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Nowadays, a large focus is given to mass personalisation, and multiple path shop floors are suited to 

such production environments. Hence, this paper deals with the Job-shop scheduling problem that is 

used for modelling a manufacturing system. Meanwhile, a large attention is given to energy 

consumption of production systems, but few works consider power requirements of the production 

systems in order to process operations. In order to contribute in filling this gap, this paper considers 

the problem where the objective is to minimise both the total completion time of all operations and the 

instant available power required to process these operations. The problem results in the Bi-objective 

Job-shop Problem with Power Requirements (Bi-JSPPR). The goal of this paper is to provide a Pareto 

frontier of schedules minimising both criteria, considering that operations may consume a lot of power 

at the beginning of the process (consumption peak), more than its consumption after a while, which 

allows to model power profiles of manufacturing operations. To solve the problem two metaheuristic 

approaches are investigated: a hybrid Non-dominated Sorting Genetic Algorithm (NSGA-II) and an 

iterated Greedy Randomized Adaptive Search Procedure coupled with an Evolutionary Local Search 

(iGRASP×ELS). An efficient local search procedure is specifically designed to improve the quality of 

solutions in the Pareto frontier of the hybrid NSGA-II (hNSGA-II). Computational experiments and 

statistical tests are conducted to demonstrate the efficiency of the approaches. Results show that both 

approach are complementary, having the hNSGA-II showing better average performances, while the 

iGRASP-ELS is better when high peak power consumption are considered.  

Keywords: Scheduling; Job-shop; Power Threshold; Metaheuristics; hNSGA-II; iGRASP×ELS. 

1. Introduction 

Optimising energy consumption is one of the major concerns for companies, which tend to 

improve their energy-efficiency (Gutowski et al., 2005), and also for the society that is directly 

impacted by any type of manufacturing processes. According to the U.S. Energy Information 

Administration, more than 50% of the global delivered energy in 2010 was consumed by companies 

(‘Annual Energy Outlook 2016’, 2016) which still have limited solutions at their disposal. To improve 

the energy consumption of production systems, (Rager, Gahm, & Denz, 2015) suggest that two types 

of measures can be taken: technological and/or organisational. Technological measures deal with new 

machines or manufacturing processes, whereas organisational measures focus on improving the 
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existing system, leading to energy reduction. Most of scheduling problems in the literature consist in 

the minimisation of the makespan (total treatment time of all operations), total-weighted tardiness and 

other time-related objective functions. Until recently, only a few works have been dealing with energy 

optimisation as an essential criterion in scheduling. However, energy minimisation in manufacturing 

systems is an increasing search topic in the literature as stressed in (Giret, Trentesaux, & Prabhu, 

2015), where several approaches can be found including but not limited to minimisation of Time-of-

Use pricings (Luo, Du, Huang, Chen, & Li, 2013; Shrouf, Ordieres-Meré, García-Sánchez, & Ortega-

Mier, 2014), total energy consumption (Dai, Tang, Giret, Salido, & Li, 2013; Liu, Dong, Lohse, 

Petrovic, & Gindy, 2014), peak power threshold (Bruzzone, Anghinolfi, Paolucci, & Tonelli, 2012) or 

carbon emissions (Fang, Uhan, Zhao, & Sutherland, 2011). Recently, (Kemmoe, Lamy, & Tchernev, 

2017) presented a mixed integer linear program and metaheuristic approaches for a mono-objective 

Job-shop with a variable power threshold. The present research work relies on a similar mathematical 

formalisation but its purpose is to provide solutions to a Job-shop problem considering the following 

two objectives: minimising the makespan and minimising the power required to realise all the 

operations. Two metaheuristics are proposed which aim at providing good Pareto frontiers for the Bi-

objective Job-shop Problem with Power Requirements (Bi-JSPPR). The paper differs from the 

literature and the previous work as follows:  

• The problem consists in taking into account the makespan and a power threshold as an 

optimisation criterion. This approach is very different from the one that minimises the total energy 

cost (which can actually be deduced from the schedule obtained with consideration of a power 

threshold) as it considers in a deeper way the input power a production system really needs, which has 

a direct impact in power generation for suppliers (Merkert et al., 2015) and is related to critical peak 

pricing approaches (Gahm, Denz, Dirr, & Tuma, 2016). 

• Two metaheuristics are designed for the problem. The first metaheuristic is an evolution of the 

GRASP×ELS (Kemmoe et al., 2017), and called iGRASP×ELS, and the second one is based on a 

Non-dominated Sorting Genetic Algorithm (NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002)), 

and called a hybrid NSGA-II. 

• A population-based local search is proposed for improving the performance of the NSGA-II. The 

hybrid NSGA-II that uses this local search proves to be more performant than the NSGA-II alone.  

• A set of instances for the problem under study is proposed, ranging from 50 to 300 operations. 

The two metaheuristics are assessed on these instances and compared using three different criteria : 

the degree of Pareto optimality (Zitzler, Deb, & Thiele, 2000), the distribution of solutions along the 

fronts (Tan, Goh, Yang, & Lee, 2006), the hypervolume distance to a lower bound set (Ehrgott & 

Gandibleux, 2001; Yen & He, 2013) and the number of solutions in Pareto frontiers. The comparison 

includes statistical tests (two paired samples). 
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The objective of this paper is to provide decision makers and production managers with a tool able to 

provide different solutions given two conflicting objectives: productivity and energy efficiency. Such 

solutions related to expert systems have spread in the literature on this topic (Abedi et al. 2020; Gong 

et al. 2020). In the current study, the proposed approach looks at the decision problem from two points 

of view considering both positions of a company: supplier and customer perspectives. The main 

supplier factors are the productivity and customer services with delivery on time. As a customer, 

criteria are confidence in social responsibility, safe and durable product, and emission of pollutants i.e. 

power requirements. The main difference with other research projects lies in this specific 

environmental objective as it allows a better smoothening of the energy consumption over time. 

Hence, given specific situations, especially in the context of smoothening, it is possible to design a set 

of possible solutions the manager can rely on for scheduling operations without jeopardising 

productivity. Also, it can be useful if companies express a desire for energy savings and to adjust 

contracts with the energy provider accordingly, without compromising productivity. The designed tool 

can be upgraded with other specific constraints in order to further help decision making process. Also, 

this approach can be easily coupled with simulation tools to assess the performance of solutions 

considering other constraints that are difficult to discretise and consider in the optimisation module. 

The optimisation module relying on the iGRASP×ELS has been part of a wider industrial project, 

where solutions of the Pareto fronts have been evaluated by simulation in order to provide the decision 

maker more robust solutions. 

The remaining of this paper is as follows: in the next section an overview of research works 

concerning energy efficient manufacturing is presented. In section 3, the problem under study is 

introduced. In section 4, the metaheuristics and important related algorithms are presented. To assess 

the reliability of the approach for the problem, a computational experiment relying on 40 instances is 

given in section 5. Finally, the last section is devoted to the conclusion and research directions. 

2. Related works 

As (Liu et al., 2014) noted, Job-shop production systems are prevalent in the industry. Hence, 

research on energy efficient Job-shop has developed during the past years. (Salido et al., 2016) 

observed that energy efficient systems offer more robustness and are less sensitive to machine failures. 

The correlation between makespan, energy and robustness is studied in their work that considers a 

Job-shop problem. Machines may have variable processing speeds. This has an impact in energy 

consumption: fast machining will need more energy, resulting in reduced treatment times, whereas 

slow machining needs less energy. With such a production system, the lost time due to a breakdown 

can be caught up by adjusting processing speed of the machine with repercussions on energy 

consumption. (Liu et al., 2014) proposed a NSGA-II to address a Job-shop problem where both the 

total tardiness and the total energy consumption are minimised by reducing the idle times of machines. 
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A Job-shop problem involving different states for machines is studied in the work of (May, Stahl, 

Taisch, & Prabhu, 2015). The three main objectives are the Makespan, the Total Energy Consumption 

and the Worthless Energy Consumption, which corresponds to the energy lost in non-productive states 

of machines. They proposed a Green Genetic Algorithm (GGA) to solve the problem. They also 

investigated other energy-oriented objectives including but not limited to the ratio between Worthless 

Energy Consumption (WEC) and Useful Energy Consumption (UEC), or the energy used during idle 

states. (Liu, Dong, Lohse, & Petrovic, 2015) worked on a Job-shop production system subject to 

rolling blackout policies (period of time where it is not allowed to use energy). A NSGA-II algorithm 

is proposed to provide Pareto frontiers where three criteria are optimised: total weighted tardiness, 

total electricity costs and total energy consumption. (Zhang & Chiong, 2016) proposed to solve a Job-

shop problem where the objective is to minimise energy consumption and the weighted total tardiness 

having machines with variable speeds. A Multiobjective Genetic Algorithm (MOGA), integrating two 

local search procedures depending on the optimised objective, is proposed. For solutions with a good 

quality considering the energy criterion, makespan-based local search is applied, while energy-based 

local search is applied in the other case. Individuals with good quality on both criteria are improved by 

the two local searches, while worst solutions are not improved. This principle reduces the 

computational time allocated to local search phases, and the results are better than a metaheuristic 

without local search. (Tang & Dai, 2015) studied a Job-shop problem where machine speeds can vary 

in order to reduce the total energy consumption of the production system while preserving the 

processing order of operations which is a given data. A mathematical formalisation and a genetic 

algorithm are proposed to solve the problem. (Lei, Zheng, & Guo, 2016) proposed a metaheuristic in 

order to reduce the total energy consumption and the workload balance in a Flexible Job-shop 

environment with variable-speed machines. (He, Li, Wu, & Sutherland, 2015) are interested in a 

Flexible Job-shop where the overall system consumption must be minimised by assigning the most 

suitable machine to each operation and reducing idle time. A linear model is given as well as a 

metaheuristic (Nested Partition Algorithm – NPA). Two scenarios are applied: (i) minimising total 

energy consumption or (ii) minimising both the energy and the makespan. (Moon & Park, 2014) 

formulated two Flexible Job-shop problems. In the first one, the objective is to jointly minimise the 

cost related to production and electricity consumption. In the second problem, the authors investigate 

an approach that can reduce greenhouse gas emissions and save energy by including battery operating 

costs in the objective function and considering renewable energy sources. (Wu & Sun, 2018) 

addressed a flexible Job-shop problem where the objective is to minimise the makespan, the total 

energy consumption and the number of switch on/off. An NSGA-II and a green heuristic are applied. 

In (Gong, Deng, Gong, Liu, & Ren, 2018) a flexible job-shop is investigated where objectives are 

related to the minimisation of the total worker cost, the makespan, and the maximisation of a green 

production indicator. This indicator takes into account energy consumption, noise emissions, recycling 
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of tool chips and safety of operations. A hybrid Genetic Algorithm and a NSGA-II are investigated to 

solve the problem.  

Even though the number of studies on Job-shop with the objective of reducing energy 

consumptions is increasing, the literature shows that energy-saving objectives are not frequently 

addressed (Akbar & Irohara, 2018; May et al., 2015; Salido et al., 2016). Studies on multipath shop 

floors mainly concern total energy consumption rather than peak power limitations as shown in Table 

1 where several recent contributions (not exhaustive) that rely on population based approaches 

(NSGA-II, HGA, …) are exposed. Hence, in this paper an optimisation approach is proposed to 

minimise the power threshold and the makespan in a Job-shop-like manufacturing environment. To 

our knowledge, the Bi-JSPPR is one of the first attempt focusing on this issue for Job-shop 

manufacturing systems. It is further defined in the next section. 

Table 1  
Recent contributions on multipath shop floors with energy considerations. 

reference Time related 

criteria 

Total energy 

consumption 

Peak power 

limitation 

Energy 

pricing 

Other 

criteria 

Solving 

approach 

(Liu et al., 2014) x x    NSGA-II 

(Liu et al., 2015) x x  x  NSGA-II 

(He et al., 2015) x x    NPA 

(May et al., 2015) x x    GGA 

(Salido et al., 

2016) 

x x   x GA 

(Zhang & Chiong, 

2016) 

x x    MOGA 

(Wu & Sun, 2018) x x   x NSGA-II 

(Gong et al., 2018) x x   x NSGA-II 

NHGA 

(Zeng et al., 2018) x x    PSO + 

NSGA-II+TS 

3. Problem definition and notations 

A lot of research attention has been given to solve the classical Job-shop problem (Ku & Beck, 

2016). In such a problem, a set of jobs � ∈ � has to be processed. Each job � consists in a succession of 

operations on a set � of machines. In the classical deterministic Job-shop, � = |�| × |�| operations 

must be scheduled. Each operation, noted 	
, � ∈ [1, �], must be processed by one machine � ∈  �. 

Machines cannot process more than one operation at a time. No preemption is allowed for the 

operations. All the jobs and machine resources are available at the beginning of schedule. As the 

machines are shared among the jobs, a sequence of job operations on each machine must be defined. 

In the classical Job-shop an optimal solution corresponds to a schedule with the minimal makespan 

noted ����. 
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In this paper, all operations have a job and machine dependent power profile that varies according 

to the process progression. By discretising this power profile into energy-blocs (Rager et al., 2015; 

Weinert, Chiotellis, & Seliger, 2011), any operation can be viewed as a succession of sub-operations. 

Each sub-operation corresponds to a specific power consumption during the production process. Thus, 

in this paper the modelling approach used by (Kemmoe et al., 2017) is adopted, which allows to 

represent the power profile where each operation 	
 is modelled as � sub-operations that are noted 

	
,�. Each 	
,� has a processing time, noted �
,�, and a power consumption �
,�. Each starting date of 

a sub-operations 	
,� is noted �
,�. Depending on the value of �, this allows a generic approach by 

taking into account several power profiles for operations if needed. However, as stated in (Rager et al., 

2015), having a precise modelling of operations increase the complexity of a problem. To reduce this 

complexity, an assumed loss of information is considered by addressing the case where � = 2. As no 

preemption is allowed, Time-lags are considered for modelling no-wait constraints between the sub-

operations of a same operation 	
, which is similar to the approach used by (Rager et al., 2015) in the 

context of parallel machines with the objective of reducing the total energy consumption and not the 

instant power required to process operations. Finally, a variable noted ���� models the power 

threshold that must not be exceeded over time. The objective is then to find solutions minimising both 

���� and ���� in such a Job-shop problem by considering the power profiles of operations. The 

complete mathematical formalisation is included in the Appendix.  

In Figure 1, two Gantt diagrams of a same problem with two different makespans and power 

thresholds are exposed. In Figure 1(A) the threshold (94) leads to a better makespan (69) than in 

Figure 1(B) where the power threshold equals 53, and the makespan equals 77. From these figures it 

can be seen that the constant power threshold is not needed all over the schedule. For instance it can be 

reduced to 60 power units after 25 time units in Figure 1(A). It is the same for Figure 1(B), where the 

threshold can be reduced to 30 power units during the interval [46; 59] on the time axis. Hence, a 

planning manager can even go further by using a solution and adapting it in order to negotiate variable 

power thresholds, which can induce a reduction in pricings. However, as it will not be possible to have 

a better makespan for the maximum power threshold, and to preserve a good trade-off between 

computation time and solution quality from the viewpoint of the makespan criterion, the choice is 

made to focus only on the maximum power threshold. Hence, the optimisation of the final power 

threshold is left to a post-optimisation framework if desired.  

As can be stressed, it is difficult to compare the above solutions: it is not possible to say whether 

the solution with the highest power threshold and a lower makespan is better or worse than the 

solution with the lowest power threshold and the higher makespan value. The Job-shop with one 

additional resource (Agnetis, Flamini, Nicosia, & Pacifici, 2011) were shown to be NP-Hard. 

Therefore the problem under study in this paper is also NP-Hard and it is time consuming to get one 

solution on the Pareto frontier. Hence, finding all exact solutions composing such a Pareto front would 
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take a high computational effort as stressed by (Fang et al., 2011). Because of this, the use of 

metaheuristics is appropriate.  

From the literature review, it appears that evolutionary algorithms are widely used because of 

their behaviour in finding Pareto frontiers as they work on a population of solutions (Dai et al., 2013; 

May et al., 2015). 

 

Fig. 1. Gantt charts and power loads of a problem with 94 power threshold (A) or 53 power threshold 
(B). 
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Among these algorithms, the Non-dominated Sorting Genetic Algorithm (NSGA-II) introduced 

by (Deb et al., 2002), is chosen in order to build the Pareto frontier of solutions for the Bi-JSPPR since 

this metaheuristic has shown its efficiency in solving real-world problems with up to three objectives 

(Bechikh, Elarbi, & Ben Said, 2017; Zhou et al., 2011). This metaheuristic is hybridised with a local 

search operator in order to create Pareto fronts with better solutions. Another metaheuristic is 

proposed, called iterated GRASP×ELS, as the GRASP×ELS has shown its efficiency in finding good 

solutions in past researches (Chassaing et al., 2014; Duhamel, Lacomme, Prins, & Prodhon, 2010; 

Kemmoe et al., 2017). These metaheuristics and related operators are presented in the following 

section. 

4. Hybrid NSGA-II, iterated GRASP×ELS and related algorithms 

As noted in the work of (Lacomme, Prins, & Sevaux, 2006), several multi-objective algorithms 

are available in literature and the number keeps increasing. Hence, choosing the most appropriate one 

for a given multi-objective optimisation problem is not obvious. In this paper two metaheuristics are 

developed in order to build Pareto fronts for the Bi-JSPPR. The first one is an evolution of the 

GRASP×ELS and is called iterated GRASP×ELS (iGRASP×ELS); the second one is based on a 

hybrid NSGA-II (hNSGA-II). It appears that metaheuristics generally share some common elements 

or procedures; in the problem under study, the coding of solutions and the evaluation algorithm are the 

same for the iGRASP×ELS and the hNSGA-II. Before presenting these two metaheuristics, the 

representation of solutions and the evaluation procedure are introduced in the following sub-section. 

4.1. Solution representation and evaluation  

For the Job-shop problem, a coding of solutions known as “permutation with repetition” 

(Bierwirth, 1995) is generally used (Liu et al., 2014; Salido et al., 2016). This vector (chromosome) 

noted � in the following, consists in a succession of job numbers (the genes) where each occurrence of 

a job corresponds to a complete operation that must be scheduled (to take into account the no-wait 

constraints, all the sub-operations of an operation are scheduled at once). In Figure 1(A), the Gantt 

diagram can be expressed as a vector of 12 operations: [O9;O5;O1;O2;O10;O6;O11;O7;O3;O12;O4;O8]. 

Each operation can be converted to its job number. For instance, a vector � of a solution as presented 

in Figure 1(A) can be encoded this way: [3 2 1 1 3 2 3 2 1 3 1 2]. Reading the vector from left to right, 

the ��  occurrence of a job’s index number refers to the ��  operation in the processing plan of this job. 

The first 3 in position 1 in the chromosome stands for the first operation of Job 3 (O9), the second 3 in 

position 5 stands for the second operation of Job 3, and so on. Hence, if sub-operations are considered, 

a conversion of the chromosome in a list of operations would be [O9,1-O9,2;O5,1-O5,2;O1,1-O1,2;O2,1-

O2,2;O10,1-O10,2;O6,1-O6,2;O11,1-O11,2;O7,1-O7,2;O3,1-O3,2; O12,1-O12,2; O4,1-O4,2; O8,1-O8,2]. The evaluation 

procedure of such a sequence taking into account both physical and power constraints is given in 

Algorithm 1.  
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In Algorithm 1, lines 4-8 refer to the starting date of an operation according to its job sequence 

(second operation of J1 must be started after completion of the first operation of J1). Lines 9-13 

compute the starting date according to previously scheduled operations in the required machine (for 

instance, in Figure 1(B) the first operation of J3 occur after the first operation of J1 in the machine M1). 

Finally, lines 14-18 compute starting dates of the operation according to the available instant power (in 

Figure 1(B) the last operation of J2 starts at 63 because the last operation of J1 has its peak power 

ending at 63). Hence the power threshold is considered as a constraint during the evaluation of � and 

can lead to a delay in the starting dates of the operations. In the end, a predecessor operation 

(operation already scheduled, and that must be finished before starting the current operation) is 

assigned to each operation. After decoding a chromosome with the evaluation procedure presented in 

Algorithm 1, a solution can be expressed as a Gantt chart as in Figure 1. 

Algorithm 1: Evaluation 

Input/Output 

 S      : structure storing the solution that is evaluated; 

 maxPower   : maximum available power to schedule all operations 

Variables 

 job, op   : job treated and its operation to schedule; 

 machine    :  machine for the operation; 

 job_release_date, machine_release_date, power_release_date: temporary starting dates of an operation; 

 start_date  : final starting date of an operation; 

Begin 

1. FOR each job occurrence in S.λ DO 

2.  op ≔ operation corresponding to job’s occurrence; 

3.  machine ≔ required machine to process operation 

4.  IF (op is first in job’s sequence) THEN 

5.   job_release_date ≔ 0; 

6.  ELSE 

7.   job_release_date ≔ end date of previous operation in job’s sequence; 

8.  END IF 

9.  IF (no operation scheduled on machine) THEN 

10.   machine_release_date ≔ 0; 

11.  ELSE 

12.   machine_release_date ≔ end date of previous operation on machine; 

13.  END IF 

14.  IF (enough power to schedule operation without exceeding maxPower) THEN 

15.   power_release_date ≔ 0; 

16.  ELSE 

17.   power_release_date ≔ date of next power release; 

18.  END IF 

19.  start_date ≔ max(start_date_conj, machine_release_date, power_release_date); 

20.   Compute all relevant information and actual makespan and store it into S; 

21. END FOR 
End 
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This evaluation procedure is used in the iGRASP×ELS and in the hNSGA-II. In the following 

sub-section, the hNSGA-II is first introduced. 

4.3. Hybrid NSGA-II 

This section describes the required components to elaborate an appropriate metaheuristic 

approach for the Bi-JSPPR based on a NSGA-II hybridised with a local search procedure (hNSGA-II).  

The NSGA-II has been introduced by (Deb et al., 2002). What made the NSGA-II popular is its 

easiness to be obtained from a Genetic Algorithm; it has been successfully applied to many multi-

objective combinatorial problems (Ahmadi, Zandieh, Farrokh, & Emami, 2016; Lin & Yeh, 2012; Liu 

et al., 2014). The result of the NSGA-II consists in a set of non-dominated solutions, the closest 

possible to the optimal Pareto frontier. At each iteration, the algorithm tends to improve this front 

using principles of genetic algorithms (crossover and mutations). Two main operators compose the 

NSGA-II: the non-dominated sorting procedure and the crowding tournament procedure. These 

procedures are not reminded here as they are not specific to the problem. For more information on 

NSGA-II, the reader can refer to the initial publication of (Deb et al., 2002).  

4.3.1. Initialise population  

The first stage in a NSGA-II metaheuristic is to generate the initial population. For the studied 

problem, individuals of the population are randomly generated. To this purpose, each individual is 

defined by a random repetition vector �, and by a random power threshold (maxPower in Algorithm 1) 

in order to evaluate the solution, as the makespan depends on the power threshold for each solution.  

4.3.2. Generation of new children solutions  

In evolutionary algorithms, two important operators are used to generate offspring and diversify 

the population: the crossover and the mutation. These two operators are presented in the following 

points. 

(i) Crossover 

The single-point crossover based on the job occurrences in the sequence of job operations is used 

as the crossover operator. Given two parents P1 and P2, selected using a binary tournament, the 

operator generates two children C1 and C2 by the following procedure: 

1. Randomly generate a point X on both parents P1 and P2. The position of this point is the same 

in both chromosomes. 

2. Copy the job occurrences from the beginning of P1(P2) until X into C1(C2).  

3. Complete C1(C2) after X by reading P2(P1) from left to right and by adding each occurrence of 

a job if the corresponding occurrence is not already present in C1(C2).  
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For example, given [321132321312] and [121133322132] two feasible parent chromosomes. If X 

is generated in 5th position, then two children are constructed as in Figure 2. 

 

Fig. 2. Example of the construction of two children solutions. 

(ii) Mutation operator 

In this work, the swap mutation operator is used. In this operator, two different arbitrary genes of 

the children chromosomes are chosen and the values are exchanged. For instance, in the first children 

previously generated during the crossover procedure ([321131322132]), a mutation could consist in 

permuting jobs in 4th and 11th positions, resulting in the new child [321331322112]. For the mutation 

operator in the NSGA-II metaheuristic, an expected power consumption of the offspring is randomly 

chosen in the interval constructed with the power consumption of each parent. This expected power 

consumption will be used in the local search procedure presented in the next sub-section. 

In single-objective optimisation, it is well known that a standard GA must be hybridised with a 

local search procedure to be able to compete with metaheuristics like Tabu Search (Lacomme et al., 

2006). However, the local search must not lead to a premature convergence of solutions into one 

single point of the solution space, and then disturb the search mechanism of the multi-objective GA. 

The next section presents moves and the general structure of the local search procedure proposed for 

the problem that encompasses both criteria.  

4.3.3. Local search procedure for hybrid NSGA-II 

In its basis formulation, the NSGA-II does not include a Local search algorithm. This procedure 

aims at improving the quality of solutions while keeping the Pareto frontier well scattered. The local 

search phase consists in exploring the neighbourhood of a solution by considering several power 

thresholds in order to explore the neighbourhood of the current solution and obtain several points in 

the solution space to design a better Pareto frontier. This aims at exploring the neighbourhood of a 

solution as in Figure 3, where an example of possible improved solutions after a search process with 

four output solutions is given. 
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Fig. 3. Possible positions of improved solutions. 

The structure of the local search procedure is given in Algorithm 2 where a population, named 

paretoLS, of non-dominated solutions is built from a given solution S. The size of the population 

constructed from S is equal to the number maxIter. In order to obtain these solutions, the power 

threshold evolves by step in the local search. This step is computed by considering a given ratio 

between the minimum and maximum power required by the solutions in the actual Pareto front (line 

1). Then, the power threshold pow is initialised to a value lower than the power obtained randomly 

during the mutation phase (P1 in Figure 3). The validity of pow is checked (line 2). Considering the 

current power threshold (pow), S is improved by doing permutations of operations in a critical path 

(lines 6-22). A critical path π in a schedule of a solution is a set of operations that cannot be delayed 

without negatively affecting the makespan.  

In a critical path only specific operations can be exchanged: operations that are scheduled on the 

same machine (machine related disjunction), or operations delayed because of the power threshold 

(power related disjunction). The neighbourhood that is explored in this algorithm extends the one 

proposed by (Van Laarhoven, Aarts, & Lenstra, 1992) for the classical Job-shop since theirs is only 

relying on machine related disjunctions. This neighbourhood relies on the notion of critical block 

proposed by (Grabowski, Nowicki, & Zdrzalka, 1986) where a critical block is a set of consecutive 

operations scheduled on a same machine. In this study, the notion of machine critical block is 

extended to any couple of operations (	
, 	#) if the operation 	# is delayed because of 	
. When such 

a couple (	
, 	#) is detected in a critical path, the local search applies a neighbourhood operator to get 

a new solution (line 10). This neighbourhood operator is noted N and is defined as follows: Let S be a 

solution of a problem. Let 	
 and 	# be two operations in a critical block B of a critical path π of S. A 

neighbouring solution S’ is obtained from S, by reversing the processing order of 	
 and 	#. At line 24, 

the power threshold pow is updated according to the power step computed at line 1, and pow is then 

used as the new power threshold in order to obtain another improved solution. This procedure is 

applied to each child obtained after crossover and mutation.  
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Algorithm 2: local-search-hNSGA-II 

Input 

 S     : sequence to explore;  

 maxP   : maximum power threshold in the actual Pareto front; 

 minP   : minimum power threshold in the actual Pareto front; 

 minPow   : minimum power threshold to obtain a feasible solution; 

 nbStep   : number of improved solutions; 

 maxIter   : maximum number of call to Local-search procedure; 

Output 

 paretoLS  : non-dominated solutions obtained from S ; 

Variables 

 tmpS, savS : temporary solutions; 

 pow    : current power for the local search process; 

 stepP   : step to update pow at each iteration of the search process; 

 cptIter   : loop variable; 

Begin 

1.  cptIter ≔ 0; paretoLS ≔ ∅; stepP ≔ (maxP – minP)/nbStep;  

2.  pow ≔ max(minPow; S.power-(maxIter/2)*stepP); //power is given from the mutation  

3.  WHILE cptIter < maxIter DO 

4.   tmpS ≔ S; 

5.   evaluate tmpS with pow; 

6.   op ≔ last operation in critical path of tmpS; father ← father of op; 

7.  WHILE father != 0 DO //local search phase on disjunctive arcs 

8.   IF job(op) != job(father) THEN //op and father can be scheduled on different machines 

9.    savS ≔ tmpS; 

10.    permute op and father in savS; //Neighbourhood N 

11.    evaluate savS with Pow; 

12.    IF savS.makespan < tmpS.makespan THEN 

13.     tmpS ≔ savS; 

14.     op ≔ last operation in critical path of tmpS; 

15.    ELSE 

16.     op ≔ father of op; 

17.    END IF 

18.   ELSE 

19.    op ≔ father of op; 

20.   END IF 

21.   father ≔ father of op; 

22.  END WHILE 

23.   add tmpS in paretoLS; eliminate dominated solutions; 

24.   pow ≔ pow + stepP; 

25.   cptIter ≔ cptIter + 1; 

26. END WHILE 

27. return paretoLS; 

End 

The complete hNSGA-II procedure is given in Algorithm 3, where the local search is included 

just after crossover and mutation (at line 6). The population Pop in the NSGA-II is updated by 
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applying the classical non-dominated sorting procedure and margin procedure on the initial population 

merged with all the solutions obtained after the local search process. 

Algorithm 3: hNSGA-II 

Output 

 pFront : non-dominated elements obtained during procedure; 

Variables 

 ns : size of the populations; 

 Pop : population of individuals; 

 newPop : temporary population for crossover and mutations; 

Begin 
1.  Generate a first population Pop with ns solutions; 

2.  Sort each solution of Pop into non-dominated fronts; 

3.  Compute margins of each solution in Pop; 

4.  DO 

5.    Apply crossover and mutation to generate ns children solutions; 

6.    Apply local-search-hNSGA-II; 

6.    Sort each solution of Pop into non-dominated fronts; //takes into account solutions after local search 

7.    Compute margins of each solution in Pop; 

8.    Sort Pop in decreasing order of fronts and margins; 

9.    Erase each solution that is not in the first ns solutions of Pop after sorting; 

10.  WHILE no stopping criterion is met 

11.  pFront ≔ Pop.front(1); //these are the non-dominated solutions in Pop 

12.  return pFront; 
End 

4.2. iGRASP×ELS metaheuristic 

A second metaheuristic is used for the problem; it is based on a GRASP×ELS, which is a 

metaheuristic proposed by (Prins, 2009). However, the GRASP×ELS is generally used for single 

objective optimisation problems for which it has shown to be effective, as in (Kemmoe et al., 2017) in 

the context of a variable power threshold. In this study, a bi-objective problem is considered. In order 

to deal with the structure of the GRASP×ELS, it is chosen to apply this metaheuristic iteratively with 

several power thresholds (i.e. the problem is reduced to a single objective case). Hence, the 

GRASP×ELS is transformed into an iterated GRASP×ELS (iGRASP×ELS) in which a criterion (the 

makespan) is optimised while considering the other one fixed (the power threshold). This 

iGRASP×ELS is not presented in this paper as it does not differ very much from the initial 

GRASP×ELS proposed in (Kemmoe et al., 2017) for a variable power threshold. However some 

points must be highlighted. Indeed, each GRASP×ELS consists in searching one point in the Pareto 

frontier. The best solution found during a GRASP×ELS phase is inserted in the Pareto front if it is a 

non-dominated solution. All solutions that may be dominated are erased from this population. The way 

the power threshold is computed from one GRASP×ELS phase to another consists in adding a step 

value equal to the difference between a maximal power threshold that is computed with a first 

execution of a GRASP×ELS without considering the power threshold objective (maxP), and the 
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minimal power threshold under which no solution exists (minP). This value is then divided by the 

maximum allowed size of the Pareto frontier (paretoMaxSize): �&'( = ���)*�
+)
,�-.�/0��1
2.. 

5. Computational experiment 

5.1. Experimental settings 

Both the proposed hNSGA-II and iGRASP×ELS have been implemented in C++, and tested on a 

PC with an Intel Core i7-4800MQ 2.7GHz, running Windows 7 operating system. If several papers 

have addressed energy efficiency in scheduling, they do not clearly consider the power profiles of 

operations and they are focused on minimising total energy consumption rather than peak power 

consumption. This implies the definition of new instances and specific methods. Hence, as no instance 

of reasonable size existed in the literature for the considered problem, the generation of test instances 

was required. A set of 40 standard benchmark instances with 50 to 300 operations, designed by 

Lawrence (Lawrence, 1984), is available from the OR-library for the classical JSSP. However, these 

instances do not take into account power requirements of operations. Therefore, this dataset is adapted 

to the Bi-JSPPR by introducing additional factors such as duration and consumption of the power 

peak, and nominal power consumption after the end of the peak. This new dataset is available on 

http://damienlamy.com/works/Energy/JSPPR/BiObjective/. 

The original processing times of operations are kept the same and are used as the total processing 

time of operations. The power data for these instances have been randomly generated by considering 

that given the total duration of an operation Pi, the nominal power consumption �
,3 and the peak 

power consumption �
,4 are expressed as follows: �
,3 is uniformly distributed on the closed interval 

[0; 
)5
3 ]. �
,4 is uniformly distributed on the closed interval [�
,3; Pi]. The duration of the peak power 

consumption (�
,4) is in [0; 
)5
6 ]. For each instance, and for each metaheuristic, 5 replications have been 

made.  

5.2. Adopted performance measures 

To assess the quality of a multi-objective optimisation algorithm, different measures can be 

considered than the only criterion used in single objective optimisation (Collette & Siarry, 2002). In 

the present work, four measures are used: Hyperarea Ratio (HR) as in (Collette & Siarry, 2002), the 

degree of Pareto optimality (RN), the distribution of solutions along the Pareto front (TS) as in (Zhang 

& Chiong, 2016), and the number of non-dominated solutions (780) in a given Pareto front �80. The 

first three measures, which require explanations, are reminded below:  

(1) The measure of the deviation between a Lower Bound Set (LBS) and Pareto fronts through 

hypervolume comparison: Hyperarea Ratio (9:). Each element of the LBS (�, �) is computed using 
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the formula: � =  ∑ ∑ )5<=5<<∈>?55∈@
A , where � is a possible value for the power threshold, ranging from 

the minimum power threshold (required to execute any operation) to the power threshold where the 

problem is equal to the classical Job-shop. This approach allows a simple estimation of the LBS. The 

referenced point for computing the hypervolumes HV is nadir, which is obtained for all Pareto fronts 

given by an algorithm M on an instance (i.e. nadir is the point formed with the worst makespan and 

the worst power of each Pareto front returned by M). Finally, 9: is computed as follows: 

9: =  100 ∗  DEFG>*DEH
DEFG> . This value is computed for each replication of a metaheuristic M in order to 

have average values on all replications.  

(2) The degree of Pareto optimality (RN) of the obtained solutions: :70 = I1H∗
I1H , where 780∗

 

denotes the number of solutions in �80 that are not dominated by any solution of another algorithm. 

This measure is also called C-metric in (Zitzler et al., 2000). 

(3) The distribution of solutions along the Pareto front (TS), with 

J80 =  4
KL M 4

I1H ∑ (N
 − NL)3
∈)1H , where N
 is the Euclidian distance in the search space between the 

solution i and the nearest solution i' in �80: N
 = MP	Q�4(�) − 	Q�4(�R)S3 +  P	Q�3(�) − 	Q�3(�R)S3
 

and with NL = 4
I1H ∑ N

∈)1H . A smaller value of TS suggests that solutions are more evenly 

distributed in the Pareto front. This metric is related to the spacing metric of (Tan et al., 2006). 

5.3. Tuning parameters 

The parameter values for the hNSGA-II are set as follows: the population size n = 50; the 

stopping criterion is a number of iterations iter_max=1000; the crossover probability cp = 0.8; the 

mutation probability mp = 0.2. These parameters were obtained after a Design of Experiment (DOE) 

consisting in testing different parameters on a subset of all the instances. This subset consists in 8 

instances with different number of jobs or machines. Tested parameters are as follows: n={50; 100}, 

iter_max={500; 750; 1000}, cp={0.6; 0.7; 0.8; 0.9}, mp={0.1; 0.2; 0.3} resulting in 72 possible 

configurations. The average values of NS, RN and TS are computed for each set and the configuration 

with the best overall performances for the hNSGA-II is selected for all the other instances. For the 

Local Search, the number of steps (nbStep) is experimentally fixed at 40, while the maximum number 

of explored solutions (maxIter) is fixed at 20 to avoid large computation time. A maximum 

computation time for each execution is set at 1500 seconds. 

For the iGRASP×ELS, the same approach is used with tested parameters as follows: the number 

of GRASP iterations (nb_grasp) is ranged from 20 to 40 with steps of 10. The number of ELS 

iterations (nb_els) is ranged from 75 to 150 with steps of 25, and the number of neighbours generated 

(nb_n) is ranged from 20 to 25 with steps of 1. This DOE resulted in the following parameters: 



 17 

nb_grasp=20, nb_els=100, and nb_n=23. As this metaheuristic is not dedicated to bi-objective 

problems, it is applied iteratively with different power thresholds. To avoid extended computation 

times, a time limit for each GRASP×ELS is set to 50 seconds. Each power threshold is computed by 

adding a step value computed as in section 4.2. The algorithm stops after finding 30 different solutions 

(i.e. (UV'&W�UX8�Y'). Hence, the maximum computation time for an execution is 1500 seconds. 

Because of the selected parameters, the average computation time of all instances is equal for 

both metaheuristics. 

5.4. Computational results on the hNSGA-II and the iGRASP×ELS 

Some frequently used notations are reproduced here for quick reference: 

9:ZZZZ: average hypervolume deviation between computed fronts and Lower Bound Set; 

J8ZZZZ: average distribution of solutions along the Pareto front; 

:7ZZZZ: average degree of Pareto optimality. 

78ZZZZ: average number of non-dominated solutions. 

The results are presented in Table 2 where the column Ins. represents the instance treated. The 

number of jobs is noted �Q�, the number of machines is noted �Q�, while � is the number of 

operations. 9:ZZZZ represents the average value for 9: (area deviation between Lower Bound Set and 

Pareto fronts); J8ZZZZ is the average value for J8 (evenness of the distribution of solutions along the 

Pareto front) and :7ZZZZ is the average value for :7 (degree of Pareto optimality). Finally, 78ZZZZ denotes 

the average number of non-dominated solutions. Best values are in bold.  

(1) Focusing on the 9:ZZZZ column, it can be seen that the hNSGA-II is closer in average to the 

Lower Bound Set (LBS) than the iGRASP×ELS. Results are better on more than 77% of the instances. 

After conducting a paired sample t-test, results show that there is a difference between the two 

approaches as hypothesis H0 (i.e. mean differences equal to 0) can be rejected (p-value < 0.0001). 

However, it should be mentioned that, in order to have comparable computation times between the 

two approaches, the iGRASP×ELS returns less values in the Pareto fronts. This obviously has an 

impact in the computation of hypervolumes as less area is covered by the solutions in the front. Two 

scenarios can be considered to improve the quality of returned fronts in the iGRASP×ELS: computing 

more solutions (increase (UV'&W�UX8�Y'), or allowing a larger search time for each point. In both 

cases the Pareto frontiers are improved, at the cost of an increased computation time which is a 

difficult trade-off to deal with in optimisation algorithms.  
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Table 2  

Results obtained with hNSGA-II and iGRASP×ELS.  

hNSGA-II iGRASP×ELS 

Ins. �Q� �Q� � 9:ZZZZ J8ZZZZ :7ZZZZ 78ZZZZ 9:ZZZZ J8ZZZZ :7ZZZZ 78ZZZZ 

la01_jsppr 10 5 50 27.80 1.01 0.69 33.4 31.71 0.64 0.02 21 

la02_jsppr 10 5 50 27.81 0.75 0.19 27.2 26.92 0.66 0.37 20.8 

la03_jsppr 10 5 50 26.61 0.69 0.35 28.6 25.25 0.59 0.18 17.8 

la04_jsppr 10 5 50 21.24 1.27 0.33 45.8 21.07 1.09 0.32 23.4 

la05_jsppr 10 5 50 48.27 0.68 0.27 8.4 50.80 0.40 0.03 6 

la06_jsppr 15 5 75 33.12 0.95 0.62 27.6 36.67 0.53 0.07 16.4 

la07_jsppr 15 5 75 32.44 0.71 0.76 22.8 38.77 0.64 0 13.8 

la08_jsppr 15 5 75 27.52 0.84 0.51 29.6 30.33 0.79 0.06 17.6 

la09_jsppr 15 5 75 34.70 0.83 0.53 15.6 39.97 0.53 0 10.8 

la10_jsppr 15 5 75 34.47 0.66 0.58 25 37.56 0.59 0.03 15.4 

la11_jsppr 20 5 100 26.98 0.77 0.81 32.8 31.80 0.72 0.02 21 

la12_jsppr 20 5 100 31.41 0.74 0.65 24 35.03 0.56 0 13.6 

la13_jsppr 20 5 100 25.34 0.87 0.80 31.4 29.26 0.77 0 19 

la14_jsppr 20 5 100 27.62 1.08 0.64 35 29.89 0.57 0.06 20.4 

la15_jsppr 20 5 100 26.67 1.12 0.71 25,4 32.03 0.67 0 16.6 

la16_jsppr 10 10 100 13.00 0.69 0.81 50 13.88 0.80 0.24 17.6 

la17_jsppr 10 10 100 13.50 0.71 0.80 50 15.78 0.83 0.20 21.4 

la18_jsppr 10 10 100 12.79 0.69 0.82 50 14.59 0.80 0.19 20.8 

la19_jsppr 10 10 100 14.22 0.61 0.86 50 16.06 0.86 0.23 20.4 

la20_jsppr 10 10 100 11.95 0.65 0.76 50 13.16 0.87 0.36 20.6 

la21_jsppr 15 10 150 13.49 0.64 0.89 50 14.56 0.99 0.25 24.8 

la22_jsppr 15 10 150 13.97 0.63 0.80 50 13.40 0.84 0.30 23.4 

la23_jsppr 15 10 150 11.94 0.62 0.86 50 13.76 0.80 0.08 24.8 

la24_jsppr 15 10 150 13.48 0.63 0.83 50 14.44 0.87 0.14 24.2 

la25_jsppr 15 10 150 17.13 0.69 0.98 50 18.30 0.79 0.28 24.2 

la26_jsppr 20 10 200 12.08 0.65 0.91 50 13.26 0.93 0.21 24.6 

la27_jsppr 20 10 200 15.18 0.59 0.80 50 14.43 0.86 0.34 24.2 

la28_jsppr 20 10 200 11.60 0.58 0.84 50 11.57 0.93 0.29 23.6 

la29_jsppr 20 10 200 16.56 0.61 0.94 50 17.50 0.95 0.19 24.6 

la30_jsppr 20 10 200 14.37 0.67 0.87 50 15.52 0.90 0.23 26.8 

la31_jsppr 30 10 300 15.86 0.64 0.86 50 18.21 0.74 0.18 24.4 

la32_jsppr 30 10 300 11.59 0.68 0.56 50 11.49 1.01 0.56 27 

la33_jsppr 30 10 300 14.75 0.61 0.74 50 15.59 0.84 0.30 24.4 

la34_jsppr 30 10 300 15.95 0.63 0.75 50 15.51 0.90 0.48 24.4 

la35_jsppr 30 10 300 15.24 0.66 0.65 50 15.73 0.79 0.35 23.8 

la36_jsppr 15 15 225 13.13 0.68 0.91 50 14.15 0.94 0.21 23.8 

la37_jsppr 15 15 225 12.27 0.58 0.82 50 12.91 0.98 0.27 26 

la38_jsppr 15 15 225 14.23 0.60 0.91 50 14.61 0.91 0.30 23.6 

la39_jsppr 15 15 225 11.59 0.66 0.93 50 11.85 0.99 0.27 23.8 

la40_jsppr 15 15 225 12.12 0.69 0.74 50 12.04 0.94 0.29 24.6 

Average: 19.85 0.73 0.73 41.57 21.48 0.80 0.20 21.14 

(2) Focusing on the :7ZZZZ column, it can be stressed that the solutions found by the hNSGA-II are 

of higher quality than the solutions achieved by the iGRASP×ELS. Remember that this criterion 

corresponds to the percentage of solutions that are not dominated by any solution of any run of the 

other metaheuristic. Considering this criterion, Pareto frontiers are better in almost all the instances 

with the hNSGA-II. Furthermore, in average, 80% of the iGRASP×ELS solutions are dominated by at 

least one of the solutions provided by the hNSGA-II. In the meantime, only 26% of all solutions of the 

hNSGA-II are dominated by at least one of the iGRASP×ELS solutions. The statistical test confirms 

the observation, as hypothesis H0 can be rejected (p-value < 0.0001). The Figure 4 summarises the 
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results for the :7ZZZZ criterion. In this figure, the rectangles correspond to the average value of :7ZZZZ, and 

the error lines correspond to the standard deviation among these results. The figure shows that the 

hNSGA-II is clearly better on the dataset. However, the :7ZZZZ criterion, considered as an aggregated 

result, does not show that the iGRASP×ELS performs better when the power threshold is high and 

where the hNSGA-II has difficulties in finding solutions as stressed in Figure 5. This last point implies 

that the iGRASP×ELS, and hence the GRASP×ELS, can be used when searching solutions with low 

makespan values and high power consumptions as discussed in the following.  

(3) Focusing on the J8ZZZZ column, it appears that solutions obtained with the hNSGA-II are 

distributed more evenly than solutions found by the iGRASP×ELS. The average TS value 

corresponding to the iGRASP×ELS is larger than the one of the hNSGA-II (0.80 compared to 0.73). 

Actually, the hNSGA-II provides better scattered Pareto frontiers in more than 60% of all the 

instances. This is due to the specific NSGA-II procedures (ranking and margin) that help having good 

Pareto fronts. However, statistical test shows that hypothesis H0 cannot be rejected and so results are 

comparable on this criterion.  

(4) Finally, considering the average number of non-dominated solutions in the different Pareto 

fronts, the hNSGA-II shows better average performances. This is mainly due to the behaviour of the 

algorithms, as the iGRASP×ELS searches for solutions according to a pre-computed step value. This 

step value is designed empirically to avoid large computation times for this metaheuristic, as it would 

be very difficult to obtain a valuable Pareto front in an acceptable duration if all possible thresholds 

were to be tested. Also, it allows to have the same overall computational time with the hNSGA-II for 

better comparisons. Hence, a trade-off has been considered between the number and the duration of 

each iGRASP×ELS run to build the Pareto frontier. Meanwhile, the NSGA-II does not suffer from this 

constraint, and the non-dominated sorting procedure ensures a better management of the population. In 

more than 62.5% of test cases, the whole final population constitutes the Pareto front, which ensures a 

large number of alternatives for a decision maker.  

 

Fig. 4. Average values for the :7 criterion (blue rectangles) and standard deviations (error lines). 
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Considering the different criteria used to compare the two approaches, results show that the 

hNSGA-II is in average better than the iGRASP×ELS because of three criteria: the :7ZZZZ, the 9:ZZZZ and 

78ZZZZ values. The overall better performance of NSGA-II allows to provide decision makers with larger 

sets of possible solutions. In both cases, multicriteria decision approaches can be applied to choose the 

best suited solutions to a given problem. 

As can be stressed, even though the hNSGA-II apparently outperforms the iGRASP×ELS in most 

of cases, this last metaheuristic seems more effective on some instances (i.e. la27_jsppr, la34_jsppr, 

la40_jsppr – according to 9:ZZZZ criterion). Actually, the iGRASP×ELS still has several advantages that 

are not visible in the presented results. Indeed, in almost all instances this metaheuristic presents better 

results when considering high power thresholds as stressed in Figure 5.  

 

Fig. 5. Pareto fronts obtained after 5 replications of each metaheuristic on la35_jsppr. 

Figure 5 shows an example of five different Pareto fronts per metaheuristic obtained with a 

typical execution of both algorithms on instance la35_jsppr. As can be stressed, the iGRASP×ELS 

finds better average solutions when the power threshold is high (part A of the figure), whereas the 

hNSGA-II finds better average solutions in the second part (part B), and is better considering all three 

criteria. 

To complete the analysis of performance when high power thresholds are considered, and to 

further assess performances between multi-objective metaheuristics and metaheuristics specifically 

designed to address single objective problems, an investigation can be conducted on the extreme 

points of the Pareto front as suggested in (Abedi, Chiong, Noman, & Zhang, 2020). In the case of the 

iGRASP×ELS and hNSGA-II two objectives could be compared to solutions from the literature: the 

makespan, and the peak power consumption. Considering the makespan, best solutions in the Pareto 

front considering this criterion are given in Table 3. Results are compared with two specifically 
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designed algorithms, namely the Improved Shuffle Complex Evolution Algorithm (ISCEA) proposed 

in (Zhao, Zhang, Zhang, & Wang, 2015) and the New Island Model Genetic Algorithm provided in 

(Kurdi, 2016). In this table %\]8 refers to the deviation between best found solutions and best known 

solutions from the literature, whereas %\]8ZZZZZZZZZ refers to the average deviation over the different runs. 

Results show that the iGRASP×ELS has a better behaviour than the hNSGA-II when considering only 

the makespan. When compared with ISCEA, it can be observed that this metaheuristic is slightly 

better than the iGRASP×ELS on %\]8, but the iGRASP×ELS seems to have a better behaviour in 

average; it also seems to be preferable to NIMGA. Meanwhile, the hNSGA-II is clearly outperformed 

by the GRASP×ELS and the other metaheuristics on the makespan criterion. This suggests that the 

overall performance attained by the hNSGA-II is mainly due to the solutions with low power 

thresholds. Actually, it appears that the behaviour of this metaheuristic is largely dependent from the 

non-hierarchised local search procedure which tends to orientate the search towards higher makespan 

solutions with lower power thresholds. Concerning this second objective it is more difficult to 

compare with other studies, as this work is one of the only works dealing with this as an objective. 

Another work by (Masmoudi, Delorme, & Gianessi, 2019) deals with similar constraints, but it is 

focused on minimising costs, and it is a linear program solving problems with 36 and 50 operations, 

which is lower than the medium problems with up to 300 operations we are addressing here. 

Table 3  

Comparison of performances on makespan criterion between different metaheuristics. 

  iGRASP×ELS   hNSGA-II   ISCEA   NIMGA 

%\]8 %\]8ZZZZZZZZZ %\]8 %\]8ZZZZZZZZZ %\]8 %\]8ZZZZZZZZZ %\]8 %\]8ZZZZZZZZZ 

la01-05 0 0 0.54 0.91 0 0.68 0 0 

la06-10 0 0 0 0 0 0 0 0 

la11-15 0 0 0 0 0 0.01 0 0 

la16-20 0 0.04 1.15 2.77 0.38 1.98 0.11 0.62 

la21-25 0.57 1.13 3.43 6.85 0.57 1.36 0.95 2.91 

la26-30 2.1 2.64 7.04 10.58 0.61 2.53 2.69 4.2 

la31-35 0 0 2.11 4.23 0.02 0.16 0 0.03 

la36-40 1.73 2.24 5.94 9.41 1.43 3.68 2.01 4.25 

Mean: 0.55 0.76   2.53 4.34   0.38 1.3   0.72 1.50 

Actually, the GRASP×ELS is very useful when a single solution is needed considering a given 

power threshold. For example, if a power supplier informs a customer that the available power during 

a given period is reduced to a lower level than the one contracted (because of breakdowns, or 

maintenance tasks), it is up to the enterprise to adjust the schedule conformingly to the new power 

threshold. In such a scenario, it is possible to use the GRASP×ELS used in the iGRASP×ELS because 

its intensification scheme is better suited than the hNSGA-II, which relies on a genetic algorithm 

(Kemmoe et al., 2017). Furthermore, the iGRASP×ELS requires less memory space, since no 

population is used during the local search phases, which could be useful in order to deal with large 
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scale instances. This is exposed in Figure 6, which shows the :7ZZZZ value of the Pareto fronts when 

considering only solutions with high power thresholds. This final figure proves the GRASP×ELS is 

able to produce non-dominated solutions with high power thresholds, and hence the complementarity 

of the two proposed metaheuristics. 

 

Fig. 6. Average values for the RN when focusing on solutions with more than 150 operations and with 
high power thresholds. 

To demonstrate the importance of the local search in the hNSGA-II, a comparison with the 

classical NSGA-II (without local search) is also given in Table 4. It is clear from this last table that the 

hNSGA-II outperforms the NSGA-II (all p-values are inferior to 0.05) which confirms the assumption 

of (Lacomme et al., 2006). Note that, compared to Table 2, 9:ZZZZ changes for hNSGA-II, as the 

reference point nadir also changes. 

Table 4 
Comparison of performances between hNSGA-II and NSGA-II on Bi-JSPPR 

hNSGA-II NSGA-II 

Ins. nbjob nbmac n   9:ZZZZ J8ZZZZ :7ZZZZ   9:ZZZZ J8ZZZZ :7ZZZZ 

la01-05 10 5 50 22.55 0.88 0.90 38.54 0.95 0 

la06-10 15 5 75 22.36 0.80 0.99 40.63 0.80 0 

la11-15 20 5 100 20.43 0.91 0.99 37.95 0.81 0 

la16-20 10 10 100 15.01 0.67 1.00 31.45 0.89 0 

la21-25 15 10 150 15.78 0.64 1.00 35.86 0.80 0 

la26-30 20 10 200 15.87 0.62 1.00 34.02 0.74 0 

la31-35 30 10 300 15.07 0.64 1.00 31.64 0.64 0 

la36-40 15 15 225 14.47 0.64 1.00 33.93 0.70 0 

Average :   17.69 0.73 0.98   35.5 0.79 0 

If the results presented in this study concern a specific problem considering power requirements of 

production systems, some hypothesis have been made. They mainly concern the power profiles of 

operations that could consider more variability. This would however increase complexity of the 
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problem and a trade-off in the modelling could be explored. Another limitation concerns the values of 

the power profiles as it is very difficult to obtain data from manufacturers. Focusing on other 

environmental and social indicators could also be valuable for industrials. Also, the approach in this 

paper is deterministic as no stochasticity is considered. A continuation of this work in an innovative 

way would be to address and study the problem where operations have variable processing times and 

hence the objective would resume in finding more robust solutions. Also, as production systems are 

dynamic, designing reactive approaches based on dispatching rules, or fast heuristics dedicated to 

power minimisation could be investigated. The two approaches could be joined in order to explore 

predictive-reactive approaches. Finally, the paper concerns the optimisation of Job-shop floors, and 

the consideration of flexible manufacturing, where several machines are available, with different 

processing characteristics would be interesting. As the industry tends to move forward to 

reconfigurable manufacturing systems, this kind of production systems could also benefits from 

research on energy efficiency and scheduling approaches (Battaïa, Benyoucef, Delorme, Dolgui, & 

Thevenin, 2020). 

To conclude this experiment, it appears that both approaches have pros and cons depending on 

the objective of the decision maker. If the focus is given to high productivity, the iGRASP×ELS will 

be preferred, whereas the hNSGA-II can be chosen when better performances on low power thresholds 

are searched for. The capacity of the hNSGA-II to produce a large amount of solutions is also an 

interesting characteristic for a decision maker. However, one drawback of the approach might concern 

the definition of the point where it is more relevant to use the iGRASP×ELS rather than the hNSGA-II 

considering specificities of each algorithm. Hence, based on obtained results, the definition of an 

adaptive optimiser, choosing the proper optimisation tool given a situation/objective could be an 

interesting search project. 

6. Conclusion 

In this paper, the Bi-objective Job-shop Problem with Power Requirements (Bi-JSPPR) is 

investigated. Two objectives are optimised: the makespan and the power threshold. Optimising power 

threshold is an important objective, especially in enterprises where machines cannot be shut down, as 

few improvements could be done concerning the total energy consumptions in such an environment. 

In the problem studied in this work, each operation presents two types of power requirements to fit 

real world power consumption of machines. The instances generated represent production systems, 

where up to 300 operations must be scheduled. These instances are difficult to solve with a linear 

solver, and obtaining a Pareto front with such an approach is time consuming. Hence, two 

metaheuristics are proposed: a hybrid NSGA-II (hNSGA-II) and an iterated GRASP×ELS 

(iGRASP×ELS). The purpose of these metaheuristics is to obtain a near optimal Pareto frontier in a 

rather small computational effort. The local search added to the NSGA-II is an intensification scheme 
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that allows the hNSGA-II to achieve better results than the NSGA-II alone. This metaheuristic is 

compared to the iGRASP×ELS, which is based on a GRASP×ELS previously proposed for the search 

of single solutions when the power threshold is considered a given data (Kemmoe et al., 2017). The 

computational experiment shows the efficiency of the proposed approaches. As stressed by the results, 

the hNSGA-II performs better than the iGRASP×ELS. However, the GRASP×ELS used in the 

iGRASP×ELS can also be an interesting metaheuristic as it provides better solutions when the power 

threshold is high, and it can also be used if the goal is to find one solution considering a specific power 

threshold by increasing its computation time. 

As stressed by (Giret et al., 2015), energy management of production systems still lacks 

decisional tools. The proposed approaches in this paper can be easily adapted to industrial cases 

because of the structure of Job-shop problems, which represent several and widely spread 

manufacturing systems (Salido et al., 2016). Furthermore, considering power optimisation as an 

important objective in classical scheduling problems will allow to design energy-efficient production 

systems. For this purpose, several research directions might be investigated. For instance, it could be 

interesting to add other objectives such as decreasing the total energy consumption or to include TOU 

pricings or real-time pricings in order to reduce the cost of the production. If the approach investigated 

in this paper consists in two objectives, it is also a first step in integrating several other environmental 

objectives such as waste minimisation or reusal (Le Hesran, Ladier, Botta-Genoulaz, & Laforest, 

2019). As stressed in (Akbar & Irohara, 2018) other environmental and social indicators should be 

addressed, hence, considering an integrated problem with operators, rest allowance, and energy-

efficient scheduling problems could be a promising direction. A first future work will consist in 

designing instances that consider operations with wider power behaviours in order to study the impact 

of discretisation on the quality and robustness of solutions (Rager et al., 2015). Designing methods for 

predictive-reactive scheduling is also a promising direction as production systems are dynamic and 

have to adapt to different situations during scheduling horizons. Extending the current research project 

to flexible manufacturing systems, where several machines are available for a given operation, having 

different processing characteristics, or even reconfigurable manufacturing systems, would be an 

interesting search topic. Finally, as the iGRASP×ELS consists in constructing the Pareto frontier by 

running several times the GRASP×ELS with different power thresholds, this metaheuristic could be 

parallelised in order to reduce computation times. For this purpose, the use of STORM could be an 

interesting direction (Avez, Lacomme, Lamy, Tchernev, & Phan, 2016), and future research works 

with joint optimisation and machine learning operations are to be investigated, especially for real 

production systems with thousands of operations to be scheduled. 
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Appendix A. Mathematical formalisation of the Job-shop problem with power constraints 

Notations 

The notations used in the problem are as follows: 

9 : a large positive number; 

� : set of machines; 

� : set of jobs; 

^ : set of all the operations (|^| = |�|. |�|); 
�, � : indexes for the different operations (� = 	
); 
�
 : job of operation �; 
8	
  : set of sub-operations of operation �;  
�, � : indexes representing the different sub-operations of operations; 

�
   : machine required to process operation �, �
 ∈ �; 

�
,� : duration of ��  sub-operation of operation �;  
�
,�   : power required for processing the ��  sub-operation of operation �; 
����  : maximum power that must never be exceeded; 

���� : completion date of all operations also called makespan of the schedule; 

�
,�  : starting time of ��  sub-operation of operation i; 

X
,�,#,` : binary variable equal to 1 if ��  sub-operation of operation � is realised before the ��  

sub-operation of operation � and equal to 0 otherwise; 

a
,�,#,` : binary variable equal to 1 if there is a non-null power flow from operation � to the 

operation � and equal to 0 otherwise; 

b
,�,#,`  : denotes the number of power units transferred from the �� sub-operation of operation � 
to the ��  sub-operation of operation �. bc,c,#,`  concerns the power units transferred from 

the source node to other sub-operations; 

Mathematical Formalisation 

The first line (1) of the mathematical formalisation refers to the objective of the problem, which is 

the minimisation of both the completion time of all operations (makespan) and the power threshold: 

��� ������� ���� (1)
 

Job-shop model 

�
,|1d5| − ���� ≤ −�
,|1d5|, ∀� ∈ ^ (2) 

X
,|1d5|,#,4 + X#,g1dhg,
,4 = 1, ∀(�, �) ∈ ^3, �
 = �# (3) 
�#,4 − �
,|1d5| ≥ �
,|1d5|, ∀(�, �) ∈ ^3, � < �, �
 = �# (4) 
�
,� − �
,�*4 = �
,�*4, ∀� ∈ ^, ∀� ∈ 8	
, � > 1 (5) 
�#,4 − �
,|1d5| − 9X
,|1d5|,#,4 ≥ �
,|1d5| − 9, ∀(�, �) ∈ ^3, �
 = �# (6) 
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The first set of constraints (2) gives the expression of the makespan, which must be greater or 

equal to the end date of all the operations (as operations are split into sub-operations, the last sub-

operation of each operation is considered, hence the use of the cardinality of the subset 8	
). 
Constraints (3) represent the disjunctions constraints for operations occurring on the same machines. 

In these constraints, if two operations � and � of different jobs must be scheduled on the same machine, 

then � is processed before �, or � is processed before �. Constraints (4) define the starting dates of 

operations of a job according to its sequence of operations. Constraints (5) ensure that, each sub-

operations referring to the same operation are processed without delays (i.e. no-wait constraints). 

Constraints (6) adjust the starting dates of operations that belong to different Jobs but need the same 

machine, as they cannot be processed simultaneously. 
 

Power consumption model 

∑ ∑ bc,c,#,��∈1dh#∈E − ���� ≤ 0 (7) 
bc,c,#,` + ∑ ∑ b
,�,#,`�∈1d5
∈E\# + ∑ b#,�,#,``*4�r4 = �#,` , ∀� ∈ ^, ∀� ∈ 8	#  (1) 
∑ ∑ b
,�,#,``∈1dh#∈E\
 + ∑ b
,�,
,`|1d5|

`r�s4 ≤ �
,� , ∀� ∈ ^, ∀� ∈ 8	
  (2) 
b
,�,#,` − 9a
,�,#,` ≤ 0, ∀(�, �) ∈ ^3∀(�, �) ∈ P8	
 , 8	#S (3) 
a
,�,#,` − b
,�,#,` ≤ 0, ∀(�, �) ∈ ^3, ∀(�, �) ∈ P8	
, 8	#S (4) 
�#,` − �
,� − 9a
,�,#,` ≥ �
,� − 9, ∀(�, �) ∈ ^3, ∀(�, �) ∈ P8	
 , 8	#S, �
 ≠ �# (5) 
b
,�,#,` = 0, ∀(�, �) ∈ ^3, ∀(�, �) ∈ (8	
, 8	#), (� < �, �
 = �#) ∨ (� = �, � < �)  (6) 
The constraint (7) avoids to exceed the Power Threshold when processing the operations as it 

cannot be allocated more power to the operations than ���� . Constraints (8) ensure that the sum of 

power flows from sub-operations and initial power threshold is equal to the power needed for the ��  

sub-operation of operation �. Constraints (9) ensure that the sum of power flows from the considered 

��  sub-operation of operation � to other sub-operations never exceeds the power that was used for its 

processing. Constraints (10) ensure that if there is a power flow from ��  sub-operation of � to ��  sub-

operation of �, then a
,�,#,`  =  1 (flow detection). If a
,�,#,`  =  0 then no flow is possible from ��  sub-

operation of � to ��  operation of �. Constraints (11) stipulate that if there is no need of a flow from � to 

� (b
,�,#,` =  0), then necessarily a
,�,#,` = 0; if a
,�,#,` =  1, then b
,�,#,` ≥ 1. Constraints (12) adjust the 

starting dates of sub-operations which need to wait before the end of previous operations, in order to 

not exceed the power threshold and receive a power flow from a previously scheduled operation. 

Constraints (13) stipulate that no flow is possible between two sub-operations � and �, if � and � belong 

to the same job and if � is processed before �. 
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