Isolde Adler
email: i.m.adler@leeds.ac.uk

Christophe Paul
email: christophe.paul@lirmm.fr

Dimitrios M Thilikos

Connected Search for a Lazy Robber

Keywords: 2012 ACM Subject Classification Mathematics of computing → Graph theory Graph searching, Tree-decomposition, Obstructions Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.7

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

A graph-search game is opposing a group of searchers and a robber that are moving in turn on a graph. A search strategy is a sequence of moves of the searchers that eventually leads to the capture of the robber. The cost of a search strategy is the maximum number of searchers simultaneously present on the graph during the search strategy. The search number of a graph is defined as the minimum cost of a search strategy. Different rules imposed on the search strategy and the moves of the robber define different searching games. The

7:2

Connected Search for a Lazy Robber study of graph searching parameters is an active field of graph theory as several important graph parameters have their search-game analogues that provide useful insights. For related surveys, see [START_REF] Alpern | The theory of search games and rendezvous[END_REF][START_REF] Alspach | Searching and sweeping graphs: a brief survey[END_REF][START_REF] Bienstock | Graph searching, path-width, tree-width and related problems (a survey)[END_REF][START_REF] Fedor | An annotated bibliography on guaranteed graph searching[END_REF][START_REF] Nisse | Network Decontamination[END_REF].

One of the most classic graph-search games is the one of node-search introduced by Kirousis and Papadimitriou [START_REF] Lefteris | Interval graphs and searching[END_REF][START_REF] Lefteris | Searching and pebbling[END_REF]. In this version, both the searchers and the robber occupy vertices of the graph. One searcher can move at a time. The capture of the robber happens when some searcher and the robber simultaneously occupy the same vertex and that the robber cannot escape along a path free of a searcher. In this paper we consider monotone search strategies against an invisible robber. Being invisible implies that the search strategy has to be independent of the moves of the robber. A search strategy is monotone if it prevents the robber from moving to vertices that have been already occupied by the searchers, implying that the robber territory is never increasing. The robber territory is the set of vertices that can be reached from the robber position by a path free of searcher.

Agility and laziness.

A robber can be lazy or agile. A lazy robber resides on a vertex as long as a searcher is not placed on that vertex, while an agile robber may move whenever he wants to. The distinction between a lazy and an agile robber was introduced for the first time in [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF]. Motivated by established links with well-studied graph theoretical parameters, there is an extensive amount of research on the different variants of the search game depending on the monotonicity constraint and on the laziness or agility of the robber. In particular, the monotone search number of a graph G against an agile (resp. lazy) robber is equal to the pathwidth (resp. treewidth) of G [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF][START_REF] Lefteris | Interval graphs and searching[END_REF][START_REF] Lefteris | Searching and pebbling[END_REF][START_REF] Möhring | Graph problems related to gate matrix layout and PLA folding[END_REF][START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]. Also, it was proven that the non-monotone variants are equal to their monotone counterparts [START_REF] Bienstock | Monotonicity in graph searching[END_REF][START_REF] Bienstock | Quickly excluding a forest[END_REF][START_REF] Fedor | On the monotonicity of games generated by symmetric submodular functions[END_REF][START_REF] Lapaugh | Recontamination does not help to search a graph[END_REF][START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF].

The connectivity issue. In both search games described above, no constraint (apart from the monotonicity, which in this context, as mentioned before, is no restriction) is ruling the move of a searcher. That is, a searcher can move arbitrarily far away from his/her original position. For this reason, such search games have been called "helicopter search games" (as suggested in [START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]). From the application view point, this teleportation ability is not always realistic. In some settings (like cave exploration), it is natural to constrain the search to be connected. That is, the clean territory induces a connected subgraph 1 at each step of the search (see [START_REF] Fraigniaud | Monotony Properties of Connected Visible Graph Searching[END_REF] for an example). This inspired the question on the "price of connectivity", asking whether there is some universal constant c such that the connected search number is no more than c times its non-connected counterpart. In its original form, this question was asked in [START_REF] Barrière | Connected graph searching[END_REF] for the agile variant and, in the same paper, it was answered affirmatively for the case of trees (see also [START_REF] Barrière | Searching Is Not Jumping[END_REF][16][START_REF] Flocchini | Decontamination of chordal rings and tori using mobile agents[END_REF][START_REF] Flocchini | Decontamination of hypercubes by mobile agents[END_REF][START_REF] Fomin | Connected Graph Searching in Outerplanar Graphs[END_REF][START_REF] Fraigniaud | Connected Treewidth and Connected Graph Searching[END_REF][START_REF] Nisse | Connected graph searching in chordal graphs[END_REF] for related results). Later, it was proved for all graphs by Dereniowski [START_REF] Dereniowski | From Pathwidth to Connected Pathwidth[END_REF], who suggested a connected counterpart of pathwidth, called connected pathwidth, that is equivalent to the monotone connected agile search number. Then it was proved that this parameter is always upper bounded by twice the pathwidth plus one.

Our contributions

Connected treewidth. In this paper, we study the (monotone) connected search against a lazy robber. Our first contribution is to establish the parameter by giving two alternative definitions: one in terms of connected tree decompositions and one in terms of connected layouts. Intuitively, a tree-decomposition (T, F) is connected2 if it can be rooted at some node r in a way that for every node u, the subgraph G u , induced by the subset V u of vertices appearing in some bag on the path in T between r and u, is connected. We observe that this is a natural extension of the concept of connected pathwidth proposed by [START_REF] Dereniowski | From Pathwidth to Connected Pathwidth[END_REF]. Our layout definition is a variant of the classic layout definition of [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF] with the restriction that now we only consider layouts where every prefix induces a connected graph. Our equivalence, proven in Section 3, indicates that monotone connected search against a lazy robber can be seen as a natural way to define a connected version of treewidth. We also stress that the non-monotone variant of this game corresponds to an different parameter, as proved in [START_REF] Fraigniaud | Monotony Properties of Connected Visible Graph Searching[END_REF]. Yet another way to define "connected" treewidth is to consider tree decompositions where for every t ∈ V T , the bag X t induces a connected subgraph of G. We refer to this variant bag-connected treewidth (while the one we define in this paper can be called prefix-connected treewidth). Bag-connected treewidth was introduced independently by Jégou and Terrioux in [START_REF] Jégou | Tree-Decompositions with Connected Clusters for Solving Constraint Networks[END_REF], in the context of solving Constraint Satisfaction Problems (CSPs)(see [START_REF] Jégou | Bag-Connected Tree-Width: A New Parameter for Graph Decomposition[END_REF][START_REF] Jégou | Combining restarts, nogoods and bag-connected decompositions for solving CSPs[END_REF]) and, in a combinatorial context, by Diestel and Müller in [START_REF] Diestel | Connected Tree-Width[END_REF] who revealed interesting relations with graph-geometric parameters such as the geodesic cycle number, graph hyperbolicity (see also [START_REF] Hamann | Bounding Connected Tree-Width[END_REF]).

Contraction Obstructions. We say that a graph H is a contraction of G, denoted by H G, if a graph isomorphic to H can be obtained from G by a series of edge contractions. We also say that H is a minor of G if H is a contraction of a subgraph of G. We define the minor obstructions (contraction obstructions, respectively) of a graph class G, denoted by obs ≤ (G) (obs (G), respectively), as the set of all minor (contraction, respectively) minimal graphs that do not belong to G. It is easy to see that when G is minor (contraction, respectively) closed, then obs ≤ (G) (obs (G), respectively) provides a complete characterization of a minor closed (contraction, respectivelly) class G: a graph belongs to G if and only if it excludes all graphs in obs ≤ (G) (respectively obs (G)) as minors (contractions, respectively). Moreover, in the case of the minor relation, we know from the theorem of Roberston and Seymour [START_REF] Robertson | Graph Minors. XX. Wagner's conjecture[END_REF] that the set obs ≤ (G) is always finite and therefore the aforementioned characterization provides a finite characterization of any minor closed class in terms or forbidden minors. To identify (or even to compute) obs ≤ (G) for different instantiations of minor closed graph classes is an interesting topic in graph theory (see [START_REF] Adler | Open Problems related to computing obstruction sets[END_REF]35]). For instance, if T k is the class of graphs with treewidth at most k, then obs ≤ (T k) is known for every k ≤ 3 [START_REF] Arnborg | Forbidden minors characterization of partial 3-trees[END_REF] and remains unknown for k > 3 (see [START_REF] Daniel | On linear recognition of tree-width at most four[END_REF] for some partial results for the case where k = 4). Similarly, if P k is the class of graphs with pathwidth at most k, then obs ≤ (P k) is known for k ≤ 2 [START_REF] Kinnersley | Obstruction set Isolation for the Gate Matrix Layout Problem[END_REF] and remains unknown for k > 2. Bounds for the size of the graphs in obs ≤ (T k) and obs ≤ (P k) have been proved in [START_REF] Lagergren | Upper bounds on the size of obstructions and intertwines[END_REF].

Unfortunately, the landscape is more obscure for the contraction relation as contraction obstruction sets are not finite in general. Contraction obstruction sets are only known for a few contraction closed classes. For instance, the contraction obstruction set for planar

7:4

Connected Search for a Lazy Robber

v u Figure 1 A graph G ∈ T c 2 such G -uv / ∈ T c 2 and G -v / ∈ T c 2 .
graphs is described in [START_REF] Demaine ; Ichi Kawarabayashi | Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner's Contraction[END_REF]. A more elaborate example of a finite contraction obstruction set was identified in [START_REF] Best | Contraction obstructions for connected graph searching[END_REF], containing 177 connected graphs, for the class of graphs whose connected mixed search number (for an agile and invisible robber) is at most 2. Another class characterized by an infinite set of contraction obstructions is discussed in [START_REF] Kaminski | Contracting planar graphs to contractions of triangulations[END_REF].

Let k ∈ N. By T c k , we denote the class of all (connected) graphs with connected treewidth at most k. We observe that T c 2 is not minor closed: removing a vertex or an edge (see e.g., the graph G of Figure 1) may increase the connected treewidth. Therefore, no characterization via minor obstruction exists. However, in this paper we observe that T c k is contraction closed, for every k, and it is a challenging problem to identify O k := obs (T c k) for distinct values of k, especially since we have no guarantee that this set is finite. Moreover, in case O k is infinite, we are essentially looking for a finite canonical description of this set.

Our second contribution is the complete identification of O 2 . As a preliminary part of our results, in Subsection 4.1, we prove general properties of O k for every k. These are later used to identify O 2 . In Section 5, that is the most technical part of this paper, we prove that O 2 is an infinite set that can be canonically described by a sequence of gluing operations.

Price of connectivity. We give, for every k ≥ 2, an infinite subset of obs (T c k) consisting of graphs of treewidth 2, i.e., graphs in T 2 (see Section 4.2). Consequently, the price of connectivity on treewidth is unbounded and this makes a sharp contrast with the corresponding result on pathwidth. To conclude, for monotone search, the price of connectivity is bounded when we are searching for an agile robber while this price goes to infinity when the robber is lazy. This latter contribution provides a simpler construction of a result from [START_REF] Fraigniaud | Monotony Properties of Connected Visible Graph Searching[END_REF] that the cost of connectivity can be log n, where n is the number of vertices.

Preliminaries

Standard definitions

Sequences. Given a finite set U , a sequence σ over U is a bijection

σ : U → [|U |]. For x ∈ U , σ(x) = i if x is at the i-th position in σ and we denote σ i = σ -1 (i). For x, y ∈ U , if σ(x) < σ(y), we write x < σ y. We define the sets σ <i = {x ∈ U | σ(x) < i} and σ ≤i = {x ∈ U | σ(x) ≤ i}.
Alternatively, we denote a sequence by σ = σ 1 , . . . , σ n .

Graphs. The graphs we consider are undirected are simple. We use standard notations. For a subset S of vertices, G [S] denotes the subgraph induced by S. A separator is a subset Contracting an edge e = xy ∈ E(G) yields the graph G/e obtained by removing x and y from G, introducing a new vertex and making it adjacent with all vertices in N G ({x, y})\{x, y}. If F is a subset of edges of G, then G/F is the graph obtained by contracting the edges of F . We say that a graph H is a contraction of G, denoted by H G, if a graph isomorphic to H can be obtained by a series of edge contractions.

S of vertices such that G \ S = G[V \ S] contains more connected components than G. A connected component H of G \ S is a full S-component of G if N G (V (H)) = S.
A tree-decomposition of a graph G = (V, E) is a pair (T, F) where T = (V T , E T) is a tree and F = {X t ⊆ V | t ∈ V T } such that : 1) t∈V T X t = V ; 2) for every edge e ∈ E, there exists a node t ∈ T such that e ⊆ X t ; and 3) for every vertex x ∈ V , the set {t ∈ V T | x ∈ X t } induces a connected subgraph of T . We refer to V T as the set of nodes of T and the sets of F as the bags of (T, F). The width of a tree-decomposition (T,

F) is width(T, F) = max |X| -1 | X ∈ F and the tree-width of a graph G is tw(G) = min width(T, F) | (T, F) is a tree-decomposition of G . Rooted graphs. A q-rooted graph (with q ∈ N) is a pair G = (G, R)
where G is a graph and R is a sequence over a subset R of q vertices of G, called roots. A rooted graph is any q-rooted graph, where q ≥ 0. We treat every graph G as the 0-rooted graph (G,). The rooted graph (G, R) is connected if either G is connected or if every connected component of G contains at least one vertex from R. It is biconnected if adding an edge between every pair of root vertices yields a biconnected graph. Gluing two q-rooted graphs (G

1 , R 1) and (G 2 , R 2) results in the graph (G 1 , R 1) ⊕ (G 2 , R 2) obtained by identifying the vertex R 1 (i) with R 2 (i) for every i ∈ [q]
. The operation of gluing k ≥ copies of a rooted graph K is denoted by k × K and is defined in the obvious way (keep always in mind that the result is a graph). A rooted graph H = (H, T) is a contraction of a rooted graph G = (G, R), denoted H G if a rooted graph isomorphic to (H, T) can be obtained after a series of edge contractions on G, under the constraint that no path between two vertices of R can be contracted to a single vertex. If a vertex v ∈ V (H) results from the contraction of an edge incident to a root vertex of R, then v is a root vertex of T.

Tree vertex separation.

A layout σ of a rooted graph G = (G, R) is a sequence over V (G) such that for every 1 ≤ j ≤ |R|, σ -1 (j) ∈ R. We denote by L(G) the set of all layouts of G. For every i ∈ [n], the supporting set of position i is the set S σ (i) = x ∈ V (G) | σ(x) < i and there exists a (x, σ i)-path whose internal vertices belong to σ >i }. The so-called tree vertex separation number of a rooted graph G is defined as tvs

(G) = min tcost(G, σ) | σ ∈ L(G) , where tcost(G, σ) = max{ S σ (i) | i ∈ [n]}.
Search strategies against a lazy robber. A search strategy on a graph G is a sequence S = S 1 , . . . , S r , with r ∈ N, over the sets of subsets of vertices of V (G) where |S 1 | = 1 and for all i ∈ [r -1], the symmetric difference of S i and S i+1 has cardinality one. Notice that the difference between two consecutive set either corresponds to a placement or to the removal of a searcher on some vertex v. The cost of a search strategy S is cost(S)

= max{|S i | | i ∈ [r]}.
For a search strategy S against a lazy robber, we define the sequence of robber spaces as the sequence F S = F 1 , . . . , F r where:

F 1 = V (G) \ S 1 . For i ∈ [2, r], let F i = (F i-1 -S i) ∪ {v ∈ V -S i : there is a path from a vertex u ∈ F i-1 ∩ (S i -S i-1
) to v whose vertices except u belong to V -S i }. The complementary sequence F S = F 1 , . . . , F r is the sequence of clean spaces. We say that the search strategy S is complete, if F r = ∅; monotone, if for each i ∈ [r -1], F i+1 ⊆ F i . We define lns(G) as the minimum cost of a complete (or, alternativaly, cop-win) monotone search strategy on G against a lazy robber. To prove a result similar to the above well-known theorem, we adapt the definitions of graph search, tree decomposition, layouts and the associated parameters to the connected setting 3 . A (monotone and complete) search strategy S = S 1 , . . . , S r of a graph G is connected if at every step i ∈ [r] the clean space F i is connected. We define the parameter mclns(G) as the minimum cost of a monotone, complete and connected strategy on G against a lazy robber.

F S T T C S

A tree-decomposition (T, F) of a graph G is connected if there exists a node r ∈ V (T) such that for every node u ∈ V (T), the subgraph G[V u] is connected, where V u contains all the vertices that belong to some bag X t associated with a node t in the u, r-path in T . We then define the connected treewidth ctw(G) as the minimum width of a connected tree-decomposition. Figure 2 provides an example where the treewidth and the connected treewidth of a graph differs.

A layout σ of a graph G is connected if for every i ∈ [n], the subgraph G[σ ≤i] is connected.
We let L c (G) denote the set of connected layouts of G. We then define the connected tree vertex separation parameter as Let us now state the main theorem of this section.

ctvs(G) = min{tcost(G, σ) | σ ∈ L c (G)}.

Theorem 2. For every connected graph G, we have ctw

(G) = ctvs(G) = mclns(G) -1.
We stress that if in the proof above we use connected path decompositions instead of connected tree decompositions, we obtain the counterpart of Theorem 2 linking the connected path-width of a graph to the connected search number against an agile robber and to a parameter called connected path vertex separation number.

General properties of obstructions

A graph class G is closed under contraction, if every graph H, that is a contraction of a member G of G, also belongs to G. Assume G is closed under contraction, then a graph G is a contraction obstruction to G, if G / ∈ G but H ∈ G for every H G. Similarly,

a graph parameter κ(•) is closed under contraction if for every pair of graphs H and G such that H G, κ(H) ≤ κ(G).

The following lemma, stated in terms of rooted graphs, proves that the parameters ctw(•), mclns(•) and ctvs(•) are closed under contraction.

Lemma 3. Let (G 1 , R 1) and (G 2 , R 2) be two q-rooted graphs such that (G 1 , R 1) (G 2 , R 2). Then ctvs(G 1 , R 1) ≤ ctvs(G 2 , R 2).

Non-biconnected obstructions

We extend the notion of obstruction sets to rooted graphs in the natural manner. For every q ≥ 1, we let O (q) k denoted the set containing every q-rooted graph G = (G, R), where ctvs(G) > k and for every proper contraction G of G, ctvs(G , R) ≤ k. We can prove that an obstruction contains at most one cut vertex, meaning that knowing the set of biconnected obstructions and of 1-rooted obstructions will be enough to describe the full set of obstructions.

We now introduce some concepts on graphs. A vertex subset

S ⊆ V (G) is a separator if G \ S= G[V \ S] contains more connected components than G. A connected component H of G \ S is a full S-component of G if N G (V (H)) = S.
We denote by C(G, S) the set of all full S-connected components of G. We denote by F(G, S) the set containing every induced subgraph

G[S ∪ C] with C ∈ C(G, S). A separator S is a minimal separator if |F(G, S)| ≥ 2. A minimal separator S is a minimal x, y -separator if x and y belong to different full S-components. A vertex x ∈ V (G) is a cut-vertex if {x} is a separator. The set of cut vertices of a graph G is denoted C(G). A graph G is biconnected if it is connected and C(G) = ∅. A biconnected component of a graph is any biconnected subgraph of G that is vertex-maximal. Let x ∈ C(G) be a cut vertex of G. The pair (G, x) is called a s-pair. If Z ∈ F(G, {x}), then the 1-rooted graph (Z, x) is a 1-component of the s-pair (G, x). Similarly, if {x, y} is a minimal separator of G, then the triple (G, x, y) is called a s-triple. A 2-rooted graph (H, x, y) is a 2-component of the s-triple (G, x, y) if {x, y} is a minimal separator of G and H ∈ F(G, {x, y}).
A vertex v of a graph G is called k-simplicial if it has degree at most k and its neighborhood induces a complete subgraph. The proof of the next lemma is presented in Section 4 of the (attached) full version.

On the price of connectivity

We next examine the question of the price of connectivity for connected treewidth. Let us recall that it is known that the connected pathwidth is a most twice the pathwidth of a graph. Concerning treewidth, as a consequence of Proposition 1 and of the proof of Proposition 7 below, we know that there exists graphs of treewidth at most 4 with abritrary large connected treewidth. Moreover increasing the connected treewidth by one requires to double the number of vertices.

Proposition 7 ([24]

). For any n 0 , there is n ≥ n 0 and an n-vertex graph G such that mclns(G) ∈ Ω(mlns(G) • log n).

We strengthen the theorem above by proving that this result also holds when restricting to series-parallel graphs (that are biconnected graphs of treewidth at most two). Our construction yields to way more simpler graphs than in [START_REF] Fraigniaud | Monotony Properties of Connected Visible Graph Searching[END_REF]. The proof of the next result is in Section 6 of the full version.

Theorem 8 (Corollary 2 in the full version). For every k ∈ N, the obstruction set obs(T c k) contains infinitely many series-parallel graphs.

To prove Theorem 8, we construct an infinite family of series-parallel graphs with arbitrarily large connected treewidth. For k ≥ 2, we define the family

Q k = {A ⊕ B | A, B ∈ Y k } where Y k is the family of 1-rooted graphs Y k = (Y k , r
) that can be constructed as follows: take any tree T k , rooted at vertex r, such that the distance between every leaf and r is k and every non-leaf vertex has at least two children; add an apex vertex z universal to the leaves of T k ; if r has only two neighbors, these neighbors may or may not be adjacent to each another.

2 . To that aim, let us first define the family B

(1)

2 = {Y x } ∪ {Y (k) x | k ≥ 2]
} where Y (k) x = (k × R y x , x) (see Figure 4). It is not difficult to check that these graphs are 1-rooted obstructions.

x , Y

x , and Y

x .

It can be easily checked that the three biconnected graphs depicted in Figure 5

2-twin expansion.

Let G = (G, R) be a rooted graph and let S ⊆ V (G). We say that S is a 2-twin family of G if S ∩ V (R) = ∅, |S| ≥ 2 and there are two vertices a, b ∈ V (G) such that ∀s ∈ S, N G (s) = {a, b}. We call the vertices a, b the bases of the 2-twin family S. We say that a graph G' = (G , R) is a 2-twin expansion of G if R = R and G is obtained from G by adding vertices such that each additional vertex is made adjacent with the base vertices of some of the 2-twin families of G. Given a class of rooted graphs C we define its 2-twin expansion texp(C) as the class of rooted graphs containing all 2-twin expansions of all the graphs in C. We are now ready to state the main result of this section.

F S T T C S 2 0 1 9

 We denote by C(G, S) the set of all full S-connected components of G and by F(G, S) the set containing every induced subgraph G[S ∪ C] with C ∈ C(G, S). The set of cut vertices of a graph G is denoted C(G).

1 (

 1 [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF][START_REF] Seymour | Graph searching and a min-max theorem for tree-width[END_REF]). For any graph G, we have tw(G) = tvs(G) = lns(G) -1.

Figure 2

 2 Figure 2 A series-parallel graph G with tw(G) = 2 and ctw(G) = 3. A connected treedecomposition of minimum width is given by the path-decomposition (P, F) where V (P) = {x1, . . . x8} and F = {X1 = {1, a, b, 2}, X2 = {1, a , b , 2}, X3 = {1, 2, c, d}, X4 = {1, 2, d, 3}, X5 = {1, 2, 3, c }, X6 = {1, 3, c , d }, X7 = {1, 3, e, f }, X8 = {1, 3, e , f }}, the root node being x1.

Lemma 4 .Lemma 5 .Lemma 6 .F

 456 For every k ≥ 1 and every connected graph G, G ∈ O k is not biconnected iff G contains exactly one cut vertex and G ∈ {A ⊕ B | A, B ∈ O (1) k }. The proof of Lemma 4 is a consequence of Lemma 3 and the next two Lemmas . If a connected graph G contains a k-simplicial vertex v, then G / ∈ O k . Proof. (sketch) The argument simply follows from the observation that G = G -v is a contraction of G and that extending a connected layout σ of G by adding v as the last vertex yields a connected layout σ of G such that tcost(G, σ) = tcost(G , σ). Let G be a connected graph. If G ∈ O k and contains a cut vertex v, then the s-pair (G, v) contains exactly two 1-components and v is the unique cut vertex of G. Proof. (sketch) Suppose that v is a cut vertex of G ∈ O k and that C 0 , C 1 , C 2 are distinct connected components of the graph G -v. It follows from Lemma 3 that for every i ∈ {0, 1, 2}, ctvs(G[C i ∪ C (i+1)mod 3 ∪ {v}]) k, which implies that for every i ∈ {0, 1, 2}, ctvs(G[C i ∪ {v}], {v}) ≤ k or ctvs(G[C (i+1) mod 3 ∪ {v}], {v}) ≤ k. Using the connected layouts that certifies these later inequalities, one can build a connected layout σ of G such that tcost(G, σ) ≤ k, a contradiction to the fact that G ∈ O k .So removing a cut vertex in G leaves exactly two connected components. Suppose that there exist two cut vertices x and y and let C x (resp. C y) be the connected component of G -x not containing y (resp. of G -y not containing x). Then applying arguments similar as the ones above to the subgraphsG x = [C x ∪ {x}], G y = G[C y ∪ {y}] and G xy = G -(C x ∪ C y)allows to show the existence of a connected layout σ of G such that tcost(G, σ) ≤ k, a contradiction to the fact that G ∈ O k .

rY 1 r 2 Figure 3 Lemma 9 . 5 The obstruction set O 2

 123952 Figure 3 A graph H = Y ⊕ ∈ O4 with Y = (Y, r) ∈ Y4 and Y' = (Y , r) ∈ Y4.

Figure 4

 4 Figure 4The rooted graphs Rxy, R y x , R x y , Yx, Y

belong to O 2 .

 2 We define the setB 2 = {K 4 , W 1 , W 2 } ∪ {A ⊕ B | A, B ∈ B (1)}.

Figure 5

 5 Figure 5 From left to right, the graphs K4, W1, and W2.

We also want to point out that alternative notions of connected tree-decomposition have been considered, see for example[START_REF] Fraigniaud | Connected Treewidth and Connected Graph Searching[END_REF] and[START_REF] Diestel | Connected Tree-Width[END_REF][START_REF] Jégou | Tree-Decompositions with Connected Clusters for Solving Constraint Networks[END_REF] for two different definitions. We believe that the parameter correspondence we establish is a strong argument in favour of our definition proposal.F S T T C S 2 0 1 9

Funding Christophe Paul: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010). Dimitrios M. Thilikos: Supported by projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010). Supported by the Research Council of Norway and the French Ministry of Europe and Foreign Affairs, via the Franco-Norwegian project PHC AURORA 2019.

Connected Search for a Lazy Robber Theorem 10. A graph G belongs to T c 2 if and only if it does not contains a graph of texp(B 2) as a contraction, that is O 2 = texp(B 2).

Some elements of the proof of Theorem 10

The set O 2 is closed under twin expansion. We say that a rooted graph G is simplified if all its 2-twin families have size 2. Given a rooted graph G we denote by G the unique simplified rooted graph such that G ∈ texp({ G}). Given a set C of rooted graphs, we define C = { G | G ∈ C}. Observe that every graph of B 2 is simplified.

The next lemma is the extension of Lemma 11 to 1-rooted obstructions. Its proof mainly follows from Lemma 4.

Simplified obstructions. We now identify sets of simplified graphs, 1-rooted graphs and 2-rooted graphs that are obstructions. Later, we prove that from these sets the full set of obstructions to T c 2 can be constructed. The following Lemmas establish that the sets B

(1) 2

and B 2 build from the graphs of Figure 4 and Figure 5 are simplified obstructions.

Let us now turn to biconnected 2-rooted obstructions. We define the set

4 } of 2-rooted graphs depicted in Figure 6. We say that a biconnected 2-rooted graph

2)-free.

Lemma 14. The set of biconnected graphs in

2).

Proof. (sketch) By considering a minimal counter-example, the proof first establishes that every elementary biconnected 2-rooted graph belongs to T c 2 . Then we check that for every

Structure of obstructions.

Let xy be an edge of a graph G. We say that xy is a separating edge if the set {x, y} is a minimal separator. We say that xy is a marginal edge if there is a vertex z such that both (G, x, z) and (G, y, z) are s-triples. From Lemma 15 and Lemma 16, we deduce a series of properties needed to understand the role of marginal edges and to conclude the characterization of O 2 .

Biconnected obstructions. We now have all the ingredients for the proof of Theorem 10.

We start with the identification of the biconnected elements of Õ2 .

Lemma 20.

No biconnected graph in Õ2 contains a marginal edge.

Lemma 21. The biconnected graphs in Õ2 are the graphs K 4 , W 1 , and W 2 .

Proof. (sketch) For a contradiction, we suppose that Õ2 contains a graph G distinct from K 4 , W 1 , and W 2 . From Lemma 15, G does not contain a separating edge. As it excludes K 4 as a contraction, it contains a degree-two vertex a. Let x and y be the two neighbors of a and let H = {H 0 , . . . , H q } be the 2-components of the s-triple (G, x, y) with V (H 0) = {a, x, y}.

As G is biconnected, so is every 2-rooted graph in H. We next prove that exactly one of the 2-rooted graphs in {H 1 , . . . , H q }, say H 1 , is not elementary. Then by Lemma 18, every

As G is simplified, we have q ≤ 2. If q = 2, as H 0 ⊕ H 2 = 2 × R xy , as H 1 is not elementary and as G does not contains a separating edge, Lemma 16 leads to a contradiction. In the case q = 1, it can be proved that H 1 contains a cut vertex, implying the existence of a marginal edge in G, a contradiction to Lemma 20.

Non-biconnected obstructions. The second part of the proof of Theorem 10 identifies the non-biconnected elements of Õ2 .

Lemma 22. The non-biconnected graphs in Õ2 are the graphs in

Proof. (sketch) From Lemma 4 and Lemma 13, it is enough to prove that Õ(1)

2 . We assume, towards a contradiction, that there is some 1

2 -free and G is biconnected. From Lemma 15, we can assume that G does not have separating edges. Let J = 2 × G. As the underlying graphs of the 2-rooted graphs in B

(1) 2 are {K 4 , W 1 , W 2 }-free, Lemma 4 implies that J is B 2 -free and thereby K 4 -free. It can easily be seen that r has more than two neighbors. Also one may consider a 2-tree T that contains G as a spanning subgraph and satisfies the following properties (D1) If an edge is marginal in T then it is also marginal in G.

(D2) If an edge is simplicial in T then one of its endpoints have degree 2 in G.

(D3) If an edge is a separating edge of G, then it is also a separating edge in T .

F S T T C S 2 0 1 9 7:12

Connected Search for a Lazy Robber

Let z be a neighbor of r. Because of (D3), the edge e = rz is either a marginal or a simplicial edge of T . We claim that e is marginal. Indeed, if e is simplicial, then from (D2) z has degree 2. Let w be the other neighbor of z. Notice that one of the 2-components of the s-triple (G, r, w) is isomorphic to R rw , a contradition to Lemma 19. We now know that e = rz is a marginal edge. Let t be the base of e. cleanly (G, r, t) is an s-triple and tr ∈ E(G) as G does not have separating edges. We denote by U = U 1 , . . . , U q the 2-components of (G, r, t). Our next step is to prove that all 2-rooted graphs in U are simple. This, together with Lemma 19 imply that all graphs in U are isomorphic to R t r . This means that G contains as a contraction some Y () t for some ≥ 3. As each such Y we have a contradiction.