

Crosslinked Single-ion Conductor Polymer Electrolytes

Roselyne JEANNE-BROU

<u>R. Jeanne-Brou</u>*, S. Issa ^D, D. Devaux*, D. Grosso ^O, T. N. T. Phan ^D, D. Gigmes ^D, R. Bouchet*

* Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France

 $^{\circ}$ Aix Marseille Univ., CNRS, IN2MP Aix-Marseille Université, Univ. De Toulon, 13397 Marseille

[□] Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, 13013 Marseille

Summary

1-Introduction

• Synthesis and compositions

2- Transport Properties

"Grain boundaries", "Bulk contributions" and lithium interfaces

- Ionic conductivity σ (S.cm⁻¹)
 - Electrochemical impedance spectroscopy
 - Model Vogel-Tamman-Fulcher (VTF)
- Transference number t+
- Ambipolar diffusion coefficient D_{amb} (cm².s⁻¹)

3- Stability

Electrochemical Stability Window

Context

Need to develop high energy density and safe batteries ^[1]

• Perspective

Reliable battery with a negative electrode in Li metal

- [1]: J.Lopez et al., Nature Reviews Materials volume 4, 312–330 (2019)
- [2] : M.Armand. Solid State Ionics 69, 309-319 (1994)
- R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

Issue

Li metal with conventional liquid electrolytes

→ Short-circuit hazard: flammable electrolyte and dendritic growth ^[1]

 Solution ^[2] Replace liquid electrolytes with Solid Polymer Electrolytes (SPE)

PEO : Poly(ethylene oxide)

A05-0981

LEPM

Interests

• <u>Single-ion</u>:

High transference number $t^+ = 0.85 - 0.95$ ^[1]

Great interest in preventing dendrite growth and addressing the limited power delivery ^[2]

• <u>Crosslinked</u>:

Increase the mechanical properties

• <u>Silica network</u>:

Simple and innovative one-step chemistry

[1]: Devaux et al. Electrochim. Acta., 269, 250-261 (2018)
[2]: Chazalviel, J-N. Phys. Rev. A 42, 7355–7367 (1990)

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

Synthesis of the electrolytes

Table of the different compositions

Samples	SI_13	SI_15	SI_20	SI_25	SI_30
EO/Li	12.6	15	20	25	30
Ethyl-TFSILi (wt%)	29.3	26	21	17.6	15.2

4

Lepm

- DSC
- Heating scan from -110 to 130 °C at 20 °C/min
- Tg determined as the pic of the derivative curve

*T*_g presents a minimum at EO/Li = SI_20
 Behavior different from PEO/LiTFSI.^[1]

Melting thermograms

[1] S. Lascaud et al. Macromol. 27, 7469-7477 (1994)

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

LEPMI

• Electrochemical Impedance Spectroscopy (EIS)

Symmetric cell

Crosslinked Single-ion Conductors

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

LEPMI

Silica network,

A05-0981

Motionless anions

R. Jeanne-Brou*, S. Issa ^D, D. Devaux*, D. Grosso ^O, T. N. T. Phan ^D, D. Gigmes ^D, R. Bouchet*

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

Materials characterization: Model Vogel-Tamman-Fulcher (VTF)

T : Temperature (K) *A* : Pre exponential factor *B* : Pseudo energy of activation $T_0 = T_g - 50, T_g$ glass transition temperature Conditions : σ Bulk, B (*Ea* = 7.8 kJ/mol)

Samples

12.6

15

EO/Li

 \rightarrow A and T_0 are consistent with the literature ^[1]

[1]: Devaux et al. Electrochim. Acta., 269, 250-261 (2018)

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

30

LEPMI

A05-0981

SI_13 SI_15 SI_20 SI_25 SI_30

20

25

• Diffusional impedance at low frequencies (10 - 10⁻⁴) Hz ^[1-2]

$$t^{+} = \frac{\mu^{+}}{\mu^{-} + \mu^{+}} = \frac{R_{e}}{R_{e} + Rd}$$

 μ^+ , μ^- Mobility of the ions R*d* Diffusional impedance (Warburg element)

• Impedance and potentiostatic polarization ΔV ^[3]

 R_{bulk} Bulk resistance R_s Interface resistance

[1] : Bouchet *et al. J. Electroch. Soc.*, 150, A1385-A1389 (2003)

[2] : P. R. Sorensen, T. Jacobsen. *Electrochim. Acta.*, 27, 1671-1675 (1982) [3

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

[3] : M. Watanabe et al. Solid State Ionics, 28-30, 911-917 (1988)

A05-0981

epmi

Parameters:

- T = 80°C
- EIS Amplitude: $\Delta E = 30 \text{ mV}$
- ChronoAmperometry applied E = 80 mV

Samples	SI_13	SI_15	SI_20	SI_25	SI_30	
EO/Li	12.6	15	20	25	30	

not equal to 1 because of the interface reactions with the SPE ^[1]

A05-0981

[1]: Devaux et al. Electrochim. Acta., 269, 250-261 (2018)

R. Jeanne-Brou*, S. Issa ^D, D. Devaux*, D. Grosso ^O, T. N. T. Phan ^D, D. Gigmes ^D, R. Bouchet*

LEPMI

_ithium metal $V(t) = k_0 + k_1 e^{-\Gamma t}$ Polarization followed by a relaxation ^[1-2] ٠ Crosslinked Singleion Conductors Gasket Lithium metal Potential (V) 11 Cap Linear Polarized (ChronoAmperometry) 10 $k_0)$ with $\Gamma = D_{amb} \pi^2 / L^2$ 9 Relax (OCV) $\ln(V(t))$ L: thickness of the electrolyte k_0 PEO relaxation 6 Contin fit Time (s) 0.0 3.0 0.5 2.0 2.5 Time (hours) One mode of relaxation (ex : PEO + LiTFSI)

[1]: S.D. Thompson and J. Newman, J. Electrochem. Soc., 136, 3362 (1989)

[2] : S. A. Mullin *et al. J. Electrochem. Soc.,* 158 A619 (2011)

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

A05-0981 📗

• Relaxation after polarization at 80°C

• Linear domain : up to ~ 3 000 s

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

LEPMI

2- Electrochemical Measurements, Salt Diffusion or Ambipolar diffusion coefficient (D_{amb})

$V(t) = k_0 + k_1 e^{-\Gamma t}$		Samples EO/Li	SI_13 12.6	SI_15 15	SI_20 20	SI_25 25	SI_30 30
2,4E-08 2,0E-08 (T-s; 1,6E-08 0) 1,2E-08 0 0,0E+00 1	Stable SI_13 0 20 30	I_30	_i [13; 20 _i [25; <mark>3</mark> 0 _Less (D] D _{amb} s D] D _{amb} i	stable increase	9	

EO/Li

Values similar at a copolymer PEO-PS (~ 2 × 10⁻⁸ cm².s⁻¹ ^[1])

 $\rightarrow D_{amb}$ is dependent on the chain dynamic

[1]: Scott A. Mullin et al. J. Electrochem. Soc., 158 A619 (2011)

R. Jeanne-Brou*, S. Issa , D. Devaux*, D. Grosso , T. N. T. Phan , D. Gigmes , R. Bouchet*

14

Voltammograms and EIS spectra

Crosslinked Single-ion Conductor Polymer Electrolytes

Synthesis: simple and in one-step

Organosilicon Nanocharges – charge carrier vs. organic chains synthesis (PEO based)

<u>Electrochemistry</u>: similar to a "single-ion PEO" electrolyte

Thermodynamic, ionic transport, and electrochemical stability

Difference: "Silica network & PEO"

In Impedance spectroscopy: 3 contributions "Bulk" "Grain Boundaries" and "Li interface"

• Perspectives

Electrochemistry: Study of dendrite growth and battery tests

Material characterizations: SAXS measurements

Acknowledgment

<u>R. Jeanne-Brou</u>^{*}, S. Issa ^{\Box}, D. Devaux^{*}, D. Grosso ^{\circ}, T. N. T. Phan ^{\Box}, D. Gigmes ^{\Box}, R. Bouchet^{*}

roselyne.jeanne-brou@grenoble-inp.fr renaud.bouchet@grenoble-inp.fr

* Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
^o Aix Marseille Univ., CNRS, IN2MP Aix-Marseille Université, Univ. De Toulon, 13397 Marseille
[□] Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, 13013 Marseille

Crosslinked Single-ion Conductor Polymer Electrolytes

Synthesis: simple and in one-step

Organosilicon Nanocharges – charge carrier *vs.* organic chains synthesis (PEO based)

<u>Electrochemistry</u>: similar to a "single-ion PEO" electrolyte

Thermodynamic, ionic transport, and electrochemical stability

Difference: "Silica network & PEO"

In Impedance spectroscopy: 3 contributions "Bulk" "Grain Boundaries" and "Li interface"

• Perspectives

Electrochemistry: Study of dendrite growth and battery tests

Material characterizations: SAXS measurements

Thank you for your attention!

TFSILi کر

> ، ۱۲ کم

