N

N

Drying by pervaporation in elementary channel networks
Benjamin Dollet, Kennedy Nexon Chagua Encarnacion, Romain Gautier,

Philippe Marmottant

» To cite this version:

Benjamin Dollet, Kennedy Nexon Chagua Encarnacién, Romain Gautier, Philippe Marmottant.
Drying by pervaporation in elementary channel networks. Journal of Fluid Mechanics, 2021, 906,
10.1017/jfm.2020.794 . hal-03003148

HAL Id: hal-03003148
https://hal.science/hal-03003148
Submitted on 13 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03003148
https://hal.archives-ouvertes.fr

This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1
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1Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

(Received xx; revised xx; accepted xx)

The drying dynamics inside a network of interconnected channels driven by pervapora-
tion, e.g. by diffusion of water through a permeable material surrounding the channels,
is studied. The channels are initially filled with water and a single air/water meniscus is
initiated at the entrance of the network; drying proceeds as menisci progressively invade
the network. The study is focused on elementary networks: simple branched networks
without reconnections, or simple loops, in order to get a clear physical picture on which
an understanding of drying on more complex networks such as those encountered in leaves
could be build in the near future. Experiments are compared with models which elaborate
on a previously published single-channel model (Dollet et al. 2019). In branched networks,
experiments reveal velocity discontinuities of the menisci as they split at the nodes. In
loops, it is found that the drying rate depends on the number of menisci bounding a given
connected water region; when there are two such menisci, a prediction of the dynamics
of each of them is proposed, based on the pervaporation-induced hydrodynamics inside
the channels. Experiments and model predictions compares favourably for the global
drying rate. Some deviations are found for the dynamics of individual menisci, which are
ascribed to the sensitivity of the dynamics to small fluctuations in wetting conditions.

1. Introduction

Pervaporation is the process of drying of a liquid region by mass transport through a
permeable medium. It occurs naturally in vascular plant leaves: water (or more precisely
sap) is flowing in a networks of veins, diffuses out of the veins through the leaf tissue
and then evaporates at the surface of the leaf. This fascinating network of veins, called
venation, can be very simple, with only one vein per leaf for Selaginella species, or
can be very complex, with multiple connections between veins for flowering plants. A
first aspect of this complexity is the hierarchy of vein sizes with main veins, secondary
veins, tertiary veins, and so forth. Another important aspect is the connectivity of the
network, on which we focus here. When starting from the main vein where water is
entering the leaf, veins can either: (i) split into several branches, (ii) reconnect, creating
loops and a net-like reticulation of the network. In normal conditions water is flowing
through the whole network. However, under severe drought, a cavitation bubble can
appear and grow (Tyree & Sperry 1989; Cochard 2006), the remaining water in the
network then dries out, eventually disabling the leaf function. This mechanism may
threaten a growing proportion of plants and trees in the context of global warming (Choat
et al. 2018). In a different context, pervaporation through thin slabs of a water-permeable
polymer, polydimethylsiloxane (PDMS) is used in so-called microevaporators in chemical
engineering. It is useful because it ensures a homogeneous concentration of solutes or
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colloids and therefore a proper study of their phase diagrams (Walker & Beebe 2002;
Eijkel et al. 2005; Leng et al. 2006; Merlin et al. 2012; Ziane et al. 2015; Ziemecka et al.
2015). However, despite the importance of these biological and chemical applications,
pervaporation-induced flows in channel networks are little known, in contrast with the
well-established field of pressure-driven flows in porous media.

To bridge this gap with a physical standpoint, our approach is to understand the drying
using artificial channels in a permeable material, following the concept of biomimetic
leaves incorporating a man-made microfluidic network in a porous material (Noblin et al.
2008). Geometry and physical properties of the channels in the network are then well
controlled. During drying, air invades the microfluidic network initially filled with water.
The interfaces (menisci) separating air and remaining liquid, travel along all the branches
of the network, and eventually either reach end points or merge with other ones.

The dynamics of moving menisci and expelled liquid has been observed in 2D network
of microchannels in literature, but with different driving mechanisms: first, when a source
of air pressure pushes liquid plugs out of a microfluidic network towards openings, for
instance to study air-way reopening in lung (Song et al. 2010, 2011; Signe Mamba et al.
2018). Note the behaviour of these liquid plugs is similar to long droplets trapped in a
network, causing them to potentially divide (Link et al. 2004; Salkin et al. 2013). There
is also a similarity with the drainage of a large amount of liquid when pushed by another
liquid (Armstrong & Berg 2013). Second, the motion of menisci in networks has been
studied when wetting drives the liquid, in the case of the spontaneous imbibition of a 2D
network by a wetting liquid (Sadjadi & Rieger 2013). Here, the specificity of our study
is that water constantly pervaporates all over the network, driving the flow.

The goal of this article is to provide a physical study on the dynamics of drying by
pervaporation in channel networks. Such a dynamics has been previously studied and
understood in single, straight channels (Noblin et al. 2008; Ziane et al. 2015; Dollet et al.
2019). In this paper, we build up on this knowledge to study the most elementary network
topologies: simple branches and loops; our aim is to provide a quantitative picture in these
simple cases, which could be the “ building block” for more complex networks such as
those encountered in natural leaves.

2. Materials and methods
2.1. Materials

In all our designs, there is a straight entrance channel into which drying starts. We
added to all designs a circle of radius 1 mm at the root of the entrance channel. In
plant leaves, embolism starts always in larger conduits (Brodribb et al. 2016a,b). The
larger conduits are located on the larger veins, which occur at the base of the leaf in the
petiole. Artificial embolism has therefore been proposed by injecting gas in the petiole of
plant leaves (Hochberg et al. 2019), to mimick the development of embolism in natural
conditions. In our setup, the entrance channel thus mimics the main vein of leaves.

To study the effect of branching (without reconnections), we start with four designs
with a single node where the entrance channel arrives and from where several straight
branches, either two, three, four or five, emerge (Fig. 1). We shall henceforth call these
designs single-node networks. All branches are of length L, = 4.0 mm. For each single-
node network, all channels (entrance channel and branches) have an equal angular
distance from the node.

We then study branched networks with a larger number and a higher hierarchy of
nodes, but at which each incoming branch subdivides in only two branches. First, we
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FIGURE 1. Snapshots of single-node networks, with (a) two, (b) three, (c) five and (d) four
branches. (e) Transverse side view of the channels of width w and height h between a glass
slide and a PDMS sheet of thickness H. (f) Longitudinal side view of a branch. The meniscus,
sketched as a vertical line inside the channel, separates a water-filled region on its right side
and an air-filled region on its left side. The varying blue shade depicts the decreasing water
vapour concentration ¢, in the air-filled region, also sketched by the red dashed curve which
shows the decrease of ¢, over the characteristic length Lg. The green dashed arrows show the
water flux leaving the channel by pervaporation through PDMS. The red dashed arrow shows
the evaporation across the meniscus. The blue arrows inside the water-filled region represent
the liquid flow induced by pervaporation.

FIGURE 2. Snapshots of branched networks with more than one hierarchical level: (a) network
with three hierarchical levels, and (b) network from an Adiantum leaf (Brodribb et al. 2016a).

designed such a “tree” with three levels of nodes (Fig. 2a). At each node, the two branches
are separated by an angle of 60°. Contrary to Fig. 1, not all the branches have the same
length, to determine whether length variations have an effect on the drying kinetics.
Finally, we study a natural vein network, namely the leaf of the fern Adiantum (Brodribb
et al. 2016a). To do this, we adapted a mask drawn from the real leaf (Bienaimé 2016)
and modified the channel widths such that they all have the same width w = 100 pm
(Fig. 2b), which is the common width of all the branched designs in the current study.
To study simple loops, we created four designs where the entrance channel splits at a
first node, henceforth called entrance node, in two channels making a circle of diameter
2R, = 4.3 mm, and reconnecting at a second node, henceforth called exit node, from
which a single straight terminal channel emerges. One of the loop is symmetric, i.e. the
distance between both nodes is equal in the two channels connecting them (Fig. 3a),
and the three other ones are asymmetric, with a shortest angular distance 5 between
the nodes, measured from the centre of the circle, equal to 120° (Fig. 3b and d) or 60°
(Fig. 3c); this angle is obviously 180° in Fig. 3a. The terminal channel has a length
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FIGURE 3. Snapshots of the four designs with loops. In (a), (b) and (c), the terminal channel is
inside the circle merely to spare some space. (e) Sketch of the different elements of the loop.

L; = 3.0 mm in Fig. 3a, b and ¢, and 39 mm in Fig. 3d, to determine whether L; has an
effect on the drying dynamics.

We fabricated the channels based on all these designs as described in Dollet et al.
(2019). We created masks from the designs using high-resolution printing. The channels
were molded in PDMS using standard soft lithography techniques. From the masks, we
created a mold in a photoresistive material (SU8) on a silicon wafer. We mixed liquid
PDMS (Sylgard 184, Dow Corning) with a curing agent in volumetric proportions 9:1.
This mixture was degassed then spin coated on the mold at 300 revolutions per minute
(rpm) for 15 s then 900 rpm for 40 s, to create an imprint of small thickness, and baked at
65°C for one hour to reticulate the PDMS. This imprint was then bonded to a glass slide
as follows. The bare glass slide was exposed for 30 s to a plasma, then the thin, flexible
PDMS imprint was immediately deposited on top of the plasma-activated glass surface,
carefully avoiding folding the PDMS sheet. This simple procedure was sufficient to firmly
bond PDMS and glass. We measured the channel thickness h and the PDMS thickness
H using an interferometer. This is crucial because these thicknesses presented significant
variations between different designs, despite the use of the same spin-coating parameters.
The values of the thicknesses are tabulated in Tab. 1. To speed up the measurements,
we gathered the four single-node networks on one slide, the tree and Adiantum networks
on a second one, and all loops on a third one, at a distance large enough that diffusive
interactions remain negligible. After Fig. 3 from Noblin et al. (2008), it is the case as
soon as channels are separated by a distance of order 59, with 6 = H — h. In our case,
0 =~ 60 pm (Tab. 1), hence the distance between channels should be larger than 0.3 mm.
In practice, the distance between different designs is larger than 1 mm.

2.2. Methods

The experiments are performed as described in Dollet et al. (2019); we only repeat
here the main steps. We opened the channels by manually cutting through the PDMS
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| | single-node networks (Fig. 1) | tree and Adiantum (Fig. 2) |loops (Fig. 3) |

h (pm) 40.2 34.6 36.9
H (um) 79.6 106.1 89.8

TABLE 1. Values of the channel thickness h and PDMS thickness H measured for all the
channels.

layer across the circle with a scalpel at the junction between the channels and the round
part (these cuts are clearly visible in Figs. 1 and 2). Once the channels were water filled,
we placed them under dry atmosphere by imposing a constant dry air flux above the
PDMS layer. Each channel progressively dried out, as menisci separating water from
air advanced downstream through the channel from the roots to farther branches, until
reaching the ends of the terminal branches. The motion of the menisci was imaged with
a CCD camera.

To measure the location of the menisci as a function of time, we used the reslice
operation of the freeware ImageJ and a home-made Matlab script. For each design, we
draw a series of segmented lines following the middle of each channel, and we generate
spatiotemporal diagrams along each line, for which we get the time evolution of the
location of the menisci. Obtaining the velocity of the meniscus required to take the
discrete derivative of the length of the channel filled with water as a function of time. We
chose to approximate the data for each meniscus, between its creation and annihilation
(e.g. at a node), by a polynomial function of degree n < 9. We chose the degree of the
polynomial which gives the best coefficient of determination R? between the experimental
data and the interpolating polynomial. We performed such an operation on each meniscus
as long as it can be unambiguously defined between splitting or annihilation events (see
next section).

3. Qualitative description of the experimental drying dynamics
3.1. Branched networks

In branched networks, the single meniscus in the entrance channel first moves until
it splits at the entrance node, as shown in Figs. 4. In the single-node networks, each
meniscus then moves until it annihilates against the terminal wall of each terminal branch.
The dynamics in each branch has the same speed within a few % (Fig. 4a). In the tree
and Adiantum (Fig. 4b), there is a “cascade” of consecutive splitting events as deeper
nodes are reached by the different menisci, until the terminal branches are reached.

3.2. Loops

Drying in loops proceeds as follows. First, a single meniscus moves in the entrance
channel until it splits in two menisci at the entrance node. Then we distinguish two
cases. For the symmetric loop (Fig. 5a), the two menisci move almost symmetrically,
until they merge at the exit node; the resulting meniscus in the terminal channel moves
until it annihilates on the terminal wall of this channel, which ends the drying process.
For the asymmetric loops (Fig. 5b), where the loop has a short and a long arm, the
meniscus in the short arm reaches first the exit node, where it splits in two. We have
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(b)

FIGURE 4. Snapshots of the progressive drying in (a) a single-node network with four branches,
and (b) the Adiantum design. Darker areas in the networks represent dried parts of the channels,
while lighter areas are still filled with water. Horizontal bars represent a length of 1 mm.

then two disconnected water regions and three menisci: one water region is in the terminal
channel, while the other, bounded by two menisci, is in the long arm, until both regions
dry.
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FIGURE 5. Snapshots of the progressive drying in (a) the symmetric loop, and (b) an asymmetric
loop (the dynamics is qualitatively similar for the other asymmetric loops). Horizontal bars
represent a length of 1 mm.

4. Theory
4.1. Drying dynamics for a single channel

In this Section, we recall the main ingredients to model the drying dynamics by
pervaporation in a single channel; see Dollet et al. (2019) for full details. This case is
important because the drying models in networks, derived in Secs. 4.2 and 4.3, elaborate
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on this simplest case, and also because it describes drying in each terminal branch of the
various networks.

According to the experimental configurations, we consider a semi-infinite channel of
width w and height h between a glass slide and a PDMS layer of thickness H (Fig. le),
filled with water over a length L between the channel extremity and an air/water
meniscus. The outer air is at controlled relative humidity RH = " /c52 with 2" the
water vapour concentration in the outer air and ¢ the water vapour concentration in
saturated air; in our experiments, RH = 0. The channels dry because of water diffusion
from the water-filled part of the channel to the outer air through water-permeable PDMS.
We showed in Dollet et al. (2019) that there are two contributions to the rate of decrease
of the liquid volume: one by diffusion from the water-PDMS interface (Q;), and one by
evaporation from the meniscus (Q,). Assuming that L is much greater than H and w,
a condition generally met in practice because microfluidic channels are very slender, the
water concentration profile in the PDMS between the water-filled part of the channel
and the outer air is almost invariant along the channel length; hence, Q; = q¢L with g
the diffusive flux per unit length along the channel. We henceforth consider @, and Q,
as volumetric fluxes, and not molar fluxes as in Dollet et al. (2019), for simplicity; the
main conclusions are unaffected by this choice. Equating the variation of volume of the
water-filled part of the channel to the diffusive flux yields hwl = —q,L + Qg4, hence:

L+ L+1i, =0, (4.1)
T
with:
Qq hw

L,=—, T=—. 4.2
T qe (4.2)

Eq. (4.1) has the solution:
L(t) = [L(t = 0) + Ly)e™*™ — L, (4.3)

for t < 7In[L(t = 0)/L,], which is the time where the channel fully dries. In Dollet et al.
(2019), we derived analytical predictions for both ¢, and @, hence for L, and 7, by
solving first the two-dimensional diffusion problem in the cross-section of the water-filled
part of the channel, then the three-dimensional diffusion problem in the PDMS and the
air-filled part of the channel away from the meniscus. These calculations yield:

aD, hw
L,=/— 4.4
g DP % + é—’ ( )
and:
T p hw (4.5)

- DpMC%*(1—RH) % +¢’
with @ = 0.03 the Henry constant quantifying the water affinity in PDMS (Harley et al.
2012), D, = 2 x 107° m? /s the diffusivity of water vapour in air, Dp = 1072 m?/s the
diffusivity of water in PDMS (Watson & Baron 1996), p = 103 kg/m3 the density of
water, M = 0.018 kg/mol the molar mass of water, C5:* = 40 mol/m? the saturation
concentration of water in PDMS (Randall & Doyle 2005), § = H —h the PDMS thickness
between the channel top and the outer air, and ¢ a dimensionless factor quantifying
diffusion between the channel side walls and the outer air; under reasonable geometrical
assumptions quantified in Dollet et al. (2019), it equals:

2 (H+d0)h H_, H+96

_ 2o Hy HAO
R L



Drying by pervaporation in elementary channel networks 9

In anticipation to what follows, it is worth reminding that the evaporative flux @,
across the meniscus is related to water vapour in the air inside the channel: by Fick’s
law, Qg = —hwD,de, /da’ | =g, with ¢, the water vapour concentration field and =’ the
distance from the meniscus. The spatial dependence ¢, (z’) is itself related to the water
transfer from the channel to the outer atmosphere through PDMS, hence it results from
the coupled diffusion of water in air and in PDMS. In Dollet et al. (2019) we showed that
d®cq/dz"?—c,/ L7 = 0, with L, given by (4.4). Hence, L, can be interpreted as the typical
distance over which air (and also PDMS) dries away from the meniscus (Fig. 1f). This
distance is much larger than the typical cross-section dimensions: from (4.4), L, = M Vhé

with an amplification factor:
aD,
M=/— 4.6
DP ) ( )

which equals 30 with the aforementioned values for the different parameters. It is much
larger than one, mostly because the diffusivity of water through PDMS is much less
efficient than in air (Dp < D,), which “delays” the drying of air inside the channel.
It implies that the evaporation flux per unit area of the meniscus is much stronger
(by a factor M) than the liquid pervaporation flux per unit area of the PDMS/channel
interface. Yet, the contribution of liquid pervaporation to the total drying rate dominates
if Qe>Qgorif L>L,~ M+/hé, which is the most common case in our experiments.

Increasing L, implies weaker concentration gradients, which may at first sight lower
Q4 and contradict the very definition (4.2) of Ly. This apparent contradiction is solved
by the fact that increasing L, also implies increasing the prefactor relating @, to the
concentration gradient, relative to the prefactor relating g, to the concentration gradient.

The role of the evaporation through the meniscus into the air is somewhat reminiscent
of the role of fins in heat transfer, which enhance the heat flux from a heated surface
(Bejan 1993). In some sense, evaporation through the air channel acts as an extra
effective “fin” (in the sense of mass transfer, not of heat transfer) which adds up to
the pervaporation flux from the PDMS/water interface.

4.2. Drying dynamics for branched channels

In branched channels, our experiments always begin with a single meniscus inside the
entrance channel; as soon as the meniscus meets the first node of the network, it splits
into two or more menisci, depending on the number of branches; and so forth for each of
these menisci if they reach further nodes (Fig. 4).

We start our discussion with the single meniscus in the entrance channel at the
beginning. Because the water-filled part spans multiple branches, the water concentration
profile in the PDMS may differ from the single-channel case. More precisely, in the
vicinity of a node, different branches are close enough to “compete” for drying because
they are coupled in the diffusion problem. However, as shown in Noblin et al. (2008),
diffusive interactions between two neighbouring channels decay exponentially with H as
the characteristic length scale. Hence, except if branches start from a node with a small
separation angle, diffusive interactions thus fade away at a distance of order H along
each branch from a node. Therefore, provided the length of each branch between two
consecutive nodes (or between a node and an extremity) is much larger than H, we can
neglect the edge effect due to the nodes and extremities and consider, as in the case of
a single channel, that the concentration profile between each water-filled branch and the
outer air is invariant along the branch length, and similar to the single-channel case. In
this case, the diffusive flux from the water-PDMS interface and the outer air still writes:
Q¢ = q¢L, with L the total length of the water-filled branches ahead from the meniscus
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FIGURE 6. In branched networks, (a) for a meniscus before a node, L is the total length of the
water-filled branches ahead from the meniscus, here L = Lo + L1 + L2. (b) Meniscus created
after splitting in a node, having travelled a distance £ from the node where it has been created.
(c) Sketch of the topology corresponding to the phase of the drying dynamics in loops shown in
Fig. 5a (snapshots at ¢ = 15.6 and 39 min) and b (snapshot at ¢ = 13.4 min).

(Fig. 6a). Hence, the single meniscus in the entrance channel is predicted to obey (4.1)
with solution (4.3).

Let us now consider one meniscus inside one of the branches, obtained after a splitting
event. From the previous discussion, we still have Qy = ¢,L, with L the total length of the
water-filled branches ahead from the meniscus. For simplicity, we shall henceforth call this
quantity L the “water length”. However, if the distance £ travelled by the meniscus from
the node where it has been created (Fig. 6b) is smaller than, or of order of magnitude L,
the water concentration profile behind the meniscus, responsible for the contribution @,
(see Sec. 4.1), is affected by the presence of the node. In other words, menisci issued from
a given splitting event interact over a range of order L,, which is much larger than H or
w (see Sec. 4.1). Hence in the case £ < Lg, we cannot use the single-channel prediction
for Qq.

In the Appendix, we derive a prediction for the diffusive flux from the meniscus
accounting for this interaction. We show in Sec. 5.1.1 that the discrepancy between
this prediction and the single-channel prediction remains small in the parameter range
of our experiments. Hence, to simplify the forthcoming discussion of our experiments, we
shall simply use (4.1) as a prediction with L the total length of the water-filled branches
ahead from the meniscus under consideration, unless explicitly stated.

4.3. Drying dynamics for loops

The key difference between branched channels without loops on one hand, and loops
on the other hand, is the following. In branched channels, each connected water region is
bounded by one meniscus. On the contrary, once the meniscus has split at the entrance
node of the designs with loops, there is a connected water region bounded by two menisci
(snapshots at ¢t = 15.6 and 39 min in Fig. 5a, and at ¢ = 13.4 min in Fig. 5b). However,
the model developed in Sec. 4.2 predicts the rate of drying of a given connected water
region, but not how such a rate determines the individual velocity of two (or more
generally multiple) menisci bounding that region.
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To go one step further, we must delve into the details of the hydrodynamics driven by
pervaporation. We start with the simplest case, namely the single channel with a water
region of length L bounded by one meniscus and one terminal wall, a case for which
pervaporation-induced flow is well documented (Verneuil et al. 2004; Randall & Doyle
2005; Leng et al. 2006). We denote by x the streamwise axis, with z = 0 at the wall and
2 = L at the meniscus, and u(x,t) the velocity, averaged over the cross-section. Since
qe is the flux of water leaving the channel per unit length, water conservation inside the
channel (assuming incompressible flow) implies that du/dxz = —g;/hw. To integrate this
equation, we use the classical impermeability condition at the terminal wall:

u(0,1) = 0, (4.7)

to get:

o,
hw™’

It is worth noting that w(L,t) # L(t), because of the evaporation flux Qg leaving the

meniscus; this is an illustration of Stefan flows. The correct relationship is:

(4.8)

_ 7 Qg

u(L,t) =L+ ' (4.9)
Moreover, the impermeability assumption (4.7) is, strictly speaking, wrong because of the
“leakiness” of the PDMS walls. However, because of the large value of the amplification
factor (4.6), the water velocity across the terminal wall remains small in comparison
to Qg/hw, which justifies using (4.7) as a first approximation. This also enables to
neglect the velocity across the walls everywhere, hence we can use a no-slip boundary
condition there, and we can also neglect the transverse pressure gradients compared to
the longitudinal pressure gradient. Therefore, we can use the Poiseuille law relating the
average velocity with the pressure gradient for a laminar flow in a rectangular channel:

SO
u=-22 (4.10)
n Ox
with the section S equal to (see e.g. Bruus (2007)):
1 16 h? & 1 (2n + 1) 7w
= —h?- =— tanh . 4.11
S=Eph T nz:% @2n+1)p " 2h (411)

The boundary condition for the pressure field comes from Laplace pressure jump across
the meniscus:

Pa — (L, t) = 7K, (4.12)
with p, the atmospheric pressure, v the surface tension and x the curvature, counted
positive if the centre of curvature is on the air side. The curvature depends on the width
and height of the channel, and on the contact angles of water on both glass and PDMS;
it is positive with our convention because both contact angles are smaller than 90°, as
can be seen from the meniscus curvature on snapshots. From (4.8) and (4.10), we thus
get the pressure field in a single channel:

n4e 2 2
T,t) = pg — YK — L — ). 4.13
p(2,t) = pa — 7K = 5 = ) (4.13)
‘We now consider a connected water region with two menisci. If it spans a single channel,
in particular the long arm of a loop as in Fig. 5b (see the snapshot at ¢ = 47.5 min), its
drying dynamics is very similar to the single-channel case discussed in Sec. 4.1, except
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that the water flux @), across a given meniscus must be counted twice. Hence instead of
(4.1), we have:

L+ % =0, (4.14)
provided that the distance travelled by each meniscus from the node where it has been
created is smaller than, or of order of magnitude L, (see the discussion of Sec. 4.2). Under
this assumption, the dynamics of each of the two menisci must be similar and they must
move at the same velocity.

If a connected water region with two menisci spans three “branches” connecting at a

node, as in Fig. 5b (see the snapshot at ¢ = 13.4 min), we must consider each branch.
For the terminal channel of length Ly, we simply adapt (4.7) and (4.8): uo(Lo,t) = 0
and Qug/0xg = —qe/hw (see Fig. 6¢ for the orientation of the axis); in particular, we get
Uy = uo(0,t) = qeLo/hw. For each of the two parts between the node and one meniscus,
Ou; /0x; = —qp/hw (for i = 1,2), hence:
Q@
hw
where Uj; is the velocity in channel 7 at the node. One relation between the two unknowns
U; and Uy comes from the flux conservation at the node:

ui(zi, t) = Ui — i, (4.15)

Ug+ U +U; =0. (416)

To get a second relation, we compute the pressure difference between the node and each
of the two menisci:

b op;

0 81'1

dz; = pa — vk — po,

for i = 1,2, after (4.12), and denoting pg the pressure at the node. We also have:

L‘giz T; = S/ u;dx; = — —( Shu L2+UL>
0 2

from (4.10) and the expression (4.15) of the velocity, whence the second relation between
U1 and U21

2 2
2h ——Li+U L = 2h ——L5+ UsLs. (4.17)
Solving the system (4.16) and (4.17), we get:
qe 1 LQ qe 1 L1
Uy=—|=z(Ly —Ly) — ——L Uy=———|-(L1 - L ——Ly| .
ol Al 0}’ 7 hw {2( 1= L)+ o Lo

We can finally predict the velocity of the menisci. Inserting U; and Us in (4.15), taking
into account that L; = u;(L;,t) — ,%Z from (4.9) and using (4.2), we get:

. 11 Lo

L= - [2(L1 + Lo) + I L2L0+L }

. 11 Ly

Lo=——|=(L L —— L L,|. 4.1
o=t 3+ L L) (1.18)

These predictions deserve some comments. First, L; < 0, which is of course consistent
with the loss of liquid water upon drying. Second, the largest velocity \Ll| is predicted to
occur in the shortest arm. This is also expected, because the same pressure drop drives
the liquid between the node and each meniscus. Third, when Ly = 0, the equations
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are compatible with (4.14) when setting L = L; 4+ L. Fourth, the dynamics becomes
nonlinear, contrary to (4.1) and (4.14).
We now solve the equations (4.18). As expected, the sum of the lengths obeys a simple
equation:
Li+Ly+Lo+2L,

Li+ Ly = - : (4.19)

with solution Ly + Lo = (L1 + Loo + Lo + 2Lg)e_t/7 — (Lo + 2L,), denoting the initial
conditions: L;(t = 0) = L;o for ¢ = 1, 2. Inserting this solution in (4.18), we find that the
difference of the lengths obeys a linear equation, albeit with a time-dependent coefficient:
LO Ll - L2

T (Llo -+ L20 -+ Lo + 2Lg)e*t/7 — (LO -+ 2Lg) '

Py ==

This is a separable equation which is easy to solve, and which yields:

(Llo+L20+L0+2Lg)eit/7—*(L0+2Lg) Lo/(Lo+2Lg)

L1p+ Lo

L1 — Ly = (L1o — Lao) {

wexp - fo t
P L()+2Lg’7' '

Of course, this solution holds only as long as both lengths remain positive, which ceases
when the length in the shortest arm decreases to zero. This occurs at a critical time
which must be solved numerically using the expressions of Ly and L.

5. Experiments

Having derived all theoretical tools to predict the dynamics in our elementary networks,
we now proceed to a quantitative description of the experiments, and compare them to
our predictions.

5.1. Branched networks
5.1.1. Single-node networks

We begin by measuring the drying dynamics in single-node networks (Fig. 1). The
distance travelled by the menisci is plotted as a function of time in Fig. 7; the time origin
here is somewhat arbitrary, corresponding to the beginning of the camera recording. The
distance increases with time, as drying proceeds. For a given number of branches, all
branches show similar dynamics, with a drying velocity decreasing at increasing distance.
The striking feature of the drying dynamics is a velocity jump: the meniscus velocity is
larger in the main channel than in the branches, the jump being larger at increasing
number of branches (Fig. 7).

The origin of the jump can be qualitatively explained from the discussion in Sec. 4.2,
illustrated in Figs. 6a and b. The water length from the meniscus coming from the
entrance channel, as it arrives at the node, equals N L, with L; the length of each branch.
As it splits into N menisci, each of these has its own water length equal to the branch
length L;. More quantitatively, the dynamics of all menisci should obey (4.1). To test
this idea, we plot the meniscus velocity as a function of the water length for all menisci
in Fig. 8a. It shows indeed that all data follow a common trend, which is well fitted by a
straight line. The entrance channels show small deviations from this trend. We have no
clear explanation for these deviations, but they may due to the somewhat uncontrolled
opening of the channels by scalpel cutting (see Sec. 2.2). However, they remain within
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FIGURE 7. Drying dynamics in branched networks. Displacement of the meniscus from the origin
as a function of time for networks with (a) two, (b) three, (c) four and (d) five branches. Symbols
correspond to different branches as sketched on each subfigure: round symbols correspond to the
main channel, other symbols correspond to branches. The origin is marked with a filled black
circle.

10% from the straight line, suggesting that the simple model (4.1) already captures the
dynamics of drying in branched channels with good accuracy. The value of the fitting
parameters will be discussed in Sec. 6.1 for all experiments.

As discussed at the end of Sec. 4.2, we should in principle not use the single-channel
version of the flux ()4 from the meniscus for the dynamics inside the branches, but rather
the expression (A 7) derived in the Appendix, which accounts for the coupled evaporation
from different menisci issued from the same node. Hence, Eq. (4.1) should be replaced
by:

. L+ fL
i Ltfly
T

0, (5.1)
with a factor f given by, after (A7) and since L, = ¢ + L (Fig. 6b):

_ cosh[(Ly — L)/Ly] 4+ N sinh[(Ly — L)/ L]
sinh[(Ly — L)/Lg] + N cosh[(Ly, — L)/Lg]

(5.2)

To quantify the magnitude of this correction, we focus on the data for the branches, and
we fit them by Eqgs. (5.1) and (5.2), using 7 and L, as free fitting parameters. The results
are shown in Fig. 8b. They show indeed a small deviation from a linear relationship
between the meniscus velocity and the water length as the latter tends towards the
branch length, i.e. as the meniscus is close to the node. This is in qualitative agreement
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FIGURE 8. (a) Velocity of the meniscus as a function of the water length, in the main channel of
the network of two (o), three (x), four (4) and five (x) branches, and in the branches (triangles).
The line is a linear fit of all data, with best fitting parameters in (4.1): 7 = 1.8 x 10® s and
Ly, = 1.1 mm. (b) Velocity of the meniscus as a function of the water length, in branches of the
network of two (V), three (A), four (>) and five (<) branches. The curves are fits of the date
for two (plain curve), three (dashed curve), four (dotted curve) and five (dash-dotted curve)
branches by (5.1) and (5.2), with best fitting parameters: 7 = 1.7 x 10* s and L, = 1.1 mm.
The straight line corresponds to Eq. (4.1) using the latter two parameters.

with our model of evaporation coupling of the menisci, even though the agreement is not
fully quantitative, perhaps because the hypotheses underlying the model (notably that
w and H are much lower than other lengths under consideration) become questionable in
the range of length where evaporation coupling is significant. However, the main result
from this analysis is that evaporation coupling has only a small effect on the velocity of
the menisci inside the branches, because the difference of velocity is only 10% lower with
coupling than without (compare the straight lines and the curves in Fig. 8b). Hence, to
simplify the forthcoming discussion of our experiments, we shall simply use (4.1) as a
prediction with L the total length of the water-filled branches ahead from the meniscus
under consideration.

5.1.2. Multinode networks

Overall, the results on single-node networks suggest a strong correlation between the
meniscus velocity and the water length. We further test this idea by studying more
complex branched channels. We consider first the “tree” network of Fig. 2a. We first plot
the distance travelled by the menisci as a function of time in Fig. 9a. This graph shows
that at each node, there is a jump of velocity, consistently with the previous observations
on single-node networks. Moreover, there is a signature of the asymmetry of the eight
terminal branches: the drying occurs in shorter time, but with a lower velocity, in the
two short branches (inset of Fig. 9a). According to the previous discussion, we measure
the meniscus velocity and water length in the main channel and in each branch, and we
plot the dependency between these two quantities in Fig. 9b. It shows that the data are
gathered in four subgroups, depending on the level of the branch considered inside the
tree; as in the previous case, the gaps between each subgroup is associated to a velocity
jump as a meniscus splits in two at each node. Moreover, the data collapse very well
on a straight line, which confirms that the simple model (4.1) describes well the drying
dynamics even in cases with multiple nodes.

We finally consider the Adiantum design (Fig. 2b). Since there are many edges (45 in
total), we measure only the average velocity in each edge, and we retain the standard
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FIGURE 9. Drying dynamics in the network of Fig. 2a. (a) Displacement of the meniscus from
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in this figure. The line is a linear fit of all data, with best fitting parameters giving in (4.1):
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FI1GURE 10. Velocity of the meniscus as a function of the water length in the different edges of
the Adiantum network. The line is a linear fit of all data, with best fitting parameters giving in
(4.1): 7=3.0x10* s and Ly = —0.4 mm.

deviation of velocity as an error bar. We plot the meniscus velocity as a function of the
water length in Fig. 10. All data collapse again very well on a single straight line, with
only one significant outlier. This collapse is all the more remarkable that the Adiantum
design does not really obey the model approximations; because it comprises many veins,
these are not all slender, and they are close enough that diffusive interactions may become
significant.

5.2. Loops
5.2.1. Meniscus position and water length

In the branched networks without reconnections, we have quantified the position of the
menisci by the distance travelled from the origin, which was unambiguous. Conversely,
in loops, there are several possible choices to quantify the position x of a meniscus. We
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FIGURE 11. (a) Snapshots of the different menisci in a loop, superimposed with the symbols used
to plot their positions in panels (b) and (c¢). (i) Meniscus coming from the entrance channel, and
splitting at the entrance node into (ii) two menisci in each branch of the loop. Then the meniscus
in the short arm splits at the exit node and (iii) the remaining water splits in two disconnected
regions, one in the terminal channel and the other, bounded by two menisci, in the long arm. (b,c)
Dynamics of individual menisci in two asymmetric loops: time evolution of the different menisci
(b) in the loop of Fig. 3b and (c¢) in the loop of Fig. 3c; the menisci are distingued by different
symbols and colours as shown by in panel (a). The lines are the predictions of the dynamics of
each meniscus by the model of Sec. 4.3, with best fitting parameters: (b) 7 = 2.6 x 10* s and
Ly =1.7 mm, and (c) 7 = 2.5 x 10* s and Ly = 1.7 mm.

proceed as follows, and as illustrated in Fig. 11a; in each case, we also relate x to the
water length L or to the quantities L; and Lo previously introduced.

For the meniscus in the terminal channel, we use the distance s from the end of the
channel (Fig. 11a,i). In this case, we thus have simply: z = s and L = s.

When there is one meniscus per arm, for the meniscus in the short arm, we set z =
L; 4+ R0, where we recall that L; the length of the terminal channel, R, the radius of
the loop, and where 0 < 6 <  is the angular distance between the meniscus and the exit
node (Fig. 11a,ii), and § the small angle between both nodes and s the distance between
the meniscus and the entrance node (Fig. 11a,i). For the menisci in the long arm, we set
x = L; + Ref/ with 0 < 6" < 2m — 3 the angular distance between the meniscus and the
exit node (Fig. 11a,ii). We thus have: L = L; + Ry(6 4+ ¢’). For these menisci, the lengths
Ly and Lo introduced in Sec. 4.3 are proportional to the angular distances: L1 = R’
and Ly = Ry0. When there are two menisci in the long arm (Fig. 11a,iii), we define their
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FIGURE 12. Drying dynamics in the symmetric loop: (a) time evolution of the position of the
menisci, in the entrance channel (o), in both arms (¢ and ) and in the terminal channel (O). The
curves are fits by (4.3) and (4.18), with best fitting parameters: 7 = 2.6 x10® s and L, = 2.1 mm.
(b) Drying velocity |L| as a function of the water length in the different phases of drying in the
symmetric loop. The new symbol (x) as compared to panel (a) corresponds to the water length
of the region bounded by two menisci, one in each arm. The lines are fits by (4.1) and (4.19).

[

position zy = L; = R0+ (with 6_ < 0,), and the water length of the region between
them is L = Ry(64+ —6_).

For the meniscus in the entrance channel, we set x = L; + Ry + s, and we have:
L=L;+27Ry + s.

5.2.2. Symmetric loop

In the symmetric loop, the position of each meniscus is plotted as a function of time in
Fig. 12a. The dynamics of the meniscus in the entrance channel and that in the terminal
channel are smooth, and as before, the velocity of each meniscus decreases in time. The
two menisci in the arms of the loop do not behave perfectly symmetrically, and their
displacement curves show some irregular inflections, but the difference remains small
and they reach the exit node simultaneously. Like for the single-node branched networks,
there is a velocity jump as the meniscus splits in two at the entrance node, the velocity
of each of the two new menisci being smaller. Interestingly, the opposite velocity jump is
observed at the exit node: the velocity of the meniscus in the terminal channel is greater
than that of the two menisci merging at the exit node.

We now compare this experimental dynamics with our model. The dynamics of the
entrance and the terminal meniscus is simple, since each is the only meniscus present
in the network during their period of existence; they should obey (4.3), provided the
water length is defined as before. When there are two menisci in the symmetric loop, the
model of Sec. 4.3 show that they should have the same velocity; it is a special case of the
coupled equations (4.18). The fitting parameters 7 and L, are taken once and for all the
data (and not separately for each curve). Fig. 12a shows a good agreement between the
experiments and the predictions, except for the aforementioned small difference between
the two menisci in the two arms. Furthermore, the sum of their velocity, which is the
drying velocity |L|, is predicted to follow (4.19), which is similar to (4.1) except for the
prefactor of Ly, which counts the number of menisci bounding the drying water region.
Therefore, we plot the drying velocity |L| as a function of the water length in Fig. 12b.
Indeed, the data gather in three subgroups, with the same slope as expected from (4.1)
and (4.19), but with an offset when there are two menisci. More precisely, the data are
very well fitted by (4.1) and (4.19).
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5.2.3. Asymmetric loops

For the asymmetric loops, the three cases described for the symmetric loop, namely (i)
the meniscus in the entrance channel, (ii) one meniscus in each arm of the loop and (iii)
the meniscus in the terminal channel, are supplemented with a fourth case: the existence
of a water region bounded by two menisci in the long arm. For all these cases, we plot
the experimental dynamics of each single meniscus in Fig. 11b and ¢ for two of the
asymmetric loops, and we compare it to the predictions of Sec. 4.3. As discussed in that
Section, the dynamics of the menisci in the entrance and terminal channel is predicted
to obey (4.1). When there is one meniscus in the short arm and another in the long arm,
their dynamics is predicted to obey the coupled equations (4.18), until the meniscus in
the short arm reached the exit node. Finally, when there is a water region in the long arm
bounded by two menisci, its dynamics is predicted to follow (4.14) where each meniscus
contributes to half of the velocity. Fig. 11b and ¢ shows that while the agreement between
experiments and theory is good for the meniscus in the entrance and terminal channels,
and still rather good for the two menisci bounding a water region in the long arm, there
is a significant discrepancy in the phase of drying where there is one meniscus per arm.
While our model predicts that the meniscus in the short arm should have the largest
velocity, the contrary occurs in Fig. 11c. In Fig. 11b, even if the meniscus in the short
arm is faster, the difference of velocities between the two menisci is much larger than the
prediction. A likely origin of this discrepancy is discussed in Sec. 6.2.

To go further, we plot the water length of the different water regions as a function of
time in Fig. 13a, ¢ and e, and the drying velocity |L| as a function of the water length
in Fig. 13b, d and f. It shows that in the spite of the discrepancy for individual menisci,
the drying velocity of the water region bounded by a meniscus in the short arm and
another in the long arm is well captured by the model. Another striking feature is the
significantly larger drying velocity, for a given water length, of the water region in the
long arm compared to the water region in the terminal channel. This is perhaps the best
illustration of the influence of the contribution of the menisci to the drying of a given
water region. For instance, in the asymmetric loop of Fig. 3b, even though it is initially
twice shorter, the water region in the terminal channel takes almost the same time to dry
as the water region in the long arm. Comparing Fig. 12a and Fig. 13a and c also shows
that for the same total channel length, the total drying time is shorter in asymmetric
loops compared to the symmetric one. To compare these data with the model, we proceed
like for the symmetric loop, with as new feature the water region in the long arm. Since
it is bounded by two menisci, its dynamics should obey (4.14). Hence as previously, we
plot the velocity of the meniscus, or the sum of the velocity of the menisci if there are
two, as a function of the water length, in Fig. 13b, d and f. Here again, the data gather
in four subgroups, with the same slope but with an offset correlated to the number of
menisci. The data are well fitted by (4.1), (4.14) and (4.19) with 7 and L, as fitting
parameters taken once and for all the data; the agreement is slightly less good than for
the symmetric loop, but the deviations remain relatively small.

We notice finally that there are no qualitative differences between the three asymmetric
loops. In the most asymmetric loop (Fig. 3c), the duration of the phase of coexistence of
two menisci in the two arms decreases, while the water region created in the long arm
after meniscus splitting at the exit node is initially longer and takes a longer time to dry,
as expected. For a longer terminal channel, the durations of the phase of coexistence and
of the water region in the long arm are both reduced.



20 B. Dollet, K. N. Chagua Encarnacion, R. Gautier and P. Marmottant

2 0.01
%& 0.008 ¥
15} % P
— % =
= % = 0.006
E 10 LS g
3 ~0.004
| =
0.002
DEDEDDE\:‘
0 - 0

15 20

f=]
o b
—_
(=]

0 1000 2000 3000 4000 5000

t (s) L (mm)
(a) (b)
20 ¢ 0.01
%, X
* 0.008
L
15 *%* — ***** 6&9}
= % = 0.006 o
E 10} g
= \ = 0.004
g 0.002
Bogg, LN MQ
0 . E‘?E\jqumm‘umﬁa%%m A , 0 .
0 1000 2000 3000 4000 5000 0 5 10 15 20
t (s) L (mm)
(c) (d)
60 - 0.025
2%
0% 0.02

0.01

L (mm)
g s
(m}
|L| (mm/s)
=4
=t
&

0 20000000 . ! . .
0 2000 4000 600! 8000 60
t (s)
(e)

FIGURE 13. Drying dynamics in the asymmetric loops, of Fig. 3b (top), 3c (middle) and 3d
(bottom). Left panels: time evolution of the water length, for the meniscus in the entrance
channel (o), for two menisci with one in each arm of the loop (%), for the meniscus in the terminal
channel (O) and for the water region in the long arm (A). Right panels: drying velocity |L| as a
function of the water length in the different phases of drying. The lines are fits by (4.1), (4.14)
and (4.19), with best fitting parameters: (b) 7 = 2.6 x10® sand L, = 1.7 mm, (d) 7 = 2.5x10% s
and Ly = 1.7 mm and (f) 7 = 2.6 x 10*> s and L, = 2.7 mm.

6. Discussion

In this section, we focus on two further aspects of our study. First, we must now
discuss the values of the fitting parameters 7 and L, especially the first one which gives
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| | single-node networks | tree | Adiantum | loops |
| Fig. | 1 | 2a | 2b | 3a | 3b | 3c | 3d |
T (x10% s) 1.8 29| 30 |25|26]|25|26

theoretical 7 (x10% s) from (4.5) 1.20 1.57 1.37
L, (mm) 1.1 08| —04 [19]1.7]|16|2.7

theoretical Ly (mm) from (4.4) 0.72 0.82 0.77

TABLE 2. Values of the fitting parameters 7 and Ly for all the channels, and their theoretical
predictions.

the typical drying time. Second, we shall discuss the discrepancy observed between the
experiments and the model in the specific case of individual menisci in the loops.

6.1. Values of the fitting parameters

The fits of all our data are related to the two same parameters: the typical drying time
7, and a length L, related to the contribution of the meniscus to drying. We summarise
the values of these parameters in Tab. 2, together with their theoretical predictions using
(4.4) and (4.5).

The values of the typical time 7 shows some dispersion: it is lowest for the single-
node networks, highest for the tree and Adiantum, and intermediate for the loops; the
values for the tree and Adiantum on one hand, and for the various loops on the other
hand, are very similar. This apparent dispersion is actually well correlated with the
difference in thickness for the different designs (Tab. 1). Indeed, our model predicts the
following dependence of T on the geometrical parameters, see Eq. (4.5): 7 o< hw/(§+w/9).
Therefore, we plot 7 as a function of hw/({+w/¢) in Fig. 14. The data then align correctly
on an affine trend, although the data for the single-node networks lie slightly below the
line. Moreover, the slope of the affine fit, equal to 1.9 s/um?, compares favourably with
the prediction, from (4.5): p/DpMC5* = 1.4 s/um?, although it is somewhat higher
(likewise, fitted values of 7 are larger than theoretical estimates). However, the values of
C5% and Dp taken from the literature are known only with poor precision. Hence, to get
a better check, we have repeated experiments on single channels, on two different chips,
performed with the same protocol as for the various networks. Fits of the resulting curves
L(t) (not shown) by (4.3) yield fitting values for 7 which are added on Fig. 14 as cross
symbols. These single-channel data follow the same trend as the data for the networks
within a few percents. This constitutes a further validation of our models, and of their
extension from single channels to networks.

Tab. 2 shows that the values of L, are more dispersed than that of 7, and the value for
Adiantum is even negative. However, we believe that this dispersion is largely artificial.
Indeed, we fit over quite an extended range of water lengths (larger than 50 mm for
Adiantum and for the asymmetric loop with a long terminal channel, see Figs. 10 and
13f) compared to the expected value of L, (of order 1 mm). Hence, a small uncertainty
on the slope of the curves may result in a very large relative deviation on L,. More
importantly, this shows that the meniscus contribution is secondary compared to the
drying by direct pervaporation between the water-filled part of the channels and the
outer atmosphere through the PDMS.
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FIGURE 14. Value of the fitting parameter 7 (see Tab. 2) as a function of the geometrical
parameter hw/(§ + w/d). The line is an affine fit of the data for networks (round symbols),
with a value of the slope 1.9 s/um? as free fitting parameter. Cross symbols are data for single
channels.

6.2. Individual menisci in the loops

Most of our experimental measurements agree very well with our predictions. However
significant deviations have been noticed for menisci inside the loops, more precisely when
there is one meniscus per arm (Fig. 11b and c¢).

To discuss a likely origin of this discrepancy, we remind that we have based our model
on a pressure argument. In the water regions, the pressure relative to the reference
atmospheric pressure is fixed by a Laplace pressure jump across the menisci, Ap,., and
by a viscous pressure drop, Ap,. We have assumed that the capillary jump is the same
across each meniscus. At this stage, it is worth getting an order of magnitude of the
two contributions. A reasonable estimate of the meniscus curvature is the channel width:
k ~ 1/w = 10* m™!, hence Ap. = vk ~ 7 x 10? Pa with v = 70 mN/m the surface
tension of water. From (4.13), the order of magnitude of the viscous pressure drop is
Ap, = nqL?/hwS = nL? /78, using (4.2). With w = 107* m and h = 4 x 1075 m in
our experiments, we compute S = 1.1 x 107 m? from (4.11). With n = 1073 Pa-s the
viscosity of water and using 7 = 2.5 x 10® s (Tab. 2) and L ~ 1072 m as the typical water
length in our experiments, we get Ap, =~ 0.3 Pa. Even if this estimate is approximative,
it shows that the viscous pressure drop is much smaller than the Laplace pressure jump,
typically three orders of magnitude smaller. Hence, even a minute change in wetting
conditions may easily induce a difference in Laplace pressure between different menisci
of the order of the viscous pressure drop, and it can easily slow down or even immobilise
one of the menisci while the theory of Sec. 4.3 would predict a smooth dynamics. We
believe that this is the main source of uncertainty on the dynamics of individual menisci.
It is probably illusory to control the wetting conditions to such an extent that variations
of wetting conditions are such that differences of Laplace pressure jump remain below
the viscous pressure jump, especially in view of the vegetal applications, and we have
checked (data not shown) that redoing the PDMS design of the loops with the same recipe
gives different individual dynamics. A crucial point is that, in spite of these uncontrolled
variations of the dynamics of individual menisci, the sum of their velocities is perfectly
smooth, since it is determined by the global water loss by pervaporation.
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7. Conclusions

We have unravelled the dynamics of two elementary events during the drying of a
hydraulic networks by pervaporation: (i) the splitting of a meniscus in several branches
and (ii) the annihilation of two menisci.

Concerning the splitting, our main result is that further away from a node the meniscus
velocity is always proportional to the remaining liquid length plus a constant axial
diffusion flux. Just after splitting events, these fluxes interact before tending to a steady
value. Because of the creation of new interfaces and thus a multiplication of axial diffusion
fluxes, there is overall a slightly enhanced total drying rate compared to a drying process
with only one meniscus.

Concerning the annihilation of menisci in loops around a liquid plug, we found that
menisci velocities may present an irregular behaviour, owing to the extreme sensitivity
of the system to slight inhomogeneities in wetting properties. However the sum of the
velocities, thence the total drying rate, is remarkably regular.

This work opens a lot of perspectives. First, the present findings show that drying
is enhanced by the multiplication of menisci and patterns with lot of branches should
therefore accelerate drying compared to networks with the same water length but less
branches. This principle should be helpful to design networks.

Second, an indetermination of velocities is often observed when a liquid region is
bounded by several menisci before annihilation, even with homogeneously designed
channels. We thus expect very original behaviour of menisci in networks with controlled
geometrical inhomogeneities, such as varying channel width. This proves important since
in real networks, such as the ones found in plant tissues, where the channel size is actually
highly heterogeneous.

We thank Mathieu Alonzo for preliminary experiments, and Danie¢le Centanni for
experimental support. We acknowledge ANR for financial support, under the grant
PHYSAP ANR-19-CE30-0010-02. The authors report no conflict of interest.

Appendix A. Computation of (), in the case of multiple menisci

In this Appendix, we will quantify how the diffusive flux ¢4 from a meniscus is modified
in the presence of multiple menisci. We consider the situation where N menisci are issued
from the same node and are a distance ¢ from it; to simplify, we assume that this distance
is the same for all menisci, a condition which is reasonably well met in experiments
(Fig. 7).

Let us consider one of the N menisci. The diffusive flux @), issued from it is given by:

Qg = —hwDVy, d—cL: , (A1)

dz x’/=0

where V,, is the gas molar volume and ¢,(z’) is the water vapour concentration field in
the air-filled part 0 < x’ < £ of the branch where the meniscus belongs, where =’ designs
the distance from the meniscus. Eq. (A 1) relies on the assumption that the concentration
field does not vary significantly in the cross-section, which as shown in Dollet et al. (2019)
holds provided the amplification factor (4.6) is much larger than one, a condition met in
practice.

Predicting @, requires to predict the concentration field. In Dollet et al. (2019), we
showed that it obeys the simple differential equation:

d®cq _ Ca
2 2
dx Lg

=0, (A2)
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FIGURE 15. Plot of Q4/Qg0 as a function of ¢/Ly, for N = 2 (plain curve), 3 (long dashed
curve), 4 (short dashed curve) and 5 (dash-dotted curve).

with Ly given by (4.4). In contact with the meniscus, air is saturated with water vapour,
which yields the boundary condition:

ca(r' =0) = . (A3)

a

The other boundary condition is:
co(z' = 1) = ey, (A 4)

with ¢, the concentration at the node, yet to be determined. Solving (A 2) with boundary
conditions (A 3) and (A 4) yields:

_ ¢gsinha’ /Ly + ¢ sinh(¢ — 2') /Ly

cal') = sinh ¢/L,, (A5)

Let us now consider the entrance channel on the other side of the node, considered
infinitely long. Let us denote z” the distance from the node. The concentration field inside
the entrance channel also obeys (A 2) with z” instead of 2/, with boundary conditions:
¢q (2" = 0) = ¢4 by continuity of the concentration field, and lim,_, ¢, (z") = 0, hence:

ca(a”) = cpe" /T (A6)

To close the problem, in the limit where the volume of the node is negligible, the total
diffusive flux from all channels issued from it must vanish, hence:
dea ) _ ydaa
dz” 0 da

z’'=0 z'=L

Computing these fluxes from (A5) and (A 6), we obtain that ¢, = N¢&*/[sinh(¢/L,) +
N cosh(¢/L,)]. From this value and (A 5), we can compute de,/dz’|; = and, from (A1),
the flux at the meniscus:

cosh(¢/Lg) 4+ N sinh(¢/Ly)
sinh(¢/Ly) 4+ N cosh(¢/L,)’

Qg = Qqo (A7)
with Qg0 = hwDyV,,¢5* /L, the flux at the meniscus in a single channel.

The quantity Q,/Qgo is plotted as a function of ¢/L,, for various numbers of branches,
in Fig. 15. At given N, it increases from 1/N for £ = 0 to 1 for ¢/L; — co. At fixed ¢/Lg,
it is a decreasing function of N. It is significantly smaller than one only if £/L, remains
close to one or lower.
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