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Abstract

The Eikonal Non-Local approach models damage dependent non-local interactions by considering that interaction distances be-
tween material points are computed from solving an eikonal equation with an isotropic/anisotropic damage dependent metric
Riemann function. In the finite element context, such a formulation exhibits good regularization properties and naturally allows one
to model strain localization when non-local interactions vanish. In an isotropic damage mechanics framework, the damage variable
tends to unity on a single integration point, and no damage diffusion occurs. In a one-dimensional context, evaluating the interaction
distance between two points comes into computing an integral where the integrated function depends on the damage field between
them. Desmorat et al. [9] performed the integration using a trapezoidal rule (under the assumption that the damage field is constant
between adjacent integration points). Conversely, Jirásek and Desmorat [19] assumed that the damage field is linear between nearby
integration points. Mainly motivated by improved integration accuracy, this method leads to a more gradual damaging process and
makes it easier to follow the structural response when damage localizes. In this contribution, we show that despite these advantages,
such a choice induces parasite damage diffusion issues, making the use of a standard trapezoidal rule more relevant. Moreover,
once this choice is made, the structural response during damage localization can be conveniently described using a path-following
method based on controlling the non-local strain variation of the localizing element instead of the local strain as in the works cited
above.
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1. Introduction

Continuum damage models are often used to represent failure
processes in different kinds of materials. From a mathemati-
cal viewpoint, it is well known that material softening leads to
the ill-posedness of the equilibrium problem. In a numerical
framework, this translates into spurious energy dissipation and
non-objective results with respect to the spatial discretization of
the considered problem.

Several methods were proposed in the literature as localization
limiters. One can cite, among them, Integral Non-Local (INL)
formulations on the internal variables of the constitutive model
[31, 12, 4, 15], gradient enhanced models [11, 29], phase-field
formulations [10, 5, 25, 37], or Thick Level Set models [27,
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3, 26, 23]. Despite their differences, the common feature of
these theories is that a characteristic length is introduced into
the formulation allowing to diffuse dissipation over a zone of
finite size. From a numerical viewpoint, this enables recovering
mesh insensitivity.

In particular, INL models [31, 2] are widely used due to their
simplicity of implementation and numerical robustness. Ac-
cording to these formulations, damage evolution is driven by
a non-local field (e.g., a non-local equivalent strain field), ob-
tained by weighted averaging of the corresponding local field
over the domain. In standard theories, averaging is performed
such that non-local interactions between material points are con-
trolled by the Euclidean distance between them (i.e., the higher
the distance, the lower the interaction).

Limitations and deficiencies of INL formulations have been
pointed out by many authors (e.g., [13, 17, 36, 1, 14, 16]).
In particular, considering fixed non-local interaction distances
leads to non-physical interactions through holes, cracks, and
developing damaged bands. This results in parasite damage
spreading across damaged bands, near notches, and free edges
in simulations.

Enhancements of the original methods were proposed to face
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these limitations (e.g., [28, 14, 20, 30]) and to describe more
precisely strain localization processes in softening media through
considering evolving non-local interactions.

In the Eikonal Non-Local (ENL) formulation [9], interaction
distances between material points are computed by solving an
isotropic time-independent Eikonal equation with a damage de-
pendent metric function. In two- and three-dimensional (2D
and 3D) settings, the ENL formulation considers that damage
induces a curvature of the Riemannian space in which interac-
tion distances are computed. This mathematical/physical frame-
work allows for directly modeling evolving interactions during
the localization process, thus naturally leading to progressive
damage - to - fracture transition. In [9, 19] (uni-dimensional
case, 1D) and [33] (two-dimensional case, 2D) it was shown
that an isotropic ENL damage formulation allows for repre-
senting the main phases of strain localization process in quasi-
brittle materials, including the progressive transition from dif-
fuse to localized damage. Furthermore, the regularization prop-
erties of standard INL formulations are preserved until high
damage levels.

In the 1D setting that is considered in this work, finding the
interaction distance ˜̀

xx′ = ˜̀
x(x′) between two material points

x and x′ belonging to a domain Ω consists in solving the eikonal
equation: √

1−D(η)

∣∣∣∣ d

dη
˜̀
x(η)

∣∣∣∣ = 1 (1)

˜̀
x(η = x) = 0 (2)

with D(η) ∈ [0, 1) the isotropic scalar-valued damage field.
After integrating between x and x′ one has:

˜̀
xx′ =

∫ max (x,x′)

min (x,x′)

dη√
1−D(η)

≥ `xx′ (3)

where `xx′ = `x(x′) = |x − x′| ≥ 0 is the Euclidean distance
between x and x′ (i.e., the interaction distance that is consid-
ered in INL models) and min(·)/max(·) are the standard min-
imum/maximum operators.

In the framework of the Finite Element Method (FEM), one,
therefore, has to compute interaction distances between inte-
gration points where damage is evaluated. A simple trapezoidal
rule was used by Desmorat et al. [9] to calculate integral (3), un-
der the assumption that the damage field is constant between ad-
jacent integration points. More recently, Jirásek and Desmorat
[19] proposed to use a slightly modified integration rule based
on assuming that the damage field is linear between adjacent
integration points. According to these authors, such a choice
leads to improved accuracy in integral computation and makes
the damage process more gradual, making it easier to follow the
structural response when damage localization occurs.

Based on a localization problem into a bar submitted to ten-
sile loading, in this short communication, we show that such a
choice induces parasite damage diffusion, leading to loose one
of the main advantages of ENL formulations. This makes the

use of a standard trapezoidal rule more effective. Moreover,
the structural response in the final phases of the test can be de-
scribed by using a dissipative path-following method based on
controlling the non-local strain variation of the localizing ele-
ment instead of the local strain (as in the articles cited above).

2. Eikonal non-local damage model

Let us consider a 1D body occupying all points x ∈ Ω =
]0, L[. The mechanical behavior of its constituting material is
described through an isotropic continuum damage model [21]
with a single scalar variable D. Accordingly, the Cauchy’s
stress reads σ = σ(x, t) = (1 − D)Eε, where E = E(x) is
the Young’s modulus, ε = ε(x, t) = du/dx is the infinitesimal
strain and u = u(x, t) is the displacement field.

Non-local damage evolution is supposed to occur according to
the law, D = g(κ), where κ = κ(x, t) is an internal variable.
Its evolution has to fulfill the following non-local Kuhn-Tucker
and consistency conditions: f̄ ≤ 0, κ̇ ≥ 0, f̄ κ̇ = 0 and ˙̄fκ̇ = 0.
In previous definitions, f̄ = f̄(σ, ε,D) is a damage activation
function, and symbol •̇ denotes the rate of variation of the quan-
tity •. We chose f̄ = ε̄ − κ, where ε̄ = ε̄(x, t) denotes the
non-local strain. Alternatively, instead of ε̄, one can define f̄ in
terms of the non-local counterparts of the thermodynamic force
associated with damage Y = Y (x, t) = Eε2/2 [24] or other
quantities [18].

2.1. Integral nonlocal (INL) formulation
In standard INL-type formulations [31], field ε̄ is computed by
weighted averaging of field ε over the entire domain:

ε̄ = ε̄(x, t) =

∫
Ω
φ(ξxx′)ε(x′, t) dx′∫

Ω
φ(ξ) dx′

(4)

where ξxx′ = ξ(x, x′) denotes the ratio of the interaction dis-
tance `xx′ to the characteristic length (`c > 0), and φ(ξxx′)
is a positive monotonic decreasing function of ξxx′ . The latter
function is chosen such that φ(ξxx′) = 1 for ξxx′ = 0, and
φ(ξxx′) → 0 when ξxx′ increases. A common choice to ex-
press φ(ξxx′) consists in using the Gaussian distribution func-
tion, i.e., φ(ξxx′) = exp(−4ξ2

xx′).

2.2. Eikonal non-local (ENL) formulation
According to the ENL approach, the non-local averaging pro-
cess is the same as in the standard INL formulations. How-
ever, non-local interactions change according to the damage
field evolution through effective distances. In a 1D setting, the
length ratio ξxx′ appearing in eq. (4) thus reads:

ξxx′ =
˜̀
xx′

`c
≥ |x− x

′|
`c

(5)

According to eqs. (3) and (5), ˜̀
xx′ = |x− x′| when D(η) = 0

∀ η ∈ [x, x′] (i.e., the standard INL formulation is recovered),
whereas ˜̀

xx′ > |x−x′|when damage occurs (i.e., non-local in-
teractions are reduced). When damage tends to unity for at least
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one point η′ ∈ [x, x′], distance ˜̀
xx′ → +∞ and no more non-

local interactions are possible between the considered material
points. Despite what is done in standard INL formulations, non-
local interactions between material points across highly dam-
aged bands are no more possible. As a consequence, para-
site damage diffusion problems that are typically encountered
when considering fixed distances can be avoided in a natural
way.

2.3. Numerical formulation in 1D
Consider a domain Ω that is discretized through a FE mesh
(Ωh) comprising an odd number (nel) of FEs of equal size (h =
L/nel).

A continuous linear interpolation is chosen for the unknown
displacement field. Integration points (one per element) are
identified according to the ordered sequence I = {xi}nel

i=1. The
discretized damage field {Di}nel

i=1 = {D(xi)}nel
i=1, is evaluated

at integration points according to an explicit procedure.

Interaction distances (˜̀i,j) between points xi and xj ∈ I are
computed at the beginning of each time step based on the last
converged damage field (at time tn), {Dn

i }
nel
i=1. They are then

used to update the non-local strain field (4) driving damage evo-
lution and kept constant until convergence of the global equilib-
rium problem (at time tn+1).

2.4. Interaction distances computation
As illustrated by Jirásek and Desmorat [19], different integra-
tion techniques can be used for computing eq. (3), and might
influence the obtained results:

(i) the first and natural choice consists in assuming that func-
tion
√

1−D is element-wise constant, and performing
integration according to a trapezoidal rule. The effective
distance ˜̀

i,j between points xi and xj > xi thus reads:

˜̀
i,j = ˜̀

i,j−1 +
h

2

(
1√

1−Dj−1

+
1√

1−Dj

)
(6)

where ˜̀
i,j−1 is the effective distance between xi and xj−1;

(ii) an alternative way for computing interaction distance was
recently proposed in [19]. Assuming that the damage
field is linear between adjacent integration points, dis-
tance ˜̀

i,j reads:

˜̀
i,j = ˜̀

i,j−1 +
2h√

1−Dj−1 +
√

1−Dj

(7)

According to the cited work, this formulation shows im-
proved performance from the integration error viewpoint,
in particular when damage localization occurs. The influ-
ence of such a choice on the damage localization process
has not been studied yet, however.

In the following, the ENL formulation with trapezoidal rule
(eq. (6)) is denoted ENL1, whereas the other one (eq. (7)) is
named ENL2. For considerations holding for both methods, we
will use the generic term ENL.

3. Considered problem

We consider a bar of length L and constant transverse cross-
section S submitted to tensile loading. Displacement is blocked
on the left side of the bar (x = 0), whereas an indirectly con-
trolled force is imposed at the right extremity (x = L) to en-
sure describing structural responses characterized by snap-back
phases.

Different FE meshes are considered (nel ranging from 41 to
2001 linear Bar elements). Damage initiation is forced to oc-
cur on the central/weak element (the corresponding integra-
tion point denoted xw, with w = (nel + 1)/2). For this pur-
pose, the Young’s modulus is spatially distributed as Ei =
E(xi) = E0 (1− αi/10), where E0 is a reference Young’s
modulus, and αi = α(xi) is chosen as a Gaussian function.
centered on xw and with length parameter equal to L/10, i.e.,
αi = exp

[
−400(xi − xw)2/L2

]
. This allows for removing the

small differences in the structural response (stiffness and load
peak) that are observed between different meshes when local-
ization is induced by slightly reducing E(xw) only.

Damage evolves according to the exponential lawDi = g(κi) =
1 − (κ0/κi) exp (−〈κi − κ0〉/(κc − κ0)), where κi = κ(xi),
κ0 is the non-local strain level corresponding to damage activa-
tion, κc is the non-local strain level controlling the shape of the
damage evolution function and 〈•〉 denotes the Macaulay oper-
ator (given a real number •, 〈•〉 = • if • ≥ 0 and 〈•〉 = 0 oth-
erwise). Different evolution models (linear, bi-linear, exponen-
tial. . . ) could have alternatively be used without substantially
changing the theoretical formulation and its numerical imple-
mentation.

A quasi-newton method is used to solve the global equilibrium
problem. To follow the structural response in the snap-back
phase, the external loading is controlled indirectly based on a
simple path-following technique [8, 34].

Two path-following constraint equations are considered:

(i) the first one imposes the local strain variation of the weak
element (∆εw − ∆τ = 0, with ∆τ > 0 a user-defined
path-step length) between two successive loading steps,
as in [9, 19];

(ii) the second one imposes the non-local strain variation of
the weak element (∆ε̄w − ∆τ = 0, ∆τ > 0). Given
the simple considered geometrical and mechanical mod-
els, the chosen constraint ensures achieving dissipative
responses only since the maximum non-local strain vari-
ation is always attained at the weak element.

More details concerning the numerical solution procedure are
given in Appendix A.

4. Results and discussion

4.1. Global responses

Let us first consider a finite element mesh with 81 Bar FEs
and compare force–displacement (F, uL) responses obtained by
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considering the local, INL and ENL damage models (fig. 1), for
both integration formulas introduced in section 2.4.

As already observed by Rastiello et al. [33], ENL and INL mod-
els provide very similar responses for moderate damage levels
(non-local interactions are mainly controlled by Euclidean dis-
tances in this phase). Then, ENL responses diverge from the
INL one and, as expected, tend to the local one when damage
grows up to unity on the weak element (Dw → 1). The ENL1
and ENL2 formulations give almost identical results until very
high damage levels (approximately Dw ≈ 0.9), then they ex-
hibit some differences. In particular, the ENL2 formulation pro-
vides a smoother failure of mechanical strength than ENL1 and
a higher energy dissipation. In both cases, however:

(i) controlling the simulation through imposing ∆ε̄w (solid
lines in fig. 1) makes it possible to properly follow the
whole damage localization process;

(ii) conversely, using a constraint equation based on ∆εw
(dashed lines in fig. 1) – or the relative displacement of
the nodes of the weak element as in [33, 19] – makes it
very difficult to control the simulation when Dw → 1,
in particular for the ENL1 formulation. And this is in-
dependent of the chosen ∆τ . By the way, this problem
partly motivated Jirásek and Desmorat [19] to replace the
trapezoidal integration rule by eq. (7). Notice that for
the considered mesh no convergence issues were experi-
enced; however, this can append for finer meshes (e.g.,
for nel = 161 or higher). See Appendix A for more de-
tails.

From here-forth all results are obtained using the constraint
equation based on the non-local strain variation. Some addi-
tional explanations concerning this choice will be given in the
following.

4.2. Damage localization

As illustrated by the damage distributions along the bar (fig. 2),
both ENL implementations model a progressive damage local-
ization in the central region of the bar.

Based on these results, at any pseudo-time, one can identify
three different zones in the bar: (i) an undamaged region (Ielastic),
where the material response stays elastic and no damage oc-
curs; (ii) an inactive damage region (I inactive), where material
points are damaged but no more experience damage evolution;
(iii) an active damage region (Iactive), where damaging is in
progress.

During the fist phases of the test, region Iactive grows up and
Ielastic shrinks, whereas I inactive is empty. Then, due to the
evolution of interaction distances, points belonging to Iactive

progressively move to I inactive, while Ielastic stay constant (i.e.,
the size of the damaged band does not change).

To better understand such a damage/strain localization process,
fig. 3 depicts the evolution of damage and local strain at xw
and xw+1, with respect to ε̄w. Since this quantity is controlled
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Figure 1: ENL formulations 1 and 2 — Force-displacement re-
sponses obtained using local, INL and ENL damage models
(finite element mesh with 81 elements). Results obtained con-
trolling the simulation on the non-local strain variation of the
weak element and on the local strain variation of the weak ele-
ment — Numerical parameters: L = 100 mm, S = 5·10−3 m2,
E = 100 MPa, κ0 = 10−4, κc = 10κ0, `c = L/5 = 20 mm,
∆τ = κ0/50 (for both the constraint equations)

during the computation, such representation also provides the
pseudo-time evolution of the considered variables.

As already mentioned, despite what is provided by INL formu-
lations, during the localization process, damage progressively
tends to unity on the weak element (solid lines, fig. 3a) for both
ENL models. Some differences between ENL1 and ENL2 for-
mulations are, however, clear. In particular:

(i) the ENL1 formulation clearly models strain localization.
Damage is equal to unity in the central element, whereas
it remains constant from a certain instant forward in the
neighboring element (dashed blue line). Simultaneously,
the non-local strain progressively tends to the local one
in the weak element, while it gradually decreases in the
neighboring element. As expected, such a process is ac-
companied by the elastic unloading of the neighboring
element, which progressively tends to be undeformed.

It is worth noticing that, during the final damage local-
ization phases, εw decreases to ensure a gradual/smooth
increase of ε̄w and thus of Dw. This response clearly il-
lustrates why a path-following constraint equation based
on controlling ∆εw cannot properly work. Indeed, since
εw is not allowed to decrease in that case, ε̄w abruptly in-
creases, leading to a rapid/uncontrolled increase in Dw.
This explains the jump (dashed blue line) observed in the
global response depicted in fig. 1;
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Figure 2: ENL formulations 1 and 2 — Damage distributions
along the bar at different time-steps (81 finite elements).

(ii) conversely, when using the ENL2 formulation, damage
in the neighboring elements continue to increase. More-
over, ε̄w never reaches εw. This ensures more numerical
robustness for the ENL2 formulation, as strain localiza-
tion in only one element is significantly delayed.

This behavior can be easily explained in light of eq. (7), con-
sidering three neighboring integration points (xw, xw+1, xw+2)
such that Dw+2 < Dw+1 < Dw and Dw → 1− (same consid-
erations hold for (xw, xw−1, xw−2) due to symmetry). Under
these conditions, one can easily show that:

(i) in the case of the ENL1 formulation, condition Dw →
1− implies that ˜̀

w,w+1 can become larger than the max-
imum length such that φ(˜̀

w,w+1) becomes very small
(negligible):

˜̀
w,w+1 ≈

h

2
√

1−Dw

� β`c (8)

with β ≈ 1.5 for the Gaussian weighting function. As
a consequence, point xw+1 (as well as any other integra-
tion point) no more interacts with xw, and damage evo-
lution cannot occur in the bar;

(ii) on the contrary, whenDw → 1−, the interaction distance
˜̀
w,w+1 that is considered in the ENL2 formulation can

still be smaller than β`c:

˜̀
w,w+1 ≈

2h√
1−Dw+1

≤ β`c (9)

if Dw+1 is small enough (compared to unity). As a con-
sequence, Dw+1 can increase due to the increasing strain
at xw (this term still contribute to the non-local averaged
strain at xw+1).

From a theoretical point of view, the only way for pre-
venting non-local interactions between xw and other points
to occur, is that alsoDw+1 → 1−. Indeed, since ˜̀

w+1,w+2 =
2h/(

√
1−Dw+1 +

√
1−Dw+2), one can show that:

˜̀
w,w+2 = ˜̀

w,w+1 + ˜̀
w+1,w+2 ≤ β`c (10)

as long as Dw+1 and Dw+2 are small enough. Once con-
dition Dw+1 → 1− is achieved, ˜̀

w,w+1 and ˜̀
w+1,w+2

both become very large:

˜̀
w,w+1 � β`c (11)

˜̀
w+1,w+2 ≈

2h√
1−Dw+1

� β`c (12)

and no more interactions are possible between points xw,
xw+1 and their neighbors.

From a numerical viewpoint, such a condition is how-
ever attained when εw → +∞ (i.e., for very high sample
elongation levels). Notice that when εw ≈ 1 = 104 ×
ε0, Dw+1 is still close to 0.99 for the ENL2 formula-
tion. Such a damage evolution can be limited numerically
through considering different weighting functions (e.g.,
the bell-shaped polynomial function) such that φ = 0
for ˜̀

w,w+1 ≥ `c. In that case, the maximum attainable
damage value at xw+1 will depend on the mesh size (i.e.,
smaller h higher Dw+1).

Some additional considerations have to be provided concerning
the fact that, when using the ENL1 formulation, εw tends to
reduce during the intermediate phases of the test, whereas ε̄w is
still increasing (imposed quantity). This response can be easily
explained keeping in mind that the non-local strain variation at
xw between tn and tn+1, can be written as:

∆ε̄w =

∑
j(ε

n
j + ∆εj)φ

n
w,j∑

j φ
n
w,j

−
∑

j ε
n
j φ

n−1
w,j∑

j φ
n−1
w,j

= ∆τ (13)

where εnj = εn(xj) is the strain at xj and time tn and, given
the chosen explicit procedure for updating interaction distances,
φnw,j and φn−1

w,j are the weighting functions corresponding to
damage distributions at tn and tn−1. After some algebraic ma-
nipulations, eq. (13) can also be written as:

∆ε̄w = ∆ε∗w + ∆ε̄∗w + ε∗w + ε̄∗w = ∆τ (14)

with:

∆ε∗w =
∆εw∑
j φ

n
w,j

(15)

∆ε̄∗w =

∑
j 6=w ∆εjφ

n
w,j∑

j φ
n
w,j

(16)

ε∗w = εnw

∑
j φ

n−1
w,j −

∑
j φ

n
w,j

(
∑

j φ
n
w,j)(

∑
j φ

n−1
w,j )

(17)

ε̄∗w =

∑
j 6=w ε

n
j φ

n
w,j∑

j φ
n
w,j

−
∑

j 6=w ε
n
j φ

n−1
w,j∑

j φ
n−1
w,j

(18)
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Figure 3: ENL formulations — Damage (a) and non-local strain (b) evolution at xw and xw+1 (81 finite elements).

The evolution of contributions appearing in eq. (14) is depicted
in fig. 4. When damage occurs, integration points xj ∈ I that
are far enough from xw start experiencing negative local strain
variations. As a consequence, ∆ε̄∗w start decreasing, while other
contributions still increase in order to ensure the fulfillment
of constraint (14). During damage localization, the number
of integration points experiencing negative strain variations in-
creases, leading to ∆ε̄∗w < 0. In the meanwhile, points xj 6=
xw progressively move from Iactive to I inactive. During this
phase, contribution ε̄∗w + ε∗w increases (it is mainly driven by
εw) and become larger than ∆τ . Then, since εw has become
quite large, and negative contributions coming from neighbor
points progressively vanish, fulfilling condition (14) implies
that ∆ε∗w < 0. The local strain at xw is thus reduced. Once the
strain localization is complete, ∆ε̄w = ∆ε∗w = ∆εw = ∆τ >
0, whereas all the remaining contributions become negligible,
because

∑
j φ

n−1
w,j =

∑
j φ

n
w,j = 1 and

∑
j 6=w ∆εjφ

n
w,j =∑

j 6=w ε
n
j φ

n
w,j =

∑
j 6=w ε

n
j φ

n−1
w,j ≈ 0.

4.3. Parasite/residual mesh-dependency

Features mentioned above make ENL formulations suitable for
representing localization processes characterized by a progres-
sive transition from diffuse damage to fracture (e.g., cracking of
quasi-brittle materials). The observed tendency toward strain
localization is responsible, however, of the small differences
that are observed in the global structural responses computed
for different finite element meshes for high damage levels (fig. 5).

For both ENL formulations, when non-local interactions be-
tween the weak element and its neighbors vanish (or are lower
than a critical value), damage evolution becomes local. The en-
ergy still available at the weak element is consumed in a local

manner [33]. In other words, regularization properties are lost,
and parasite mesh dependency issues are observed.

As a consequence, in addition to inducing damage diffusion
for high elongation levels, the ENL2 formulation only slightly
helps in improving such a feature/limitation which is proper to
other non-local damage models with evolving interaction dis-
tances (see e.g., [14]).

5. Conclusive remarks

ENL damage formulations exhibit good regularization proper-
ties and naturally allow one to model a progressive strain local-
ization and damage-to-fracture transition [9, 33, 19].

Focusing on a 1D formulation, in this contribution, we ana-
lyzed the effect of different distances integration techniques to
compute interaction distances between points from solving a
damage-dependent Eikonal problem. In particular, we pointed
out that parasite damage diffusion can occur when assuming
that the damage field is element-wise linear in the metric func-
tion [19]. Conversely, this is not the case when considering that
damage is element-wise constant [9, 33].

Moreover, controlling the simulation through the local strain
variation of the element where damage localization occurs, does
not allow to simulate a smooth damage evolution. Conversely,
this result can be achieved by using a constraint equation based
on the non-local strain variation. Once this choice is made,
we showed that the localizing element’s local strain has to de-
crease during the final localization phases to ensure a gradual
evolution of the non-local strain and, thus, a smooth damage
evolution.
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Figure 4: ENL formulation 1 — Contributions to the non-local
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Appendix A. Solving method

A path-following method is used to solve the non-linear equilib-
rium problem. Accordingly, the external force vector is written
as fext = λf̂ , where the loading factor λ ∈ R is a novel problem
unknown and f̂ is a constant vector providing the direction of
the loading.

The problem to be solved consists of computing the nodal dis-
placements vector (d) and the loading factor (λ) that fulfill the
equilibrium equation, r(d, λ; {Di}nel

i=1) = f int(d; {Di}nel
i=1) −

f ext(λ) = 0 (with r denoting the residual and f int being the in-
ternal forces vector), and a path-following constraint equation,
p(d, λ; ∆τ) = 0.

The unknown nodal displacement variation vector δdk+1 at the
k + 1-th iteration is decomposed as [35, 7, 8]:

δdk+1 = δλk+1 δdk+1
I + δdk+1

II (A.1)

where δdk+1
I and δdk+1

II are solved from:

Kkδdk+1
I = f̂ Kkδdk+1

II = −rk (A.2)

with Kk = Kk(dk; {Dk
i }

nel
i=1) denoting the global secant stiff-

ness matrix at iteration k and rk = rk(dk, λk; {Dk
i }

nel
i=1) the

residual vector.

The resolution is performed in two steps. Displacement varia-
tions (δdk+1

I , δdk+1
II ) are first computed. Then the loading fac-

tor increment δλk+1 is computed from solving the path-following
constraint equation. Details and examples of path-following
constraint equations can be found in existing papers (see e.g.,
[6, 22, 32, 34] among others).

To control the non-local strain variation of the weak element,
the constraint equation is written as p = ∆ε̄k+1

w − ∆τ = 0,
where ∆ε̄k+1

w reads as in eq. (13). Given the additive displace-
ment decomposition (A.1) and the linear relationship between
local strains and nodal displacements (through strain - displace-
ment interpolation matrices), previous constraint equation can
be easily rewritten as a linear function of δλk+1. One finally
obtains:

δλk+1 =
∆τ∗

∑
j φ

n
w,j −

∑
j ∆εkjφ

n
w,j −

∑
j δε

k+1
j,II φ

n
w,j∑

j δε
k+1
j,I φnw,j

(A.3)
where ∆εkj is the local strain variation between iteration k and
loading step n, (δε̄k+1

j,I , δε̄k+1
j,II ) are the non-local strain varia-

tions corresponding to displacement variations (A.2), and:

∆τ∗ = ∆τ −

(∑
j ε

n
j φ

n
w,j∑

j φ
n
w,j

−
∑

j ε
n
j φ

n−1
w,j∑

j φ
n−1
w,j

)
(A.4)

Notice that, when using an INL formulation, ∆τ∗ = ∆τ , and
φnw,j = φn−1

w,j = φw,j , with φw,j being the constant value of the
weighting function between points xw and xj .

Solving the constraint equation on the strain variation of the
weak element, p = ∆εk+1

w −∆τ = 0, is even more simple. In
that case, one directly obtains:

δλk+1 =
∆τ −∆εkw − δεk+1

w,II

δεk+1
w,I

(A.5)

Once δλk+1 is computed, dk+1 and λk+1 are updated and
the discretized damage field is evaluated according to an ex-
plicit procedure. The residual vector is then computed, and
convergence checked based on the following error measure,
errk+1 = ||rk+1||/(Sft), with ft denoting the tensile strength
of the material.

During computations the stiffness matrix has been updated ev-
ery 5 global iterations, the Choleski decomposition was used for
solving (A.2), and the tolerance was set to 10−5. All the results
depicted in the paper were obtained considering ∆τ = κ0/50
(for both the constraint equations) in order to ensure a gradual
damaging process.

One can show that the constraint equations were strictly ful-
filled at each pseudo-time step for all the simulations performed
in this study. However, convergence properties are quite differ-
ent depending on the chosen ENL formulation. In both cases,
if one refers to results depicted in fig. 1, the number of global
iterations to converge (m) is lower for the constraint equation
on ∆ε̄w (m ∈ [2, 12] for both the ENL formulations) than for
the constraint equation on ∆εw (m ∈ [2, 50] for the ENL1 for-
mulation, and m ∈ [2, 20] for the ENL2 model). Notice that
for the mesh considered in fig. 1 (nel = 81), convergence is
always achieved, but for finer meshes (e.g., for nel = 161) con-
trolling the simulation through ∆εw does not ensure achieving
convergence when using the ENL1 formulation.
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Figure 5: ENL formulations — Force-displacement (F, uL) responses obtained for different mesh refinement levels (41, 81, 161
and 2001 finite elements) considering the ENL1 (a) and ENL2 (b) formulations. The corresponding element size values range from
`c/8 to `c/400 approximately.

Now, if one refers to results depicted in fig. 5, one can easily
show that for the chosen ∆τ , the number of iteration to con-
verge (at a given non-local strain level) is almost independent of
the mesh refinement (for both ENL formulations). Conversely,
as expected, there is a tendency to increase the number of it-
erations when ∆τ increases, but such an increase is quite lim-
ited and does not strongly affect the convergence features of the
solving algorithm.
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