 2010. The IOV

explains most of the interannual-to-decadal large-scale OHC variance over

substantial fractions of the global ocean area that increase with depth: 9%,

22%, and 31% in the 0-700m, 700-2000m and 2000m-bottom layers, respec-

tively. Such areas concern principally eddy-active regions, mostly found in

the Southern Ocean and in western boundary current extensions, but also

concern the subtropical gyres at intermediate and deep levels. The oceanic

chaos may also induce random multidecadal fluctuations so that large-scale

regional OHC trends computed on the 1980-2010 period cannot be unam-

biguously attributed to the atmospheric forcing in several oceanic basins at

various depths. These results are likely to raise detection and attribution is-

sues from real observations.

Keypoints:

• The chaotic low-frequency Oceanic Intrinsic Variability (IOV) locally dom-

inates the atmospherically-forced oceanic variability.

• The IOV explains most of the ocean heat content (OHC) interannual-

to-decadal variability in several regions and depth ranges of the Global Ocean.
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• The 1980-2010 OHC regional trends cannot be unambiguously attributed

to the atmospheric forcing in several regions and depth ranges of the Global

Ocean.
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1. Introduction

Greenhouse gases emitted by human activities cause a significant imbalance between

incoming and outcoming heat fluxes in the climate system, which results in the current

global warming [IPCC , 2013]. Since the 1970s, the global ocean heat content (OHC) has

absorbed approximately 93% of this excess heat input into the climate system. Under-

standing the distribution of this excess heat inside the ocean is a challenging issue given

the relatively sparse observational coverage in space and time available [Rhein et al., 2013].

Several studies based on observational datasets have shown that the ocean warming prin-

cipally occurs above 700m [Levitus et al., 2009; Ishii and Kimoto, 2009], but intermediate

(700-2000m) [Levitus et al., 2012] and deep (below 2000m) [Purkey and Johnson, 2010;

Kouketsu et al., 2011] layers may also warm, at a slower rate. The horizontal distribu-

tion of upper thermal trends is also inhomogeneous: regions such as the North Atlantic

subpolar gyre, the tropical South West Pacific and the tropical Indian undergo a cooling

instead of a warming (see Fig.S8 in Levitus et al. [2012]).

Regional OHC trends computed over half a century result from a subtle balance between

the response of the climate system to human activities, the response to natural forcings,

and the natural variations spontaneously emerging in the climate system – generally

referred to as internal climate variability (hereafter ICV). The contributions of these

factors to the globally-integrated upper OHC increase since the 1970s are rather well-

known, but their contributions at regional scale is still a topic of active research [Bindoff

et al., 2013]. Attributing regional OHC changes indeed requires a precise estimate of

low-frequency (LF) ICV from interannual to centennial timescales, currently based on
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simulations performed with the state-of-the-art climate models. However, such climate

models still lack of an accurate representation of the different sources of LF ICV, which

reside mainly in atmospheric and oceanic internal dynamics, and in air/sea interactions.

In the past, it was thought the ocean acted as a passive heat reservoir integrating atmo-

spheric fluctuations. This classic view implies that the imprint of the ICV on the OHC is

associated either with the oceanic response to atmospheric internal processes (e.g., North

Atlantic Oscillation) or with coupled air/sea interactions (e.g., El Niño oscillation), but

not with ocean-only processes. This paradigm led to the development of stochastic models

[Hasselmann, 1976] in order to explain the characteristics of the sea surface temperature

(SST) spectrum [Frankignoul and Hasselmann, 1977].

However, recent studies based on eddying Ocean General Circulation Models (OGCMs)

have demonstrated that the ocean behaves as a chaotic system, whose internal dynamics

may spontaneously generate variability over a wide spatio-temporal spectrum, including

basin scales and LF timescales [Penduff et al., 2011; Sérazin et al., 2014; Grégorio et al.,

2015]. This so-called intrinsic oceanic variability (hereafter IOV) is not directly forced

by the atmospheric variability and originates from oceanic nonlinear processes. Resolving

(at least partially) mesoscale turbulence is necessary to simulate a substantial amount of

LF IOV (see for instance the comparison between the 2◦ and 1/4◦ simulations in Penduff

et al. [2011]). Using an eddy-resolving OGCM, Sérazin et al. [2016] showed that in eddying

regions, the imprint on sea-level of this LF IOV at multidecadal timescales is comparable

to the imprint of LF ICV, simulated by current climate models (such as those used in the

Coupled Model Intercomparison Project 5, CMIP5), which use laminar ocean components.
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The goal of our study is to extend those aforementioned studies of LF IOV, to the whole

ocean volume with the LF OHC variability over various depth ranges on the period 1980-

2010. We aim at evaluating the respective imprints of the LF IOV and of the atmospheric

variability on the OHC, hence assessing the passive oceanic heat reservoir paradigm. In

order to simultaneously simulate (and subsequently separate) the forced and intrinsic

contributions to the LF OHC variability, we use a novel probabilistic modeling strategy

based on a 50-member ensemble of simulations performed over 1960-2015 with a 1/4◦

eddy-permitting global OGCM [Bessières et al., 2016]. These simulations were driven

by the same atmospheric forcing but slightly perturbed in their initial conditions; the

chaotic behavior of the eddying ocean dynamics yields 50 different trajectories from which

the forced and chaotic ocean variabilities may be disentangled. Ensemble approaches

are used in numerical weather prediction and climate science but have been adopted in

oceanography only recently.

We focus on two climate-related ranges of timescales: interannual-to-decadal

(2 yr < T < 15 yr), and multi-decadal (T > 30 yr). Two main questions are addressed

in this paper: (1) In which regions does the interannual-to-decadal chaotic IOV of re-

gional OHC dominate its atmospherically-forced counterpart? (2) Where can the OHC

trends over 1980-2010 be unambiguously attributed to atmospheric forcing? Where can

the chaotic IOV hamper the detection of forced OHC trends over 1980-2010?

We investigate these questions within 3 depth ranges (0-700m, 700-2000m, 2000-6000m)

consistently with the coverage and evolution of in-situ observing systems (see Abraham

et al. [2013] for a review). The development of expendable bathythermograph (XBT)
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observing systems have provided a reasonable spatial coverage of the upper 300m since

the 1970s and of the upper 700m since the 1990s. The Argo profiling float [Roemmich

et al., 2009] has extended this coverage to 2000m depth since 2001, with a global coverage

reached in 2005. Future oceanic observation such as Deep-Argo [Johnson et al., 2015]

would extend the Argo sampling to the poorly probed deep ocean (i.e., the 2000-6000m

layer), which represents 52% of the total oceanic volume [Abraham et al., 2013]. Both

past and future measurements might be impacted by the oceanic ”noise” (chaotic IOV),

which would complicate the interpretation of the observed OHC variability in relation to

the atmospheric variability.

2. Data and methods

2.1. Model simulations

We use the probabilistic version [Bessières et al., 2016] of the NEMO ocean model

(Nucleus for European Model of the Ocean, [Madec, 2008]), implemented on the global

ocean at 1/4◦ horizontal resolution with 75 vertical levels. Each simulation is forced by

the Drakkar Forcing Set (DFS) version 5.2 [Dussin and Barnier , 2013], based on the

ERA40/ERA-Interim reanalyses. The model settings (e.g., advection scheme, diffusion

coefficients) are similar to the 1/4◦ simulations performed with the ORCA025 configura-

tion and used in previous studies to characterize the LF IOV (i.e., Penduff et al. [2011];

Grégorio et al. [2015]; Sérazin et al. [2016]).

Our integration strategy consists of a 21-year spinup followed by a 56-member ensemble

simulation, both driven by the 1958-2015 DFS5.2 forcing. One model member is started

from rest in 1958, and spun-up until the end of 1977. A modified forcing, linearly in-
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terpolated from January 1st 1978 to January 31st 1958, is then applied for one month

to smoothly bring the oceanic state back to February 1958. The spin-up is resumed be-

tween February 1st 1958 and December 31st 1959 under nominal DFS5.2 forcing. The

50 members are initialized by this spun-up state on January 1st 1960 and integrated

under DFS5.2 forcing until the end of 2015. A stochastic parameterization that slightly

perturbs the density field [Brankart , 2013] is activated in 1960 to trigger the ensemble dis-

persion, and then switched off at the end of 1960. Ensemble statistics are computed after

the integration, from which the LF forced variability and IOV are calculated. Because

the atmospheric reanalyses used in DFS5.2 do not include any interannual variability in

the buoyancy fluxes before 1980, and because we had data storage issues after 2010, we

hereafter focus our analyses on the 1980-2010 period.

In addition to this ensemble simulation, we performed a one-member 327-year climato-

logical simulation forced each year by the mean seasonal atmospheric cycle derived from

DFS5.2. This experiment is close to that used in previous studies of LF IOV [e.g., Penduff

et al., 2011; Sérazin et al., 2014]. and is used here to estimate and compensate the model

drift.

2.2. Ocean heat content computation

The local OHC is computed at each timestep t, from each of the 50 ensemble members

(denoted by n) by integrating the three-dimensional (x, y, z) monthly temperature fields

between depths z1 and z2:

OHC(n, t, x, y) = ρ0cp

∫ z2

z1

T (n, t, x, y, z)dz, (1)
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where the density of seawater ρ0 = 1020 kg.m−3 and the calorific capacity per unit mass

cp = 4000 J.kg−1.K−1 are taken constant. Note that the OHC is defined here per unit

area so that datasets at different grid resolutions may be compared. The local OHC is

computed for layers 0-700m, 700-2000m, and 2000-6000m, which cover the ocean from the

surface to the bottom, and averaged over successive years. OHC fields are then spatially

smoothed using a low-pass bidimensional Lanczos filter [Duchon, 1979] in order to remove

structures smaller than 10◦ x 10◦ and focus on larger-scale. The same processing is applied

to the climatological simulation.

2.3. Estimating the interannual-to-decadal OHC variability

In order to limit biases in the computation of interannual-to-decadal OHC standard de-

viations, we remove all timescales longer than about 15 years (hence the trends) from the

50-member yearly OHC fields in the 3 layers, using the non-parametric LOESS method

(see Cleveland and Devlin [1988]; Sérazin et al. [2014]; Grégorio et al. [2015]). The sub-

sequent high-passed OHC timeseries thus contain periods ranging from 2 years to about

15 years for each member. An example of such filtered 50-member timeseries is given in

Fig. S1. The intensity of the interannual-to-decadal forced OHC variability σF is then

estimated from the temporal unbiased standard deviation of the ensemble-mean OHC

timeseries:

σF =

√

√

√

√

1

Y − 1

Y
∑

i=1

(< OHC > −< OHC >)2dt, (2)

where < x > and xi denotes respectively the ensemble and temporal means of xi. Y is

the total number of years (i.e., 31). The intensity of the interannual-to-decadal IOV σI ,

induced by chaotic oceanic motions, is estimated by time-averaging the OHC ensemble
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unbiased variance:

σI =

√

√

√

√

1

N − 1

N
∑

i=1

(OHCi− < OHC >)2, (3)

where N is the total number of ensemble member (i.e., 50). The ratio of these standard

deviations yields the signal-to-noise ratio SNR = σF/σI . This SNR may be used to

quantify the ability to detect a forced signal, i.e., induced by the atmospheric variability,

among the ambient noise generated by chaotic oceanic motions, i.e., the IOV. The intensity

of the total variability of OHC is simply estimated by σT =
√

σ2
F + σ2

I .

2.4. Computing the 1980-2010 OHC trends

To estimate the local impact of IOV on OHC at multi-decadal timescales, we compute

linear trends from raw monthly timeseries over the 1980-2010 period (for each member

and each layer). We reduce biases due to the model drift by computing the corresponding

local OHC linear trends from the climatological simulation (shown in Fig. S2) and by

subtracting these trends to the 50-member ensemble of OHC trends. After this correction,

the ensemble mean is thus an estimator of regional OHC trends induced by the atmo-

spheric forcing, and the ensemble standard deviation is an estimator of the uncertainty

induced by the oceanic chaos.

3. Interannual-to-decadal OHC variability

In this section, the term variability will refer to interannual-to-decadal timescales. We

first focus on total (σT ) OHC variability maps and associated signal-to-noise ratios (SNR)

in the three layers (Fig. 1). The corresponding maps for intrinsic (σI) and forced (σF )

OHC variability are shown in Fig. S3 and Fig. S4, respectively.
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In the 0-700m layer (top panel), the total OHC variability is large in eddy-active Western

Boundary Currents (WBCs), in particular in the Gulf Stream and the Kuroshio, and all

along the Antarctic Circumpolar Current (ACC). The chaotic IOV dominates the forced

variability (SNR < 1, green shading) throughout most of the ACC aside from the Pacific

sector, and in small areas of the Gulf Stream and of the Kuroshio. The Zapiola anticy-

clone, associated with the Brazil-Malvinas Confluence, as well as the Agulhas leakage are

also characterized by large OHC variability, which is almost everywhere dominated by

chaotic IOV. The tropical Pacific and Indian oceans exhibit substantial OHC variability,

probably linked to El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole,

respectively. The OHC variability in these inter-tropical regions is however mainly forced

by the atmospheric variability (SNR > 1). Overall, the chaotic IOV exceeds the forced

interannual-to-decadal OHC variability over 9% of the global ocean area in the 0-700m

layer.

In the 700-2000m layer (Fig.1’s middle panel), the total OHC variability remains large

in eddy-active regions with a distribution that differs from the upper layer: it is shifted

towards the eastern part of the North Atlantic, and shrinks closer to Japan in the North

Pacific. The midlatitude OHC variability is mostly forced by the atmosphere (SNR > 1)

in the northern hemisphere, although the IOV predominates in more regions than above

700m (SNR < 1, red shading): Pacific WBC system and China Sea, Gulf of Alaska,

Rockall Plateau, and Gulf of Mexico. At high latitudes, the Labrador sea has large total

OHC variability, mainly induced by the atmospheric forcing (SNR > 1) and probably

related to the deep convection occurring in this region. The OHC variability is weaker
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at lower latitudes, except in the Indian ocean, and is mostly forced by the atmospheric

variability everywhere between 10◦S and 10◦N. The chaotic IOV, however, locally dom-

inates the forced OHC variability along the equatorward flanks of the subtropical gyres

in the Atlantic and Pacific Oceans. The total OHC variability is clearly dominated by

chaotic IOV throughout most of the South Atlantic subtropics, and almost everywhere

along the ACC. Overall, the chaotic IOV dominates the forced interannual-to-decadal

OHC variability over 22% of the 700-2000m layer area, i.e. substantially more than above

700m.

In the 2000-6000m layer (Fig.1’s bottom panel), the total OHC variability becomes

weak in the Kuroshio but remains substantial in the Northwestern subtropical Atlantic,

in the Southern Ocean and in the South Atlantic midlatitudes. In most of these regions

and along the equatorward flanks of subtropical gyres, most of the OHC variability comes

from the chaotic IOV (SNR < 1, blue shading). The same conclusion holds for the China

sea and the Gulf of Alaska. In contrast, the total OHC variability maximum simulated in

the Labrador sea at all depths is mostly controlled by the atmospheric forcing (SNR > 1).

The relative imprint of IOV has thus further increased downward: the chaotic IOV exceeds

the forced interannual-to-decadal OHC variability over 31% of the 2000-6000m layer area.

Fig. 2a provides diagnostics at larger scales: it shows SNRs computed from 3-

dimensional integrals of OHC in the 3 layers and over the regions denoted by black boxes

in the bottom panel of Fig. 1 (exact coordinates are given in Table S5). This panel

first confirms that the interannual-to-decadal SNR decreases monotonically with depth

for the globally-integrated OHC (GLO), as well as in most of the regions mentioned
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above. This panel also demonstrates that chaotic IOV still has a substantial imprint

(1.5 < SNR < 2.5) on the variability of the OHC integrated over very wide regions, such

as the whole subtropical South Atlantic (SA, all depths), the whole Indian and Pacific

sectors of the Southern Ocean (IACC and PACC, below 700m).

In summary, the interannual-to-decadal OHC variability is mostly forced by the atmo-

spheric variability in tropical regions and in the Labrador Sea, within all depth ranges.

The chaotic IOV, however, exceeds the atmospherically-forced OHC variability in sev-

eral regions of the world ocean: regions of intense mesoscale activity such as the WBCs

and the ACC, but also the Pacific and Atlantic subtropical gyres. The relative contribu-

tion of IOV to the total OHC variability tends to increase with depth as the imprint of

the atmospheric variability decreases: (1) regions where the interannual-to-decadal IOV

exceeds its forced counterpart represent 9%, 22% and 31% of the global ocean area in

the 0-700m, 700-2000m and 2000-6000m layers, respectively; (2) the impact of IOV on

the OHC integrated over very wide regions also increases with depth, and remains very

substantial.

4. Multidecadal OHC variability: 31-year trends

The right panels (b, c, d) in Fig. 2 show the probability density functions (PDFs)

of 1980–2010 OHC trends integrated over the same layers and regions as above, and

deduced from the 50 ensemble members. The 0–700m layer globally (GLO) warms at an

estimated (mean) rate of 7.5MJ.yr−1.m−2 (0.24W.m−2). This forced trend falls into the

different observational estimates made over the period 1980–2012 (see Fig. 14 in Abraham

et al. [2013]). The forcing induces a global cooling in the 700–2000m layer at a rate of
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−2.4MJ.yr−1.m−2 (−0.08W.m−2), which is not consistent with the observational study

of Levitus et al. [2012] that rather suggests that this intermediate layer warmed from 1955

to 2010. The forcing eventually warms the 2000–6000m layer at a rate of 2.0MJ.yr−1.m−2

(0.06W.m−2), which is hardly comparable with the actual deep ocean due to the lack of

observations.

These globally-integrated OHC trends are barely affected by the oceanic chaos as the

PDF spreads are marginal in each of the layers. This result is consistent with the idea

that intrinsic fluctuations of mesoscale and regional circulations randomly redistribute

heat over the horizontal without modifying the global OHC.

Results are different at regional scale. In the 0–700m layer, certain regions warm (e.g.,

KUR, GS, NPSG) while others cool (e.g., NASG, PACC) due to the forcing (white dots,

median) over this 31-year period. In the 700–2000m layer, most regions cool, except

the South Pacific subtropical gyre (SPSG). The largest forced cooling rates are found in

the Gulf Stream (GS) and in the Pacific ACC (PACC). In most regions, however, the

PDFs of OHC trends exhibit a substantial ensemble spread induced by multidecadal IOV

(& 5MJ/m2/yr in the 0–700m layer, & 2MJ/m2/yr in the 700–2000m layer), except in

the South Pacific subtropical gyre (SPSG) and the Pacific ACC (PACC).

The Zapiola (ZAP) region in our simulation is particularly impacted by multidecadal

IOV, which yields a large spread in OHC trends in the three layers. Ensemble PDFs

of simulated OHC trends in this region overlap the zero line at all depths, and in other

regions in certain layers (e.g. ALA above 2000m, SA above 700m, KUR in the 700-2000m

layer, AGU in the 2000-6000m layer). In these regions, such overlaps imply that it is not
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possible to assert the sign of the forced OHC trend in a particular member. The potential

implications of these findings for observational studies is discussed in section 5.

Interestingly, ensemble PDFs are also somewhat different from Gaussian distributions

in the Gulf Stream (GS), Kuroshio (KS) and South Atlantic (SA) regions. However, to

be able to test the significance of regional cooling or warming in connection with the at-

mospheric forcing during 1980–2010, we assume that random trends due to internal ocean

dynamics (IOV) are normally distributed with a zero mean and with a standard deviation

estimated from the 50-member ensemble spread. We thus test the forced (ensemble mean)

OHC trend against the null hypothesis that the trend is zero. When this null hypothesis

is rejected, we may state that the trend is not significantly forced by the atmosphere, but

is rather randomly induced by the oceanic chaos. We chose a 95% confidence interval, i.e.,

two standard deviations. We apply this test on the regional maps of forced OHC trends;

results are shown in Fig. 3 where non-significant trends are highlighted with hatched

contours.

In the Pacific, the 0–700m layer (Fig. 3’s top panel) warms in the west from 1980 to 2010,

cools in the east and in the Southern Ocean. This pattern is consistent with the observed

interdecadal modulation of ENSO, i.e. a transition between positive and negative phases

of the Pacific Decadal Oscillation (PDO) and the Indian Pacific Oscillation (IPO) between

1980 and 2010 [Chen and Wallace, 2015]. During this period, the zonal thermocline tilt

becomes steeper and yields an increased heat storage in the western part of the basin.

Our statistical test shows that over most of the basin, the simulated 31-year trend may

indeed be unambiguously attributed to the atmospheric forcing.
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In the hatched regions, however, the ensemble-mean OHC trends become small enough

to fall into the random uncertainty induced by multidecadal IOV and may not be unam-

biguously attributed to the atmospheric forcing. Our results suggest that this concerns

many regions of the global ocean: most of the subpolar North Pacific and South Atlantic,

a large part of the Indian Ocean, a wide region south of Australia, the Beaufort Sea, the

Gulf Stream region and a zonal band across the subtropical North Atlantic, etc. Most of

these results corroborate our conclusions about regional trends (Fig. 2b).

The 700–2000m layer (Fig. 3’s middle panel) exhibits a large cooling in the Pacific part

of the Southern Ocean as well as a large warming east of Australia, similar to OHC trends

found in the upper layer. In these regions, OHC trends may be significantly attributed

to the atmospheric forcing and are probably the extension of the upper layer imprint of

the PDO and IPO down to the mid-depth ocean. In the North Atlantic, the atmospheric

forcing unambiguously warms the Labrador sea and cools the subtropical gyre.

Again, our results suggest that mid-depth OHC trends cannot be unambiguously at-

tributed to atmospheric causes because of substantial random imprints of multidecadal

IOV in several regions (red hatched contours): regions surrounding the large patterns

mentioned above, regions close to those hatched in the 0-700 layer (e.g., South Atlantic,

North Pacific subpolar gyre, Agulhas Return Current, Arabian Sea), and additional re-

gions (e.g., central North Pacific west of Hawaii, Eastern North Atlantic).

In the deep 2000–6000m layer (Fig. 3’s bottom panel), our results suggest that the

atmosphere does force large warming trends over a wide part of the Atlantic Ocean and

in the Southwestern Pacific. These warming trends are consistent with a deep ocean heat
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uptake that stores a large fraction of the excess heat from anthropogenic warming in the

Atlantic and in the Southern Ocean [Chen and Tung , 2014; Liu et al., 2016]. In our

model, a substantial cooling trend also occurs in the mid-latitude South Atlantic as well

as weaker trends over other regions (e.g., most of the North Pacific). At these depths, it

is not possible to unambiguously attribute the 31-year OHC trends to atmospheric causes

in most regions south of about 30◦S (and in other regions too), where multidecadal IOV

yields relatively large ensemble spreads.

In summary, our analyses show that multidecadal IOV does hamper the unambiguous

attribution of regional OHC 31-year trends to the atmospheric forcing over large regions

of the global ocean at various depths, such as in the South Atlantic, the Southern Ocean,

the Arabian Sea.

5. Conclusion and discussion

The analysis of an eddy-permitting ensemble simulation shows that over most of the

global ocean, the atmospheric variability is the main driver of the LF regional OHC

variability at interannual-to-decadal (section 3) and multidecadal (section 4) timescales.

However, the simulated oceanic turbulence leads to the spontaneous emergence of chaotic

IOV, which has a significant imprint on LF OHC variability while being uncorrelated

with the atmospheric variability. At interannual-to-decadal timescales, this chaotic IOV

exceeds the atmospherically-forced OHC variability in many areas of the Southern Ocean,

in turbulent western boundary currents, but also in more quiescent regions. The relative

importance of the chaotic IOV over its forced counterpart tends to increase with depth: the

OHC variability is mostly chaotic over one third of the deep ocean area. At multidecadal
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timescales, the chaotic IOV also projects on regional 31-year OHC trends, forbidding the

unambiguous attribution of these trends to atmospheric causes in many regions (large

parts of the Southern Ocean, Arabian Sea, etc)

The randomness of the intrinsic signal raises important issues for the detection, attri-

bution and interpretation of regional fluctuations in certain regions of the ocean, in the

context of climate change [Bindoff et al., 2013]. First, the chaotic contribution of the

oceanic turbulence to the LF OHC variability highlights the limitations of the passive

heat reservoir paradigm in several regions of the global ocean. As a consequence, the

classic null-hypothesis of an atmospherically-forced red noise spectrum [Frankignoul and

Hasselmann, 1977], commonly used in climate-related studies, may not be well-suited to

test the significance of spectral peaks in eddy-active regions. We argue that further work

is needed to update this current null-hypothesis in order to take into account the LF

intrinsic “noise” produced by the turbulent ocean.

Secondly, this eddy-induced noise is not taken into account in the construction of time-

varying 3-dimensional temperature fields from ocean observations [e.g., Ishii and Kimoto,

2009; Levitus et al., 2012], nor in its interpretation for climate monitoring. Our results

indeed suggest that individual observations, such as XBT or Argo temperature profiles,

may capture the imprint of chaotic IOV as well as long-term atmospherically-induced

climate change signals. The impact of the local IOV-induced random uncertainties on

temperature reconstructions has not been addressed in this study, but it would be possi-

ble and perhaps valuable to provide the observational community with error bars deduced

the ensemble spread after collocation on each of the temperature profiles. Fig. S5 shows
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that these local uncertainties are not negligible and are even larger than those shown for

large-scale (10◦ x 10 ◦) OHC variability in Fig. 1. Identifying precisely these chaotic

uncertainties is an important issue to address since future oceanic observations will sam-

ple the deep ocean, where oceanic IOV may be relatively important compared to the

atmospherically-forced signal.

The novel approach used in our study, which estimates LF IOV from ensemble statis-

tics, gives consistent results with the previous studies that use only one climatological

simulation to estimate the IOV. In particular, regions where the chaotic IOV substan-

tially imprints the OHC are associated with regions where the IOV imprint on sea-level

was shown to be substantial at interannual-to-decadal [Penduff et al., 2011; Sérazin et al.,

2014] and multidecadal timescales [Sérazin et al., 2016]. Those OHC intrinsic fluctua-

tions might be the result of random heat redistributions by oceanic turbulence, and could

substantially contribute to intrinsic sea-level fluctuations through the thermosteric com-

ponent. Grégorio et al. [2015] also showed that intrinsic processes may explain about 25%

of the Atlantic meridional heat transport LF variability at 34◦S, i.e. in a region where it

also explains most of the OHC variability. The link between the dynamical and thermal

imprints of the chaotic IOV still needs to be clarified.

Disentangling properly the forced and chaotic global ocean variabilities requires large

ocean-only simulation ensembles in the eddying regime, which are only possible at eddy-

permitting resolution today. However, long climatological simulations showed that the

1/4◦ resolution captures many features of the IOV simulated at 1/12◦ [Grégorio et al.,

2015], albeit with a weaker imprint on sea-level [Sérazin et al., 2014].
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In any case, the present results suggest that the LF oceanic chaos may, in turn, have

atmospheric impacts in future climate projections, which are currently implemented with

1/4◦ ocean models. The chaotic IOV imprint on OHC is indeed strong in the regions

(Gulf Stream, Kuroshio, Agulhas, etc) where air-sea heat fluxes are largest in nature, and

could influence the climate in such experiments. Verifying this hypothesis lies beyond the

scope of the present study, which nevertheless suggests an increase in the complexity and

richness in climate projections with turbulent oceans.
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Sérazin, G., B. Meyssignac, T. Penduff, L. Terray, B. Barnier, and J.-M. Molines

(2016), Quantifying uncertainties on regional sea level change induced by multi-

decadal intrinsic oceanic variability, Geophysical Research Letters, p. 2016GL069273,

doi:10.1002/2016GL069273.

25



Figure 1. Total (forced+chaotic) interannual-to-decadal OHC standard deviation (std, gray shading)
at scales larger than 10◦ x 10◦, shown in layers 0-700m (top), 700-2000m (middle) and 2000-6000m
(bottom). Color shading indicates regions where the chaotic std exceeds the forced std. Figure 2 is
focused on the OHC integrated horizontally over the regions shown in the bottom panel.
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Figure 2. Left: interannual-to-decadal SNR (σF/σI , see text) of the OHC integrated over

3 depth ranges (0–700m in green, 700–2000m in red, 2000–6000m in blue) and over 12 regions:

Global Ocean (GLO), Gulf Stream (GS), Kuroshio (KUR), Gulf of Alaska (ALA), Agulhas cur-

rent (AGU), North Pacific Subtropical Gyre (NPSG), North Atlantic Subtropical Gyre (NASG),

Indian ACC (IACC), Pacific ACC (PACC), South Atlantic (SA), South Pacific Subtropical Gyre

(SPSG), and CONF (Brazil-Malvinas Confluence). Right: 1980–2010 linear trends of the OHC

integrated over the regions shown in Figure 1 and over the 0-700m layer (top), the 700–2000m

layer (middle), and the 2000–6000m layer (bottom); color shading shows ensemble PDFs, white

dots ensemble medians, thick bars the range between the 25th and 75th percentiles.
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Figure 3. Colors: atmospherically-forced (ensemble mean) trend of the regional OHC over the period
1980-2010 in layers 0-700m (top), 700-2000m (middle) and 2000-6000m (bottom). In hatched regions,
the trend cannot be unambiguously attributed to the atmospheric forcing (95% confidence interval).
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