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. Introduction 

One of common manifestations of dry friction in mechanical

ystems is heat generation in vicinity of contact surfaces. Friction-

nduced heating results in a number of phenomena such as chem-

cal transformations or melting; it also underlies various technolo-

ies including, for instance, friction stir welding and ultrasonic

hermography for visualizing damage in solids. Another important

rocess accompanied by frictional heating is wear i.e. formation

f debris particles in the contact zone. In the classical Archard’s

odel ( Archard, 1953 ) of wear, the total volume of debris particles

s proportional to the work of the friction force that produces the

qual mechanical energy dissipation. 

Certainly, these effects entirely depend on contact geometry

nd excitation. However, here we attempt to find a more gen-

ral point of view at the problem and reduce as much as possible

he number of parameters describing the system. This is possible

y considering axisymmetric contact geometry and random vibra-

ions. Then, by computing the work of the shear stress in the con-

act zone with the proper account for slip distances at every point,
∗ Corresponding author at: Joint European Laboratory LICS, IEMN, Univ. Lille. 

E-mail address: vladislav.aleshin@univ-lille.fr (V.V. Aleshin). 
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he desired friction-induced loss of mechanical energy can be ob-

ained. 

Based on the Amontons–Coulomb friction law, the classical

attaneo–Mindlin solution ( Cattaneo, 1938 ) for two spheres ana-

ytically links constant normal ( N ) and tangential ( T ) contact forces

ith constant normal ( a ) and tangential ( b ) displacements. Simi-

arly, the Hertz-Mindlin solution ( Mindlin and Deresiewicz, 1953 )

s common name for a series of analytical expressions applica-

le for the same contact geometry in the case when the forces

volve in accordance to several prescribed scenarios. More recently,

our semi-analytical methods ( Dobry et al., 1991 ; Jäger, 2005 ;

opov, 2017 ; Aleshin et al., 2015 ) have been developed that allow

ne to use arbitrary loading protocols in arbitrary convex axisym-

etric (not necessarily spherical) geometries. 

In this paper, we use the Method of Memory Diagrams (MMD)

 Aleshin et al., 2015 , 2018 , 2019 ) in order to calculate the mechan-

cal and energetic responses of an axisymmetric contact system.

he friction-induced energy loss is averaged for a high number of

ealizations excited by random time-dependent normal and tan-

ential displacements with certain statistical properties. Together

ith the analysis of the total energy loss, we also obtain its ra-

ial distribution in the contact plane. The latter quantity helps es-

imate where exactly in the contact zone wear will be most likely

nitiated. 

mailto:vladislav.aleshin@iemn.univ-lille1.fr


Fig. 1. Normal displacement a and two components of the total tangential displace- 
ment b: ̃  b _corresponds to a deformation of the bodies without sliding at the contact 
center, b 0 is a slip distance of the centers of contact areas of each body. Normal N 
and tangential T forces are applied to bulks of the bodies. (a) Only normal load ap- 
plied. (b) Partial slip when the central area (white) of radius s is stuck. (c) Total 
sliding with no stick zone. 
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2. Cohntact forces and displacements 

While a frictional contact is mechanically excited, three contact

states can be encountered: contact loss (i.e. open contact), partial

slip, and total sliding. Assuming a > 0 for the bodies in contact (see

Fig. 1 (a)), this displacement becomes negative when contact is lost;

in this case the contact forces N = T = 0. In the state of total slid-

ing, a > 0, N > 0, and T = ±μN according to the Coulomb friction

law ( μ is the friction coefficient) in which the sign depends on the

slip direction and equals sgn ̇ b where dot stands for time derivative.

Finally, in the case of partial slip, some points in the contact area

slide like in the previous state but some not, and | T | < μN ( a > 0,

N > 0). For convex axisymmetric geometry, stick takes place in a

circle of a radius s smaller when the contact radius c whereas slip

occurs in the remaining part of the contact i.e. in the annulus ( s, c ).

An unavoidable question that arises when describing frictional

contacts is which pair - forces or displacements - are to be used

as drive parameters. Certainly, it is the force that measures the in-

teraction of a system with its environment, but at the same time

forces are hardly suitable as drive parameters for isolated frictional

systems. Indeed, both for open contact and total sliding, a non-

equilibrated tangential force arises. Therefore, some information on

the environment should be provided such as elastic reaction of

other bodies or inertia of the strained material. However, accepting

that the system is driven by displacements, a simple quasi-static

formulation can be built up that do not involve any accelerated

movement nor information about system’s environment. 

First of all, the normal reaction N = N ( a ) is postulated indepen-

dently of any tangential interactions ( Fig. 1 (a)). The normal load

N is defined for any a , in contrast to the force driven system in

which the inverse function a = a ( N ) is not defined for negative N

(adhesionless contact with no pull-of force considered). Then, once

the pair ( a, b ) is given, the solution for the open contact and total

sliding states is immediately given by 

( N, T ) = ( 0 , 0 ) , (1)
( N, T ) = 
(
N ( a ) , sgn 

(
˙ b 
)
μN ( a ) 

)
(2)

espectively. 

In order to complete the description in the case of partial slip,

ore advanced reasoning should be applied. Partial slip for spheres

oaded by some particular excitation scenarios is described by the

ertz-Mindlin solution ( Mindlin and Deresiewicz, 1953 ). In a more

eneral case when the normal interaction is given by generic N ( a )

hich is not necessarily Hertzian, and the excitation protocol is ar-

itrary, the MMD can be used. 

. Method of memory diagrams in 2D 

The MMD allows one to calculate the tangential response of an

xisymmetric contact system in the partial slip state provided its

ormal response N = N ( a ) is known. The method starts with the

nown solution ( Jäger, 1995 ) for a system loaded by a certain nor-

al displacement a followed by the application of a tangential one

 . The tangential response is given by 

b = θμ( a − q ) 

T = μ( N ( a ) − N ( a = q ) ) 
(3)

ith 

= 
2 − ν

2 ( 1 − ν) 
, (4)

here ν is Poisson’s ratio. Here q is a parameter corresponding to

he radius s of the central stick zone 

 = a ( c ) | c= s , (5)

here a ( c ) is a function that links the normal displacement a and

he radius c (see Fig. 1 (a)) of the contact produced by this dis-

lacement. Here the positive direction of slip is assumed for defi-

iteness. This solution ( Jäger, 1995 ; Ciavarella, 1998 ) is frequently

alled the reduced elastic friction principle, since it expresses the

angential response as a difference of the normal and reduced nor-

al responses, i.e. when a is substituted by the smaller value q in

he latter component. 

It is easy to verify that Eq. (3) can be rewritten in the form 

b = θμ
∫ a 

0 D ( α) dα

T = μ
∫ a 

0 D ( α) dN 
da 

∣∣
a = αdα

, (6)

here D ( α) = 1 if q < α < a and 0 otherwise (see Fig. 2 (a)). In the

MD, it is demonstrated that the integral solution Eq. (6) holds

ot only for constant displacements, but for an arbitrary displace-

ent history as well ( Aleshin et al., 2015 ). However, the integrand

 ( α), called memory function or memory diagram, is more com-

lex in the general case (see Fig. 2 (b)). The shape of the memory

iagram follows changes in the loading history that represents a

equence of applied increments �a and �b . 

The detailed algorithm elaborated by Aleshin et al., 2015 , is

ased on Eq. (6) and uses the fact that slip propagates inward

tarting from contact periphery. The Amontons–Coulomb friction

aw in which the tangential load cannot exceed the threshold μN

esults in the inequality | D ( α)| ≤ 1 for the memory diagram. It

s also shown that the memory diagram contains horizontal and

urvilinear sections. The former ones are created during the slip

rocess when q moves towards α= 0, while the latter ones are gen-

rated in a so-called overloading ( Aleshin et al., 2015 ) or complete

verlapping ( Jäger, 2003 ) regime occurring when �a > | �b |/( θμ)

 0 i.e. the contact area growth rate is higher than the inward slip

ropagation rate. Since slip propagates starting from the contact

order and the contact zone growth dominates, slip does not de-

elop at all. 



Fig. 2. (a) Memory diagram for constant loading corresponding to Eq. (3) . (b) Typ- 
ical memory diagram for an arbitrary loading history with a slip zone q < α < a in 
α-coordinates Eq. (7) that corresponds to s < ρ< c in real geometric coordinates. (c) 
Particular case of overloading when slip is absent ( q = a ) and no mechanical energy 
is lost. 
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Horizontal and curvilinear sections can accumulate or erase

ach other following changes in the drive parameters (displace-

ents). The power of the approach consists in the automated up-

ating of a single internal memory function according to the pre-

cribed rules instead of keeping track on complex shear stress and

ocal displacement distributions in the contact zone. 

The MMD is valid in the case of partial slip i.e. for q > 0.

rom Eq. (3) it immediately follows that q = 0 corresponds to

 = b max = θμa which is the maximum proper displacement that

an be reached in the partial slip state. This maximum value rep-

esents the Coulomb friction threshold for the displacement-driven

ystem, the analogue to T max = μN for a system driven by force. 

Here the MMD is formulated in α-coordinates related to the

ormal displacement, 

= a ( c ) | c= ρ, (7) 

here ρ is the radial coordinate in the contact zone (see Fig. 1 (a)).

quations (6) can also be rewritten ( Aleshin et al., 2015 ) using the

eal geometric ρ-coordinate. 

The MMD requires the knowledge of the loading history in

erms of a and b , as well as of the normal reaction N ( a ) that actu-

lly accumulates all information on contact geometry, and has no

ree parameters. Having that in mind, it makes sense to denote the

olution as 

 = M M D ( a, b ) . (8)
The above result Eq. (8) implicitly uses an assumption that the

ystem always stayed in the partial slip state i.e. the summits of

he both bodies always stick. However, in reality the summits can

eparate because of total sliding or contact loss. In that case, to

orrect Eq. (8) it is necessary to introduce a tangential shift be-

ween the summits b 0 and the remaining displacement part ˜ b aris-

ng due to proper tangential deformation of the bodies in contact.

he repartition 

 = b 0 + ̃  b (9) 

llustrated in Fig. 1 makes it easy to generalize the MMD solution

n the partial slip regime altered by the other two contact states as

 = M M D 
(
a, ̃  b 

)
. (10)

Eq. (9) should be maintained in the contact loss and total slid-

ng states as well, since entering the partial slip state requires the

nowledge of ˜ b . In other words, at the moment of the partial slip

eginning, the value b 0 should be memorized and kept constant

ntil partial slip ends. The way of doing so depends on which state

 contact loss or total sliding - preceded the current partial slip

egime. In the former case b 0 = b as the bodies were unstrained. In

he latter situation, b 0 = b − sgn ( ̇ b ) b max ≡ b − sgn ( ̇ b ) θμa since the

roper tangential deformation of bodies was at maximum. With

his remark, the description of the contact excited by an arbitrary

isplacement history becomes complete. 

In addition to the load-displacement solution, the friction-

nduced energy loss can be analytically calculated for once a mem-

ry diagram is given. It is demonstrated by K. Truyaert et al., 2019 ,

hat the instantaneous work of the friction force produced by ap-

lication of increments �a and �b equals 

W = 2 μ( | �b | − θμ�a ) 

[ 

N ( a ) − N ( q ) + ( q − a ) 
dN 

da 

∣∣∣∣
a = q 

] 

. (11) 

This expression contains only variables present in the memory

iagram (such as the one depicted in Fig. 2 (b)) and also depends

n the normal reaction curve. It is also possible to introduce the

adial distribution �ϖ( ρ) of the incremental energy loss via 

W = 

∫ c 

s 
�� ( ρ) 2 πρdρ (12) 

hich produces the result 

� ( ρ) = 2 μ( | �b | − θμ�a ) σ ( ρ) 

(
1 − 2 

π
arcsin 

(
s 

ρ

))
(13) 

n the form that explicitly contains geometry-related variables

( ρ) (normal stress distribution), the radius of the stick zone s ,

nd the radial coordinate ρ . These expressions are to be used for

alculation of heat generation by friction caused by random vibra-

ions. 

In conclusion it can be noted that the total dissipated energy

o not depend explicitly on the contact system’s geometry - all

eometric information is contained in the normal response N ( a ) -

hereas the spatial energy distribution of the depends on the con-

act profiles shapes through σ ( ρ). 

. Excitation by random displacements 

In the previous Section, the contact model has been formulated

n a manner that requires as few parameters as possible. Now, we

roceed in a similar way with random vibrations and introduce

hem with minimum parameters. 

A good opportunity is presented by the concept of physical

ractals. Mathematical fractal time-dependent curves have neither

haracteristic frequency nor a time scale. In practice, fractals can

e obtained ( Persson et al., 2005 ) by generating random curves



Fig. 3. Two fragments of the normal and tangential displacement histories generated via Eqs. (14) –(18) . 

Fig. 4. Fragment of displacements history (a) and hysteretic tangential load- 
displacement response (b). The original deterministic periodic signals are plotted 
in thick gray lines, the noisy ones are represented by thin black curves. 
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1 Appendix B of the cited paper by Persson et al., 2005 , contains a power spectral 
density derivation for fractal surfaces, C ∼ f –2–2 H , with the Hurst exponent H = 3- D . 
Following the same considerations on can get C ∼ f –1–2 H for fractal curves with 
H = 2- D which finally results in Eq. (16) . 
with Gaussian distribution of heights and power law form of power

spectral density. These two properties reflect the universality of

fractals, since the power law spectrum has no characteristic fre-

quency. However, since we actually deal with physical fractals,

lower and upper cut-off frequency appear. 

Fractal-type random vibrations on a precompressed contact

have been numerically generated by setting 

a ( t ) = 1 + a r ζ ( t ) , (14)

b ( t ) = b r ξ ( t ) , (15)
here ζ ( t ) and ξ ( t ) are independent random values having the

aussian distribution with average 0 and standard deviation 1 at

ny t , and having a power spectral density 

 ( f ) ∼
{

f −5+2 D i f 1 < f < f max 

0 otherwise 
(16)

n accordance to Persson et al., 2005 , 1 with D , fractal dimension.

n such a representation, all quantities are normalized via the fol-

owing substitutions: 

a → 
a 

ā 0 
, b → 

b 

θμā 0 
, 

N → 
N 

N̄ 0 
, T → 

T 

μN̄ 0 
, 

t → t f̄ min , f → f/ f̄ min , 

W → 
W 

θμ2 ̄N 0 ̄a 0 
. (17)

These normalizations use two materials constants ( θ fully de-

ermined by ν via by Eq. (4) and μ, friction coefficient) as well as

hree physical parameters of the system: the precompression dis-

lacement ā 0 , the normal force N̄ 0 at this precompression, and the

ower cut-off frequency f̄ min . As a result, the fractal random vibra-

ions in the dimensionless form Eqs. (14) –(17) statistically depend

nly on the following three parameters: amplitudes a r and b r (sup-

osed to be equal, a r = b r ) normalized on the prestress displace-

ent, fractal dimension D , and higher cut-off frequency normal-

zed on the lower one. 

The random profiles ζ ( t ) and ξ ( t ) can be generated by calculat-

ng real and imaginary parts of the Fourier transform of the kind

( t ) + iξ ( t ) = C 

∫ + ∞ 

−∞ 

√ 
S ( f ) ( r 1 ( f ) + i r 2 ( f ) ) exp ( 2 π i f t ) df , (18)

here S ( f ) is given by Eq. (16) for positive f, S ( f ) = S ( − f ) for neg-

tive f, r 1,2 ( f ) are normally distributed and independent random

umbers with zero mean, C is fixed to have unit standard devia-

ion. In practice, C can be selected independently for each realiza-

ion of ζ ( t ) and of ξ ( t ) such that its rms equals 1. 
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Fig. 5. Total dissipated energy (a) and its radial distribution (b) plotted for two 
spheres in contact. Plot (c) represents a fragment of the time dependence of pa- 
rameters q characterizing the boundary between stick and slip zone. In all graphs, 
data for signals with and without noise are plotted in thin black and in thick gray 
line, respectively. 
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The fractal dimension D is a number between 1 and 2 for

 curve which is easy to verity using the classical box counting

ethod Mandelbrot, 1983 ). This means that setting 1 < D < 2 in

qs. (14) and (15) produces fractal shapes for the curves of the dis-

lacements vs. time. However, it is also possible to consider fractal

hapes for velocities or accelerations profiles corresponding to the

ctual contact displacements that excite the system. Since differ-

ntiation means spectrum multiplication by 2 π if , fractal shapes for

elocity and acceleration curves are produced by the power spec-

ral densities S( f ) ∼ f −5+2 D +2 and S( f ) ∼ f −5+2 D +4 , respectively,

hich follows from Eqs. (16) and (18) . Alternatively, one can still

se S ( f ) defined in Eq. (16) but set 0 < D < 1 for fractal veloc-

ty profiles and −1 < D < 0 for fractal acceleration profiles. Here-

fter we assume that D varies in the interval ( −1, 2) comprising

he three cases referred to as the fractal acceleration, fractal veloc-

ty and fractal displacement, for the sake of brevity. 

There are also two technical parameters of the random profiles:

umber of the points and the total observation time. The values

sed for all simulations presented in the paper are 2 19 = 524288

nd 0 < t < 50 0 0, respectively. Fig. 3 shows two fragments of each

isplacement profile giving an idea about overall complexity of the

ignals and a number of points located at each monotonous section

f the profiles (see inset). 

. Friction-induced energy losses 

It is of interest to study frictional contact excited by random

ignals in two cases: where the signal is regular but contains a

oise component and where it is completely random (no regular

omponent). These situations are considered below in more detail.

he examples are given for a contact of two spheres having the

ormal reaction N = a 3/2 in the normalized variables. At the end

f this section, results for the radial distribution of the dissipated

nergy are presented in which the radial parameters ρ , c and s

re normalized on c̄ 0 = 
√ 

ā 0 /R , the dimensional contact radius at

ormal displacement ā 0 . This means that in order to retrieve the

hysical radial values from the dimensional ones, it is necessary to

now the radius R of the spheres as well. However, the number

f free parameters of the problem is not affected by this fact; the

esults described below depend only on a r = b r , D , and f max . 

.1. Deterministic vibrations with random noise 

The former case is related to the question of the energy loss

ocalization in contact systems. The matter is that the mechanical

nergy can be dissipated by friction only in the slip zone s < ρ <

 i.e. q < α < a in α-coordinates in which s or q shifts towards the

ontact center. Each time when �b changes sign, the slip process

evelops again starting from the contact border ρ = c ( α = a ). This

eans that in order to reach inner parts of the contact area, a long

onotonous intervals of b ( t ) are needed. But the presence of noise

an seriously reduce the chance of having monotonous internals.

o will the presence of noise affect the energy loss localization?

ctually, noise is unavoidably present in any real signal, therefore

his issue has a universal character. 

To exemplify the behavior of frictional contacts excited by noisy

ignals, we added noise with a r = b r = 0.03 amplitude to determin-

stic displacements profiles, namely to a monofrequency a ( t ) and

o b ( t ) each composed of two sinewaves. Other parameters were

ept as in Fig. 3: D = 0.5, f max = 50. Fig. 4 (a) shows the noise com-

onent of the signal while Fig. 4 (b) illustrates its influence on the

angential load-displacement response that remains moderate un-

er the low noise amplitude applied. However, the total dissipated

nergy substantially increases ( Fig. 5 (a)) when noise is added. This

s not surprising since the addition of noise also enlarges the to-

al paths traveled by contact zone points of one body relatively to
eighboring points of the other one. At the same time, the radial

istribution of the dissipated energy stays approximately the same

 Fig. 5 (b)) while the behavior of q ( t ) becomes completely differ-

nt ( Fig. 5 (c)). Indeed, the boundary between the stick and slip

one quickly pulsates when noise is added, since, as it was already

entioned, instead of one long monotonous interval of the regu-

ar drive displacement the noise excitation signal has a multitude

f small ones. This is clearly not a physical instability because it

s not a physical quantity that rapidly changes but a configuration

f zones where different boundary conditions apply. As a result,

he considered problem of frictional contact between deformable

olids remains well-posed. 

.2. Random vibrations 

In this section, we consider a situation when the frictional con-

act is excited by purely random signals of the same kind as in

ig. 3 , i.e. with no deterministic component. Since the statistical

roperties of random signals described in Section 3 do not depend

n time, the average dissipated power P should be constant, 

 W ( t ) 〉 = P t, P = const. (19)



Fig. 6. Total dissipated energy W as a function of time t : two different realizations (gray and dark gray) and the average Pt for 50 realizations (thin black line) are plotted. 
Plots (a) and (b) correspond to D = −1/2 and D = 3/2, respectively. In the insets, fragments of W ( t ) are zoomed in. 

Fig. 7. Dissipated power as a function of parameter D . Three ranges marked at the 
bottom indicate which kind of signal has the fractal properties for corresponding 
values of D : acceleration, velocity, or displacement. The calculations are performed 
for a r = b r = 0.3, f max = 300. The dependences of P on f max are shown in insets for 
D = 3/2 and D = −1/2. 

 

 

 

 

 

 

 

 

Fig. 8. Amplitude dependence of the average dissipated power P on the random vi- 
bration amplitude b r . Three cases are considered: a r = b r , a r = 0, and harmonic ex- 
citation with the tangential amplitude b r while the normal one equals one ( a r = 0). 
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In Fig. 6 , this fact is illustrated in more detail for two partic-

ular values of parameter D: D = −0.5, fractal acceleration, and

D = 1.5, fractal displacement. It is easy to see that increasing D am-

plifies high frequencies in the power spectrum density Eq. (16) that

produces an obvious effect on W ( t ) realizations: for low D low-

frequency random trends become pronounced while for higher D

they disappear so that the realizations tend to the average. This

behavior is additionally illustrated in the insets in Fig. 6 . In addi-
ion, for larger D the increased contribution of higher frequencies

esults in the increase of the dissipated power P , just because the

otal relative distance traveled by bodies is larger. This feature is

asy to see in Fig. 7 where the dependence P ( D ) is plotted. Each

point" in their figure actually represents 50 agglomerated points

orresponding to 50 realizations. The vertical length of all agglom-

rated points characterizes variability in data. This variability is

uch less for higher D which is shown in the both Figs. 6 and 7 .

n the insets of the latter figure, the effect of D on the dependence

he upper cut-off frequency f max is plotted. Non-negligible for frac-

al displacements, it is practically absent for fractal accelerations.



Fig. 9. Normalized dissipated energy density for weak ( a r = b r = 0.2, plot (a)) and strong ( a r = b r = 0.8, plot (b)) vibrations, for two values of parameter D corresponding to 
fractal acceleration ( D = −1/ 2, in gray) and displacement ( D = 3/2, in black). In the case of fractal displacements, examples two upper cut-off frequencies, f max = 50 and 
f max = 300 are given, while for fractal accelerations they practically coincide. Two realizations for each set of parameters are shown. 
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his means that the results for fractal accelerations are more uni-

ersal in some sense, since they are affected by a smaller number

f case-dependent parameters. 

As it was shown P depends on D and additionally on f max 

or higher D approximately in the range 1 < D < 2 (for frac-

al displacements). The remaining point to examine is the am-

litude dependence shown in Fig. 8 for fractal accelerations with

 = −1/2 in the double logarithmic scale. When the normal ampli-

ude is maintained constant (equals one in the normalized vari-

bles), the dissipative contact properties are almost the same

s for the harmonic excitation at the lowest frequency f = 1 of

he fractal spectrum. It can be shown using results obtained by

. Truyaert et al., 2019 , that for the harmonic excitation of the

ind 

 ( t ) = b H sin ( 2 πt ) 

he dissipated energy per period is equal in the dimensional vari-

bles to 

 H = 
32 μ2 θE ∗

15 R 2 

(
c 5 − s 5 H − 5 c 3 s 2 H + 5 c 2 s 3 H 

)
(20) 

ith 

 H = 
μθ

R 

(
c 2 − s 2 H 

)
. (21) 

The corresponding power as a function of b h taken equal to b r 
as added to Fig. 8 for comparison. It can be seen that the appli-

ation of the fractal acceleration signal and of the harmonic signal

ith f = 1 under constant compression dissipate approximately the

ame power, while assuming a random component of the normal

isplacement with the same amplitude slightly increases the dissi-

ation efficiency. In all three cases, the dissipated power remains

omparable, since for the fractal acceleration low frequencies close

o f = 1 dominate in the spectrum. Certainly, this is not so for the

ractal displacement excitation those dissipation is about 10- times

igher ( Fig. 7 ) in the considered example. 

A linear approximation in the double logarithm scale shown

hat the curves in Fig. 8 roughly follow the power law with the

ower of about 3. More precisely, the power approximately equals

.14 for the harmonic tangential excitation, 3.11 for the random
angential excitation, and 2.96 while exited by the normal and tan-

ential signals simultaneously. Power 3 can be easily retrieved an-

lytically in the harmonic case Eqs. (20) , (21) by calculating 

 H ∼ b 3 H + o 
(
b 3 H 

)
or small b H . 

As a final point, a radial distribution of the dissipated power is

tudied as a function of all parameters, i.e. of the excitation am-

litudes a r = b r , of the fractal dimension D , and of the higher cut-

ff frequency f max . Here the most important is the dependence of

he vibration amplitude. For all values of D and f max , at low ampli-

udes most of the energy dissipation occurs in an annulus located

nside the average contact zone ρ < 〈 c 〉 = 1, while at high ampli-

udes it primarily happens in a central circle. This fact is illustrated

n Fig. 9 in which a normalized radial form-factor ϖ( ρ) is plotted.

n this figure ϖ( ρ) is normalized in order to have 
 c 

0 
� ( ρ) 2 πρdr = 1 

or each realization. It can be also noted that the dependence of

( ρ) on a particular realization is quite weak, since ϖ( ρ) is the to-

al energy density accumulated during the whole observation time

.e. is a result of time averaging. 

In fact, the energy dissipation localization in an annulus and in

 circle for different random vibrations amplitudes is an expected

esult. Indeed, for small aptitudes the contact system stays in the

tate of partial slip when parameters s or q in Fig. 5 (c) do not reach

ero, therefore dissipation occurs only in the annulus where actual

lip takes place. However, when slip progresses to the contact cen-

er at high excitation amplitudes, the energy dissipation in there

ecomes dominating since the contact is strongly compressed at

he center. 

. Conclusions and summary 

In this paper, we attempted to formulate and numerically solve

he problem of friction-induced mechanical energy dissipation in

ontact systems subject to random vibrations. Amongst a multi-

ude of contact geometries and possible statistical properties of vi-

rations, we have selected a case characterized by a very restrained
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number of parameters, namely the prestressed contact of two

equal spheres exited by random displacements whose time depen-

dences have fractal properties. In this case, the mechanical and en-

ergetic response of the contact system depends only on the normal

and tangential rms amplitudes (taken equal), on the higher cut-off

frequency of the power spectral density, and on the fractal dimen-

sion understood in an extended way that comprises fractal shapes

for the displacement, velocity, or acceleration curves. The calcula-

tions can also be performed for any other axisymmetric contact

geometry, not necessarily spherical. The numerical method used is

based on the semi-analytical solutions valid in all three contact

states encountered: contact loss, total sliding, and partial slip. In

the latter case, when some parts of the contact zone slip and some

do not, the Method of Memory Diagrams has been applied. 

The numerical study included two particular cases where the

random component represents noise added to a regular determin-

istic excitation protocol, and where the excitation is purely ran-

dom. In the former case, a stable behavior of the contact system

has been observed when all physical parameters change slightly

provided the noise amplitude is small. The only exception found is

the radius s of the boundary between the stick and slip zones that

dramatically oscillates even for weak noise. However, this param-

eter is not related directly to the physical reaction of the contact

system and just determines the zones in which different boundary

conditions apply. 

In the latter case of the purely random vibrations, the average

dissipated power is constant in time. Its value depends on the fre-

quency content of the spectrum and becomes considerably higher

when high frequencies are importantly present (fractal displace-

ment excitation curve). In addition, the result strongly depends on

the higher cut-off frequency in this case. In the opposite situa-

tion of weak high frequencies (fractal accelerations), this depen-

dence practically disappears, and the dissipated power approxi-

mately corresponds to the case of a harmonic excitation at the

lowest frequency of the spectrum. For increasing random ampli-

tudes, the power increases approximately following the cubic law. 

Another expected result concerned the radial distribution of the

dissipated energy. For weak vibrations, the dissipation mostly oc-

curs in an annulus located inside the average contact circle. The

annulus shrinks and shifts towards the contact center with the in-

creasing amplitude and finally becomes a circle. 
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