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INTRODUCTION

Plants belonging to the genus Sambucus express a wide

range of lectins, with various saccharide-binding specific-

ities.1 Many of these lectins, and this is especially the case

in the bark, are Type-II ribosome-inactivating proteins

(Type-II RIPs) or are related to them. RIPs are plant pro-

teins that are able to specifically remove an adenine residue

from a highly conserved loop in the large subunit of ribo-

somal RNA, thereby interrupting protein synthesis in target

cells.2 These proteins are distributed among Type-I (single

chain) and Type-II (two chains) RIPs.3 The latter, exempli-

fied by the well-known toxin ricin, are built up of an A-

subunit, responsible for the N-glycosidase activity, that is

covalently attached to a lectinic B-subunit. The linkage of

both subunits involves a disulphide bridge between cysteine

residues at Position 4 of the B-subunit and at Position 259

of the A-subunit (ricin numbering).4 The lectin subunit

usually specifically recognizes galactose (Gal), N-acetylgalac-

tosamine (GalNAc) or related sugars.1 It anchors the toxin
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ABSTRACT

Bark of elderberry (Sambucus nigra) contains a galactose

(Gal)/N-acetylgalactosamine (GalNAc)-specific lectin (SNA-

II) corresponding to slightly truncated B-chains of a genu-

ine Type-II ribosome-inactivating protein (Type-II RIPs,

SNA-V), found in the same species. The three-dimensional

X-ray structure of SNA-II has been determined in two dis-

tinct crystal forms, hexagonal and tetragonal, at 1.90 Å

and 1.35 Å, respectively. In both crystal forms, the SNA-II

molecule folds into two linked b-trefoil domains, with an

overall conformation similar to that of the B-chains of

ricin and other Type-II RIPs. Glycosylation is observed at

four sites along the polypeptide chain, accounting for 14

saccharide units. The high-resolution structures of SNA-II

in complex with Gal and five Gal-related saccharides

(GalNAc, lactose, a1-methylgalactose, fucose, and the carci-

noma-specific Tn antigen) were determined at 1.55 Å reso-

lution or better. Binding is observed in two saccharide-

binding sites for most of the sugars: a conserved aspartate

residue interacts simultaneously with the O3 and O4

atoms of saccharides. In one of the binding sites, addi-

tional interactions with the protein involve the O6 atom.

Analytical gel filtration, small angle X-ray scattering stud-

ies and crystal packing analysis indicate that, although

some oligomeric species are present, the monomeric

species predominate in solution.

Proteins 2009; 75:89–103.
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to the target cell membrane, facilitating its entry in the

cell.5 Type-I RIPs are made of the A-subunit only. The

toxicity of RIPs toward animal cells suggests that they

might have a role in plant defence.1 However, as they are

also abundantly found in storage organs, they may also

be considered as storage proteins.6

Type-II RIPs are found in many different tissues in

Sambucus species. Interestingly, in the bark of S. nigra

and S. sieboldiana, lectins corresponding to the B-subunit

of Type-II RIPs are also found.7,8 In the bark of S. nigra,

the lectin SNA-II corresponds to the B-subunit of the

genuine Type-II RIP SNA-V found in the same tissue,9

depleted of the eight N-terminal residues, including the

cysteine residue involved in the association with the A-

subunit.7 SNA-II is, therefore, unable to associate with

an A-subunit. A similar situation occurs in the bark of

S. sieboldiana, where two lectins, SSA-b-3 and SSA-b-4,

are related to the Type-II RIP sieboldin-b.8 Earlier bio-

chemical data suggested that SNA-II is a dimeric glyco-

sylated protein, which preferentially recognizes Gal and

GalNAc,7 as well as Gal-related saccharides such as the

carcinoma Tn antigen (P. Rougé, unpublished work).

The glycosylation pattern of cancer cells is known to

differ from normal cells,10 often resulting in the presence

of accessible GalNAc residues at the surface.11 The Tn

epitope (Ser-O-GalNAc) is among the most specific

human tumor-associated determinant. It is naturally

present but remains buried in most normal cells, whereas

it is uncovered at the cell surface in the vast majority of

carcinomas,12 and, hence, serves as a specific marker of

the tumor development process.

In this study, we determined the structure of the native

glycosylated SNA-II lectin purified from the bark of

S. nigra, as well as the high-resolution structures of the

complexes of SNA-II with Gal and five-related saccharides,

including the Tn antigen. Furthermore, the solution qua-

ternary structure of SNA-II was studied using analytical

gel filtration and small angle X-ray scattering (SAXS).

METHODS

Production and purification

The SNA-II protein was purified directly from the bark

of S. nigra as previously described.7

Analytical methods

Analytical gel filtration of SNA-II was performed on a

Pharmacia Superdex 75 HR column, using a running

buffer made of 50 mM NaCl, 100 mM sodium acetate

pH 5.0, and 100 mM Gal to prevent binding of SNA-II

to the column. Molecular mass (MM) references were

ribonuclease A (15.6 kDa), chymotrypsinogen A

(19.4 kDa), ovalbumin (47.6 kDa), and albumin (62.9 kDa).

Their elution volume was determined on separate runs.

Small angle X-ray scattering

The X-ray scattering data were collected on the X33

camera13,14 at the European Molecular Biology Labora-

tory (EMBL) on the storage ring DORIS III of the

Deutsches Elektronen Synchrotron (DESY) using a gas-

filled detector with delay line readout15 and Mar345

Image Plate detector (Marresearch GmbH, Norderstedt,

Germany). The scattering patterns from the solutions of

SNA-II at protein concentrations 2, 5, 8, 13, 18, and

25 mg/mL (50 mM NaCl, 100 mM sodium acetate pH

5.0) were recorded at a sample–detector distance of 2.4

m covering the range of momentum transfer 0.13 < s <
3.4 nm21 (s 5 4p sin(y)/k, where 2y is the scattering

angle, and k 5 0.15 nm is the X-ray wavelength). Similar

data were collected with samples complemented with 100

mM Gal, in order to reproduce the conditions used in

the gel filtration studies.

For the linear gas detector, the data collected in 15

successive 1-min frames were analyzed for the absence of

radiation damage and the successive frames were aver-

aged. For the Image Plate, the collection time was 5 min

(no radiation damage was detected by comparison with

the linear detector data), and the data were radially aver-

aged by the program Mar-Primus.16 All the data analysis

steps were performed using the program PRIMUS.17

The forward scattering I(0) and the radius of gyration

Rg were evaluated using the Guinier approximation18

assuming that at very small angles (s < 1.3/Rg) the inten-

sity is represented as I(s) 5 I(0) exp(2(sRg)
2/3). These

parameters were also computed from the entire scattering

pattern using GNOM.19,20 The MM of the solute was

evaluated by comparison of the forward scattering with

that from a reference solution of bovine serum albumin

(MM 5 66 kDa).

The scattering from the crystallographic model of

monomeric SNA-II and from the putative dimers and

tetramer was calculated using CRYSOL.21 The volume

fractions in the monomer–dimer or monomer–tetramer

mixtures best fitting the experimental data were evaluated

using the computed scattering curves from monomeric,

dimeric, and tetrameric SNA-II by OLIGOMER.17

Crystallization and data collection

Crystals were obtained by the hanging drop vapour

diffusion method at 208C, using ammonium sulphate as

precipitant. A 6 lL droplet, made by mixing 3 lL of a

solution of SNA-II (16 mg mL21 in 20 mM Tris HCl

buffer at pH 7.5, 20 mM NaCl) and 3 lL of reservoir so-

lution, was equilibrated against 500 lL of 2.0 M ammo-

nium sulphate in 100 mM sodium acetate buffer, pH

4.5–5.0. Under these conditions, two different crystal

forms were obtained: hexagonal crystals appeared within

2 weeks, whereas tablet-shaped crystals grew more slowly.

Both crystal forms needed to be stabilized by increasing

L. Maveyraud et al.
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the ammonium sulphate concentration up to 3.0 M

before they could be handled without damage. Cryopro-

tection was achieved by a 2 min immersion in the stabi-

lizing solution complemented with 5% (v/v) ethylene gly-

col. Crystals could then withstand being transferred into

a gaseous nitrogen stream at 100 K.

Crystals of SNA-II complexed to Gal and 5 Gal deriva-

tives [GalNAc, lactose (Lac), a1-methylgalactose (MeGal),

fucose (Fuc), and the Tn antigen] were obtained by add-

ing 5 mM of the selected saccharide to the protein solu-

tion before setting up the crystallization experiment. In

these conditions, only tablet-shaped crystals were

obtained. Crystals were cryoprotected by a brief immer-

sion in the crystallization condition supplemented with

20% (w/v) of the appropriate sugar, except for crystals

obtained with the Tn antigen for which 5% ethylene gly-

col was used.

All diffraction data were collected at the European Syn-

chrotron Radiation Facility (ESRF, Grenoble), processed

using MOSFLM,22 scaled with SCALA,23 and, subse-

quently, handled with the CCP4 package.24 Data collec-

tion and processing statistics are summarized in Table I.

Data collected up to 1.9 Å with the hexagonal crystals

displayed systematic absences along 00l, which together

with the results of the self rotation function, indicated

that they belong either to spacegroup P6222 or P6422,

with cell parameters a 5 120.2 Å and c 5 177.3 Å. Tab-

let-shaped native crystals diffracted at least to 1.3 Å.

Merging statistics and systematic absences suggested that

they belong to the spacegroup I4122 with cell parameters

a 5 126.1 Å and c 5 76.0 Å. Crystals obtained in the

presence of saccharides belong to the same spacegroup

and display similar cell parameters (Table I). There is

one molecule of SNA-II in the asymmetric unit of both

crystal forms.

Structure determination and refinement

The structure of the hexagonal crystal form was solved

by molecular replacement, using the structure of the B-

chain of ricin (PDB entry 2AAI,25) as the search model.

The molecular replacement solution found with MOL-

REP,26 in spacegroup P6422, was first refined using

CNS,27 and, when the refined model was considered suf-

ficiently reliable (Rcryst 5 0.291, Rfree 5 0.300), it was

used as a search model for the molecular replacement of

the tetragonal crystal form, with MOLREP. From that

point, REFMAC28 was used to refine all structures, using

an explicit bulk solvent correction, inclusion of hydrogen

atoms in their riding positions and the conjugate gradi-

ent method to minimize the maximum likelihood target

function. Models and sigmaA weighted electron density

maps29 were inspected using COOT.30 Water molecules

were automatically introduced into the model using

wARP.31 In the last refinement cycles, individual aniso-

tropic B factors were refined for all structures in the tet-

ragonal spacegroup, which resulted in a similar improve-

ment of the Rcryst and Rfree values.

The final structure of native SNA-II in the hexagonal

crystal form includes 257 protein residues, 14 saccharide

units, 342 water molecules, 1 acetate, and 7 sulphate

anions. In the tetragonal crystal form of native SNA-II,

the final model comprises 257 protein residues, 9 saccha-

ride units, 253 water molecules, 1 acetate, and 4 sulphate

anions. Refinement statistics for all structures are sum-

marized in Table I.

Secondary structure elements were assigned using

STRIDE.32 The structures were superimposed using Dali-

Lite.33

The atomic coordinates of refined structures and the ex-

perimental data have been deposited with the Protein

Data Bank.34 The accession numbers for the atomic coor-

dinates and experimental data are indicated in Table I.

Protein sequence analysis

Sequences were aligned using CLUSTALW.35 The

alignment was manually optimized and displayed with

ESPript.36

RESULTS AND DISCUSSION

Overall structure

The structure of SNA-II was determined in two crystal

forms. Both are very similar, with a root mean square

deviation (rmsd) of 0.55 Å for the 257 Ca atoms. It is

organized in two similar domains [Fig. 1(a)], Domain I

(Residues 1–129) and Domain II (Residues 130–257),

each adopting a b-trefoil fold37,38 [Fig. 1(b)]. In this

fold, a central b-barrel built from six antiparallel b-
strands delineates a hydrophobic core. At the bottom of

the b-barrel, short connecting loops are found, not

exceeding four residues in length, whereas at the top,

three much longer loops are found, each including two

b-strands arranged as a b-hairpin and an occasional

short helical segment. The fold displays a pseudo three-

fold symmetry when viewed along the axis of the b-bar-
rel, which results from the organization of three similar

subdomains of about 40 residues, named a, b, and g
[Fig. 1(b)]. Each subdomain contains 4 b-strands, the

first and fourth contributing to the central b-barrel. The
average sequence identity between these subdomains is

18%, which confirms that they have evolved from a com-

mon ancestral gene [Fig. 2(a)].39,40

The b-trefoil fold is widely found in protein struc-

tures, either associated to a different fold as in the inosi-

tol-triphosphate receptor Type-1 binding core,41 in clos-

tridium neurotoxins,42 and in the pore-forming lectin

from Laetiporus sulphurous,43 or isolated as in the fibro-

blast growth factors44 and interleukin-1.45 In most pro-

teins, a single occurrence of the b-trefoil fold is found.

Sambucus nigra Agglutinin II X-ray Structure
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Figure 1
Ribbon representation of the structure of SNA-II. (a) Stereoview of the overall structure of SNA-II colored from blue (N terminus) to red

(C terminus) as observed in the hexagonal crystal form. The four glycosylation sites are labeled, and the glycans are represented as pink sticks.

Disulphide bridges are represented as sticks. (b) View of Domains I (top) and II (bottom) in two orthogonal orientations. In each domain,

subdomains a are colored in red, b in green, and c in blue. The first and fourth b-strands of each subdomain forming the central b-barrel are
indicated with vivid colors. Glycosylation sites and saccharide-binding residues are labeled and represented as sticks. Glycans are represented as pink

sticks.
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Figure 2
Sequence analysis of SNA-II and of related proteins. (a) Sequence alignment of the six subdomains of SNA-II. Cystine residues involved in

disulphide bridges are indicated with a green triangle, and saccharide-binding residues are indicated with a red triangle. Strictly, conserved residues

are on a red background, and conserved positions are indicated with red letters. (b) Sequence alignment of the B-chains of Type-II RIPs. The

secondary structure elements identified in SNA-II are indicated above the sequences (b-strands are depicted with an arrow). Saccharide-binding

residues and glycosylation sites are identified with a blue and a red star, respectively. Disulphide bridges present in SNA-II are numbered in green.
Strictly, conserved residues are on a red background, and conserved positions are indicated with red letters. The PDB code is indicated with the

sequence name for available structures.

L. Maveyraud et al.

94 PROTEINS



However, a few examples exist where such folds are

duplicated, as in plant cytotoxin B-chains, or even quad-

ruplicated, as observed in the human actin-crosslinking

protein fascin.46 However, although the b-trefoil folds

are similar when considered individually (with an average

rmsd of 2.1 Å for 114 common Ca when 57 b-trefoil
domain-containing proteins, as identified by SCOP,47 are

considered), the organization of the double or quadruple

repeats are markedly different from what is observed in

SNA-II. A global similarity is only evidenced with the

plant cytotoxin B-chains. These include the B-chains of

ricin (2AAI, rmsd of 0.8 Å for 244 equivalent Ca atoms

when compared with SNA-II) (see Fig. 3),25,48 abrin

(1ABR, rmsd of 0.8 Å for 249 equivalent Ca atoms),49

Abrus precatorius agglutinin (2Q3N, rmsd of 0.8 Å for

253 equivalent Ca atoms),50 ebulin (1HWM, rmsd of

0.7 Å for 246 equivalent Ca atoms),51 Mistletoe lectin

ML-I (1M2T, rmsd of 0.8 Å for 249 equivalent Ca
atoms),52 and the Type-II RIP from Trichosanthes kirilo-

wii (1GGP, rmsd of 1.0 Å for 235 equivalent Ca
atoms).53 B-chains of Type-II RIPs from other Tricho-

santhes species also display a similar fold.54,55 Hence,

this specific arrangement of two b-trefoil domains can be

considered a characteristic of the B-chains of Type-II

RIPs and of related proteins, such as SNA-II.

Disulphide bridges are found in subdomains Ia
(Cys14-Cys33), Ib (Cys55-Cys72), IIa (Cys143-Cys158),

and IIb (Cys184-Cys201). These disulphide bridges occur

at equivalent positions in the four subdomains [Fig. 2(a)]

and link the N-terminal extremity of the second b-strand
to the C terminus of the third b-strand of each subdo-

main. The Cys14-Cys33 disulphide bridge is absent from

some Type-II RIPs found in V. album species, whereas

the Cys184-Cys201 disulphide bridge is missing in the

B-chain of RIPm, the Type-II RIP from Polygonatum

multiflorum.56 Finally, Cys55-Cys72 and Cys143-Cys158

are probably the only conserved disulphide bridges

among all B-chains of Type-II RIPs [Fig. 2(b)].

Glycosylation and structure of the N-glycans

Previous biochemical studies indicated that SNA-II is a

glycoprotein containing 7.8% (w/w) neutral sugars,7

which correspond to �14 monosaccharide units. In addi-

tion, there are four putative N-glycosylation sites (Asn63-

Gly-Ser, Asn71-Cys-Ser, Asn178-Ser-Thr, and Asn232-

Val-Ser) in the sequence of the mature SNA-II

[Fig. 2(b)]. Glycosylation could clearly be distinguished

at the four sites in both crystal forms. In the tetragonal

crystal form, nine monosaccharide units were fitted into

the electron density map. In the hexagonal crystal form,

the N-glycan linked to Asn63 protrudes from the protein

and reaches the sugar-binding site of a symmetry-related

molecule (see later). The decreased flexibility resulting

from this interaction induces a well-defined electron den-

sity. According to assignments of the sugars in the elec-

Figure 3
Structural comparison of SNA-II and of the ricin B-chain Stereoview of the Ca trace of SNA-II (solid lines) superimposed on that of the ricin B-

chain (dotted lines). Every 20th Ca is indicated with a black dot and labeled.
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tron density map, the N-glycan attached to Asn63 com-

prises three mannoses (Man), 2 N-acetylglucosamines

(GlcNAc), one Fuc, and one xylose (Xyl) and is similar

in structure to the oligosaccharide chains of other plant

glycoproteins (including the B-chain of ricin)48:

The assigned oligosaccharides linked to the three other

glycosylation sites are much smaller. An L-Fuc(a1,3)D-
GlcNAc disaccharide could be distinguished at Asn71,

whereas a D-GlcNAc(b1,4)D-GlcNAc disaccharide and a

branched D-GlcNAc(b1,4(L-Fuca1,3))D-GlcNAc trisac-

charidic chain were found to be attached to Asn178 and

Asn232, respectively. Thus, a total number of 14 sugar

units with a total mass of �1760 Da were identified and

modeled into the structure of SNA-II, which may

account for all the neutral sugars reported.7

Saccharide-binding sites

It is generally accepted that the molecular organization

of the ricin B-domain with its typical b-trefoil fold

results from the triplication of an ancestral gene encoding

a polypeptide chain of �40 amino acid residues.39 As

this ancestral module contained a single active carbohy-

drate-binding site, triplication can yield a b-trefoil fold
with up to three carbohydrate-binding sites, as it is

illustrated by the lectin domain of the Streptomyces

Figure 4
X-ray analysis of saccharide binding to SNA-II. (a) Stereoview of the saccharide-binding sites of Domain I (top) and of Domain II (bottom), with

bound galactose (pink). Saccharide-binding residues are labeled, and water molecules are indicated with a red sphere. Hydrogen bonds are

represented with dotted lines. (b) Comparison of the binding of the different saccharides used in this study (pink), except galactose, in the

saccharide-binding site of Domain I. The orientation is identical as in (a).
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b-xylanases.57,58 However, it appears that after the trip-

lication event, some of the modules have lost their carbo-

hydrate-binding capacity. Hence, most of the b-trefoil

folds contain a single active site, as has been demon-

strated for the carbohydrate-binding domain of the

mouse macrophage mannose receptor.59 In some cases,

Figure 4
(Continued)
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however, there is still some uncertainty about the number

of active carbohydrate-binding sites. This is illustrated by

the B-chain of ricin: although there is no doubt that the

sites located within subdomains Ia and IIg definitely

possess carbohydrate-binding activity, the occurrence of a

third active site in subdomain Ib is still debated.60–62 It

is also noteworthy that a marked divergence has occurred

in the specificity of the carbohydrate-binding modules.

Some of ricin-like B-domains found in bacteria bind Xyl,

whereas their animal counterparts recognize mannose,

sulphated carbohydrate ligands,59 or Gal and GalNAc.

Most plant ricin-like B-domains bind Gal or GalNAc, as

illustrated by the sugar-binding specificity of the majority

of Type-II RIPs.1

Superimposition of the structures revealed that the two

canonical saccharide-binding sites of the ricin B-chain

are conserved in SNA-II. These sites are located in sub-

domains Ia and IIg on opposite faces at both ends of

SNA-II (see Fig. 1). Each site is built around a small set

of conserved residues. In subdomain Ia, these residues

are Asp16, Gln29, Trp31, Gln36, Asn38, and Gln39,

whereas in subdomain IIg they correspond to Asp227,

Ile239, Phe241, and Asn248 [Fig. 4(a)]. These residues

occupy equivalent positions both in the sequence and in

terms of spatial arrangement [Figs. 2(a) and 4(a)].

High-resolution X-ray analysis
of saccharide binding

SNA-II was reported to bind Gal and related saccha-

rides with about 100 to 2500-fold better affinity than for

glucose, with a marked preference for GalNAc versus

Fuc, Gal, and MeGal.7 The structures of SNA-II bound

to Gal and to various Gal derivatives were determined at

1.55 Å resolution. Furthermore, binding of the Tn carci-

noma general autoantigen (Ser-O-GalNAc) was character-

ized at 1.40 Å resolution (Table I).

Hydrogen bonds (H-bonds) discussed in the text are

identified upon the observed geometry of the structure.

Binding of Gal in both saccharide-binding sites relies on

the H-bonds formed with the hydroxyl groups at Posi-

tions 3 and 4 of the sugar ring [Table II, Fig. 4(a)]. In

the saccharide-binding site of subdomain Ia, the O3

atom of Gal interacts with the carboxylic group of

Asp16, and with the side-chain amide group of both

Gln36 and Asn38. The O4 atom is H-bonded to the car-

boxylic group of Asp16, to the side-chain amide group of

Gln29 and to the main-chain nitrogen atom of Asn19.

Similar interactions occur in the saccharide-binding site

of domain IIg, where the O3 atom is H-bonded to

the carboxylic group of Asp227, to the side-chain amide

group of Asn248 and to a water molecule, whereas the

O4 atom interacts with Asp227 and with the main-chain

nitrogen atom of Ala230. In the saccharide-binding site

of subdomain Ia, additional interactions involve the O6

atom of the sugar and both the main-chain nitrogen

atom and the amide function of Asn19, the side-chain

amide group of Gln29 and a water molecule. The side-

chain of Asn19 is significantly displaced from its position

in the saccharide free structure in order to interact with

the incoming sugar. In both binding sites, an aromatic

residue is found at van der Waals distance from the sugar

ring to the C6 atom (Trp31 and Phe241). The O1 atom

of the sugar does not contribute to binding, and both

anomers could be identified in the electron density maps

at both binding sites.

Table II
Sugar–Protein Interactions Observed in Each Saccharide–Binding Sites

interactions (�) Galactose (a/b)a GalNAc (a/b)a Lactose Me Galactose Fucose Tn antigen

Domain I
O3–Gln36NE2 3.1/2.7 3.1/2.8 2.9 3.0 2.9 2.9
O3–Asn38 ND2 2.6/3.2 2.5/3.2 2.8 2.9 3.0 3.0
O3–Asp16OD1 2.7/2.6 2.6/2.6 2.6 2.6 2.6 2.6
O4–Asp16OD1 2.6/2.7 2.6/2.8 2.7 2.6 2.6 2.6
O4–Gln29NE2 3.3/3.1 3.3/3.1 3.2 3.2 3.6 3.2
O4–Asn19N 2.8/3.1 2.8/3.1 2.8 3.0 2.9 2.9
O6–Gln29NE2 3.0/3.0 3.0/3.0 3.0 3.0 C6 3.0 3.0
O6–Asn19N 2.5/3.3 2.7/3.4 3.2 3.1 C6 3.2 3.0
O6–Asn19OD1 3.0/3.3 2.9/3.3 2.7 3.3 C6 3.8 3.1
O6–Wat 3.0/2.6 2.9/2.6 2.8 2.7 C6 2.6 2.8

GlcO3-Asn19OD1 2.8
Domain II
O3–Asn248ND2 3.0/2.7 2.9/3.2 2.8 3.0
O3–Asp227OD2 2.5/2.5 2.5/2.7 2.6 2.6
O3–Wat 2.2/2.9 2.9/2.5 2.6 2.6
O4–Asp227OD1 2.6/2.5 2.7/2.6 2.6 2.6
O4–Ala230N 3.0/2.8 2.7/3.0 2.8 2.8

O7–Ser231OG 3.0/2.5

aThe two distances correspond to epimers a and b, respectively.
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Five Gal derivatives were also studied: GalNAc, Lac,

MeGal, Fuc, and the Tn antigen. In the case of the two

latter saccharides, the initial electron density maps clearly

indicated that binding did only occur in the saccharide-

binding site of subdomain Ia, an acetate ion being found

in the saccharide-binding site of subdomain IIg. All stud-
ied Gal derivatives display the common core of interac-

tions with SNA-II found in the case of Gal [Table II,

Fig. 4(b)], with additional direct interactions in the case

of GalNAc in the saccharide-binding site of subdomain

IIg (Ser231OG-O7) and in the case of Lac in the saccha-

ride-binding site of subdomain Ia (Asn19OD1-GlcO3).

The Tn antigen is only bound in the saccharide-bind-

ing site of the first b-trefoil domain. The GalNAc part of

Figure 5
Orthogonal view of the dimeric and tetrameric assemblies observed in the crystals formed by SNA-II. (a) Dimer observed in the hexagonal crystal

form. The glycan chains participating in the dimer formation (attached to Asn63) are indicated in pink. (b) Dimer observed in the tetragonal

crystal form. (c) Tetrameric assembly indentified in both crystal forms. Chain A, colored yellow, is represented in the same orientation in each case.

The positions of the saccharide-binding sites are indicated with violet spheres.

Sambucus nigra Agglutinin II X-ray Structure

PROTEINS 99



the antigen displays identical interactions as observed for

the binding of GalNAc [Fig. 4(b), Table II]. The serine

residue does not directly interact with the protein, and

the electron density suggests that it is rather mobile. The

main-chain nitrogen atom of the serine residue interacts

with a sulphate anion, which itself is H-bonded to the

indole nitrogen atom of Trp131. Additionally, a water

molecule bridges the nitrogen atom of the serine to the

guanidinium group of Arg107. Solvent-mediated interac-

tions were also observed in other structures of lectin

complexed to the Tn antigen.63,64

In the hexagonal native crystal form, the saccharide-

binding site of subdomain Ia is occupied by a b-D-xylo-
pyranose unit of the glycan chain attached to Asn63 of a

symmetry-related molecule [Fig. 4(b)].65 H-bonds are

formed between the O2 atom of Xyl and the NH1 atom

of Arg107 (3.0 Å), between the O3 of Xyl and the side-

chain nitrogen atom of Gln29 (2.8 Å), and between the

O4 of Xyl and both the main-chain nitrogen atom of

Asn19 (2.7 Å) and the carboxylate group of Asp16

(2.6 Å), and additional H-bonds are solvent mediated. These

interactions markedly differ from the interactions of Gal

and related sugars described earlier. Specific binding of

Xyl and Gal was described in the saccharide-binding site

of the E86 xylanase of Streptomyces olivaceoviridis.66 This

saccharide-binding site occurs in a b-trefoil structure

highly similar to the b-trefoil domain found in ricin-like

B-chains, and it displays a comparable topology. Binding

of Xyl and Gal was shown to involve H-bonds between

two hydroxyl groups of the sugar (O2 and O3 for Xyl

and O3 and O4 for Gal) and the carboxylate group of

Asp325, equivalent to Asp16 or Asp227 found in the sac-

charide-binding sites of SNA-II. Binding of Gal is

remarkably similar to what is observed with SNA-II, and

it would be expected for Xyl to bind in a comparable

manner. Hence, it is likely that the binding of Xyl to

SNA-II, as observed in the crystal structure reported

here, is nonspecific.

Oligomerization

In previous studies, SNA-II was suggested to exist pre-

dominantly as a dimeric entity of 51–60 kDa in solution,

as evidenced by gel permeation chromatography.7,9

However, crystal contacts observed in the two crystal

forms reported here suggest that in addition to mono-

meric species, SNA-II might well exist also as dimers or

tetramers displaying internal 222 symmetry (see Fig. 5).

This prompted us to further investigate the behavior of

SNA-II in solution, by analytical gel filtration chromatog-

raphy and SAXS. The elution profile of SNA-II on a

superdex 75 HR column clearly indicated the existence of

at least two distinct oligomeric species, in a concentra-

tion range of 1–10 mg/mL. At the highest concentration,

traces of aggregated material also occur. The major and

minor nonaggregated species displayed an apparent MM

of 41 and 60 kDa, respectively (see Fig. 6). The apparent

MM of the minor species correlates rather well with a

dimer of SNA-II, for which a MM of 62.8 kDa is

Figure 6
Analytical gel filtration elution pattern. The concentrated SNA-II

solution was loaded on a Pharmacia Superdex 75 HR column, in

presence of 100 mM galactose. The indicated apparent molecular

weights were determined from the calibration curve (see text).

Figure 7
X-ray scattering pattern of SNA-II and the scattering computed from

the models. Dots with error bars: experimental data; Curves 2, 3, 4 are

calculated scattering patterns from, respectively, monomeric protein,

dimer from the hexagonal crystals, and the best fit from the mixture of

the two species.
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expected. Hence, the major species which displays a lon-

ger retention time would correspond to a monomer,

although the apparent MM of 40 kDa is significantly

higher than 31.4 kDa, MM of a SNA-II monomer.

Although these results clearly indicate that more than

one oligomeric state exists in solution, they do not allow

the unambiguous determination of their stoichiometry:

the overall shape of a SNA-II protomer is elongated and

might lead to uncertainties in the molecular weight

determination.

SAXS experiments were performed to further elucidate

the oligomeric composition of SNA-II in solution. The

SAXS pattern from SNA-II is presented in Figure 7, and

the calculated parameters are summarized in Table III.

The experimental radius of gyration (Rg) and maximum

size of SNA-II in solution (2.5 � 0.1 nm and 9.5 �
0.1 nm, respectively) exceed the values computed from

the crystallographic monomer (1.9 nm and 7.0 nm,

respectively). The estimated MM of the solute (40 �
5 kDa) is also larger than what is expected for the mono-

mer (31 kDa) but still much smaller than that of the

dimeric protein (63 kDa). It agrees with the major spe-

cies identified in the gel filtration experiment (40 kDa).

These overall parameters suggest that SNA-II in solution

may be a mixture of monomers with higher oligomers.

Theoretical scattering patterns computed from the

monomeric protein and from the possible dimers and

tetramer found in both crystal forms failed to fit the

experiment, with the best agreement provided by the

monomer (Curve 2, Fig. 7) still displaying significant sys-

tematic deviations (v 5 2.4). The fit was clearly

improved when using a mixture of monomer and higher

oligomeric species, with v values ranging between 0.9

and 1.6 (Table III). A mixture of 70% monomer and

30% dimer best describes the SAXS experiment (Curve 4,

Fig. 7), with the effective MM and Rg of 42 kDa and

2.4 nm, respectively. It is difficult to unequivocally deter-

mine, which oligomeric assembly coexists with the

monomers (given the limited presence of the oligomers

in solution, most of the scattering originates from the

monomeric fraction). However, these results indicate that

SNA-II, independently of the presence of Gal, is predom-

inantly monomeric in solution, in contrast to the previ-

ously published results7,9 suggesting largely dimeric spe-

cies.

The potential oligomerization of SNA-II can have a

significant effect on the accessibility of the various sac-

charide-binding sites. Some of them might be masked at

the interfaces, as exemplified by the tetrameric species

that only display four accessible binding sites (see Fig. 5).

However, the results of the cocrystallization experiments

indicate that the two saccharide-binding sites of SNA-II

are accessible in solution. Sugar binding is indeed

observed at both sites in four cases (Gal, GalNAc, Lac,

and MeGal). Thus, in the conditions used throughout

our study, SNA-II is likely to be predominantly mono-

meric.

CONCLUSIONS

In this study, we report on the high-resolution struc-

tures of SNA-II, a Gal/GalNAc-specific lectin found in

the bark of Sambucus nigra (black elderberry). SNA-II is

a glycosylated polypeptidic chain, homologous to the B-

chain of the highly toxic heterodimeric ricin protein, and

related Type-II RIPs. The overall shape of SNA-II is simi-

lar to that of the Type-II RIPs B-chain, although it is not

covalently attached to an A-chain. Glycosylation was

observed at four sites, and the electron density maps

allowed the identification of 14 saccharide residues. Two

saccharide-binding sites, built around conserved Asp16

and Asp227, are described.

In addition, the binding of Gal and five Gal derivatives

(GalNAc, Lac, MeGal, Fuc, and the carcinoma-specific

Tn antigen) is described at 1.55 Å resolution or better.

All six saccharides are observed in the first binding site,

whereas Fuc and Tn-antigen binding is not observed in

the second binding site. This, and the protein–sugar

interactions observed in both sites, suggests that the latter

displays a weaker affinity.

The quaternary structure of SNA-II was investigated

using analytical gel filtration and SAXS. It is shown that

the monomeric species is predominant in solution,

although some higher oligomeric species, likely dimers,

are detected.
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Table III
Summary of Structural Parameters of SNA-II in Solution Computed
from the Scattering Data

Model/parameter
Rg
(nm)

Dmax

(nm)
MM
(kDa) vS

a vM
b

Experiment 2.5 � 0.1 9.5 � 0.1 40 � 5 — —
Monomer 1.9 7.0 31 2.4 —
Dimer A–C, tetragonal 3.0 10.0 63 4.4 1.6
Dimer A–C, hexagonal 2.9 9.8 63 5.3 0.9
Dimer A–C from the tetramer 2.6 8.8 63 6.7 1.1
Dimer A–G from the tetramer 2.7 9.1 63 7.0 1.0
Tetramer 3.2 9.1 126 19.0 1.2

av value indicative of the quality of fit between the experimental diffusion curve

and the theoretical curve computed from the corresponding structure alone.
bv value indicative of the quality of fit between the experimental diffusion curve

and the theoretical curve computed from a mixture of the corresponding struc-

ture in mixture with the monomeric form of SNA-II.
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