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SoilTemp: a global database of near-surface temperature
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1 Abstract

2 Current analyses and predictions of spatially-explicit patterns and processes in ecology most often rely on 

3 climate data interpolated from standardized weather stations. This interpolated climate data represents 

4 long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing 

5 factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in 

6 relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats 

7 varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing, or cold-air 

8 pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions 

9 than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic 

10 forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning 

11 of the ecosystems they live in.

12 To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a 

13 geospatial database initiative compiling soil and near-surface temperature data from all over the world. 

14 Currently this database contains time series from 7538 temperature sensors from 51 countries across all 

15 key biomes. The database will pave the way towards an improved global understanding of microclimate 

16 and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions 

17 relevant to most organisms and ecosystem processes. 

18 Keywords: microclimate, soil climate, climate change, topoclimate, database, temperature, species 

19 distributions, ecosystem processes
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20 Introduction

21 Current ecological research increasingly deals with large-scale patterns and processes, with global 

22 databases of species distributions and traits becoming increasingly available (Bruelheide et al., 2018, 

23 Kissling et al., 2018, Kattge et al., 2019). Analyses of these patterns and processes – and their predictions 

24 under anthropogenic climate change – often rely on global climatic grids at coarse spatial resolutions 

25 interpolated from standardized weather stations that represent long-term average atmospheric 

26 conditions (Lembrechts et al., 2018). Moreover, sensors in these weather stations are shielded from direct 

27 solar radiation and located at ~2 meters above a frequently mown lawn (free-air temperature or 

28 'macroclimate', Jarraud, 2008). These climatic grids thus ignore many climate-forcing processes that 

29 operate near the ground surface, at fine spatiotemporal resolutions, and in environments that vary in 

30 their exposure to winds, radiation and moisture ('microclimate', Daly, 2006, Bramer et al., 2018, Körner & 

31 Hiltbrunner, 2018). Importantly, while these microclimatic processes often operate at fine spatiotemporal 

32 resolutions, they can affect ecological relations both at the local and the global scale (De Frenne et al., 

33 2013, Ashcroft et al., 2014, Lembrechts et al., 2019). For example, they can potentially protect ground-

34 dwelling biota against long-term climate variability, providing microrefugia for these species to survive in 

35 locations deemed unsuitable in models using climate data at coarse spatial resolutions, or buffer 

36 organisms against short-term extreme events (De Frenne et al., 2013, Lenoir et al., 2017, Bramer et al., 

37 2018, Suggitt et al., 2018). Microclimates can however also expose organisms to more extreme 

38 temperatures, in which case distribution models that ignore such microclimates may erroneously predict 

39 species survival instead of extinction (Pincebourde & Casas, 2019). In order to provide realistic forecasts 

40 of species distributions and performance, as well as of the functioning of the ecosystems they operate in, 

41 climate data that incorporates microclimatic processes, ideally measured in-situ, are thus urgently needed 

42 (Körner & Hiltbrunner, 2018).

43 Horizontal and vertical features driving microclimate

44 The offset between micro- and macroclimate is particularly pronounced around the soil surface, as 

45 temperatures measured at 2 m above the ground can differ substantially from those at ground level, or in 

46 the layers just above and below it (Geiger, 1950, Lembrechts et al., 2019). This offset can result from both 

47 ‘horizontal’ and ‘vertical’ features (Fig. 1), and can exceed several degrees centigrade in annual averages. 

48 For example, Kearney (2019) modelled coarse-scale soil temperatures at various depths considering the 

49 vertical features affecting the radiation balance. These vertical features include the effects of vegetation 

50 characteristics (e.g. structure and cover), snow cover and soil characteristics (e.g. moisture content, A
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51 geological types, texture and bulk density) (Li, 1926, Zhang et al., 2008, Lembrechts et al., 2019). The 

52 result of these vertical features is not only an instantaneous temperature offset between air and soil 

53 temperatures, but also a buffering effect, i.e. the temporal variability in temperature changes is lower in 

54 the soil than in the air (Geiger, 1950, Ashcroft & Gollan, 2013). Horizontal processes on the other hand 

55 relate more to the spatial resolution of the climatic data. They can be broken up into those that require 

56 only fine-resolution environmental information for specific sites (e.g. effects of slope and aspect on 

57 radiation balances; Bennie et al., 2008), and those where temperatures are also affected by neighboring 

58 locations (e.g. topographic shading, cold-air drainage and atmospheric temperature inversions, which are 

59 landscape context dependent; Whiteman, 1982, Ashcroft & Gollan, 2012). 

60 How horizontal and vertical features interact to define differences between soil and air temperature may 

61 differ with the biome, season and day time. For example, in grasslands during summer, incoming short-

62 wave solar radiation is usually the dominant factor determining daytime soil surface temperatures, which 

63 in turn result in higher air temperatures through convective heating (Geiger, 1950). However, during 

64 winter, horizontal processes such as cold-air drainage and coastal buffering can have larger effects, 

65 especially on overnight air temperatures, when air temperatures may be driving soil temperatures rather 

66 than vice-versa (Vitasse et al., 2017). In dense forests, the situation is even more complex: upper canopies 

67 block the bulk of short wave solar radiation, such that sub-canopy temperatures are determined by 

68 convective heat transfer between the air surrounding the canopy and direct conductance through 

69 physical contact of different parts of the canopy layer, in addition to the limited radiation that does 

70 permeate the canopy  (Körner & Paulsen, 2004, Lenoir et al., 2017, Zellweger et al., 2019). As a result, 

71 horizontal processes such as passing fronts, and winds blowing in hotter or colder air from outside the 

72 forest, will in large part define the – dampened – temperature patterns under forest canopies (Ashcroft et 

73 al., 2008). 

74 The need for microclimate data across the field of ecology

75 Many organisms living in the soil and close to the soil surface (e.g. soil micro-organisms like fungi, ground 

76 arthropods, herbs, mosses, tree seedlings and small vertebrates) only experience fine-scale soil and/or 

77 near-surface temperatures, and thus likely relate less strongly to free-air temperatures (Randin et al., 

78 2009, Niittynen & Luoto, 2017, Lembrechts et al., 2019). This may be reflected in a species’ distribution, 

79 but also their morphology, physiology and behavior (Körner & Paulsen, 2004, Kearney et al., 2009, Opedal 

80 et al., 2015, de Boeck et al., 2016). Many species indeed survive, live and reproduce where average 

81 background climate appears unsuitable, and equally may be gone from sites within apparently suitable A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

82 areas where microclimatic extremes exceed their limits (Suggitt et al., 2011). Without microclimate data, 

83 we not only lack information on the potential thermal heterogeneity that is available for species to 

84 thermoregulate in situ, but also on the true magnitude of climate change that species will be exposed to 

85 (Pincebourde et al., 2016, Maclean et al., 2017). Accurately predicting how species' ranges will shift under 

86 climate change requires a good understanding of the variety of climate niches truly available to them 

87 (Maclean et al., 2015, Lenoir et al., 2017). The latter requires both a good understanding of what defines 

88 current microclimates, as well of how climate change will interact with the drivers of microclimatic 

89 conditions (Maclean, 2019). Additionally, it is the soil temperature rather than the air temperature that 

90 defines many ecosystem functions in and close to the soil, like evapotranspiration, decomposition, root 

91 growth, biogeochemical cycling and soil respiration (Pleim & Gilliam, 2009, Portillo-Estrada et al., 2016, 

92 Hursh et al., 2017, Gottschall et al., 2019, Medinets et al., 2019). Given the repeatedly proven sensitivity 

93 of many of these processes to temperatures (Rosenberg et al., 1990, Coûteaux et al., 1995, Schimel et al., 

94 1996), here again having accurate measurements will be of utmost importance. The carbon balance in 

95 boreal forests, for example, is largely dependent on soil thaw and thus soil rather than air temperatures 

96 (Goulden et al., 1998). 

97 These realizations highlight the urgency to start using soil and near-surface microclimate data when 

98 modelling the ecology and biogeography of surface and soil-dwelling organisms, as well as the functioning 

99 of soil ecosystems, instead of readily available coarse-scaled free-air climate data (from e.g. CHELSA 

100 (Karger et al., 2017), TerraClimate (Abatzoglou et al., 2018) or WorldClim (Fick & Hijmans, 2017)). While a 

101 suit of models now exist that produce fine-scale climate data (Bramer et al., 2018, Lembrechts et al., 

102 2018), we do not yet fully understand whether models using data that represent average conditions over 

103 large areas provide adequate “mean field approximations” of (i.e. are representative for) more complex 

104 spatiotemporal effects driven by the climatic conditions that organisms experience (Bennie et al., 2014). 

105 To accomplish the latter, global in-situ data is needed for large-scale fine-resolution calibration and 

106 validation of these models. However, while the quality and resolution of free-air temperature data and 

107 models at the global scale is rapidly improving (Bramer et al., 2018), soil temperature datasets used in 

108 biogeography and biogeochemistry are still largely restricted to the landscape or regional scale, at best, 

109 and from intensively studied regions only (Ashcroft et al., 2008, Ashcroft et al., 2009, Carter et al., 2015, 

110 Aalto et al., 2018), or they are derived from models lacking fine-grained ground-truthing data (e.g. 

111 Copernicus Climate Change Service (C3S), 2019). Land surface temperatures as obtained from satellite 

112 data, on the other hand, are hampered by their inability to measure below the vegetation cover (Bramer 

113 et al., 2018). A
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114 In order to accurately describe and predict the (future) distribution and/or traits of surface and soil-

115 dwelling species at larger scales, we need to improve our general knowledge of the offsets and 

116 spatiotemporal changes in variability between soil-level and free-air temperatures (Aalto et al., 2018, 

117 Lembrechts et al., 2019). There is an urgent need to work towards globally available soil and near-surface 

118 temperature data based on in-situ measurements and at relevant spatiotemporal resolutions (Ashcroft & 

119 Gollan, 2012, Pradervand et al., 2014, Slavich et al., 2014, Opedal et al., 2015, Meineri & Hylander, 2017).

120 Launch of the SoilTemp database

121 To tackle these issues, we launch an ambitious database initiative, compiling soil and near-surface 

122 temperature data from all over the world into a global geospatial database: SoilTemp. At the time of 

123 writing, we brought together temperature data from 7538 sensors placed both below, at and above (up to 

124 2 m) the soil surface (Fig. 2a), which is an accumulation of over 180.000 months of temperature data with 

125 measurement intervals between 1 and 240 minutes (>30% every 60 minutes). The database hosts loggers 

126 from 51 different countries spread across all continents, with a broad distribution across the world’s 

127 climatic space (Fig. 2b). There is a dominance of time series from Europe and areas below 1500 m a.s.l. 

128 (Fig. 2c, d). More than 75% of sensor measurements occurred within the last decade, but the database 

129 does contain several time series covering longer time periods as well, with a maximum of 42 years (Fig. 

130 2d).

131 When the remaining critical gaps in our spatial coverage will be filled (see below), this database will allow 

132 global assessments of the long-established theories on boundary layer climatology in heterogeneous 

133 environments (Geiger, 1950), which has so far been lacking. The growing database provides a unique 

134 opportunity to disentangle the role of the different horizontal and vertical features influencing soil and 

135 near-surface temperature across all biomes of the world, with high spatial and temporal resolutions. It 

136 will allow relating patterns in soil temperature to processes in the lower air layers and calibrate and 

137 validate global models of soil temperature and (micro)climate (Kearney et al., 2014a, Kearney et al., 

138 2014b, Carter et al., 2015, Maclean et al., 2017). It will also allow us to create global maps of a wide array 

139 of general and microclimate-specific bioclimatic variables (e.g. growing degree days, growing season 

140 length) at relevant spatiotemporal resolutions (Körner & Hiltbrunner, 2018). 

141 Ultimately, this joint global effort and the resulting global microclimatic products will enable us to 

142 improve analyses of the relationships between species’ macroecology and the microclimate they 

143 experience, identify microrefugia and stepping stones and improve global models of ecosystem 

144 functioning and element cycling. Indeed, replacing the coarse-scaled free-air temperature averages used A
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145 traditionally in models in all fields of ecology with these more relevant soil-specific data products is likely 

146 to increase their descriptive and predictive power, as the countless above-mentioned regional studies 

147 exemplify (Lembrechts et al., 2019). Additionally, this first global effort to combine and collect in-situ 

148 measurements will help solve long-standing issues regarding sensor comparability and data collection 

149 variability (Bramer et al., 2018), as well as address the question at what spatial scale microclimate data 

150 can prove most informative for ecological modelling  (Jucker et al., 2020). The temperature time series in 

151 the database, many of which are covering increasingly long time periods of up to a decade or more, will 

152 also allow fine-tuning forecasts of microclimate data into the future by deepening our understanding of 

153 the link between microclimatic dynamics in the soil and the air (Lenoir et al., 2017, Wason et al., 2017, 

154 Bramer et al., 2018, Maclean, 2019), improving our predictions of biodiversity and ecosystem functioning 

155 under climate change.

156 Dig out your loggers! A call for contributions

157 To reach these goals, we encourage scientists owning in-situ measured temperature data to submit these 

158 to the growing SoilTemp database. All time series spanning one month or more, with temperature 

159 measurements a maximum of 4 hours apart, all soil depths, all heights above the ground up till two 

160 meters, all biomes, and all sensor types and brands will be accepted. Note that both spatially dense and 

161 sparse logger networks, as well as single loggers are accepted. The achieved spatial resolution is 

162 dependent on the provision of spatially precise coordinates to achieve a good relationship with potential 

163 explanatory variables (e.g. high resolution remotely sensed environmental data). If we have these 

164 coordinates and thus the location and distance between loggers, we can effectively obtain the extent and 

165 spacing for each logger network (Western et al., 2002). 

166 We include data from both observational and experimental plots, yet sensors have to be measuring in-situ 

167 and not in pots, and experiments manipulating the local climate (e.g. open-top chambers, rain-out 

168 shelters or vegetation-removal experiments) are excluded (Table 1). Given currently less well-represented 

169 climate regions, we especially encourage submissions from extreme cold and hot environments to fill the 

170 remaining gaps in our global coverage. More specifically, hot tropical climates (both tropical rainforests 

171 and tropical seasonal forests and savannas) and cold and hot deserts are currently still largely 

172 underrepresented (Fig. 2b), in particular from Africa, Asia, Antarctica and the Americas (Fig. 2a). Data 

173 contributors will be invited as co-authors on the main global papers resulting from this database (see 

174 Supplementary Materials for details on terms of use and data ownership). 
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175 By encouraging sampling and submissions from remote areas, we aim to help solve the global sampling 

176 bias in soil ecological data (Cameron et al., 2018, Guerra et al., 2019), and we hope to build a truly global 

177 network representing – and actively engaging - scientists from a wide diversity of cultural backgrounds 

178 (Maestre & Eisenhauer, 2019). More information is available on the SoilTemp website, accessible via 

179 Figshare (DOI 10.6084/m9.figshare.12126516). 

180 When fully established, the SoilTemp database and its derivative products (e.g. bioclimatic variables) will 

181 be made freely available to facilitate the analysis of global patterns in microclimates, increase the 

182 comparability between regional studies and simplify the use of accurate microclimatic data in ecology 

183 (Bramer et al., 2018). At the moment, critical metadata is already freely accessible via Figshare (DOI 

184 10.6084/m9.figshare.12126516). Given the absence of and the need for globally available soil 

185 microclimate data products at relevant spatial resolutions for use in ecological analyses, we believe that 

186 SoilTemp has the potential to become a highly important resource that will enable a step change in 

187 ecological modelling.

188
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189 Table

190 Table 1: Minimal data requirements and obligatory metadata for submission to the database. For more 

191 details, see Supplementary Material.

192

Minimum data requirements Obligatory metadata

Minimum one consecutive month of in-situ 

measured temperature time series

Accurate (handheld GPS or finer) spatial 

coordinates of the loggers (+ estimated 

accuracy)

Maximum time interval between measurements: 4 

hours

Height/depth of the sensor relative to the 

soil surface 

No climate manipulation experiments (only control 

plots of those experiments, or observational 

studies)

Type or brand of temperature sensor used, 

and type of shelter (e.g. no shelter, home-

made shelter, Stevenson screen…) 

No modelling studies (only empirical data) Temporal resolution of the sensor

Habitat classification

193

194
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195 Figures

196 Figure 1: The horizontal and vertical drivers of the offset between in-situ soil and free-air temperatures. 

197 Conceptually, there are two different sets of features responsible for the offset between coarse-scale free 

198 air temperatures (top left, e.g. WorldClim, Fick & Hijmans, 2017) and fine-scale soil temperatures (bottom 

199 right, e.g. Ashcroft & Gollan, 2012, Lembrechts et al., 2019),. Firstly, one can incorporate fine-scale 

200 horizontal climate-forcing factors like topography and terrain-related features, land cover types and 

201 distance to water bodies to go from coarse-scaled to finer resolutions (top right, e.g. Aalto et al., 2017, 

202 Macek et al., 2019). Secondly, one can consider observation height, and the effects of vegetation 

203 characteristics (like structure and cover), snow cover and soil characteristics (like moisture, geological 

204 types, texture and bulk density) on the radiation balance to convert from free-air to soil temperatures (e.g. 

205 Kearney, 2019). Both horizontal and vertical features can introduce positive or negative differences (offset 

206 values) between soil and air temperatures through their effects on processes related to the radiation 

207 balance, like wind, convective heat transfer and surface albedo. The complexities of these horizontal and 

208 vertical processes can vary with biome, season and time of day. Temperatures are represented here using 

209 an unspecified temperature range from cold (blue) to warm (red).
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210 Figure 2: Overview of the status of the SoilTemp-database as of March 2020. Spatial (a), climatic (b), 

211 elevational (c) and temporal (d) distribution of sensors in the SoilTemp-database as of March 2020. (a) 

212 Background world map in WGS1984, hexagons with a resolution of approximately 70.000 km² using the 

213 dggridR-package in R. (b) Colors of hexagons indicate the number of sensors at each climatic location, with 

214 a 40 × 40 bin resolution. Small dots in the background represent the global variation in climatic space 

215 (obtained by sampling 1.000.000 random locations from the CHELSA world maps at a spatial resolution of 

216 2.5 arc minutes. Overlay with dotted lines and numbers (from 1 to 9) depict a delineation of Whittaker 

217 biomes (adapted from Whittaker, 1970): (1) tundra and ice, (2) boreal forest, (3) temperate seasonal 

218 forest, (4) temperate rainforest, (5) tropical rainforest, (6) tropical seasonal forest/savanna, (7) subtropical 

219 desert, (8) temperate grassland/desert, (9) woodland/shrubland. (c) Number of sensors in each elevation 

220 class. (d) Time span covered by each sensor in the database, ranked by starting date. Data showed from 

221 1992 onwards, note that the time period covered by 4 loggers with starting dates in 1976 is truncated. 
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