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Abstract
We define a general variant of the graph clustering problem where the criterion of density for the
clusters is (high) connectivity. In Clustering to Given Connectivities, we are given an n-vertex
graph G, an integer k, and a sequence Λ = ⟨λ1, . . . , λt⟩ of positive integers and we ask whether it
is possible to remove at most k edges from G such that the resulting connected components are
exactly t and their corresponding edge connectivities are lower-bounded by the numbers in Λ. We
prove that this problem, parameterized by k, is fixed parameter tractable, i.e., can be solved by
an f(k) ⋅ nO(1)-step algorithm, for some function f that depends only on the parameter k. Our
algorithm uses the recursive understanding technique that is especially adapted so to deal with the
fact that we do not impose any restriction to the connectivity demands in Λ.
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1 Introduction

Clustering deals with grouping the elements of a data set based on some similarity measure
between them. As a general computational procedure, clustering is fundamental in several
scientific fields including machine learning, information retrieval, bioinformatics, data com-
pression, and pattern recognition (see [7, 68,70]). In many such applications, data sets are
organized and/or represented by graphs that naturally express relations between entities.
A graph clustering problem asks for a partition of the vertices of a graph into vertex sets,
called clusters, so that each cluster enjoys some desirable characteristics of “density” or
“good interconnectivity”, while having few edges between the clusters (see [12, 63] for related
surveys).

Parameterizations of graph clustering problems. As a general problem on graphs, graph
clustering has many variants. Most of them depend on the density criterion that is imposed
on the clusters and, in most of the cases, they are NP-complete. However, in many real-world
instances, one may expect that the number of edges between clusters is much smaller than
the size of the graph. This initiated the research for parameterized algorithms for graph
clustering problems. Here the aim is to investigate when the problem is FPT (Fixed Parameter
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18:2 Clustering to Given Connectivities

Tractable), when parameterized by the number k of edges between clusters, i.e. it admits a
f(k) ⋅ nO(1) step algorithm, also called FPT-algorithm (see [21,27,30,59] for textbooks on
parameterized algorithms and the corresponding parameterized complexity class hierarchy).
More general parameterizations may also involve k edit operations to the desired cluster
property.

In the most strict sense, one may demand that all vertices in a cluster are pair-wise
connected, i.e., they form a clique. This corresponds to the Cluster Deletion problem and
its more general version Cluster Editing where we ask for the minimum edge additions
or deletions that can transform a graph to a collection of cliques. Cluster Editing was
introduced by Ben-Dor, Shamir, and Yakhini in [6] in the context of computational biology
and, independently, by Bansal, Blum, and Chawla [5] motivated by machine learning problems
related to document clustering (see also [65]). Algorithmic research on these problems and
their variants is extensive, see [1–3,28,35,65]. Moreover their standard parameterizations
are FPT and there is a long list of improvements on the running times of the corresponding
FPT-algorithms [10,11,13,14,17,18,29,39,41,62].

In most practical cases, in a good clustering, it is not necessary that clusters induce cliques.
This gives rise to several difference measures of density or connectivity. In this direction,
Heggernes et al., in [46], introduced the (p, q)-Cluster Graph Recognition problem
where clusters are cliques that may miss at most p edges (also called γ-quasi cliques) [60,61]).
This problem was generalized in [56], where, given a function µ and a parameter p, each
cluster C should satisfy µ(C) ≤ p, and was proved to be FTP for several instantiations of µ.
In [47], Hüffner et al. introduced the Highly Connected Deletion problem, where each
cluster C should induce a highly connected graph (i.e., have edge connectivity bigger than
∣C∣/2 – see also [45,48]) and proved that this problem is FPT. Algorithmic improvements and
variants of this problem where recently studied by Bliznets and Karpov in [9]. In [42], Guo
et al. studied the problems s-Defective Clique Editing, Average-s-Plex Delection,
and µ-Clique Deletion where each cluster S is demanded to be a clique missing s edges, a
graph of average degree at least ∣C∣ − s, or a graph with average density s, respectively (the
two first variants are FPT, while this is not expected for the last one). In [64] clusters are of
diameter at most s (s-clubs), in [4,43,58,67] every vertex of a cluster should have an edge to
all but at most s − 1 other vertices of it (s-plexes). In [32], Fomin et al. considered the case
where the number of clusters to be obtained is exactly p and proved that this version is also
in FPT. Other Parameterizations of Cluster Editing where introduced and shown to be
FPT in [8, 15,25,53,69]).

Our results. Here we adopt connectivity as a general density criterion for the clusters
(following the line of [9, 48]). We study a general variant of graph clustering where we
prespecify both the number of clusters (as done in [32]) but also the connectivities of the
graphs induced by them. Actually we consider the edge weighted version of the problem
where the weighted edge connectivity λw(G) of an edge weighted graph G is defined as the
minimum weight of an edge cut (see Section 2 for formal definitions).

Input: A weighted graph G with an edge weight function w∶E(G) → N, a t-tuple Λ =

⟨λ1, . . . , λt⟩, where λi ∈ N ∪ {+∞} for i ∈ {1, . . . , t} and λ1 ≤ . . . ≤ λt, and a
nonnegative integer k.

Task: Decide whether there is a set F ⊆ E(G) with w(F ) ≤ k such that G − F has t
connected components G1, . . . , Gt where each λw(Gi) ≥ λi for i ∈ {1, . . . , t}.

Clustering to Given Weighted Connectivities (CGWC)

(It is convenient to allow λi = +∞, because we assume that the (weighted) connectivity of
the single-vertex graph is +∞. )
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The above problem can be seen as a generalization of the well-known t-Cut problem,
asking for a partition of a graph into exactly t nonempty components such that the total
number of edges between the components is at most k. Indeed, this problem is CGWC for
unit weights and λ1 = . . . = λt = 1. As it was observed by Goldschmidt and Hochbaum in [36],
t-Cut is NP-hard if t is a part of the input. This immediately implies the NP-hardness of
CGWC. Therefore, we are interested in the parameterized complexity of the problem. The
main results of Goldschmidt and Hochbaum [36] is that t-Cut can be solved in time O(nt

2

),
that is, the problem is polynomial for any fixed t. In other words, t-Cut belongs in the
parameterized complexity class XP when parameterized by t. This results was shown to
be tight in the sense that we cannot expect an FPT algorithm for this problem unless the
basic conjectures of the Parameterized Complexity theory fail by Downey et al. who proved
in [26] that the problem is W[1]-hard when parameterized by t. The situation changes if we
parameterize the problem by k. By the celebrated result of Kawarabayashi and Thorup [49],
t-Cut is FPT when parameterized by k.

In this paper, we prove that CGWC is FPT when parameterized by k. For our proofs we
follow the recursive understanding technique introduced by Chitnis et al. [19] (see also [40])
combined with the random separation technique introduced by Cai, Chan and Chan in [16].
Already in [19], Chitnis et al. demonstrated that this technique is a powerful tool for the
design of FPT-algorithms for various cut problems. This technique was further developed
by Cygan et al. in [23] for proving that the Minimum Bisection problem is FPT (see
also [33, 37, 52, 57] for other recent applications of this technique on the design of FPT-
algorithms). Nevertheless, we stress that for CGWC the application for the recursive
understanding technique becomes quite nonstandard and demands additional work due to the
fact that neither t nor the connectivity constraints λ1, . . . , λt are restricted by any constant or
any function of the parameter k (we stress that the general meta-algorithmic framework of [57]
is not directly applicable to our problem and in the conclusion section (Section 5) we provide
some discussion on how to tackle this). Towards dealing with the diverse connectivities,
we deal with special annotated/weighted versions of the problem and introduce adequate
connectivity mimicking encodings in order to make recursive understanding possible.

Paper organization. Due to space constraints, we only give high level descriptions of our
results. In Section 2, we give definitions that are used throughout the paper. In Section 3,
we sketch our algorithm for the basic case where the input graph is connected. For this, we
introduce all concepts and results that support the applicability of the recursive understanding
technique. We stress that, at this point, the connectivity assumption is important as this
makes it easier to control the diverse connectivities of the clusters. In Section 4, we briefly
explain how we deal with the general non-connected case. The algorithm in the general case
is based on a series of observations on the way connectivities are distributed in the connected
components of G. In Section 5, we briefly discuss alternative approaches for CGWC and
further directions of research. The details and complete proofs could be found in the full
version of the paper [38].

2 Preliminaries

We consider finite undirected simple graphs. We use n to denote the number of vertices and
m the number of edges of the considered graphs unless it creates confusion. For disjoint
subsets A,B ⊆ V (G), E(A,B) denotes the set of edges with one end-vertex in A and the
second in B. A set of edges S ⊆ E(G) of a connected graph G is an (edge) separator if G−S

IPEC 2019



18:4 Clustering to Given Connectivities

is disconnected. For two disjoint subsets A,B ⊆ V (G), S ⊆ E(G) is an (A,B)-separator
if G − S has no (u, v)-path with u ∈ A and v ∈ B. Recall (see, e.g., [24]) that if S is an
inclusion minimal (A,B)-separator, then S = E(A′, B′) for some partition (A′, B′) of V (G)
with A ⊆ A

′ and B ⊆ B
′.

Let k be a positive integer. A graph G is (edge) k-connected if for every S ⊆ E(G) with
∣S∣ ≤ k − 1, G − S is connected, that is, G has no separator of size at most k − 1. Since we
consider only edge connectivity, whenever we say that a graph G is k-connected, we mean
that G is edge k-connected. Similarly, whenever we mention a separator, we mean an edge
separator.

For technical reasons, it is convenient for us to work with edge weighted graphs. Let G
be a graph and let w∶E(G)→ N be an (edge) weight function. Whenever we say that G is a
weighted graph, it is assumed that an edge weight function is given and we use w to denote
weights throughout the paper. For a set of edges S, w(S) = ∑e∈S w(e).

For disjoint subsets A,B ⊆ V (G), wG(A,B) = w(E(A,B)). We say that G is weight
k-connected if for every S ⊆ E(G) with w(S) ≤ k − 1, G − S is connected. We denote
by λ

w(G) the weighted connectivity of G, that is, the maximum value of k such that G
is weight k-connected; we assume that every graph is weight 0-connected and for the
single-vertex graph G, λw(G) = +∞. For disjoint subsets A,B ⊆ V (G), λw

G(A,B) =

min{w(S) ∣ S is an (A,B)-separator}. We say that an (A,B)-separator S is minimum if
w(S) = λ

w
G(A,B). For two vertices u, v ∈ V (G), λw(u, v) = λ

w({u}, {v}) and we assume
that λw(u, u) = +∞. Similarly, for a set A and a vertex v, we write λw

G(A, v) instead of
λ

w
G(A, {v}). Clearly, λw(G) = min{λw

G(u, v) ∣ u, v ∈ V (G)}. We can omit the subscript if it
does not create confusion.

Let U ⊆ V (G). We say that the weighted graph G′ is obtained from G by the weighted
contraction of U if it is constructed as follows: we delete the vertices of U and replace the set
by a single vertex u that is made adjacent to every v ∈ V (G) \ U adjacent to a vertex of U
and the weight of uv is defined as ∑xv∈E(G), x∈U w(xv). Note that we do not require G[U]
be connected. For an edge uv, the weighted contraction of uv is the weighted contraction of
the set {u, v}.

3 Clustering to Given Weighted Connectivities for connected graphs

In this section we show that CGWC is FPT when parameterized by k if the input graph is
connected. We prove the following theorem that is used as the main building block for the
general case.

I Theorem 1. There exist some computable function f ∶ N→ N, such that CGWC can be
solved in time f(k) ⋅ nO(1) if the input graph is connected.

The remaining part of the section contains the sketch of the proof of this theorem. In
Subsection 3.1 we give some additional definitions and state auxiliary results. Then in
Subsection 3.2 we sketch the proof itself.

3.1 Auxiliary results
To solve CGWC for connected graphs, we use the recursive understanding technique intro-
duced by Chitnis et al. in [19]. Therefore, we need notions that are specific to this technique
and some results established by Chitnis et al. [19]. Note that we adapt the definitions and
the statements of the results for the case of edge weighted graphs.
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Weighted good edge separations. Let G be a connected weighted graph with an edge
weight function w∶E(G)→ N. Let also p and q be positive integers. A partition (A,B) of
V (G) is called a (q, p)-good edge separation if

∣A∣ > q and ∣B∣ > q,
w(A,B) ≤ p,
G[A] and G[B] are connected.

It is said thatG is (q, p)-unbreakable if for any partition (A,B) of V (G) such that w(A,B) ≤ p,
it holds that ∣A∣ ≤ q or ∣B∣ ≤ q.

We use the following variant of Lemma 7 of [19] that is more convenient for our purposes.
For the unweighted case, this variant was stated in [31].

I Lemma 2. There exists a deterministic algorithm that, given a weighted connected graph
G along with positive integers p and q, in time 2O(min{p,q} log(p+q)) ⋅ n3 logn either finds a
(q, p)-good edge separation or correctly concludes that G is (pq, p)-unbreakable.

Mimicking connectivities by cut reductions. Let r be a nonnegative integer. A pair (G,x),
where G is a graph and x = ⟨x1, . . . , xr⟩ is an r-tuple of distinct vertices of G is called
an r-boundaried graph or simply a boundaried graph. Respectively, x = ⟨x1, . . . , xr⟩ is a
boundary. Note that a boundary is an ordered set. Hence, two r-boundaried graphs that
differ only by the order of the vertices in theirs boundaries are distinct. Still, we can treat
x as a set when the ordering is irrelevant. Observe also that a boundary could be empty.
Slightly abusing notation, we may say that G is a (r-) boundaried graph assuming that a
boundary is given. We say that (G,x) is a properly boundaried graph if the vertices of x are
pairwise nonadjacent and each component of G contains at least one vertex of x.

Two r-boundaried weighted graphs (G1,x
(1)) and (G2,x

(2)), where x(h)
= ⟨x(h)

1 , . . . , x
(h)
r ⟩

for h = 1, 2, are isomorphic if there is an isomorphism of G1 to G2 that maps each x(1)
i to

x
(2)
i for i ∈ {1, . . . , r} and each edge is mapped to an edge of the same weight.
Let (G1,x

(1)) and (G2,x
(2)) be r-boundaried graphs with x(h)

= ⟨x(h)
1 , . . . , x

(h)
r ⟩ for

h = 1, 2, and assume that (G2,x
(2)) is a properly boundaried graph. We define the boundary

sum (G1,x
(1))⊕b (G2,x

(2)) (or simply G1⊕bG2) as the (non-boundaried) graph obtained by
taking disjoint copies of G1 and G2 and identifying x(1)

i and x(2)
i for each i ∈ {1, . . . , r}. Note

that the definition is not symmetric as we require that (G2,x
(2)) is a properly boundaried

graph and we have no such a restriction for x(1)
1 , . . . , x

(1)
r .

Let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yq) be two partitions of a set Z. We define the
product X×Y of X and Y as the partition of Z obtained from {Xi∩Yj ∣ 1 ≤ i ≤ p, 1 ≤ j ≤ q}
by the deletion of empty sets. For partitions X1

, . . . ,Xr of Z, we denote their consecutive
product as ∏r

i=1 Xi.
Let (H,x) be a connected properly r-boundaried weighted graph. Let p be a positive

integer or +∞. Slightly abusing notation we consider here x as a set. We construct the
partition Z of V (H) as follows. For X ⊆ x, denote X = x \X.

For all distinct pairs {X,X} for nonempty X ⊂ x, find a minimum weight (X,X)-
separator SX = E(Y 1

X , Y
2
X) where (Y 1

X , Y
2
X) is a partition of V (H), X ⊆ Y

1
X and X ⊆ Y

2
X .

For every v ∈ V (H) \ x, find a minimum weight (x, {v})-separator S(v). Find v
∗
∈

V (H)\x such that w(S(v∗)) = min{w(S(v)) ∣ v ∈ V (H)\x} and let S(v∗) = E(Y 1
x , Y

2
x )

where (Y 1
x , Y

2
x ) is a partition of V (H) and x ⊆ Y 1

x .

IPEC 2019



18:6 Clustering to Given Connectivities

Construct the following partition of V (H):

Z = (Z1, . . . , Zh) = ( ∏
distinct {X,X}

∅≠X⊂x

(Y 1
X , Y

2
X)) × (Y 1

x , Y
2

x ) × ({x1}, . . . , {xr}, V (H) \ x). (1)

We construct H ′ by performing the weighted contraction of the sets of Z. Then for each
edge uv of H ′ with w(uv) > p, we set w(uv) = p, that is, we truncate the weights by p.
Notice that because the partition ({x1}, . . . , {xr}, V (H) \ x) is participating the product
defining Z, we have that {x} ∈ Z for each x ∈ x, that is, the elements of the boundary
are not contracted, and this is the only purpose of this partition in (1). We say that H ′ is
obtained from (H,x) by the cut reduction with respect to p. Note that H ′ is not unique as
the construction depends on the choice of separators. It could be observed that we construct
a mimicking network representing cuts of H [44, 50] (see also [51]).

We extend this definition for disconnected graphs. Let (H,x) be a properly r-boundaried
weighted graph and let p be a positive integer or +∞. Denote by H1, . . . ,Hs the components
of H and let xi = x ∩ V (Hi) for i ∈ {1, . . . , s}. Consider the boundaried graphs (H ′

i,x
i)

obtained from (Hi,x) by cut reduction with respect to p for i ∈ {1, . . . , s}. We say that
(H ′

,x), that is obtained by taking the union of (H ′
i,x

i) for i ∈ {1, . . . , s}, is obtained by the
cut reduction with respect to p.

The crucial property of H ′ is that it keeps the separators of H that are essential for the
connectivity.

I Lemma 3. Let (H,x) be a properly r-boundaried weighted graph, and let p ∈ N∪{+∞} and
t ∈ N. Let also (F,y) be an r-boundaried weighted graph, and let G = (F,y)⊕b (H,x). Then
for an r-boundaried weighted graph H ′ obtained from H by the cut reduction with respect to p
and t positive integers λ1, . . . , λt ≤ p it holds that G has exactly t components and they have
the connectivities λ1, . . . , λt respectively if and only if the same holds for G′ = (F,y)⊕b(H ′

,x),
that is, G′ has t components and they have the connectivities λ1, . . . , λt respectively.

It is also important to observe that it holds that ∣V (H ′)∣ ≤ 22r−1

+ r, that is, the size of
an r-boundaried weighted graph obtained by cut reduction is bounded by a function of r.

For positive integers r and s, we define Hr,s as the family of all pairwise nonisomorphic
properly r-boundaried weighted graphs (G,x) with at most 22r−1

+ r vertices where the
weights of edges are in {1, . . . , s} and for every component C of G with V (C) \ x ≠ ∅, there
is a vertex v ∈ V (C) \ x such that λw(x, v) ≤ s. We also formally define H0,s as the set

containing the empty graph. Note that ∣Hr,s∣ ≤ (s + 1)(
22r−1

+r
2 ) and Hr,s can be constructed

in time 222O(r)
log s.

Variants of CGWC. To apply the recursive understanding technique, we also have to solve a
special variant of CGWC tailored for recursion. To define it, we first introduce the following
variant of the problem. The difference is that a solution should be chosen from a given subset
of edges.

Input: A weighted graph G with an edge weight function w∶E(G) → N, L ⊆ E(G), a
t-tuple Λ = ⟨λ1, . . . , λt⟩, where λi ∈ N ∪ {+∞} for i ∈ {1, . . . , t} and λ1 ≤ . . . ≤ λt,
and a nonnegative integer k.

Task: Decide whether there is a set F ⊆ L with w(F ) ≤ k such that G−F has t connected
components G1, . . . , Gt where each λw(Gi) ≥ λi for i ∈ {1, . . . , t}.

Annotated CGWC
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Clearly, if L = E(G), then Annotated CGWC is CGWC. Let (G,w,L,Λ, k) be an
instance of Annotated CGWC. We say that F ⊆ L with w(F ) ≤ k such that G − F has t
connected components G1, . . . , Gt where each λw(Gi) ≥ λi for i ∈ {1, . . . , t} is a solution for
the instance.

Now we define Border A-CGWC.

Input: A weighted r-boundaried connected graph (G,x) with an edge weight function
w∶E(G) → N, L ⊆ E(G), a t-tuple Λ = ⟨λ1, . . . , λt⟩, where λi ∈ N ∪ {+∞} for
i ∈ {1, . . . , t} and λ1 ≤ . . . ≤ λt, and a nonnegative integer k such that r ≤ 4k and
k ≥ t − 1.

Task: For each weighted properly r-boundaried graph (H,y) ∈ Hr,2k and each Λ̂ =

⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ, find the minimum 0 ≤ k̂ ≤ k such that ((G,x)⊕b (H,y), w, L, Λ̂, k̂)
is a yes-instance of Annotated CGWC and output a solution F for this instance
or output ∅ if k̂ does not exist.

Border A-CGWC

Slightly abusing notation, we use w to denote the weights of edges of G and H. Notice
that Border A-CGWC is neither decision nor optimization problem, and its solution is a
list of subsets of L. Observe also that a solution of Border A-CGWC is not necessarily
unique. Still, for any two solutions, that is, lists L1 and L2 of subsets of L, the following holds:
for each weighted properly r-boundaried graph (H,y) ∈ Hr,2k and each Λ̂ = ⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ,
the lists L1 and L2 contain the sets of the same weight. To solve Annotated CGWC, it is
sufficient to solve Border A-CGWC for r = 0. If the output contains nonempty set for
Λ̂ = Λ, we have a yes-instance of Annotated CGWC. If the output contains empty set
for this Λ̂, we should verify additionally whether ∅ is a solution, that is, whether Λ = {λ1}
and λw(G) ≥ λ1. To apply the recursive understanding technique, we first solve Border
A-CGWC for (q, 2k)-unbreakable graphs for some appropriate value of q and then use this
result for the general case of Border A-CGWC.

Restricted BFS subgraphs. Let G be a graph, u ∈ V (G), and let r be a positive integer.
We construct the subgraph Br(u) using a modified breadth-first search algorithm. Recall that
in the standard breadth-first search algorithm (see, e.g., [20]) starting from u, we first label
u by `(u) = 0 and put u into a queue Q. Then we iterate as follows: if Q is nonempty, then
take the first vertex x in the queue and for every nonlabeled neighbor y, assign `(y) = `(x)+1
and put y into Q. We start in the same way by assigning u the label `(u) = 0 and putting u
into Q. Then while Q is nonempty and the first element x has the label `(x) ≤ r − 1, we
consider arbitrary chosen min{r, dG(x)} vertices y ∈ NG(x), assign to unlabeled vertices
y the label `(y) = `(x) + 1 and put them into Q. The graph Br(u) is the subgraph of G
induced by the labeled vertices v with `(v) ≤ r. We say that Br(x) is an r-restricted BFS
subgraph of G. Note that such a subgraph is not unique.

3.2 Sketch of the proof of Theorem 1
First, we construct an algorithm for Border A-CGWC for connected (q, 2k)-unbreakable
graphs. The crucial step is to solve Annotated CGWC.

I Lemma 4. Annotated CGWC can be solved and a solution can be found (if exists) in
time 2O(q(q+k) log(q+k)) ⋅ nO(1) for connected (q, 2k)-unbreakable graphs.
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Sketch of the proof. Let (G,w,L,Λ, k) be an instance of Annotated CGWC where G
is a connected (q, 2k)-unbreakable graph. Let also Λ = ⟨λ1, . . . , λt⟩, λ1 ≤ . . . ≤ λt. Clearly,
the problem is easy if t = 1 and the problem is trivial if t > k + 1, because a connected
graph G can be separated into at most k + 1 components by at most k edge deletions. Let
2 ≤ t ≤ k + 1. If ∣V (G)∣ ≤ 3q, we solve Annotated CGWC using brute force. From now
we assume that ∣V (G)∣ > 3q.

Suppose that (G,w,L,Λ, k) is a yes-instance of Annotated CGWC and let F ⊆ L be
a solution. Let G1, . . . , Gt be the components of G − F and λw(Gi) ≥ λi for i ∈ {1, . . . , t}.
Using that G is a (q, 2k)-unbreakable graph, we show that there is a component Gi with at
least q+ 1 vertices and the total number of vertices in the other components is at most q. We
say that Gi is a big components and call the other components small. For each i ∈ {1, . . . , t},
we verify whether there is a solution F where λi is the connectivity constraint for the big
component of G − F .

Assume that λi > k. We show that in this case V (Gi) is an inclusion maximal set of
vertices X of G with the property that for every two vertices u, v ∈ X, λw

G(u, v) ≥ k + 1. We
use this to find the big component and then find other clusters by brute force.

From now we assume that λi ≤ k. To deal with this case we apply the random separation
technique introduces by Cai, Chan and Chan in [16]. To avoid dealing with randomized
algorithms, we use the Lemma 1 of [19]. Assume again that (G,w,L,Λ, k) is a yes-instance
of Annotated CGWC, F ⊆ L is a solution, and G1, . . . , Gt are the components of G − F
where Gi is the big component. Let A = ⋃j∈{1,...,t}\{i} V (Gj). Recall that ∣A∣ ≤ q. Let
also X ⊆ V (Gi) be the set of vertices of Gi that have neighbors in A. Note that ∣X∣ ≤ k.
For each u ∈ X, we consider a (q + λi)-restricted BFS subgraph B(u) = Bq+λi

(u) of Gi.
Let B = ⋃u∈X V (B(u)). We have that ∣V (B(u))∣ = 2O((q+k) log(q+k)) since λi ≤ k. Hence,
∣B∣ = 2O((q+k) log(q+k)). Note also that ∣B∣ ≥ q + 1. We say that a set S ⊆ V (G) is (A,B)-
good or, simply, good if B ⊆ S and A∩ S = ∅. By Lemma 1 of [19], we can construct in time
2O(q(q+k) log(q+k)) ⋅n logn a family S of at most 2O(q(q+k) log(q+k)) ⋅ logn subsets of V (G) such
that if (G,w,L,Λ, k) is a yes-instance and A and B exist for some solution, then S contains
an (A,B)-good set.

We construct such a family S, and for each S ∈ S, we look for F ⊆ L such that the
following holds:
(i) w(F ) ≤ k,
(ii) G − F has t components G1, . . . , Gt such that each Gj is weight λj-connected and

∣V (Gi)∣ > q, and
(iii) S ⊆ V (Gi).

We describe the algorithm that produces the YES answer if S is good and, moreover, if
the algorithm outputs YES, then (G,w,L,Λ, k) is a yes-instance of Annotated CGWC.
Note that the algorithm can output the false NO answer if S is not a good set. Nevertheless,
because for an yes-instance of Annotated CGWC, we always have a good set S ∈ S, we
have that (G,w,L,Λ, k) is a yes-instance if and only if the algorithm outputs YES for at
least one S ∈ S.

The algorithm uses the following property of (A,B)-good sets.

⊳ Claim (A). If S is an (A,B)-good set, then for each component H of G − S, either
V (H) ⊆ V (Gi) or V (H) ∩ V (Gi) = ∅.

We apply a number of reduction rules that either increase the set S or conclude that S is
not good and stop. Each rule increasing S is applied exhaustively. For each rule, we show
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that it is safe in the sense that if we increase S, then if the original S was good, then the
obtained set is good as well, and if we conclude that the original S is not good, then this is a
correct conclusion and, therefore, we can return NO and stop. We underline that whenever
we return NO in the rules, this means that we discard the current choice of S.

Due to the size of B, we get the following rule.

I Reduction Rule 3.1. If ∣S∣ ≤ q, then return NO and stop.

Denote by H1, . . . ,Hs the components of G − S. Applying Claim A we obtain the next
rules.

I Reduction Rule 3.2. For every j ∈ {1, . . . , s}, if E(V (Hj), S) \ L ≠ ∅ or w(V (Hj), S) ≥
k + 1 or ∣V (Hj)∣ > q, then set S = S ∪ V (Hj).
I Reduction Rule 3.3. If there is u ∈ S adjacent to a vertex of Hj for some j ∈ {1, . . . , s}
and there is a connected set Z ⊆ S such that a) u ∈ Z, b) ∣Z∣ ≤ q, c) w(Z, S \ Z) ≤ λi − 1,
then set S = S ∪ V (Hj).

To apply the last rule, we use the result of Fomin and Villanger [34] that allows to list
all the sets Z satisfying a)–c) in time 2O(k log(q+k)) ⋅ n because λi ≤ k. We apply Reduction
Rule 3.3 recomputing the components of G − S after each modification of S. Then we again
use the result of Fomin and Villanger [34] to apply the next rule.

I Reduction Rule 3.4. If there is a connected set Z ⊆ S such that ∣Z∣ ≤ q and w(Z, V (G) \
Z) ≤ λi − 1, then set return NO and stop.

Assume that we do not stop while executing Reduction Rule 3.4. We use the flowing
claim to identify the components of G−S whose vertices, definitely, are not in the big cluster.

⊳ Claim (B). If S is an (A,B)-good set, then if for a component H of G − S, there is
v ∈ V (H) such that λw(v, S) < λi, then V (H) ∩ V (Gi) = ∅.

Let H1, . . . ,Hs be the components of G − S. We set

I = {j ∈ {1, . . . , s} ∣ there is v ∈ V (Hj) such that w(v, S) < λi}.

I Reduction Rule 3.5. If ∣⋃j∈I V (Hj)∣ > q or w(⋃j∈I V (Hj), S) > k, then return NO and
stop.

⊳ Claim (C). For any J ⊆ {1, . . . , s} such that I ⊆ J and w(⋃j∈J V (Hj), S) ≤ k, the graph
G
′
= G −⋃j∈J V (Hj) is weight λi-connected.

By applying Reduction Rules 3.1–3.5, we either increase S or stop. Now we have to find
an F ⊆ L such that (i)–(iii) are fulfilled and, by applying Claims A and B, we impose two
additional constraints:
(iv) for every j ∈ {1, . . . , s} \ I, either V (Hj) ⊆ V (Gi) or V (Hj) ∩ V (Gi) = ∅,
(v) for every j ∈ I, V (Hj) ∩ V (Gi) = ∅.
Note that by Claim C, we automatically obtain that λw(Gi) ≥ λi if (i), (iii)-(v) are

fulfilled. Also because of Reduction Rule 3.1, we have that ∣V (Gi)∣ > q if (iii) holds. Hence,
we can replace (ii) by the relaxed condition:
(ii) G−F has t componentsG1, . . . , Gt such thatGj is weight λj-connected for j ∈ {1, . . . , t},

j ≠ i.
We find F , if such a set exists, by a dynamic programming algorithm that sorts the vertices
of G − S staring with the components with indices in I. J
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Using Lemma 4, we construct the algorithm for Border A-CGWC for connected
(q, 2k)-unbreakable graphs.

I Lemma 5. Border A-CGWC can be solved in time 2q
322O(k)

⋅ nO(1) for connected
(q, 2k)-unbreakable graphs.

Now we construct an algorithm for Border A-CGWC and this result implies Theorem 1.

I Lemma 6. Border A-CGWC can be solved in time f(k) ⋅ nO(1).

Sketch of the proof. We construct a recursive algorithm for Border A-CGWC. Let
(G,x, w, L,Λ, k) be an instance of Border A-CGWC. Recall that (G,x) is an r-boundaried
connected graph and r ≤ k. Recall also that Λ contains at most k + 1 elements.

We define the constants p and q that are used throughout the proof as follows:

p = 2k2k+1(2k + 1)
(224k−1

+4k
2 )

+ 4k and q = 22p−1

+ p. (2)

We are going to use q as a part of the unbreakability threshold.
We apply Lemma 2 and in time 2O(k log(q+k)) ⋅ n3 logn either find a (q, 2k)-good edge

separation (A,B) of G or conclude that G is (2kq, 2k)-unbreakable.
If G is (2kq, 2k)-unbreakable, we apply Lemma 5 and solve the problem in time 2q

322O(k)

⋅
n
O(1). Assume from now that we are given a (q, 2k)-good edge separation (A,B) of G.
Since ∣x∣ ≤ 4k and the vertices of x are separated between A and B, either A or B

contains at most 2k vertices of x. Assume without loss of generality that ∣A ∩ x∣ ≤ 2k. Let
T be the set of end-vertices of the edges of E(A,B) in A. Clearly, ∣T ∣ ≤ 2k. We form a new
r̂-tuple x̂ = ⟨x̂1, . . . , x̂r̂⟩ of vertices A from the vertices of (A∩ x)∪ T ; note that r̂ ≤ 4k. We
consider Ĝ = G[A] as the x̂-boundaried graph. We set L̂ = L ∩ E(Ĝ). This way, we obtain
the instance (Ĝ, x̂, w, L̂,Λ, k) of Border A-CGWC.

Now we solve Border A-CGWC for (Ĝ, x̂, w, L̂,Λ, k).
If ∣V (Ĝ)∣ ≤ 2q, we can simply use brute force. If ∣V (Ĝ)∣ > 2q, we recursively solve

Border A-CGWC for (Ĝ, x̂, w, L̂,Λ, k) by calling our algorithm for the instance that has
lesser size, because ∣V (Ĝ)∣ ≤ ∣V (G)∣ − q.

By solving Border A-CGWC for (Ĝ, x̂, L̂,Λ, k), we obtain a list L of sets where each
element is either ∅ or F ⊆ L̂ that is a solution for the corresponding instance of Annotated
CGWC for some (H,y) ∈ Hr̂,2k, Λ̂ ⊆ Λ and k̂ ≤ k. Denote by M the union of all the sets in
L. Clearly, M ⊆ L̂.

We define L∗ = (L \ L̂) ∪M . Since M ⊆ L̂, L∗ ⊆ L. We show that the instances
(G,x, w, L,Λ, k) and (G,x, w, L∗,Λ, k) are essentially equivalent by proving the following
claim by making use of Lemma 3.

⊳ Claim (A). For every weighted properly r-boundaried graph (H,y) ∈ Hr,2k, every Λ̂ =

⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ and every nonnegative integer k̂ ≤ k, ((G,x)⊕b (H,y), w, L, Λ̂, k̂) is a yes-
instance of Annotated CGWC if and only if ((G,x)⊕b(H,y), w, L∗, Λ̂, k̂) is a yes-instance
of Annotated CGWC.

By Claim A we obtain that every solution of (G,x, w, L∗,Λ, k) is a solution of
(G,x, w, L,Λ, k), and there is a solution of (G,x, w, L,Λ, k) that is a solution of
(G,x, w, L∗,Λ, k). Therefore, it is sufficient for us to solve (G,x, w, L∗,Λ, k).

Let Z ⊆ A be the set of end-vertices of the edges of M and the vertices of x̂. Because

r̂ ≤ 4k, Hr̂,2k ≤ (2k + 1)
(224k−1

+4k
2 )

. Since t ≤ k + 1, there are at most 2k+1 subtuples Λ̂ of Λ.
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For each (H, y) ∈ Hr̂,2k and Λ̂ ⊆ Λ, the solution L of Border A-CGWC for (Ĝ, x̂, L̂,Λ, k)
contains a set F of size at most k. This implies that

∣M∣ ≤ k2k+1(2k + 1)
(224k−1

+4k
2 )

.

Because ∣x̂∣ ≤ 4k, we obtain that

∣Z∣ ≤ 2∣M∣ + 4k ≤ 2k2k+1(2k + 1)
(224k−1

+4k
2 )

+ 4k = p (3)

for p defined in (2).
Let U = A \Z. We define Q = G−U . Let also R be the graph with the vertex set A and

the edge set E(G[A]) \ E(G[Z]). We order the vertices of Z arbitrarily and consider Z to
be ∣Z∣-tuple of the vertices of Q and R. Observe that (R,Z) is a properly ∣Z∣-boundaried
graph as G[A] is connected. Since V (F ) ∩ V (R) = Z, we have that G = (Q,Z)⊕b (R,Z).
Let (R∗, Z) be the boundaried graph obtained from (R,Z) by the cut reduction with respect
to +∞. We define G∗ = (Q,Z)⊕b (R∗, Z). Note that L∗ ⊆ E(Q) ⊆ E(G∗). We show that
we can replace G by G∗ in the considered instance (G,x, w, L∗,Λ, k) of Border A-CGWC
by making use of Lemma 3.

⊳ Claim (B). For every weighted properly r-boundaried graph (H,y) ∈ Hr,2k, every Λ̂ =

⟨λ̂1, . . . , λ̂s⟩ ⊆ Λ and every nonnegative integer k̂ ≤ k, a set F ⊆ L
∗ is a solution for

the instance ((G,x) ⊕b (H,y), w, L∗, Λ̂, k̂) if and only if F is a solution for ((G∗,x) ⊕b
(H,y), w, L∗, Λ̂, k̂).

By Claim B, to solve Border A-CGWC for (G,x, w, L∗,Λ, k), it is sufficient to solve the
problem for (G∗,x, w, L∗,Λ, k). Observe that ∣V (G∗)∣ = ∣B∣ + ∣V (R∗)∣. Because (R∗, Z)
is obtained by the cut reduction, we can show that ∣V (R∗)∣ ≤ 22∣Z∣−1

+ ∣Z∣. Using (3), we
have that

∣V (R∗)∣ ≤ 22p−1

+ p = q

for q defined in (2). Recall that ∣A∣ > q since (A,B) is a (q, 2k)-good edge separation of G.
Therefore,

∣V (G∗)∣ = ∣B∣ + ∣V (R∗)∣ ≤ ∣B∣ + q < ∣A∣ + ∣B∣ = ∣V (G)∣.

We use this and solve Border A-CGWC for (G∗,x, w, L∗,Λ, k) recursively by applying
our recursive algorithm for the instance with the input graph of smaller size. J

4 The algorithm for Clustering to Given Weighted Connectivities

In this section we extend the result obtained in Section 3 and show that CGWC is FPT
when parameterized by k even if the input graph is disconnected. Let α = ⟨α1, . . . , αt⟩ where
αi ∈ N∪{+∞} for i ∈ {1, . . . , t} and α1 ≤ . . . ≤ αt. We call the variate of α the set of distinct
elements of α and denote it by var(α). Let also β = ⟨β1, . . . , βt⟩ where βi ∈ N ∪ {+∞} for
i ∈ {1, . . . , s} and β1 ≤ . . . ≤ βt. We write α ⪯ β if αi ≤ βi for i ∈ {1, . . . , t}.

I Theorem 7. CGWC can be solved in time f(k) ⋅ nO(1).
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Sketch of the proof. Let (G,w,Λ, k) be an instance CGWC, Λ = ⟨λ1, . . . , λt⟩.
We find the components of G and compute their weighted connectivities using the

algorithm of Stoer and Wagner [66] for finding minimum cuts. Assume that G1, . . . , Gs are
the components of G and λ

w(G1) ≤ . . . ≤ λ
w(Gs). If s > t, then (G,w,Λ, k) is a trivial

no-instance. If s < t − k, then (G,w,Λ, k) is no-instance, because by deleting at most
k edges it is possible to obtain at most k additional components. In all these cases we
return the corresponding answer and stop. From now we assume that t − k ≤ s < t. We
exhaustively apply the following reduction rule based on the observation that a component
of high connectivity cannot be split.

I Reduction Rule 4.1. If there is i ∈ {1, . . . , s} such that λw(Gi) > k, then find the
maximum j ∈ {1, . . . , t} such that λw(Gi) ≥ λj and set G = G − V (Gi) and Λ = Λ \ {λj}.

To simplify notations, assume that G with its components G1, . . . , Gs and Λ = ⟨λ1, . . . , λt⟩
is obtained from the original input by the exhaustive application of Reduction Rule 4.1.
Note that we still have that t − k ≤ s < t. It may happen that s = 0, that is, G became
empty after the application of the rule. In this case (G,w,Λ, k) is a trivial no-instance, and
we return NO and stop. Assume that s ≥ 1. Observe that we obtain that λw(Gi) ≤ k for
i ∈ {1, . . . , s}, because Reduction Rule 4.1 cannot be applied any more. If ∣var(Λ)∣ > 3k,
then it could be shown that we have a no-instance of the problem. Respectively, we return
NO and stop. Assume that ∣var(Λ)∣ ≤ 3k, that is, the variety of Λ is bounded. We use this to
construct the FPT Turing reduction of the problem to the special case when λw(C) = λ ≤ k
for every component C of the input graph G. For this special case, we solve CGWC by
constructing the FPT Turing reduction of CGWC based on Theorem 1 to the Minimum
Cost Matching problem that then can be solved in polynomial time by, e.g, the Hungarian
method [54,55]. J

5 Conclusion

We proved that Clustering to Given Connectivities is FPT when parameterized by k.
We obtained this result by making use of the recursive understanding technique [19]. The
drawback of this approach is that the dependence of the running time on the parameter
is huge and it seems unlikely that using the same approach one could avoid towers of the
exponents similar to the function in Theorem 7. In particular, we do not see how to avoid
using mimicking networks (see [44,50] for the definitions and lower and upper bounds for the
size of such networks) whose sizes are double-exponential in the number of terminals.

It can be observed that if we wish to prove just the existence of a (non-constructive) FPT-
algorithm for CGWC, we can use a slightly different approach based on the meta-algorithmic
result of Lokshtanov et al. [57] which applies to problems that can be expressed in Counting
Monadic Second Order Logic (CMSOL).

I Proposition 8 ( [57]). Let ψ be a CMSOL sentence. For all c ∈ N, there exists s ∈ N such
that if there exists an algorithm that decides whether G ⊧ ψ on (s, c)-unbreakable graphs in
time f(∣ψ∣) ⋅ nO(1) then there exists an algorithm that decides whether G ⊧ ψ on general
graphs in time f(∣ψ∣) ⋅ nO(1).

We can use Proposition 8 to obtain a weaker version of Theorem 1 where the function f is
not any more computable. Notice that we cannot express in CMSOL the connectivity lower
bounds imposed by the t-tuple Λ = ⟨λ1, . . . , λt⟩ directly, because the values of λi are not
bounded by any function of the parameter k. Hence, we have to go around of this issue. Let
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I = (G,w,Λ, k) be an instance of CGWC. We consider a partition S = {S1, . . . , Sq} of V (G)
such that two vertices x, y belong in the same set if and only λw(x, y) ≥ k+ 1. Clearly, S can
be computed in polynomial time. A key observation is that if λw(G[Si]) ≥ k + 1, then either
G[Si] is one of the clusters of a solution or G[Si] is a part of a cluster of a solution whose
weighted edge connectivity is at most k. For each i ∈ {1, . . . , q} where λw(G[Si]) ≥ k + 1,
we contract all vertices in Si to a single vertex and, in the contracted graph G′, we assign
to this new vertex a weight equal to λw(G[Si]). We also assign the weight +∞ to the
rest of the vertices of G′. Recall now that when G is connected, Λ = ⟨λ1, . . . , λt⟩ has at
most k + 1 different values for a yes-instance and for each i ∈ {1, . . . , t} we set up a set Ri
that contains all vertices of G′ that have weight at least λi. We now consider the structure
α = (G′, R1, . . . , Rt) and a generalization of the connected version of CGWC where the input
has a structure α instead of a connected graph and where, in the question of the new problem,
we additionally demand that V (Gi) ⊆ Ri, i ∈ {1, . . . , t} and also we ask λw(Gi) ≥ λi only
when λi ≤ k, while we demand that ∣V (Gi)∣ = 1 when λi ≥ k + 1. We call this new problem
Generalized-CGWC and we observe that I = (G,w,Λ, k) is a yes-instance of CGWC if
and only if I ′ = ((G′, R1, . . . , Rt),w,Λ, k) is a yes-instance of Generalized-CGWC . It is
now possible to verify that Generalized-CGWC can be expressed using CMSOL for every
fixed value of k and given Λ as there are no unbounded connectivities to encode. To apply
Proposition 8, we have to solve Generalized-CGWC on unbreakable graphs and this can
be done similarly to the proof of Lemma 4. Therefore, we can derive the existence of an
FPT-algorithm for CGWC on connected graphs and further extend this to general graphs
using the reduction of Section 4.

We would like to underline that due to the plug-in of Proposition 8, the alternative
approach provided by the above discussion does not provide any computable function bounding
the parametric dependence of the running time. Under the light of such an alternative, the
algorithm described in Section 3 appears to be “less huge” that it might appear by first sight.
This is the main reason why we chose to use a more direct approach in our results. In fact
Lemma 6 may be seen as a “constructive detour” to Proposition 8.

The natural question would be to ask whether we can get a better running time using
different techniques. This question is interesting even for some special cases of CGC when
the connectivity constraints are bounded by a constant or are the same for all components.
From the other side, it is natural to ask about lower bounds on the running time. For an
FPT parameterized problem, it is natural to ask whether it admits a polynomial kernel.
We observe that it is unlikely that CGWC has a polynomial kernel even if there are no
weights and the maximum connectivity constraint is one, because it was shown by Cygan et
al. in [22] that already t-Cut parameterized by the solution size k has no polynomial kernel
unless NP ⊆ coNP /poly. Another direction of research is to consider vertex connectivities
instead of edge connectivities.
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