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Introduction

Current ecological research increasingly deals with large-scale patterns and processes, with global databases of species distributions and traits becoming increasingly available [START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF][START_REF] Kissling | Towards global data products of Essential Biodiversity Variables on species traits[END_REF][START_REF] Kattge | TRY plant trait database-enhanced coverage and open access[END_REF]. Analyses of these patterns and processes -and their predictions under anthropogenic climate change -often rely on global climatic grids at coarse spatial resolutions interpolated from standardized weather stations that represent long-term average atmospheric conditions [START_REF] Lembrechts | Incorporating microclimate into species distribution models[END_REF]. Moreover, sensors in these weather stations are shielded from direct solar radiation and located at ~2 meters above a frequently mown lawn (free-air temperature or 'macroclimate ', Jarraud, 2008). These climatic grids thus ignore many climate-forcing processes that operate near the ground surface, at fine spatiotemporal resolutions, and in environments that vary in their exposure to winds, radiation and moisture ('microclimate', [START_REF] Daly | Guidelines for assessing the suitability of spatial climate data sets[END_REF][START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF][START_REF] Körner | The 90 ways to describe plant temperature[END_REF]. Importantly, while these microclimatic processes often operate at fine spatiotemporal resolutions, they can affect ecological relations both at the local and the global scale [START_REF] De Frenne | Microclimate moderates plant responses to macroclimate warming[END_REF], Ashcroft et al., 2014, Lembrechts et al., 2019). For example, they can potentially protect grounddwelling biota against long-term climate variability, providing microrefugia for these species to survive in locations deemed unsuitable in models using climate data at coarse spatial resolutions, or buffer organisms against short-term extreme events [START_REF] De Frenne | Microclimate moderates plant responses to macroclimate warming[END_REF][START_REF] Lembrechts | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF][START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF], Suggitt et al., 2018). Microclimates can however also expose organisms to more extreme temperatures, in which case distribution models that ignore such microclimates may erroneously predict species survival instead of extinction [START_REF] Pincebourde | Narrow safety margin in the phyllosphere during thermal extremes[END_REF]. In order to provide realistic forecasts of species distributions and performance, as well as of the functioning of the ecosystems they operate in, climate data that incorporates microclimatic processes, ideally measured in-situ, are thus urgently needed [START_REF] Körner | The 90 ways to describe plant temperature[END_REF].

Horizontal and vertical features driving microclimate

The offset between micro-and macroclimate is particularly pronounced around the soil surface, as temperatures measured at 2 m above the ground can differ substantially from those at ground level, or in the layers just above and below it [START_REF] Geiger | The climate near the ground[END_REF], Lembrechts et al., 2019). This offset can result from both 'horizontal' and 'vertical' features (Fig. 1), and can exceed several degrees centigrade in annual averages. For example, [START_REF] Kearney | MicroclimOz-A microclimate data set for Australia, with example applications[END_REF] modelled coarse-scale soil temperatures at various depths considering the vertical features affecting the radiation balance. These vertical features include the effects of vegetation characteristics (e.g. structure and cover), snow cover and soil characteristics (e.g. moisture content,
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This article is protected by copyright. All rights reserved geological types, texture and bulk density) [START_REF] Li | Soil temperature as influenced by forest cover[END_REF][START_REF] Zhang | Impact of snow cover on soil temperature and its simulation in a 458 boreal aspen forest[END_REF], Lembrechts et al., 2019). The result of these vertical features is not only an instantaneous temperature offset between air and soil temperatures, but also a buffering effect, i.e. the temporal variability in temperature changes is lower in the soil than in the air [START_REF] Geiger | The climate near the ground[END_REF][START_REF] Ashcroft | Moisture, thermal inertia, and the spatial distributions of near-surface soil and air temperatures: Understanding factors that promote microrefugia[END_REF]. Horizontal processes on the other hand relate more to the spatial resolution of the climatic data. They can be broken up into those that require only fine-resolution environmental information for specific sites (e.g. effects of slope and aspect on radiation balances; [START_REF] Bennie | Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland[END_REF], and those where temperatures are also affected by neighboring locations (e.g. topographic shading, cold-air drainage and atmospheric temperature inversions, which are landscape context dependent; [START_REF] Whiteman | Breakup of temperature inversions in deep mountain valleys: Part I. Observations[END_REF][START_REF] Ashcroft | Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 x 300 km) and diverse region[END_REF]. How horizontal and vertical features interact to define differences between soil and air temperature may differ with the biome, season and day time. For example, in grasslands during summer, incoming shortwave solar radiation is usually the dominant factor determining daytime soil surface temperatures, which in turn result in higher air temperatures through convective heating [START_REF] Geiger | The climate near the ground[END_REF]. However, during winter, horizontal processes such as cold-air drainage and coastal buffering can have larger effects, especially on overnight air temperatures, when air temperatures may be driving soil temperatures rather than vice-versa [START_REF] Vitasse | Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland[END_REF]. In dense forests, the situation is even more complex: upper canopies block the bulk of short wave solar radiation, such that sub-canopy temperatures are determined by convective heat transfer between the air surrounding the canopy and direct conductance through physical contact of different parts of the canopy layer, in addition to the limited radiation that does permeate the canopy [START_REF] Körner | A world-wide study of high altitude treeline temperatures[END_REF][START_REF] Lembrechts | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF][START_REF] Zellweger | Advances in microclimate ecology arising 456 from remote sensing[END_REF]. As a result, horizontal processes such as passing fronts, and winds blowing in hotter or colder air from outside the forest, will in large part define the -dampened -temperature patterns under forest canopies [START_REF] Ashcroft | The effect of exposure on landscape scale soil surface temperatures and species distribution models[END_REF].

The need for microclimate data across the field of ecology

Many organisms living in the soil and close to the soil surface (e.g. soil micro-organisms like fungi, ground arthropods, herbs, mosses, tree seedlings and small vertebrates) only experience fine-scale soil and/or near-surface temperatures, and thus likely relate less strongly to free-air temperatures [START_REF] Randin | Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the Western Swiss Alps[END_REF][START_REF] Niittynen | The importance of snow in species distribution models of arctic vegetation[END_REF], Lembrechts et al., 2019). This may be reflected in a species' distribution, but also their morphology, physiology and behavior [START_REF] Körner | A world-wide study of high altitude treeline temperatures[END_REF][START_REF] Kearney | The potential for behavioral thermoregulation to buffer "coldblooded" animals against climate warming[END_REF][START_REF] Opedal | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF][START_REF] Boeck | Ideas and perspectives: Heat stress: more than hot air[END_REF]. Many species indeed survive, live and reproduce where average background climate appears unsuitable, and equally may be gone from sites within apparently suitable
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This article is protected by copyright. All rights reserved areas where microclimatic extremes exceed their limits [START_REF] Suggitt | Habitat microclimates drive fine-scale variation in extreme temperatures[END_REF]. Without microclimate data, we not only lack information on the potential thermal heterogeneity that is available for species to thermoregulate in situ, but also on the true magnitude of climate change that species will be exposed to [START_REF] Pincebourde | Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments[END_REF][START_REF] Maclean | Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming[END_REF]. Accurately predicting how species' ranges will shift under climate change requires a good understanding of the variety of climate niches truly available to them [START_REF] Maclean | Microclimates buffer the responses of plant communities to climate change[END_REF][START_REF] Lembrechts | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF]. The latter requires both a good understanding of what defines current microclimates, as well of how climate change will interact with the drivers of microclimatic conditions [START_REF] Maclean | Predicting future climate at high spatial and temporal resolution[END_REF]. Additionally, it is the soil temperature rather than the air temperature that defines many ecosystem functions in and close to the soil, like evapotranspiration, decomposition, root growth, biogeochemical cycling and soil respiration [START_REF] Pleim | An indirect data assimilation scheme for deep soil temperature in the Pleim-Xiu land surface model[END_REF], Portillo-Estrada et al., 2016[START_REF] Hursh | The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale[END_REF][START_REF] Gottschall | Tree species identity determines wood decomposition via microclimatic effects[END_REF][START_REF] Medinets | Seasonal dynamics and profiles of soil NO concentrations in a temperate forest[END_REF]. Given the repeatedly proven sensitivity of many of these processes to temperatures [START_REF] Rosenberg | From climate and CO2 enrichment to evapotranspiration[END_REF][START_REF] Coûteaux | Litter decomposition, climate and litter quality[END_REF][START_REF] Schimel | Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling[END_REF], here again having accurate measurements will be of utmost importance. The carbon balance in boreal forests, for example, is largely dependent on soil thaw and thus soil rather than air temperatures [START_REF] Goulden | Sensitivity of boreal forest carbon balance to soil thaw[END_REF]. These realizations highlight the urgency to start using soil and near-surface microclimate data when modelling the ecology and biogeography of surface and soil-dwelling organisms, as well as the functioning of soil ecosystems, instead of readily available coarse-scaled free-air climate data (from e.g. CHELSA [START_REF] Karger | Climatologies at high resolution for the earth's land surface areas[END_REF], TerraClimate [START_REF] Abatzoglou | TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015[END_REF] or WorldClim [START_REF] Fick | WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[END_REF]). While a suit of models now exist that produce fine-scale climate data [START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF][START_REF] Lembrechts | Incorporating microclimate into species distribution models[END_REF], we do not yet fully understand whether models using data that represent average conditions over large areas provide adequate "mean field approximations" of (i.e. are representative for) more complex spatiotemporal effects driven by the climatic conditions that organisms experience [START_REF] Bennie | Seeing the woods for the trees -when is microclimate important in species distribution models?[END_REF]. To accomplish the latter, global in-situ data is needed for large-scale fine-resolution calibration and validation of these models. However, while the quality and resolution of free-air temperature data and models at the global scale is rapidly improving [START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF], soil temperature datasets used in biogeography and biogeochemistry are still largely restricted to the landscape or regional scale, at best, and from intensively studied regions only [START_REF] Ashcroft | The effect of exposure on landscape scale soil surface temperatures and species distribution models[END_REF][START_REF] Ashcroft | Climate change at the landscape scale: predicting finegrained spatial heterogeneity in warming and potential refugia for vegetation[END_REF][START_REF] Carter | Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?[END_REF][START_REF] Aalto | Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems[END_REF], or they are derived from models lacking fine-grained ground-truthing data (e.g. Copernicus Climate Change Service (C3S), 2019). Land surface temperatures as obtained from satellite data, on the other hand, are hampered by their inability to measure below the vegetation cover [START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF].
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This article is protected by copyright. All rights reserved In order to accurately describe and predict the (future) distribution and/or traits of surface and soildwelling species at larger scales, we need to improve our general knowledge of the offsets and spatiotemporal changes in variability between soil-level and free-air temperatures [START_REF] Aalto | Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems[END_REF], Lembrechts et al., 2019). There is an urgent need to work towards globally available soil and near-surface temperature data based on in-situ measurements and at relevant spatiotemporal resolutions [START_REF] Ashcroft | Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 x 300 km) and diverse region[END_REF][START_REF] Pradervand | Very high resolution environmental predictors in species distribution models: Moving beyond topography?[END_REF][START_REF] Slavich | Topoclimate versus macroclimate: how does climate mapping methodology affect species distribution models and climate change projections[END_REF][START_REF] Opedal | Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[END_REF], Meineri & Hylander, 2017).

Launch of the SoilTemp database

To tackle these issues, we launch an ambitious database initiative, compiling soil and near-surface temperature data from all over the world into a global geospatial database: SoilTemp. At the time of writing, we brought together temperature data from 7538 sensors placed both below, at and above (up to 2 m) the soil surface (Fig. 2a), which is an accumulation of over 180.000 months of temperature data with measurement intervals between 1 and 240 minutes (>30% every 60 minutes). The database hosts loggers from 51 different countries spread across all continents, with a broad distribution across the world's climatic space (Fig. 2b). There is a dominance of time series from Europe and areas below 1500 m a.s.l. (Fig. 2c,d). More than 75% of sensor measurements occurred within the last decade, but the database does contain several time series covering longer time periods as well, with a maximum of 42 years (Fig. 2d). When the remaining critical gaps in our spatial coverage will be filled (see below), this database will allow global assessments of the long-established theories on boundary layer climatology in heterogeneous environments [START_REF] Geiger | The climate near the ground[END_REF], which has so far been lacking. The growing database provides a unique opportunity to disentangle the role of the different horizontal and vertical features influencing soil and near-surface temperature across all biomes of the world, with high spatial and temporal resolutions. It will allow relating patterns in soil temperature to processes in the lower air layers and calibrate and validate global models of soil temperature and (micro)climate (Kearney et al., 2014a, Kearney et al., 2014b[START_REF] Carter | Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?[END_REF][START_REF] Maclean | Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming[END_REF]. It will also allow us to create global maps of a wide array of general and microclimate-specific bioclimatic variables (e.g. growing degree days, growing season length) at relevant spatiotemporal resolutions [START_REF] Körner | The 90 ways to describe plant temperature[END_REF]. Ultimately, this joint global effort and the resulting global microclimatic products will enable us to improve analyses of the relationships between species' macroecology and the microclimate they experience, identify microrefugia and stepping stones and improve global models of ecosystem functioning and element cycling. Indeed, replacing the coarse-scaled free-air temperature averages used
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This article is protected by copyright. All rights reserved traditionally in models in all fields of ecology with these more relevant soil-specific data products is likely to increase their descriptive and predictive power, as the countless above-mentioned regional studies exemplify (Lembrechts et al., 2019). Additionally, this first global effort to combine and collect in-situ measurements will help solve long-standing issues regarding sensor comparability and data collection variability [START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF], as well as address the question at what spatial scale microclimate data can prove most informative for ecological modelling [START_REF] Jucker | A research agenda for microclimate ecology in human-modified tropical forests[END_REF]. The temperature time series in the database, many of which are covering increasingly long time periods of up to a decade or more, will also allow fine-tuning forecasts of microclimate data into the future by deepening our understanding of the link between microclimatic dynamics in the soil and the air [START_REF] Lembrechts | Climatic microrefugia under anthropogenic climate change: implications for species redistribution[END_REF][START_REF] Wason | Climates on the move: Implications of climate warming for species distributions in mountains of the northeastern United States[END_REF][START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF][START_REF] Maclean | Predicting future climate at high spatial and temporal resolution[END_REF], improving our predictions of biodiversity and ecosystem functioning under climate change.

Dig out your loggers! A call for contributions

To reach these goals, we encourage scientists owning in-situ measured temperature data to submit these to the growing SoilTemp database. All time series spanning one month or more, with temperature measurements a maximum of 4 hours apart, all soil depths, all heights above the ground up till two meters, all biomes, and all sensor types and brands will be accepted. Note that both spatially dense and sparse logger networks, as well as single loggers are accepted. The achieved spatial resolution is dependent on the provision of spatially precise coordinates to achieve a good relationship with potential explanatory variables (e.g. high resolution remotely sensed environmental data). If we have these coordinates and thus the location and distance between loggers, we can effectively obtain the extent and spacing for each logger network [START_REF] Western | Scaling of soil moisture: A hydrologic perspective[END_REF]. We include data from both observational and experimental plots, yet sensors have to be measuring in-situ and not in pots, and experiments manipulating the local climate (e.g. open-top chambers, rain-out shelters or vegetation-removal experiments) are excluded (Table 1). Given currently less well-represented climate regions, we especially encourage submissions from extreme cold and hot environments to fill the remaining gaps in our global coverage. More specifically, hot tropical climates (both tropical rainforests and tropical seasonal forests and savannas) and cold and hot deserts are currently still largely underrepresented (Fig. 2b), in particular from Africa, Asia, Antarctica and the Americas (Fig. 2a). Data contributors will be invited as co-authors on the main global papers resulting from this database (see Supplementary Materials for details on terms of use and data ownership).
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This article is protected by copyright. All rights reserved By encouraging sampling and submissions from remote areas, we aim to help solve the global sampling bias in soil ecological data [START_REF] Cameron | Global gaps in soil biodiversity data[END_REF][START_REF] Guerra | Blind spots in global soil biodiversity and ecosystem function research[END_REF], and we hope to build a truly global network representing -and actively engaging -scientists from a wide diversity of cultural backgrounds [START_REF] Maestre | Recommendations for establishing global collaborative networks in soil ecology[END_REF]. More information is available on the SoilTemp website, accessible via Figshare (DOI 10.6084/m9.figshare.12126516). When fully established, the SoilTemp database and its derivative products (e.g. bioclimatic variables) will be made freely available to facilitate the analysis of global patterns in microclimates, increase the comparability between regional studies and simplify the use of accurate microclimatic data in ecology [START_REF] Bramer | Global trait-environment relationships of plant communities[END_REF]. At the moment, critical metadata is already freely accessible via Figshare (DOI 10.6084/m9.figshare.12126516). Given the absence of and the need for globally available soil microclimate data products at relevant spatial resolutions for use in ecological analyses, we believe that SoilTemp has the potential to become a highly important resource that will enable a step change in ecological modelling.
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Accepted Article Figures Figure 1: The horizontal and vertical drivers of the offset between in-situ soil and free-air temperatures.

Conceptually, there are two different sets of features responsible for the offset between coarse-scale free air temperatures (top left, e.g. WorldClim, Fick & Hijmans, 2017) and fine-scale soil temperatures (bottom right, e.g. [START_REF] Ashcroft | Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 x 300 km) and diverse region[END_REF], Lembrechts et al., 2019),. Firstly, one can incorporate fine-scale horizontal climate-forcing factors like topography and terrain-related features, land cover types and distance to water bodies to go from coarse-scaled to finer resolutions (top right, e.g. [START_REF] Aalto | Revealing topoclimatic heterogeneity using meteorological station data[END_REF][START_REF] Macek | Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests[END_REF]. Secondly, one can consider observation height, and the effects of vegetation characteristics (like structure and cover), snow cover and soil characteristics (like moisture, geological types, texture and bulk density) on the radiation balance to convert from free-air to soil temperatures (e.g. [START_REF] Kearney | MicroclimOz-A microclimate data set for Australia, with example applications[END_REF]. Both horizontal and vertical features can introduce positive or negative differences (offset values) between soil and air temperatures through their effects on processes related to the radiation balance, like wind, convective heat transfer and surface albedo. The complexities of these horizontal and vertical processes can vary with biome, season and time of day. Temperatures are represented here using an unspecified temperature range from cold (blue) to warm (red). 
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 2 Figure 2: Overview of the status of the SoilTemp-database as of March 2020. Spatial (a), climatic (b), elevational (c) and temporal (d) distribution of sensors in the SoilTemp-database as of March 2020. (a) Background world map in WGS1984, hexagons with a resolution of approximately 70.000 km² using the dggridR-package in R. (b) Colors of hexagons indicate the number of sensors at each climatic location, with a 40 × 40 bin resolution. Small dots in the background represent the global variation in climatic space (obtained by sampling 1.000.000 random locations from the CHELSA world maps at a spatial resolution of

  

Table 190 Table 1 :

 1901 Minimal data requirements and obligatory metadata for submission to the database. For more

	189	
	191	details, see Supplementary Material.
	192	
		Minimum data requirements	Obligatory metadata
		Minimum one consecutive month of in-situ	Accurate (handheld GPS or finer) spatial
		measured temperature time series	coordinates of the loggers (+ estimated
			accuracy)
		Maximum time interval between measurements: 4	Height/depth of the sensor relative to the
		hours	soil surface
		No climate manipulation experiments (only control	Type or brand of temperature sensor used,
		plots of those experiments, or observational	and type of shelter (e.g. no shelter, home-
		studies)	made shelter, Stevenson screen…)
		No modelling studies (only empirical data)	Temporal resolution of the sensor
			Habitat classification
	193	
	194	

  000.000 random locations from the CHELSA world maps at a spatial resolution of 2.5 arc minutes. Overlay with dotted lines and numbers (from 1 to 9) depict a delineation of Whittaker biomes (adapted fromWhittaker, 1970): (1) tundra and ice, (2) boreal forest, (3) temperate seasonal forest, (4) temperate rainforest, (5) tropical rainforest, (6) tropical seasonal forest/savanna, (7) subtropical desert, (8) temperate grassland/desert, (9) woodland/shrubland. (c) Number of sensors in each elevation class. (d) Time span covered by each sensor in the database, ranked by starting date. Data showed from 1992 onwards, note that the time period covered by 4 loggers with starting dates in 1976 is truncated.
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