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Abstract. A new paradigm recently emerged in financial modelling: rough (stochastic) volatility,
first observed by Gatheral et al. in high-frequency data, subsequently derived within market

microstructure models, also turned out to capture parsimoniously key stylized facts of the entire
implied volatility surface, including extreme skews that were thought to be outside the scope of
stochastic volatility. On the mathematical side, Markovianity and, partially, semi-martingality

are lost. In this paper we show that Hairer’s regularity structures, a major extension of rough
path theory, which caused a revolution in the field of stochastic partial differential equations, also

provides a new and powerful tool to analyze rough volatility models.

Dedicated to Professor Jim Gatheral on the occasion of his 60th birthday.
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1. Introduction

We are interested in stochastic volatility (SV) models given in Itô differential form

(1.1) dSt/St = σtdBt ≡
√
vt(ω)dBt .

Here, B is a standard Brownian motion and σt (resp. vt) are known as stochastic volatility (resp.
variance) process. Many classical Markovian asset price models fall in this framework, including
Dupire’s local volatility model, the SABR -, Stein-Stein - and Heston model. In all named SV model,
one has Markovian dynamics for the variance process, of the form

(1.2) dvt = g(vt)dWt + h(vt)dt;

constant correlation ρ := d〈B,W 〉t/dt is incorporated by working with a 2D standard Brownian

motion
(
W,W

)
,

B := ρW + ρW ≡ ρW +
√

1− ρ2W.

This paper is concerned with an important class of non-Markovian (fractional) SV models, dubbed
rough volatility (RV) models, in which case σt (equivalently: vt ≡ σ2

t ) is modelled via a
fractional Brownian motion (fBM) in the regime H ∈ (0, 1/2).1 The terminology ”rough” stems
from the fact that in such models stochastic volatility (variance) sample paths are H−-Hölder, hence
“rougher” than Brownian paths. Note the stark contrast to the idea of ”trending” fractional volatility,
which amounts to take H > 1/2. The evidence for the rough regime (recent calibration suggest H
as low as 0.05) is now overwhelming - both under the physical and the pricing measure, see e.g.
[1, 24, 25, 27, 4, 19, 42]. Much attention in theses reference has in fact been given to ”simple” rough
volatility models, by which we mean models of the form

σt := f(Ŵt) . . . “simple rough volatility (RV)”(1.3)

Ŵt =

ˆ t

0

K(s, t)dWs ;(1.4)

with K(s, t) =
√

2H|t− s|H−1/2
1t>s , H ∈ (0, 1/2).(1.5)

In other words, volatility is a function of a fractional Brownian motion, with (fixed) Hurst parameter.2

Note that, in contrast even to classical SV models, the stochastic volatility is explicitly given, and
no rough / stochastic differential equation needs to be solved (hence ”simple”). Rough volatility not
only provides remarkable fits to both time series and option pricing problems, it also has a market
microstructure justification: starting with a Hawkes process model, Rosenbaum and coworkers
[16, 17, 18] find in the scaling limit f, g, h such that

σt := f(Ẑt) . . . “non-simple rough volatility (RV)”(1.6)

Zt = z +

ˆ t

0

K(s, t)g(Zs)ds+

ˆ t

0

K(s, t)h(Zs)dWs ,(1.7)

with stochastic Volterra dynamics that provide a natural generalization of simple rough volatility.

1Volatility is not a traded asset, hence its non-semimartingality (when H 6= 1/2) does not imply arbitrage.
2Following [4] we work with the Volterra- or Riemann-Liouville fBM, but other choices such as the Mandelbrot

van Ness fBM, with suitably modified kernel K, are possible.
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1.1. Markovian stochastic volatility models. For comparison with rough volatility, Section 1.2
below, we first mention a selection of tools and methods well-known for Markovian SV models.

• PDE methods are ubiquitous in (low-dimensional) pricing problems, as are
• Monte Carlo methods, noting that knowledge of strong (resp. weak) rate 1/2 (resp. 1) is

the grist in the mills of modern multilevel methods (MLMC);
• Quasi Monte Carlo (QMC) methods are widely used; related in spirit we have the Kusuoka–

Lyons–Victoir cubature approach, popularized in the form of Ninomiya–Victoir (NV) splitting
scheme, nowadays available in standard software packages;

• Freidlin–Wentzell theory of small noise large deviations is essentially immediately applicable,
as are various “strong“ large deviations (a.k.a. exact asymptotics) results, used e.g. the
derive the famous SABR formula.

For several reasons it can be useful to write model dynamics in Stratonovich form: From a
PDE perspective, the operators then take sum-square form which can be exploited in many ways
(Hörmander theory, naturally linked to Malliavin calculus ...). From a numerical perspective, we note
that the cubature / NV scheme [43] also requires the full dynamics to be rewritten in Stratonovich
form. In fact, viewing NV as level-5 cubature, in sense of [40], its level-3 simplification is nothing
but the familiar Wong-Zakai approximation result for difffusions. Another financial example that
requires a Stratonovich formulation comes from interest rate model validation [13], based on the
Stroock–Varadhan support theorem. We further note, that QMC (e.g. Sobol’) works particularly
well if the noise has a multiscale decomposition, as obtained by interpreting a (piece-wise) linear
Wong-Zakai approximation, as Haar wavelet expansion of the driving white noise.

1.2. Complications with rough volatility. Due to loss of Markovianity, PDE methods are not
applicable, and neither are (off-the-shelf) Freidlin–Wentzell large deviation estimates (but see [19]).
Moreover, rough volatility is not a semi-martingale, which complicates, to say the least, the use of
several established stochastic analysis tools. In particular, rough volatility admits no Stratonovich
form. Closely related, one lacks a (Wong-Zakai type) approximation theory for rough volatility. To
see this, focus on the “simple” situation, that is (1.1), (1.3) so that

(1.8) St/S0 = E
(ˆ ·

0

f
(
Ŵs

)
dBs

)
(t) .

Inside the (classical) stochastic exponential E(M)(t) = exp(Mt − 1
2 [M ]t) we have the martingale

term

(1.9)

ˆ t

0

f(Ŵ )dB = ρ

ˆ t

0

f(Ŵ )dWt︸ ︷︷ ︸+ρ

ˆ t

0

f(Ŵ )dW t

and, in essence, the trouble is due to underbraced, innocent looking Itô-integral. Indeed, any naive
attempt to put it in Stratonovich form,

(1.10) “

ˆ t

0

f(Ŵ ) ◦ dW :=

ˆ t

0

f(Ŵ )dW + (Itô-Stratonovich correction) ”

or, in the spirit of Wong-Zakai approximations,

(1.11) “

ˆ t

0

f(Ŵ ) ◦W := lim
ε→0

ˆ t

0

f(Ŵ ε)dW ε ”
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must fail whenever H < 1/2. The Itô-Stratonovich correction is given by the quadratic covariation,
defined (whenever possible) as the limit, in probability, of

(1.12)
∑

[u,v]∈π

(f(Ŵv)− f(Ŵu))(Wv −Wu),

along any sequence (πn) of partitions with mesh-size tending to zero. But, disregarding trivial
situations, this limit does not exist. For instance, when f(x) = x fractional scaling immediately
gives divergence (at rate H − 1/2) of the above bracket approximation. This issues also arises in
the context of option pricing which in fact is readily reduced (Theorem 1.3 and Section 6) to the
sampling of stochastic integrals of the afore-mentioned type, i.e. with integrands on a fractional scale.
All theses problems remain present, of course, for the more complicated situation of “non-simple”
rough volatility (Section 5) .

1.3. Description of main results. With motivation from singular SPDE theory, such as Hairer’s
work on KPZ [32] and the Hairer-Pardoux “renormalized” Wong-Zakai theorem [35], we provide
the closest there is to a satisfactory approximation theory for rough volatility. This starts with the
remark that rough path theory, despite its very purpose to deal with low regularity paths, is not
applicable

To state our basic approximation results, write Ẇ ε ≡ ∂tW
ε for a suitable (details below)

approximation at scale ε to white noise, with induced approximation to fBM, denoted by Ŵ ε.
Throughout, the Hurst parameter H ∈ (0, 1/2] is fixed and f is a smooth function, such that (1.8)
is a (local) martingale, as required by modern financial theory.

Theorem 1.1. Consider simple rough volatility with dynamics dSt/St = f(Ŵt)dBt, i.e. driven by
Brownians B and W with constant correlation ρ. There exist ε-peridioc functions C ε = C ε(t), with

diverging averages Cε , such that a Wong-Zakai result holds of the form S̃ε → S in probability and
uniformly on compacts, where

∂tS̃
ε
t /S

ε
t = f(Ŵ ε)Ḃε − ρC ε(t)f ′(Ŵ ε)− 1

2f
2(Ŵ ε) , Sε0 = S0.

Similar results hold for more general (“non-simple”) RV models.

Remark 1.2. When H = 1/2, this result is an easy consequence of Itô-Stratonovich conversion
formulae. In the case H < 1/2 of interest, Theorem 1.1 provides the interesting insight that genuine
renormalization, in the sense of subtracting diverging quantities is required if and only if correlation
ρ is non-zero. This is the case in equity (and many other) markets [4]. Also note that naive
approximations Sεt , without subtracting the C ε-term, will in general diverge.

In order to formulate implications for option pricing, define the Black-Scholes pricing function

(1.13) CBS
(
S0,K;σ2T

)
:= E

(
S0 exp

(
σ
√
TZ − σ2

2
T

)
−K

)+

,

where Z denotes a standard normal random variable. We then have

Theorem 1.3. With C ε = C ε(t) as in Theorem 1.1, define the renormalized integral approximation,

(1.14) Ĩ ε := Ĩ ε
f (T ) :=

ˆ T

0

f(Ŵ ε)dW ε −
ˆ T

0

C ε(t)f ′(Ŵ ε
t )dt
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and also approximate total variance,

V ε := V ε
f (T ) :=

ˆ T

0

f2(Ŵ ε
t )dt .

Then the price of a European call option, under the pricing model (1.1), (1.3), struck at K with
time T to maturity, is given as

lim
ε→0

E
[
Ψ(Ĩ ε,V ε)

]
where

(1.15) Ψ(I ,V ) := CBS

(
S0 exp

(
ρI − ρ2

2
V

)
,K, ρ2V

)
.

Similar results hold for more general (“non-simple”) RV models.

From a mathematical perspective, the key issue in proving the above theorems is to establish
convergence of the renormalized approximate integrals

(1.16) Ĩ ε =

ˆ T

0

f(Ŵ ε)dW ε −
ˆ T

0

C ε(t)f ′(Ŵ ε
t )dt→ (Itô-integral).

It is here that we find much inspiration from singular SPDE theory, which also requires renormalized
approximations for convergence to the correct Itô-object. Specifically, we see that the theory of
regularity structures [31], which essentially emerged from rough paths and Hairer’s KPZ analysis
(see [23] for a discussion and references), is a very appropriate tool for us. This adds to the
existing instances of regularity structures (polynomials, rough paths, many singular SPDEs . . . ) an
interesting new class of examples which on the one hand avoids all considerations related to spatial
structure (notably multi-level Schauder estimates; cf. [31, Ch.5]), yet comes with the genuine need
for renormalization. In fact, since we do not restrict to mollifier approximations (this would rule out
wavelet approximation of white noise!) our analysis naturally leads us to renormalization functions.

In case of mollifier approximations, i.e. Ẇ ε is the ε-mollifciation obtained by convolution of Ẇ with
a rescaled mollifier function, say δε(x, y) = ε−1ρ(ε−1(y − x))), which is the usual choice of Hairer

and coworkers [32, 31, 11], the renormalization function turns out to constant (since Ẇ ε is still
stationary); in this case

C ε(t) ≡ Cε = cεH−1/2

with c = c(ρ) explicitly given as integral, cf. (3.13). If, on the other hand, we consider a Haar
wavelet approximation of white noise, very natural from a numerical point of view, 3

C ε(t) =

√
2H

H + 1/2

|t− bt/εcε|H+1/2

ε
with mean Cε =

√
2H

(H + 1/2)(H + 3/2)
εH−1/2.(1.17)

It is natural to ask if C ε(t) can be replaced, after all, by its (since H < 1/2: diverging) mean Cε.
For H > 1/4 the answer yes, with an interesting phase transition when H = 1/4, cf. Section 3.2.

From a numerical simulation perspective, Thereom 1.3 is a step forward as it avoids any
sampling related to the other factor W . A brute-force approach then consists in simulating a scalar

Brownian motion W , followed by computing Ŵ =
´
KdW by Itô/Riemann Stieltjes approximations

of (I ,V ). However, given the singularity of Volterra-kernel K, this is not advisable and it is

3Other wavelet choices are possible. In particular, in case of fractional noise, Alpert-Rokhlin (AR) wavelets have

been suggested for improved numerical behaviour; cf. [28] where this is attributed to a series of works of A. Majda
and coworkers. A theoretical and numerical study of AR wavelets in the rough vol context is left to future work.
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preferable to simulate the two-dimensional Gaussian process (Wt, Ŵt : 0 ≤ t ≤ T ) with covariance
readily available. A remaining problem is that the rate of convergence∑

f(Ŵs)Ws,t → (Itô-integral) ,

with [s, t] taken in a partition of mesh-size ∼ 1/n, is very slow since Ŵ has little regularity when
H is small. (Gatheral and co-authors [27, 4] report H ≈ 0.05) . It is here that higher-order
approximations come to help and we have included quantitative estimates, more precisely: strong
rates, throughout. An analysis of weak rates will be conducted elsewhere, as is the investigation of
multi-level algorithms (cf. [6] for MLMC for general Gaussian rough differential equations). Recall
that the design of MLMC algorithms requires knowledge of strong rates. Numerical aspects are
further explored in Section 6.

The second set of results concerns large deviations for rough volatility. Thanks to the contraction
principle and fundamental continuity properties of Hairer’s reconstruction map, the problem is
reduced to understanding a LDP for a suitable enhancement of the noise. This approach requires
(sufficiently) smooth coefficients, but comes with no growth restrictions which is indeed quite suitable
for financial modelling: we improve the Forde-Zhang (simple rough vol) short-time large deviations
[19] such as to include f of exponential type, a defining feature in the works of Gatheral and
coauthors [27, 4]. (Such an extension is also subject of a recent preprint [38] and forthcoming work
[30].)

Theorem 1.4. Let Xt = log(St/S0) be the log-price under simple rough SV, i.e. (1.1), (1.3). Then

(tH−
1
2Xt : t ≥ 0) satisfies a short time large deviation principle with speed t2H and rate function

given by

(1.18) I(y) = inf
h∈L2([0,1])

{1

2
‖h‖2L2 +

(y − ρI1(h))
2

2I2(h)
}

with I1(h) =
´ 1

0
f(ĥ(t))h(t)dt, Iz2 (h) =

´ 1

0
f(ĥ(t))2dt where ĥ(t) =

´ t
0
K(s, t)h(s)ds.

Remark 1.5. A potential short-coming is the non-explicit form of the rate function, in the sense
that even geometric or Hamiltonian descriptions of the rate function (classical in Markovian setting,
see e.g [3, 8, 14, 15, 7]), which led to the famous SABR volatility smile formula, is lost. A partial
remedy here is to move from large deviations to (higher order) moderate deviations, which restores
analytic tractability and still captures the main feature of the volatiliy smile close to the money.
This method was introduced in a Markovain setting in [20], the extension to simple rough volatility
was given in [5], relying either on [19] or the above Theorem 1.4.

We next turn to non-simple rough volatility, motivated by Rosenbaum and coworkers [16, 17, 18],
and consider the stochastic Itô–Volterra equation

Zt = z +

ˆ t

0

K(s, t)(u(Zs)dWs+ v(Zs)ds)

with corresponding rough SV log-price process given by

Xt =

ˆ t

0

f(Zs)(ρdWs + ρdW s)−
1

2

ˆ t

0

f2(Zs)ds .
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(For simplicity, we here consider f, u, v to be bounded, with bounded derivatives of all orders.) For
h ∈ L2([0, T ]), let zh be the unique solution to the integral equation

zh(t) = z +

ˆ t

0

K(s, t)u(zh(s))h(s)ds,

and define I1(h) =
´ 1

0
f(zh(s))h(s)ds and Iz2 (h) =

´ 1

0
f(zh(s))2ds. Then we have the following

extension of Theorem 1.4 (and also [19, 38, 30]) to non-simple rough volatility:

Theorem 1.6. Let Xt = log(St/S0) be the log-price under non-simple rough SV. Then tH−
1
2Xt

satisfies a LDP with speed t2H and rate function given by

(1.19) I(x) = inf
h∈L2([0,T ])

{1

2
‖h‖2L2 +

(x− ρIz1 (h))
2

2Iz2 (h)
}.

Remark 1.7. We showed in [5, Cor.11] (but see related results by Alos et al. [2] and Fukasawa [24, 25])
that in the previously considered simple rough volatility models, now writing σ(.) instead of f(.),

the implied volatility skew behaves, in the short time limit, as ∼ ρσ
′(0)
σ(0) 〈K1, 1〉tH−1/2 , where 〈K1, 1〉

in our setting computes to cH := (2H)1/2

(H+1/2)(H+3/2) . (The blowup tH−1/2 as t→ 0 is a desired feature,

in agreement with steep skews seen in the market.) To first order Zt ≈ z + u(z)
´ t

0
K(s, t)dWs =

z + u(z)Ŵ =: σ(Ŵ ), from which one obtains a skew-formula in the non-simple rough volatility case
of the form,

ρu(z)
f ′(z)

f(z)
cHt

H−1/2 .

Following the approach of [5], Theorem 1.6 not only allows for rigorous justification but also for
the computation of higher order smile features, though this is not pursued in this article. In the
case of classical (Markovian) stochastic volaility, H = 1/2, and specializing further to f(x) ≡ x, so
that Z (resp. z) models stochastic (resp. spot) volatility, this reduces precisely to the popular skew
formula Gatheral’s book [26, (7.6)], attributed therein to Medvedev–Scaillet. In the case of rough
Heston, where Z models stochastic variance, cf. (5.1), we have f =

√
., u = η

√
. and this leads to

the following (rough Heston, implied volatility) short-dated skew formula

ρη

2
√
v0
cHt

H−1/2 ,

(multiply with 2
√
v0 to get the implied variance skew, again in agreement with Gatheral [26, p.35]);

this may be independently verified via the characteristic function obtained in [17].

Structure of the article. In Section 2 we reduce the proofs of Theorems 1.1 and 1.3 to the key
convergence issue, subject of Section 3. In Section 4 we consider the structure for two-dimensional
noise, necessary to study the asset price process. Section 5 then discusses the case of non-trivial
dynamics for rough volatility. Some numerical results are presented in [], followed by several
appendices with technical details. From Section 3 all our work relies on the framework of Hairer’s
regularity structures. There seems to be no point in repeating all the necessary definitions and
terminology, which the reader can find in [32, 31, 33, 23] and a variety of survey papers on the
subject. Instead, we find it more instructive to substantiate our KPZ inspiration and in the next
section introduce, informally, all relevant objects from regularity structures in this context.
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1.4. Lessons from KPZ and singular SPDE theory. The absence of a good approximation
theory is a defining feature of all singular SPDE recently considered by Hairer, Gubinelli et al. (and
now many others). In particular, approximation of the noise (say, ε-mollification for the sake of
argument) typically does not give rise to convergent approximations. To be specific, it is instructive
to recall the universal model for fluctuations of interface growth given by the Kardar–Parisi–Zhang
(KPZ) equation

∂tu = ∂2
xu+ |∂xu|2 + ξ

with space-time white noise ξ = ξ(x, t;ω). As a matter of fact, and without going in further detail,
there is a well-defined (“Cole-Hopf”) Itô-solution u = u(t, x;ω), but if one considers the equation
with ε-mollified noise, then u = uε diverges with ε→ 0. In this sense, there is a fundamental lack of
approximation theory and no Stratonovich solution to KPZ exists. To see the problem, take u0 ≡ 0
for simplicity and write

u = H ?
(
|∂xu|2 + ξ

)
with space-time convolution ? and heat-kernel

H(t, x) =
1√
4πt

exp

(
−x

2

4t

)
1{t>0}

One can proceed with Picard iteration

u = H ? ξ +H ? ((H ′ ? ξ)2) + ...

but there is an immediate problem with (H ′ ? ξ)2, (naively) defined ε-to-zero limit of (H ′ ? ξε)2,
which does not exist. However, there exists a diverging sequence (Cε) such that, in probability,

∃ lim
ε→0

(H ′ ? ξε)2−Cε → (new object) =: (H ′ ? ξ)�2.

The idea of Hairer, following the philosophy of rough paths, was then to accept

H ? ξ, (H ′ ? ξ)�2 (and a few more)

as enhancement of the noise (”model”) upon which solution depends in pathwise robust fashion.
This unlocks the seemingly fixed (and here even non-sensical) relation

H ? ξ → ξ → (H ′ ? ξ)2.

Loosely speaking, one has

Theorem 1.8 (Hairer). There exist diverging constants Cε such that a Wong-Zakai4 result holds of
the form ũε → u, in probability and uniformly on compacts, where

∂tũ
ε = ∂2

xũ
ε + |∂xũε|2 − Cε + ξε.

Similar results hold for a number of other singular semilinear SPDEs.

In a sense, this can be traced back to the Milstein-scheme for SDEs and then rough paths: Consider
dY = f(Y )dW , with Y0 = 0 for simplicity, and consider the 2nd order (Milstein) approximation

Yti+1
≈ Yti + f(Yti)Wti,ti+1

+ ff ′(Yti)

ˆ ti+1

ti

Wti,sẆsds

One has to unlock the seemingly fixed relation

W → Ẇ →
ˆ
WẆds =: W ,

4Hairer–Pardoux [35] derive the KPZ result as special case of a Wong-Zakai result for Itô-SPDEs.
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for there is a choice to be made. For instance, the last term can be understood as Itô-integral´
WdW or as Stratonovich integral

´
W ◦ dW (and in fact, there are many other choices, see e.g.

the discussion in [23].) It suffices to take this thought one step further to arrive at rough path theory:
accept W as new (analytic) object, which leads to the main (rough path) insight

SDE theory = analysis based on (W,W).

In comparison,

SPDE theory à la Hairer

= analysis based on (renormalized) enhanced noise (ξ, ....).

Inside Hairer’s theory: 5 As motivation, consider the Taylor-expansion (at x) of a real-valued
smooth function,

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(x)(y − x)2 + ... ,

can be written as abstract polynomial (“jet”) at x,

F (x) := f(x) 1 + g(x)X + h(x)X2 + ... ,

with, necessarily, g = f ′, h = f ′′/2, .... If we “realize” these abstract symbols again as honest
monomials, i.e. Πx : Xk 7→ (.−x)k and extend Πx linearly, then we recover the full Taylor expansion:

Πx[F (x)](.) = f(x) + g(x)(.− x) +
1

2
h(x)(.− x)2 + ...

Hairer looks for solution of this form: at every space-time point a jet is attached, which in case of
KPZ turns out - after solving an abstract fixed point problem - to be of the form

U(x, s) = u(x, s) 1 + + + v(x, s)X + 2 + v(x, s) .

As before, every symbol is given concrete meaning by “realizing” it as honest function (or Schwartz
distribution). In particular,

(1.20) 7→

{
H ? ξε, mollified noise; or

H ? ξ noise

and then, more interestingly,

(1.21) 7→


H ? (H ′ ? ξε)2, canonically enhanced mollified noise; or

H ? [(H ′ ? ξε)2 − Cε], renormalized ∼ or

H ? (H ′ ? ξ)�2, renormalized enhanced noise

This realization map is called “model” and captures exactly a typical, but otherwise fixed, realization
of the noise (mollified or not) together with some enhancement thereof, renormalized or not. For
instance, writing Πx,s for the realization map for renormalized enhanced noise, one has

Πx,s[U(x, s)](.) = u(x, s) +H ? ξ|(∗) +H ? (H ′ ? ξ)�2|(∗) + ...

where (∗) indicates suitable centering at (x, s). Mind that U takes values in a (finite) linear space
spanned by (sufficiently many) symbols,

U(x, s) ∈ 〈..., 1, , , X, , , ...〉 =: T

5In the section only, following [23], symbols will be coloured.
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The map (x, s) 7→ U(x, s) is an example of a modelled distribution, the precise definition is a
mix of suitable analytic and algebraic conditions (similar to the notation of a controlled rough path).

The analysis requires keeping track of the degree (a.k.a. homogeneity) of each symbol. For
instance, | | = 1/2 − κ (related to the Hölder regularity of the realized object one has in mind),
|X2| = 2 etc. All these degrees are collected in an index set. Last not least, in order to compare
jets at different points (think (X − δ1)3 = ...), use a group of linear maps on T , called structure
group. Last not least, the reconstruction map uniquely maps modelled distributions to function
/ Schwartz distributions. (This can be seen as generalization of the sewing lemma, the essence of
rough integration, see e.g. [23], which turns a collection of sufficiently compatible local expansions
into one function / Schwartz distribution.) In the KPZ context, the (Cole-Hopf Itô) solution is then
indeed obtained as reconstruction of the abstract (modelled distribution) solution U .

Acknowledgment: The authors acknowledge financial support from DFGs research grants BA5484/1
(CB, BS) and FR2943/2 (PKF, BS), the ERC via Grant CoG-683166 (PKF), the ANR via Grant
ANR-16-CE40-0020-01 (PG) and DFG Research Training Group RTG 1845 (JM).

Participants of Global Derivatives 2017 (Barcelona) and Gatheral 60th Birthday conference (CIMS,
NYU) are thanked for the feedback.

2. Reduction of Theorems 1.1 and 1.3

In the context of these theorems, we have

(2.1) St = S0 exp

[ˆ t

0

f
(
Ŵs

)
dBs − 1

2

ˆ t

0

f2
(
Ŵs

)
ds

]
.

where we recall that ˆ t

0

f(Ŵ )dB = ρ

ˆ t

0

f(Ŵ )dW + ρ

ˆ t

0

f(Ŵ )dW.

All approximations, W ε,W
ε

and Bε ≡ ρW ε + ρW
ε

converge uniformly to the obvious limits, so

that it suffices to understand the convergence of the stochastic integral. Note that W̃ is heavily
correlated with W but independent of W . The difficult interesting part is then indeed (1.16), i.e.

(2.2)

ˆ t

0

f(Ŵ ε)dW ε −
ˆ t

0

C ε(s)f ′(Ŵ ε
s )ds→

ˆ t

0

f(Ŵ )dW ,

which is the purpose of Theorem 3.24. For the other part, due to independence no correction terms

arise and we have (with details left to the reader)
´ t

0
f(Ŵ ε)dW

ε →
´ t

0
f(Ŵ )dW , with convergence

in probability and uniformly on compacts in t. The convergence result of Theorems 1.1 then follows
readily.

As for pricing, Theorem 1.3, consider the call payoff
(
S0 exp

[´ T
0
σ(t, ω)dBt − 1

2

´ T
0
σ2(t, ω)dt

]
−K

)+

.

An elementary conditioning argument (first used by Romano–Touzi in the context of Markovian SV
models) w.r.t. W , then shows that the call price is given as expection of

CBS

(
S0 exp

(
ρ

ˆ T

0

σ(t, ω)dW − ρ2

2

ˆ T

0

σ2(t, ω)dt

)
,K,

ρ2

2

ˆ T

0

σ2(t, ω)dt

)
.
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Specializing to the case σ = f(W̃ ), in combination with Theorem 3.24, then yields Theorem 1.3 .
Remark that extensions to non-simple RV are immediate from suitable extensions of Theorem 3.24,
as discussed in 5.2.

3. The rough pricing regularity structure

In this section we develop the approximation theory for integrals of the type
´
f(W̃ )dW . In the

first part we present the regularity structure and the associated models we will use. In the second
part we apply the reconstruction theorem from regularity structures to conclude our main result,
Theorem 3.24.

3.1. Basic pricing setup. We are given a Hurst parameter H ∈ (0, 1/2], associated to a fractional

Brownian motion (in the Riemann-Liouville sense) Ŵ , and fix an arbitrary κ ∈ (0, H) and an integer

M ≥ max{m ∈ N |m · (H − κ)− 1/2− κ ≤ 0}
so that

(M + 1)(H − κ)− 1/2− κ > 0 .(3.1)

At this stage, we can introduce the “level-(M + 1)” model space

T =
〈
{Ξ,ΞI(Ξ), . . . ,ΞI(Ξ)M ,1, I(Ξ), . . . , I(Ξ)M}

〉
,(3.2)

where 〈. . .〉 denotes the vector space generated by the (purely abstract) symbols in {. . .}. We will
sometimes write

S = S(M) := {Ξ,ΞI(Ξ), . . . ,ΞI(Ξ)M ,1, I(Ξ), . . . , I(Ξ)M}
so that T = T (M) =

⊕
τ∈S Rτ .

Remark 3.1. It is useful here and in the sequel to consider as sanity check the special case H = 1/2
in which case we recover the “level-2” rough path structure as introduced in [23, Ch.13]. More
specifically, if take Hölder exponent α := 1/2− κ < 1/2 and (and then M = 1) condition (3.1) is
precisely the familiar condition α > 1/3.

The interpretation for the symbols in S is as follows: Ξ should be understood as an abstract
representation of the white noise ξ belonging to the Brownian motion W , i.e. ξ = Ẇ where the
derivative is taken in the distributional sense. Note that since we set W (x) = 0 for x ≤ 0 we have

Ẇ (ϕ) = 0 for ϕ ∈ C∞c ((−∞, 0)). The symbol I(. . .) has the intuitive meaning “integration against
the Volterra kernel”, so that I(Ξ) represents the integration of white noise against the Volterra
kernel

√
2H

ˆ t

0

|t− r|H−1/2dW (r) ,

which is nothing but the fractional Brownian motion Ŵ (t). Symbols like ΞI(Ξ)m = Ξ ·I(Ξ) · . . . ·I(Ξ)
or I(Ξ)m = I(Ξ) · . . . · I(Ξ) should be read as products between the objects above. These
interpretations of the symbols generating T will be made rigorous by the model (Π,Γ) in the next
subsection. Every symbol in S is assigned a homogeneity, which we define by

|ΞI(Ξ)m| = −1/2− κ+m(H − κ), m ≥ 0

|I(Ξ)m| = m(H − κ), m > 0

|1| = 0 ,
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We collect the homogeneities of elements of S in a set A := {|τ | | τ ∈ S}, whose minimum is
|Ξ| = −1/2− κ. Note that the homogeneities are multiplicative in the sense that, |τ · τ ′| = |τ |+ |τ ′|
for τ , τ ′ ∈ S.

At last, our regularity comes with a structure group G, an (abstract) group of linear operators
on the model space T which should satisfy Γτ − τ =

⊕
τ ′∈S: |τ ′|<|τ | Rτ ′ and Γ1 = 1 for τ ∈ S and

Γ ∈ G. We will choose G = {Γh |h ∈ (R,+)} given by

Γh1 = 1, ΓhΞ = Ξ, ΓhI(Ξ) = I(Ξ) + h1 .

and Γh(τ ′ · τ) = Γhτ
′ · Γhτ for τ ′, τ ∈ S for which τ · τ ′ ∈ S is defined.

The limiting model (Π,Γ). Let W be a Brownian motion on R+ and extend it to all of R by requiring
W (x) = 0 for x ≤ 0. We will frequently use the notations

ˆ t

0

f(t)dW (t),

ˆ t

0

f(t) � dW (t)(3.3)

which denote the Itô integral and the Skohorod integral (which boils down to an Itô integral whenever
the integrand is adapted). From W we construct now the fractional Riemann-Liouville Brownian

motion Ŵ with Hurst index H ∈ (0, 1/2] as

Ŵ (t) = Ẇ ? K(t) =
√

2H

ˆ t

0

|t− r|H−1/2 dW (r) ,

where K(t) =
√

2H1t>0 · tH−1/2 denotes the Volterra kernel. We also write K(s, t) := K(t− s).
To give a meaning to the product terms ΞI(Ξ)k we follow the ideas from rough paths and define

an “iterated integral” for s, t ∈ R, s ≤ t as

Wm(s, t) =

ˆ t

s

(Ŵ (r)− Ŵ (s))m dW (r)(3.4)

Wm(s, t) satisfies a modification of Chen’s relation

Lemma 3.2. Wm as defined in (3.4) satisfies

Wm(s, t) = Wm(s, u) +

m∑
l=0

(
m

l

)
(Ŵ (u)− Ŵ (s))lWm−l(u, t)(3.5)

for s, u, t ∈ R, s ≤ u ≤ t.

Proof. Direct consequence of the binomial theorem. �

We extend the domain of Wm to all of R2 by imposing Chen’s relation for all s, u, t ∈ R, i.e. we
set for t, s ∈ R, t ≤ s

Wm(s, t) = −
m∑
l=0

(
m

l

)
(Ŵ (t)− Ŵ (s))lWm−l(t, s)(3.6)

We are now in the position to define a model (Π,Γ) that gives a rigorous meaning to the
interpretation we gave above for Ξ, I(Ξ),ΞI(Ξ), . . . . Recall that in the theory of regularity structures
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a model is a collection of linear maps Πs : T → C1
c (R)′, Γst ∈ G for indices s, t ∈ R that satisfiy

Πt = ΠsΓst,(3.7)

|Πsτ(ϕλs )| . λ|τ | ,(3.8)

Γstτ = τ +
∑

τ ′∈S: |τ ′|<τ

cτ ′(s, t)τ
′, |cτ ′(s, t)| . |s− t||τ |−|τ

′|(3.9)

where the bounds hold uniformly for τ ∈ S, any s, t in a compact set and for ϕλs := λ−1ϕ(λ−1(· − s))
with λ ∈ (0, 1] and ϕ ∈ C1 with compact support in the ball B(0, 1).

We will work with the following “Itô” model (Π,Γ), and (occasionally) write (ΠItô,ΓItô) to
avoid confusion with a generic model, also denoted by (Π,Γ), which renders more precisely our
interpretations of the elements of S.

Πs1 = 1 Γts1 = 1

ΠsΞ = Ẇ ΓtsΞ = Ξ

ΠsI(Ξ)m =
(
Ŵ (·)− Ŵ (s)

)m
ΓtsI(Ξ) = I(Ξ) + (Ŵ (t)− Ŵ (s))1

ΠsΞI(Ξ)m = {t 7→ d
dtW

m(s, t)} Γtsττ
′ = Γtsτ · Γtsτ ′ , for τ , τ ′ ∈ S with ττ ′ ∈ S

We extend both maps from S to T by imposing linearity.

Lemma 3.3. The pair (Π,Γ) as defined above defines (a.s.) a model on (T , A).

Proof. The only symbol in S on which (3.7) is not straightforward is ΞI(Ξ)m, where the statement
follows by Chen’s relation. The bounds (3.8) and (3.9) follow for 1 trivially and for I(Ξ)m by the

H − κ′, κ′ ∈ (0, H) Hölder regularity of Ŵ . It is further straightforward to check the condition (3.9)
by using the rule Γtsττ

′ = Γtsτ ·Γtsτ ′ so that we are only left with the task to bound ΠsΞI(Ξ)m(ϕλs ).
Following along the lines of proof [23, Theorem 3.1] it follows |Wm(s, t)| ≤ C|s− t|mH+1/2−(m+1)κ

(where C > 0 denotes a random constant with C ∈
⋃
p<∞ Lp), so that

|ΠsI(Ξ)mΞ(ϕλs )| =
∣∣∣∣ˆ (ϕλs )′(t)Wm(s, t) dt

∣∣∣∣ ≤ C ˆ ϕ′−1(t− s))|s− t|mH+1/2−(m+1)κ dt

λ2

≤ CλmH−1/2−(m+1)κ = Cλ|I(Ξ)mΞ| .

�

As we will see below in subsection 3.2 this model is the toolbox from which we can build pathwise

Itô integrals of the type
´ t

0
f(r, Ŵ (r)) dW (r). For an approximation theory for such expressions

we are in need of a comparable setup that describes approximations, which will be achieved by
introducing a model (Πε,Γε).

The approximating model (Πε,Γε). The whole definition of the model (Π,Γ) is based on the object

Ẇ . It is therefore natural to build an approximating model by replacing Ẇ by some modification
Ẇ ε that converges (as a distribution) to Ẇ as ε→ 0.

The definition of Ẇ ε will be based on an object δε which should be thought of as an approximation
to the Delta dirac distribution. Our purpose to build δε from wavelets, which can be as irregular as
the Haar functions. We find it therefore convenient to allow δε to take values in the Besov space

Bβ1,∞(R), β > 1/2 + κ which covers functions like 1[0,1] ∈ B1
1,∞(R).
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Remark 3.4. We shortly recall the definition of the Besov space Bβ1,∞(R) (see for example [41])
although this will here only be explicitely used in the proof of Lemma 3.16 in the appendix. Given
a compactly supported wavelet basis φy = φ(· − y), y ∈ Z, ψjy = 2j/2 ψ(2j(· − y)), j ≥ 0, y ∈ 2−jZ
we set

‖g‖Bβ1,∞ :=
∑
y∈Z
|(g, φy)L2 |+ sup

j≥0
2jβ

∑
y∈2−jZ

2−j/2|(g, ψjy)L2 |

and define Bβ1,∞(R) to be those L1 functions g (or (C
−dβe+1
c (R))′ distributions if β ≤ 0) for which

this norm is finite.

Definition 3.5. In the following we call δε : R2 → R a measurable, bounded function with the
following properties

• δε(x, y) = δε(y, x) for all x, y ∈ R.,

• the map R 3 x 7→ δε(x, ·) ∈ Bβ1,∞(R) is bounded and measurable for some β > −|Ξ| = 1/2+κ.

•
´
R δ

ε(x, ·) dx = 1,

• supR2 |δε| . ε−1,
• supp δε(x, ·) ⊆ B(x, c · ε) for any x ∈ R and some c > 0.

Example 3.6. There are two examples which are of particular interest for our purposes

• We say that δε “comes from a mollifier”, by which we mean that there is symmetric,

compactly supported L∞ ∩ Bβ1,∞(R)-function ρ, which integrates to 1 such that

δε(x, y) = ε−1 · ρ(ε−1(y − x))

• A further interesting example is the case where δε “comes from a wavelet basis”. Consider

only ε = 2−N and choose compactly supported L∞ ∩Bβ1,∞-valued father wavelets (φk,N )k∈Z
(e.g. the Haar father wavelets φk,N = 2N/2 · 1[k2−N ,(k+1)2−N )) and set

δε(x, y) =
∑
k∈Z

φk,N (x)φk,N (y)

Note that we could also add some generations of mother wavelets in this choice.

Note that (locally) Ẇ is contained in B|Ξ|∞,∞(R) (recall: |Ξ| = −1/2 − κ), so that due to

B|Ξ|∞,∞(R) ⊆ (Bβ1,∞(R))′ we can set

Ẇ ε(t) := 〈Ẇ , δε(t, ·)〉1R+
(t)

which is a Gaussian process and pathwise measurable and locally bounded. For (maybe stochastic)
integrands f we introduce the notationsˆ t

0

f(r) dW ε(r) :=

ˆ t

0

f(r)Ẇ ε(r) dr

and if f takes values in some (non-homogeneous) Wiener chaos induced by Ẇ we also introduceˆ t

0

f(r) � dW ε(r) :=

ˆ t

0

f(r) � Ẇ ε(r) dr ,(3.10)

where � denotes the Wick product. Note that these two objects do in general not coincide. The
motive for using the same symbol “�” as in (3.3) is that (3.10) can be seen as the Skohorod integral

with respect to the Gaussian stochastic measure induced by the Gaussian process Ẇ ε (for the notion
of Wick products and Skohorod integrals and their links see e.g. [39]).
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We now define an approximate fractional Brownian motion by setting

Ŵ ε(t) = K ? Ẇ ε =
√

2H

ˆ t

0

|t− r|H−1/2 dW ε(r)

which has the expected regularity as it is shown in the following lemma.

Lemma 3.7. On every compact time intervall [0, T ] we have the estimates

|Ŵ ε(t)− Ŵ ε(s)| . Cε|t− s|H−κ
′
, |Ŵ ε(t)− Ŵ ε(s)− (Ŵ (t)− Ŵ (s))| . C|t− s|H−κ

′
εδκ
′
.

uniformly in ε ∈ (0, 1] for any δ ∈ (0, 1) and κ′ ∈ (0, H) and where Cε, C > 0 are random constants
that are (uniformly) bounded in Lp for p ∈ [1,∞).

Proof. The proof is elementary but a bit bulky and therefore postponed to the appendix. �

Finally we can give the definition of the approximative model (Πε,Γε), the “canonical” model
built from the approximate (and hence regular) noise W ε.

Πε
s1 = 1 Γεst1 = 1

Πε
sΞ = Ẇ ε ΓεstΞ = Ξ

Πε
sI(Ξ)m =

(
Ŵ ε(·)− Ŵ ε(s)

)m
ΓεstI(Ξ) = I(Ξ) +

(
Ŵ ε(t)− Ŵ ε(s)

)
1

Πε
sI(Ξ)mΞ = (Ŵ ε(·)− Ŵ ε(s))m Ẇ ε(·) Γεstττ

′ = Γεstτ · Γεstτ ′ , τ , τ ′, τ · τ ′ ∈ S

Lemma 3.8. The pair (Πε,Γε) as defined above is a model on (T , A).

Proof. The identity Πt = ΓtsΠs is straightforward to check. The bounds (3.8) and (3.9) on Γst and

on ΠsI(Ξ)m follow from the regularity of Ŵ ε as proved in Lemma 3.7. The blow-up of ΠsΞI(Ξ)m(ϕλs )

however is even better than we need, since by the choice of δε we have |Ẇ ε| ≤ Cε, for some random
constant Cε, on compact sets. �

The definition of this model is justified by the fact that application of the reconstruction operator
(as in Lemma 3.22) yields integrals ˆ t

0

f(r, Ŵ ε(r)) dW ε(r) .(3.11)

As we pointed out already in section 1, there is no hope that integrals of this type will converge as

ε→ 0 if H < 1/2. This can be cured by working with a renormalized model (Π̂ε,Γε) instead.

The renormalized model Π̂ε. From the perspective of regularity structures the fundamental reason
why integrals like (3.11) fail to converge toˆ t

0

f(r, Ŵ (r)) dW (r)

lies in the fact that the corresponding models will not satisfy (Πε,Γε)→ (Π,Γ) in a suitable norm.
To see what is going on we will first rewrite ΠsΞI(Ξ)k

Lemma 3.9. For ϕ ∈ C∞c (R), s ∈ R, m ∈ {1, . . . ,M} we have

ΠsΞI(Ξ)m(ϕ) =

ˆ ∞
0

ϕ(t) (Ŵ (t)− Ŵ (s))m � dW (t)

−m
ˆ ∞

0

ϕ(t)K(s− t) (Ŵ (t)− Ŵ (s))m−1 dt
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where � denotes the Skorokhod integral and K(t) =
√

2H1t>0t
H−1/2 denotes the Volterra kernel.

Note that in the second term the domain of integration is actually (0, s).

Remark 3.10. Our notation reflects a close relation between the Skorokhod integral and the Wick
product. Indeed, when g =

∑
Xs1[s,t], with summation over a finite partition of [0, T ], and each

Xs a (non-adapted) random variable in a finite Wiener-Itô chaos, it follows from [39, Thm 7.40]
that

´
gδW =

∑
Xs �Ws,t. Passage to L2-limits is then standard. See also [44] and the references

therein.

Proof. We prove this by reexpressing Wk(s, t). For s < t we have already

Wk(s, t) =

ˆ t

s

dW (r) � (Ŵ (r)− Ŵ (s))k

so that it remains to see what happens for t < s. With relation (3.6) we have in this case

Wk(s, t) = −
k∑
l=0

(
k

l

)
(Ŵ (t)− Ŵ (s))l ·

ˆ
dr Ẇ (r) � (Ŵ (r)− Ŵ (t))k−l1t<r<s ,

where we use for the sake of concision formal notation, which is easy to translate to a rigorous
formulation. Using the fact that for Gaussians U1, V, U2 we have

(3.12) U l1 · (V � Uk−l2 ) = V � (U l1U
k−l
2 ) + lE[V U1]U l−1

1 Uk−l2

(a consequence of [39, Theorems 3.15, 7.33]), we obtain

Wk(s, t) = −
ˆ

dr Ẇ (r) � (Ŵ (r)− Ŵ (s))k1t<r<s

−
k∑
l=0

(
k

l

)
l ·
ˆ

drE[Ẇ (r) · (Ŵ (t)− Ŵ (s))] · (Ŵ (t)− Ŵ (s))l−1 · (Ŵ (r)− Ŵ (t))k−l .

Using
(
k
l

)
= k

(
k−1
l−1

)
and E[Ẇ (r) · (Ŵ (t)− Ŵ (s))] = −K(s− r)1r>0 for t < r < s we can reformulate

this and obtain

Wk(s, t) = −
ˆ

dW (r) � (Ŵ (r)− Ŵ (s))k1t<r<s + k

ˆ
drK(s− r)(Ŵ (r)− Ŵ (s))k−11r>0 .

(An alternative derivation of the above Skorokohod form can be given in terms of [45, Thm 3.2].)
Since ΠsΞI(Ξ)m(ϕ) =

´
ϕ(t) dtWm(s, t) the claim follows. �

Let us also reexpress the approximating model in suitable form.

Lemma 3.11. For ϕ ∈ C∞c (R), s ∈ R, m ∈ {1, . . . ,M} we have

Πε
sΞI(Ξ)m(ϕ) =

ˆ ∞
0

ϕ(t) (Ŵ ε(t)− Ŵ ε(s))m � dW ε(t)

−m
ˆ ∞

0

ϕ(t) K ε(s, t)(Ŵ ε(t)− Ŵ ε(s))m−1dt

+m

ˆ ∞
0

ϕ(t) K ε(t, t)(Ŵ ε(t)− Ŵ ε(s))m−1 dt

where � is defined as in (3.10) and where

K ε(u, v) := E[Ŵ ε(u)Ẇ ε(v)] = 1u,v≥0

ˆ ∞
0

ˆ ∞
0

δε(v, x1)δε(x1, x2)K(u− x2) dx1dx2 .(3.13)



REGULARITY STRUCTURES & ROUGH VOL 17

Proof. Using that for Gaussian V, U we have V Um = V � Um +mE[V U ]Um−1 (this is (3.12) with
U2 = 1) we can rewrite

Πε
sΞI(Ξ)m(ϕ) =

ˆ ∞
0

ϕ(t) (Ŵ ε(t)− Ŵ ε(s))m � dW ε(t)

+m

ˆ ∞
0

dt ϕ(t)E[Ẇ ε(t) (Ŵ ε(t)− Ŵ ε(s))](Ŵ ε(t)− Ŵ ε(s))m−1·

Inserting E[Ẇ ε(t) (Ŵ ε(t)− Ŵ ε(s))] = K ε(t, t)−K ε(s, t) shows the identity. �

Comparing the expressions in Lemma 3.11 and 3.9 we see that we morally have to subtract

m

ˆ
ϕ(t) K ε(t, t)(Ŵ ε(t)− Ŵ ε(s))m−1 dt

from the model, which will give us a new model Π̂ε. Of course we have to be careful that this step

preserves “Chen’s relation” Π̂ε
sΓst = Π̂ε

t , see Theorem 3.13 below.
If we interpret K ε as an approximation to the Volterra-kernel we see that the expression

C ε(t) := K ε(t, t), t ≥ 0

will correspond to something like “0H−1/2 =∞” in the limit ε→ 0. We have indeed the following
upper bound.

Lemma 3.12. For all s, t ∈ R we have

|K ε(s, t)| . εH−1/2 .

Proof. |K ε(s, t)| . ε−2
´
B(t,cε)

dx
´
B(x,cε)

du |s− u|H−1/2 . εH−1/2 . �

Our hope is now that the new model Π̂ε converges to Π in a suitable sense. Similar to [31, (2.17)]

we define the distance between two models (Π,Γ) and (Π̃, Γ̃) on a compact time interval [0, T ] as

|||(Π,Γ); (Π̃, Γ̃)|||T := sup
suppϕ ⊆ B(0, 1),

λ ∈ (0, 1],
s ∈ [0, T ], τ ∈ S

λ−|τ ||(Πs − Π̃s)τ(ϕλs )|+ sup
t, s ∈ [0, T ],

τ ∈ S,A 3 β < |τ |

|Γtsτ − Γ̃tsτ |β
|t− s||τ |−β

,

(3.14)

where | · |β denotes the absolute value of the coefficient of the symbol τ ′ with |τ ′| = β and where the
first supremum runs over ϕ ∈ C1

c with ‖ϕ‖C1 ≤ 1. We will also need

‖Π‖T = sup
suppϕ ⊆ B(0, 1),

λ ∈ (0, 1],
s ∈ [0, T ], τ ∈ S

λ−|τ ||Πsτ(ϕλs )| .

We are now ready to give the fundamental result of this subsection which plays a key role in our
approximation theory. Recall that the (minimal) homogeneity |Ξ| = −1/2− κ which corresponds to
W being Hölder with exponent 1/2− κ.

Theorem 3.13. Define, for every s ∈ [0, T ], the linear map Π̂ε
s : T → C1

c (R)′ given by, for
m ∈ {1, . . . ,M}

Π̂ε
sΞI(Ξ)m = Πε

sΞI(Ξ)m −mC ε(·)Πε
s(I(Ξ)m−1)
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and Π̂ε
s = Πε

s on all remaining symbols in S. Then

(Π̂ε, Γ̂ε) := (Π̂ε,Γε)

defines a (“renormalized”) model on (T , A) and on compact time intervals we have∥∥∥|||(Π̂ε, Γ̂ε); (Π,Γ)|||T
∥∥∥
Lp
. εδκ .(3.15)

for any δ ∈ (0, 1) and p ∈ [1,∞). In particular, we have “almost rate H” for M = M(κ,H) large
enough.

Remark 3.14. In the special case of the level-2 Brownian rough path (i.e. H = 1/2, M = 1) the
above result is in precise agreement with known results (even though the situation here is simpler
since we are dealing with scalar Brownian). More specifically, we don’t see the usual (strong) rate
“almost” 1/2 but have to subtract the Hölder exponent used in the rough path / model topology
(here: 1/2 − κ) which exactly leads to the rate “almost κ”. Since M = 1 entails the condition
1/2− κ > 1/3, we see that κ < 1/6, exactly as given e.g. in in [23, Ex. 10.14]. A better rate can
be achieved by working with higher-level rough path (here: M > 1) and indeed the special case
of H = 1/2, but general M , can be seen as a consequence of [21]: at the price of working with
∼ 1/(1/2 − κ) levels, one can choose κ arbitrarily close to 1/2 and so recover the usual “almost”
1/2 rate. Of course, the case H < 1/2 is out of reach of rough path considerations.

Proof. Since due to Lemma 3.12 we have, for fixed ε, that supt∈[0,T ] |C ε(t)| <∞ and |ΠsI(Ξ)m| .
| · −s|mH the bound (3.8) is still satisfied. The modification Π̂ε

sΞI(Ξ)m −Πε
sΞI(Ξ)m does not lead

to a violation of “Chen’s relation”. Indeed, using validity of (3.7) for the original model, we have

Π̂ε
tΓ
ε
ts(ΞI(Ξ)k) = Π̂ε

t

(
k∑
l=0

(
k

l

)
(Ŵ ε(t)− Ŵ ε(s))lΞI(Ξ)k−l

)

= Πε
s(ΞI(Ξ)k)−

k∑
l=0

(
k

l

)
(Ŵ ε(t)− Ŵ ε(s))l(k − l)C ε(·)(Ŵ ε(·)− Ŵ ε(t))k−l−1

= Πε
s(ΞI(Ξ)k)− kC ε(·)

k−1∑
l=0

(
k − 1

l

)
(Ŵ ε(t)− Ŵ ε(s))l (Ŵ ε(·)− Ŵ ε(t))k−l−1

= Πε
s(ΞI(Ξ)k)− kC ε(·)(Ŵ ε(·)− Ŵ ε(s))k = Π̂ε

s(Ξ(I(Ξ)k) .

We so see that (3.7) is also satisfied after our modification, and then easily conclude that (Π̂ε,Γε) is
still a model on (T , A). At last, the bound (3.15) is a bit technical and left to Appendix A. �

3.2. Approximation and renormalization theory. We now address to central question of how

the integral
´ t

0
f(Ŵ ε(r), r) dW ε(r) has to be modified to make it convergent against

´ t
0
f(W (r), r)dW (r).

The key idea is to combine the convergence result from Theorem 3.13 with Hairer’s reconstruction
theorem, which we state below.

We first recall the notion of a modelled distribution, compare [31, Definition 3.1]. We say that a
map F : R→ T is in the space DγT (Γ), γ > 0 for some time horizon T > 0 if

‖F‖DγT (Γ) := sup
A3β<γ,s∈[0,T ]

|F (s)|β + sup
A3β<γ,s,t∈[0,T ], s 6=t

|F (t)− ΓtsF (s)|β
|t− s|γ−β

<∞ ,(3.16)
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where as above | · |β denotes the absolute value of the coefficient of the vector τ with |τ | = β. Given

two models (Π,Γ) and (Π,Γ) and two F, F : R 7→ T it is also usefull to have the notion of a distance

|||F ;F |||DγT (Γ),DγT (Γ) := sup
A3β<γ, t∈[0,T ]

|F (t)− F (t)|β

+ sup
A3β<γ, s,t∈[0,T ], s 6=t

|F (t)− ΓtsF (s)− (F (t)− ΓtsF (s))|β
|t− s|γ−β

.

The reconstruction theorem now states that for γ > 0 a map F ∈ DγT (Γ) can be uniquely identified
with a distribution that behaves locally like Π·F (·).

Theorem 3.15. [31, Theorem 3.10]
Given a model (Π,Γ), γ > 0 and a T > 0 there is a unique continuous operator6 R : DγT (Γ)→

C|Ξ|(R) such that for any s ∈ [0, T ] and ϕ ∈ C1
c (B(0, 1))

(3.17) |(RF −ΠsF (s))(ϕλs )| . ‖Π‖T λγ .
For two different models (Π,Γ) and (Π,Γ) we further have∣∣(RF −ΠsF (s)− (RF −ΠsF (s)))(ϕλs )

∣∣
. λγ

(
‖F‖DγT (Γ) |||(Π,Γ); (Π,Γ)|||T + ‖Π‖T |||F ;F |||DγT (Γ);DγT (Γ)

)
(3.18)

for F ∈ DγT (Γ), F ∈ DγT (Γ).

As mentioned earlier we want ourselves to work with compactly supported functions ϕ ∈
Bβ1,∞(Rd), β > −|Ξ| which includes objects like the Haar wavelets. The following Lemma allows us
to carry over all bounds.

Lemma 3.16. The bounds (3.8), (3.14), (3.17) and (3.18) do still hold for ϕ ∈ Bβ1,∞(Rd), β > −|Ξ|
with compact support in B(0, 1) (after a change of constants).

Remark 3.17. This covers in particular functions like 1[0,1] ∈ B1
1,∞(R).

Proof. We prove this via wavelet methods in the appendix. �

By the notation X(ε) we mean in the following both X and Xε.

To study objects like
´ t

0
f(Ŵ (ε)(r), r) dW (ε)(r) with the reconstrution theorem we first “expand”

the integrand f(Ŵ (ε)(r), r) in the regularity structure T

F (ε)(s) :=

M∑
m=0

1

m!
∂m1 f(Ŵ (ε)(s), s)I(Ξ)m

On the level of the regularity structure these objects can be multiplied with “noise” Ξ which gives a
modelled distribution on T .

We will analyze F (ε) by writing it as composition of a (random) modelled distribution with the
smooth function f . To this end we need

Lemma 3.18. On the regularity structure (T , A,G) introduced in Section 3.1, consider a model
(Π,Γ) which is admissible in the sense

ΠtI(Ξ) = (K ∗ΠtΞ)(·)− (K ∗ΠtΞ)(t) .

6C|Ξ|(R) denotes the space of distributions that are locally in the Besov space B|Ξ|
∞,∞(R) (cmp. [31, Remark 3.8]).
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Then

(3.19) KΞ(t) = I(Ξ) + (K ∗ΠtΞ)(t)1

defines a modelled distribution. More precisely, KΞ ∈ D∞T :=
⋃
γ<∞D

γ
T .

Remark 3.19. Our notion of admissibility mimics [31, Def 5.9], which however is not directly
applicable here (due to failure of Assumption 5.4 in [31]).

Proof. By definition of the modelled distribution space we need to understand the action of Γst on
all constituting symbols. Since {1, I(Ξ)} span a sector, i.e. a space invariant by the action of the
structure group, it is clear that

ΓstI(Ξ) = I(Ξ) + (...)1.

Application of the realization map Πs, followed by evaluation at s, immediately identifies (....) as

ΠtI(Ξ)(s)−ΠsI(Ξ)(s) = ΠtI(Ξ)(s) = (K ∗ΠsΞ)(s)− (K ∗ΠtΞ)(t)

where we used admissibility and ΠsΞ = ΠtΞ in the last step, a general fact due to the trivial action
of the structure group on the symbol with lowest degree. As a consequence ΓstKΞ(t) ≡ KΞ(s), so
that, trivially, KΞ ∈ DγT for any γ <∞. �

For a given (sufficiently smooth) function f , and a generic model (Π,Γ) on our regularity structure,
define

FΠ : s 7→
M∑
m=0

1

m!
∂m1 f((RKΞ(s), s)I(Ξ)m .

Remark that KΞ(s) is function-like, i.e. with values in the span of symbols with non-negative degree.
From [31, Prop. 3.28] we then have

RKΞ(s) = 〈KΞ(s),1〉 = K ∗ΠsΞ .

(In particular, we see that F (ε)(s) coincides with FΠ when Π is taken as either approximate or
renormalized approximate model.) We can also define ΞFΠ simply obtained by multiplying it with
Ξ. The properties of FΠ and ΞFΠ are summarized in the following lemma.

Lemma 3.20. Given f ∈ C2M+3
b ([0, T ]×R), there exists N > 0 such that, for all γ ∈ (1/2 + κ, 1),

‖FΠ‖DγT (Γ) . ‖Π‖NT , ‖ΞFΠ‖Dγ+|Ξ|
T (Γ)

. ‖Π‖NT .

We have further for two given models (Π,Γ) and (Π′,Γ′),

|||FΠ;FΠ′ |||DγT (Γ);DγT (Γ′) .
(
‖Π‖NT + ‖Π′‖NT

)
|||(Π,Γ); (Π′,Γ′)|||T ,(3.20)

|||ΞFΠ; ΞFΠ′ |||Dγ+|Ξ|
T (Γ);Dγ+|Ξ|

T (Γ′)
.
(
‖Π‖NT + ‖Π′‖NT

)
|||(Π,Γ); (Π′,Γ′)|||T ,(3.21)

where the proportionality constants are, in particular, uniform over all f with bounded C2M+3-norm.

Proof. The map FΠ is simply the composition (in the sense of [31, Sec. 4.2]) of the function f
with the, thanks to the previous lemma, modelled distributions KΞ and s 7→ s1. The result then
follows from [31, Thm 4.16] (polynomial dependence in ‖Π‖T is not stated there but is clear from
the proof). �

Remark 3.21. In the case when f ∈ C2M+3 but with no global bounds, the result still holds since
we only consider the values of f on the range of the continuous function RKΞ (which is bounded by
some R ≥ 0). The resulting bounds then depend linearly on ‖f‖C2M+3(BR×[0,T ]).
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In the case of the Itô model (Π,Γ) (resp. the approximating renormalized models (Π̂ε,Γε)) we
simply denote FΠ by F (resp. F ε). We are then allowed to apply Hairer’s reconstruction Theorem
3.15. Note that since we have two models we have two reconstruction operators R and Rε. The
objects R(ε)ΞF (ε) can be written down explicitely.

Lemma 3.22. We have (a.s.)

RFΞ(ϕ) =

ˆ
ϕ(t) f(Ŵ (t), t) dW (t) ,

RεF εΞ(ϕ) =

ˆ
ϕ(t) f(Ŵ ε(t), t) dW ε(t)−

ˆ
K ε(t, t)∂1f(Ŵ ε(t), t)ϕ(t) dt .

Proof. The proof is in the appendix. �

If we take ϕ = 1[0,T ) we obtain RFΞ(1[0,T )) =
´ T

0
f(Ŵ (t), t) dW (t), so that it is natural to

choose Ĩ ε
f (T ) = RεΞF ε(1[0,T )) as an approximation. However, note that the key property of the

reconstruction operator R(ε) is that it is locally close to the corresponding model Π(ε) so that we
have in fact two natural approximations:

Definition 3.23. For F, F ε as in Lemma 3.20 and t ≥ 0 we set

Ĩ ε
f (t) := RεΞF ε(1[0,t]) =

ˆ t

0

f(Ŵ ε(r), r) dW ε(r)−
ˆ t

0

C ε(r)∂1f(Ŵ ε(r), r) dr .

For a (fixed) partition {[tεl , tεl+1)} of [0, t) with
∣∣tεl+1 − tεl

∣∣ . ε we further set

J̃ ε
f,M (t) =

∑
[tεl ,t

ε
l+1)

Π̂ε
tl

ΞF εtl(1[tεl ,t
ε
l+1))

=
∑

[tεl ,t
ε
l+1)

M∑
m=0

1

m!
∂m1 f(Ŵ ε(tεl ), t

ε
l )

ˆ tεl+1

tεl

(
Ŵ ε(r)− Ŵ ε(tεl )

)m
dW ε(r)−

−
M∑
m=1

1

(m− 1)!
∂m1 f(Ŵ ε(tεl ), t

ε
l )

ˆ tεl+1

tεl

C ε(r)
(
Ŵ ε(r)− Ŵ ε(tεl )

)m−1

dr .

We might drop the indices f and f,M on Ĩ ε and J̃ ε if there is no risk of confusion.
The following theorem, which can be seen as the fundamental theorem of our regularity structure

approach to rough pricing shows that these approximations do both converge.

Theorem 3.24. Fix T > 0. For f smooth, bounded with bounded derivatives, and Ĩ ε
f , J̃ ε

f,M as in
Definition 3.23 we have

(i) for any δ ∈ (0, 1) and any p <∞ there exists C such that

(3.22)

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣Ĩ ε
f (t)−

ˆ t

0

f(Ŵ (r), r)dW (r)

∣∣∣∣
∥∥∥∥∥
Lp

≤ CεδH ,

(ii) for every δ ∈ (0, 1) we can pick M = M(δ,H) large enough, such that, for any p <∞ there
exists C such that

(3.23)

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣∣J̃ ε
f,M (t)−

ˆ t

0

f(Ŵ (r), r)dW (r)

∣∣∣∣
∥∥∥∥∥
Lp

≤ CεδH .
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Remark 3.25. With regard to (i): although Ĩ ε
f (t) does not depend on any choice of M , and nor

does its (Itô) limit, the choice of M affects the entire regularity structure and so, implicitly also the

reconstruction operator Rε used in the definition of Ĩ ε
f , as well as the modelled distribution F ε.

The latter, in turn, requires f ∈ CM for the construction to make sense. If δ is chosen arbitrarily
close to one, f needs to have derivatives of arbitrary order, hence our smoothness assumption.

Remark 3.26. (f of exponential form; [27]) By an easy localization argument one shows that for f
smooth (but without any further bounds) ones still has

sup
ε∈(0,1]

P

(
sup
t∈[0,T ]

∣∣∣∣Ĩ ε
f (t)−

ˆ t

0

f(Ŵ (r), r)dW (r)

∣∣∣∣ ≤ CεδH
)
→ 0

with C →∞. The original rough vol model due to [27] makes a point that f should be of exponential
form. Now, the result with Lp-estimates still holds since we only consider the values of f on the
range of the continuous function RKΞ (which is bounded by some R ≥ 0). As pointed out in
Remark 3.21, the bounds then depend linearly on ‖f‖CM+2(BR×[0,T ]). Since, for us, (Π,Γ) is always

a Gaussian model, RKΞ is a Gaussian process (say, Ŵ or Ŵ ε) hence we have (Fernique) Gaussian
concentration for supt∈[0,T ] |RKΞ(t)|. So, for instance if f and its derivatives have exponential
growth we do have the Lp bounds of the above theorem, for all p < ∞. This remark justifies in
particular the choice f(x) = exp(x) and p = 2 in the numerical discussion of Section 6.

Proof. Without loss of generality T ≤ 1, otherwise split [0, T ] in subintervals. Let us show (3.22).

Ĩ ε
f (t)−

ˆ t

0

f(Ŵ (r), r)dW (r) = (Rε(F εΞ)−R(FΞ))(1[0,t])

= t
(

Π̂ε
0ΞF ε(0)−Π0ΞF (0))

)
(t−11[0,t])

+ t
(
RεΞF ε − Π̂ε

0ΞF ε(0)− (RΞF −Π0ΞF (0))
)

(t−11[0,t)) .

We then obtain the rate εδκ, δ ∈ (0, 1) using Theorem 3.13, Lemma 3.20 and (3.14) for the first term
and also Theorem 3.15 for the second term. Letting κ ↑ H and M ↑ ∞ our total rate can be chosen
arbitrary close to H.

To obtain the second estimate we can bound Ĩ ε
f (t)−J̃ ε

f,M (t) with the first inequality in Theorem
3.15. �

Non-constant vs. constant renormalization
If δε comes from a mollifier (cf. Example 3.6) the renormalization C ε = K ε(·, ·) that was

applied in Theorem 3.13 and thus in Definition 3.23 is a constant, which is the familiar concept
one encounters in the study of singular SPDE [32, 31, 11]. If δε comes from wavelets such as the
Haar basis, K ε(·, ·) is usually not constant but a periodic function with period ε. Thus we see that
our analysis gives rise to a “non-constant renormalization”. It is natural to ask if one can do with
constant renormalization after all. For the sake of argument, consider C ε, periodic with period ε,
with mean

Cε =
1

ε

ˆ ε

0

C ε(t)dt.

From Lemma 3.12 it follows that C ε (and its mean) are bounded by εH−1/2, uniformly in t. Putting
all this together it easily follows that |〈C ε − Cε, ϕ〉| . εα+H−1/2, uniformly over all ϕ bounded in
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Cα, with convergence to zero when α > 1/2 − H. As a consequence, taking ϕ(t) = f(Ŵ ε), for
smooth f , we clearly can apply this with any α < H. Hence, by equating the constraints on α,
we arrive at H > 1/4. The practical consequence then is, with focus on the convergence stated in
part (i) of Theorem 3.22 that we can indeed replace non-constant renormalization by a constant,
however at the prize of restricting to H > 1/4 and with an according loss on the convergence rate.
Interestingly, our numerical simulation suggest that no loss occurs and constant renormalization
works for any H > 0. While we have refrained from investigation this (technical) point further, 7

we can understand the mechanism at work by looking at the following toy example: Consider the

Ito-integral
´ 1

0
WhdW where WH is a fBM, but now with Hurst parameter H > 1/2, built, say,

as Volterra process over W . Using Young integration theory, one can give a pathwise argument
that shows that Riemann-Stieltjes approximation converge a.s. (with vanishing rate as H → 1/2+).
However, we know from stochastic theory (Itô integration) that this convergence works in L2 (and
then in probability) for any H > 0. We would thus expect that, when H ∈ (0, 1/4], constant
renormalization is still valid, but now the difference only vanishes in mean-square sense (which is
what we did in the numerics section).

3.3. The case of the Haar basis. The following special case of the approximations above to´ t
0
f(Ŵ (r), r)dW (r) is of particular interest for our purposes. We here collect some more concrete

formulas that arise in this case.
Let ε = 2−N , φ := 1[0,1) and φl,N = 2N/2φ(2N · −l), l ∈ Z and the corresponding δε coming from

this wavelet is then for x, y ∈ R.

δε(x, y) =
∑
l∈Z

φl,N (x)φl,N (y) = 2N1[bx2Nc2−N ,(bx2Nc+1)2−N )(y)

The mollified Volterra-kernel (3.13) then takes the form

K ε(u, v) =

ˆ ∞
0

ˆ ∞
0

δε(v, x1)δε(x1, x2)K(u− x2)dx1dx2

=
√

2H · 2N
ˆ

[bv2Nc2−N ,(bv2Nc+1)2−N∧u)

|u− x|H−1/21bv2Nc2−N≤u dx

=

√
2H

1/2 +H
2N×

×
(
|u− bv2Nc2−N |1/2+H − |u− (bv2Nc+ 1)2−N ∧ u)|1/2+H

)
1bv2Nc2−N≤u .

A special role is played by diagonal function as a renormalization,

C ε(t) = K ε(t, t) =

√
2H 2N

1/2 +H
|t− bt2Nc2−N |1/2+H .(3.24)

7Some computations led us to believe that this question can be settled with the aid of mixed (1, ρ)-variation of

the covariance function of the Volterra process, cf. [22], which we expected to hold uniformly over approximation.
However the amount of work seems in no relation to the main theme of this article.
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We have moreover

Ŵ ε(t) =

ˆ t

0

K(t− r) dW ε(r) =

∞∑
l=0

Zl

ˆ t

0

K(t− r)φk,N (r)dr

=

∞∑
l=0

2−N/2K ε(t, l2−N )Zl =

bt2Nc∑
l=0

2−N/2K ε(t, l2−N )Zl ,

where Zl = 〈Ẇ , φl,N 〉 are i.i.d. N(0, 1) variables. As approximation we can finally take I ε
f (t) from

Definition 3.23 with partition {[tl, tl+1)} = {[l2−N , (l + 1)2−N ∧ t)} which gives us

J̃ ε
f,M (t) =

dt2Ne−1∑
l=0

M∑
m=0

1

m!
∂m1 f(Ŵ ε(tl), tl)2

N/2Zl

ˆ tl+1

tl

(
Ŵ ε(r)− Ŵ ε(tl)

)m
dr−

−
M∑
m=1

1

(m− 1)!
∂m1 f(Ŵ ε(tl), tl+1)

ˆ tl+1

tl

C ε(r)
(
Ŵ ε(r)− Ŵ ε(tl)

)m−1

dr

and

Ĩ ε
f (t) =

dt2Ne−1∑
l=0

ˆ tl+1

tl

[2N/2Zl · f(Ŵ ε(r), r) dr − C ε(r) ∂1f(Ŵ ε(r), r)] dr .

As explained at the end of the last section, C ε(r) in these formulas could be replaced by its local
mean, the constant

2N
ˆ 2−N

0

C ε(r) dr =

√
2H

(H + 1/2)(H + 3/2)
2N(1/2−H) .

4. The full rough volatility regularity structure

4.1. Basic setup. We want to add an independent Brownian motion, so that we take an additional
symbol Ξ. We again fix M and define a (larger) collection of symbols S, with S ⊂ S, and then

T =
⊕
τ∈S

Rτ ∼= T +
〈
{Ξ,ΞI(Ξ), . . . ,ΞI(Ξ)M}

〉
.(4.1)

Again we fix |Ξ| = −1/2− κ and the homogeneity of the other symbols are defined multiplicatively
as before.

Also as before, we set Ŵt =
´ t

0
K(s, t)dWs with K(s, t) =

√
2H|t− s|H−1/21t>s, where W and

also W are independent Brownian motions.
We extend the canonical model (Π,Γ) to this regularity structure by defining

ΠsΞI(Ξ)m =

{
t 7→ d

dt

(ˆ t

s

(
Ŵ (u)− Ŵ (s)

)m
dW (u)

)}
(the above integral being in Itô sense), and 8

Γts
(
ΞI(Ξ)m

)
= ΞΓts(I(Ξ)m).

Arguments similar to the proof of Lemma 3.8 show that this indeed defines a model on T .

8Upon setting Γts
(
Ξ
)

= Ξ, the given relation is precisely implied by multiplicativity of Γ.
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4.2. Small noise model large deviation. Given δ > 0 we consider the ”small-noise” model

(Πδ,Γδ) on T̃ obtained by replacing W,W by δW, δW , which simply means that

Πδ1 = 1

ΠδI(Ξ)m = δmΠI(Ξ)m

ΠδΞI(Ξ)m = δm+1ΠΞI(Ξ)m

ΠδΞI(Ξ)m = δm+1ΠΞI(Ξ)m,

and

Γδts1 = 1,ΓδtsΞ = Ξ,ΓδtsΞ = Ξ,

ΓδtsI(Ξ) = I(Ξ) + δ(Ŵ (t)− Ŵ (s))1

Γδtsττ
′ = Γδtsτ · Γδtsτ ′ , for τ , τ ′ ∈ S.

Finally, for h = (h1, h2) in H := L2([0, T ])2, we consider the deterministic model (Πh,Γh) defined
by

Πh1 = 1,

Πh
sΞ = h1, Πh

sΞ = h2,

Πh
sI(Ξ)(t) =

ˆ t∨s

0

(K(u, t)−K(u, s))h1(u)du,

Πhττ ′ = ΠhτΠhτ ′ for τ , τ ′ ∈ S

and

Γhts1 = 1,ΓhtsΞ = Ξ,ΓhtsΞ = Ξ,

ΓhtsI(Ξ) = I(Ξ) + (

ˆ t∨s

0

(K(u, t)−K(u, s))h1(u)du)1

Γhtsττ
′ = Γhtsτ · Γhtsτ ′ , for τ , τ ′ ∈ S.

The following lemma and theorem are proved in Appendix B.

Lemma 4.1. For each h ∈ H, Πh does define a model. In addition, the map h ∈ H 7→ Πh is
continuous.

Theorem 4.2. The models Πδ satisfy a large deviation principle (LDP) in the space of models with
rate δ2 and rate function given by

J(Π) =

{
1
2‖h‖

2
H if Π = Πh for some h ∈ H,

+∞, otherwise.
.

As an immediate corollary we have

Corollary 4.3. For δ small, P(Y δ1 ≈ y) ≈ exp[−I(y)/δ2], in the precise sense of a large deviation
principle (LDP) for

Y δ1 :=

ˆ 1

0

f(δHŴs)δ
(
ρdWs + ρdW s

)
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with speed δ2, and rate function given by

(4.2) I(y) = inf
h1∈L2([0,1])

{1

2
‖h1‖2L2 +

(y − I1(h1))
2

2I2(h1)
}

where

I1(h1) = ρ

ˆ 1

0

f

(ˆ s

0

K(u, s)h1(u)du

)
h1(s)ds, I2(h1) =

ˆ 1

0

f

(ˆ s

0

K(u, s)h1(u)du

)2

ds .

Remark 4.4. This improves a similar result in [19] in the sense that f of exponential form, as
required in rough volatility modelling [27, 4, 5], is now covered.

Proof. Note that

Y δ1 =
〈
RδF δ · (ρΞ + ρΞ), 1[0,1]

〉
where F δ ≡ FΠδ as defined in Lemma 3.20. By the contraction principle and the continuity estimate
from Theorem 3.15, it holds that Y δ1 satisfies a LDP, with rate function given by

I(y) = inf{1

2

(
‖h1‖2L2 + ‖h2‖2L2

)
, y =

〈
RhFh · (ρΞ + ρΞ), 1[0,1]

〉
},

where we used Fh ≡ FΠh . It then suffices to note that〈
Rh
(
Fh · (ρΞ + ρΞ)

)
, 1[0,1]

〉
=

ˆ 1

0

f

(ˆ s

0

K(u, s)h1(u)du

)
(ρh1(s)ds+ ρh2(s)ds)

and optimizing over h2 for fixed h1 we obtain (4.2). �

We note that thanks to Brownian resp. fractional Brownian scaling, small noise large deviations
translate immediately to short time large deviations, cf. [19].

Although the rate function here is not given in a very useful form, it is possible [5] to expand
it in small y and so compute (explicitly in terms of the model parameters) higher order moderate
deviations which relate to implied volatility skew expansions.

5. Rough Volterra dynamics for volatility

5.1. Motivation from market micro-structure. Rosenbaum and coworkers, [16, 17, 18], show
that stylized facts of modern market microstructure naturally give rise to fractional dynamics and
leverage effects. Specifically, they construct a sequence of Hawkes processes suitably rescaled in time
and space that converges in law to a rough volatility model of rough Heston form

dSt/St =
√
vtdBt ≡

√
v
(
ρdWt + ρdW t

)
,(5.1)

vt = v0 +

ˆ t

0

a− bvs
(t− s)1/2−H ds+

ˆ t

0

c
√
vs

(t− s)1/2−H dWs .

(As earlier, W,W independent Brownians.) Similar to the case of the classical Heston model,
the square-root provides both pain (with regard to any methods that rely on sufficient smooth
coefficients) and comfort (an affine structure, here infinite-dimensional, which allows for closed form
computations of moment-generating functions). Arguably, there is no real financial reason for the
square-root dynamics9 and ongoing work attempts to modify the above square-root dynamics, such
as to obtain (something close to) log-normal volatility, put forward as important rough volatility

9This is also a frequent remark for the classical Heston model.
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feature by Gatheral et al. [27]. This motivates the study of more general dynamic rough volatility
models of the form

dSt/St = f(Zt)dBt ≡ f(Zt)
(
ρdWt + ρdW t

)
,(5.2)

Zt = z +

ˆ t

0

K(s, t)v(Zs)ds+

ˆ t

0

K(s, t)u(Zs)dWs(5.3)

with sufficiently nice functions f, u, v. (While f(x) =
√
x is still OK in what follows, we assume

u, v ∈ C3 for a local solution theory and then in fact impose u, v ∈ C3
b for global existence. (One

clearly expects non-explosion under e.g. linear growth, but in order not to stray too far from
our main line of investigation we refrain from a discussion.) Remark that f(z) plays the role of
spot-volatility. Further note that the choice z = 0, v ≡ 0, u ≡ 1 brings us back to the “simple” case

with (rough stochastic) volatility f(Zt) = f(Ŵt) considered in earlier sections.

With some good will,10 equation (5.2) fits into the existing theory of stochastic Volterra equations
with singular kernels (e.g. [46] or [12]).

5.2. Regularity structure approach. We insist that (5.2) is not a classical Itô-SDE (solutions
will not be semimartingales), nor a rough differential equations (in the sense of rough paths, driven
by a Gaussian rough path as in [23, Ch.10]). If rough paths have established themselves as a powerful
tool to analyze classical Itô-SDE, we here make the point that Hairer’s theroy is an equally powerful
tool to analyze stochastic Volterra (resp. mixed Itô-Volterra) equations in the singular regime of
interest.

As preliminary step, we have to have to find the correct model space, spanned by symbols which
arise by formal Picard iteration. To this end, rewrite (5.2) formally, or as equation for modelled
distributions,

(5.4) Z = I(U(Z) · Ξ) + (....)1

from which one can guess (or formally derive along [31, Sec. 8.1]) the need for the symbols

1, I(Ξ), I(Ξ)2, I(ΞI(Ξ)), ...

We have degrees |1| = 0, |I(Ξ)| = H − κ and then, for subsequent symbols, degree computed as

(1/2 +H)× {number of I}+ (−1/2 + κ)× {number of Ξ}.
For a modelled distribution, Z(t) takes values in the linear span of sufficiently many symbols, the
(minimal) number of which is dictated by the Hurst parameter H. Loosely speaking, Z ∈ Dγ
indicates an expansions with γ-error estimate, in practice easy to see from the degree of the lowest
degree symbols that do not figure in the expansion. For example, in case of a “level-2 expansion”
we can expect

Z(t) = (....)1 + (....)I(Ξ) ∈ D2(H−κ)
0

since |I(Ξ)2| = |I(ΞI(Ξ))| = 2H − 2κ. It follows from general theory [31, Thm 4.16] that if Z ∈ Dγ0 ,
then so is U(Z), the composition with a smooth function, and by [31, Thm 4.7] the product with
Ξ ∈ D∞−1/2−κ is a modelled distribution in Dγ−1/2−κ. For both reconstruction and convolution with

singular kernels, one needs modelled distributions with positive degree γ − 1/2 − κ > 0. Given

10We are not aware of any literature on mixed Itô-Volterra systems (although expect no difficulties). Here of
course, it suffices to first solves for Z and then construct S as stochastic exponential.
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H ∈ (0, 1/2] we can then determine which symbols (up to which degree) are required in the expansion.
As earlier, fix an integer

M ≥ max{m ∈ N|m · (H − κ)− 1/2− κ ≤ 0}

(so that (M + 1).(H − κ)− 1/2− κ > 0) and see that Z ∈ D(M+1).(H−κ)
0 will do. When H > 1/4,

and by choosing κ > 0 small enough, we see that M = 1 will do. That is, the symbols required to
describe Z are {1, I(Ξ)} and if one adds the symbols required to describe the right-hand side, one
ends up with the level-2 model space spanned by

{Ξ,ΞI(Ξ),1, I(Ξ)}
which is exactly the model space for the “simple” rough pricing regularity structure, (3.2) in case
M = 1. When H ≤ 1/4 this precise correspondence is no longer true. To wit, in case H ∈ (1/3, 1/4],
taking M = 2 accordingly, solving (5.3) on the level of modelled distributions will require a (“level-3”)
model space given by

〈Ξ,ΞI(Ξ),ΞI(Ξ)2,ΞI(ΞI(Ξ)),1, I(Ξ), I(Ξ)2, I(ΞI(Ξ))〉
which is strictly larger than the corresponding level-3 simple model space given in (3.2). In general,

one needs to consider an extended model space T̂ = 〈Ŝ〉, so as to have

τ ∈ Ŝ ⇒ ΞI(τ)m, I(τ)m ∈ Ŝ,m ≥ 0,

(with the understanding that only finitely many such symbols are needed, depending on H as
explained above). As a result, symbols such as

ΞI(Ξ(I(Ξ))m), m ≥ 0, I(Ξ(I(Ξ(I(Ξ))m)m
′
),m,m′ ≥ 0, . . .

will appear. At this stage a tree notation (omnipresent in the works of Hairer) would come in
handy and we refer to [9] (and the references therein) for a recent attempt to reconcile the tree
formalism of branched rough path [29, 34] and the most recent algebraic formalism of regularity
structures. (In a nutshell, the simple case (3.2) corresponds to trees where one node has m branches;
in the present non-simple case symbols branching can happen everywhere.) ) Carrying out the
following construction in the general case, H > 0, is certainly possible.11 However, the algebraic
complexity is essentially the one from branched rough paths and hence the general case requires a
Hopf algebraic (Connes-Kreimer, Grossman-Larson ...) construction of the structure group (a.k.a.
positive renormalization). Although this, and negative renormalization, is well understood ([31, 10],
also [9] for a rough path perspective, all complete exposition would lead us to far astray from the
main topic of this paper. Hence, for simplicity only, we shall restrict from here on to the level-2 case
H > 1/4 (with M = 1 accordingly) but will mention general results whenever useful.

5.3. Solving for rough volatility. We rewrite (5.3) as equation for modelled distributions in Dγ ,

(5.5) Z = z1 +K(U(Z) · Ξ + V (Z)).

(Here U, V are the operators associated to composition withu, v ∈ CM+2 respectively.) We also
impose

γ ∈ (1/2 + κ, 1)

which is clearly necessary such as to have the product U(Z) · Ξ in a modelled distribution space of
positive parameter, so that reconstruction, convolution etc. makes sense. Let H > 1/4,M = 1 and

11We note that, as H → the number of symbols tends to infinity. In comparison, as far as we know, among all
recently studied singular SPDEs, only the sine-Gordon equation [36] exhibits arbitrarily many symbols.
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pick κ ∈ (0, 4H−1
6 ) so that (M + 1).(H − κ)− 1/2− κ > 0. As explained in the previous section,

this exactly allows us to work in the familiar structure of Section 3.1. That is, with M = 1,

T = 〈Ξ,ΞI(Ξ),1, I(Ξ)〉 .
with index set and structure group as given in that section. This structure is equipped with
the Itô-model, and its (renormalization) approximations. Equation (5.5) critically involves the
convolution operator K acting on Dγ . The general construction [31, Sec. 5] is among the most
technical in Hairer’s work, and in fact not directly applicable (our kernel K, although β-regularizing
with β = 1/2 +H) fails the Assumption 5.4 in [31]) so we shall be rather explicit.

Lemma 5.1. On the regularity structure (T , A,G) of Section 3.1 with M = 1, consider a model
(Π,Γ) which is admissible in the sense

ΠtI(Ξ) = (K ∗ΠtΞ)(·)− (K ∗ΠtΞ)(t) .

Let γ > 0, F ∈ Dγ and set 12

KF : s ∈ [0, T ] 7→ I(F (s)) + (K ∗ RF )(s)1

Then (i) K maps Dγ → Dmin{γ+β,1} and (ii) R(KF ) = K ∗ RF , i.e. convolution commutes with
reconstruction.

Remark 5.2. [31, Thm 5.2] suggests the estimate K maps Dγ → Dγ+β . The difference to our baby
Schauder estimate stems from the fact, unlike Assumption 5.3 in [31, p.64] we do not assume that
our regularity structure contains the polynomial structure.

Proof. (Sketch) The special case F ≡ Ξ ∈ D∞ was already treated in Lemma 3.18. We only show
that, in the general case, K necessarily has the stated form but will not check the properties. It is
enough to consider F with values in 〈Ξ,ΞIΞ〉 and make the ansatz

(KF )(s) := IF (s) + (...)1 .

Applying reconstruction, together with [31, Prop. 3.28] we see that R(KF ) ≡ (...) which in turn
must equal K ∗ RF , provided we postulate validity of (ii). This is the given definition of KF . �

We return to our goal of solving

(5.6) Z = z1 +K(U(Z) · Ξ + V (Z)) ,

noting perhaps that U(Z) makes sense for every function-like modelled distribution, say F (t) =

F0(t)1 +
∑M
k=1 Fk(t)(IΞ)k ∈ T+ :=

〈
1, I(Ξ), . . . , (IΞ)M

〉
, in which case

(5.7) U(F )(t) = u(F0(t))1 + u′(F0(t))

M∑
k=1

Fk(t)I(Ξ)k .

(Similar remarks apply to V , the composition operator associated to v ∈ CM+2). Recall M = 1.

Theorem 5.3. For any admissible model (Π,Γ) and u, v ∈ CM+2
b (R), for any T > 0, the equation

(5.6) has a unique solution in Dγ(T+), and the map (u, v,Π) 7→ Z is locally Lipschitz in the sense

that if Z and Z̃ are the solutions corresponding respectively to (u, v,Π) and (ũ, ṽ, Π̃),

|||Z; Z̃|||DγT . ‖u− ũ‖CM+2
b

+ ‖v − ṽ‖CM+2
b

+ |||(Π,Γ); (Π̃, Γ̃)|||T ,

12 I is extended linearly to all of T by taking Iτ = 0 for symbols τ 6= Ξ).
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with the proportionality constant being bounded when the (resp. CM+2
b and model) norms of the

arguments stay bounded.
In addition, if (Π,Γ) is the canonical Itô model (associated to Brownian resp. fractional Brownian

motion, H > 1/4) then Z = RZ is solves (5.2) in the Itô-sense.

Remark 5.4. Z = RZ is clearly the (unique) reconstruction of the (unique) solution to the abstract
problem. We also checked that Z is indeed a solution for the Itô-Volterra equation. However, if one
desires to know that Z is the unique strong solution to the stochastic Itô-Volterra equation, it is
clear that one has to resort to uniqueness results of the stochastic theory, see e.g. [12].

Proof. The well-posedness and continuous dependence on the parameters essentially follows from
results of [31], details are spelled out the details in Appendix C.

The fact that the reconstruction of the solution solves the Itô equation can be obtained by
considering approximations as is done in [35, Thm 6.2] or [23, Ch. 5]. �

Using the large deviation results obtained in the previous subsection, we can directly obtain a
LDP for the log-price

Xt =

ˆ t

0

f(Zs)(ρdWs + ρdW s)−
1

2

ˆ t

0

f2(Zs)ds.

For square-integrable h, let zh be the unique solution to the integral equation

zh(t) = z +

ˆ t

0

K(s, t)u(zh(s))h(s)ds .

Corollary 5.5. Let H ∈ (0, 1/2] and f smooth (without boundedness assumption). Then tH−
1
2Xt

satisfies a LDP with speed t2H and rate function given by

(5.8) I(x) = inf
h∈L2([0,1])

{1

2
‖h‖2L2 +

(x− Iz1 (h))
2

2Iz2 (h)
}

where

Iz1 (h) = ρ

ˆ 1

0

f(zh(s))h(s)ds , Iz2 (h) =

ˆ 1

0

f(zh(s))2ds .

Remark 5.6. Despite our previous limitation to H > 1/4, to approach extends to any H > 0 and
yields the result as stated.

Proof. Ignoring the second part
´ t

0
(...)ds in Xt which is O(t) = o(t

1
2−H) since f is bounded, we let

X̂t =
´ t

0
f(Zs)(ρdWs + ρdW s) and by scaling we see that

tH−
1
2 X̂t =d X̂δ

1 ,

where δ = tH and Xδ, Zδ are defined in the same way as X, Z with W,W replaced by δW, δW and

v replaced by vδ = δ1+ 1
2H h.

We then note that
Xδ

1 =
〈
RδF (Zδ)(ρΞ + ρΞ), 1[0,1]

〉
=: Ψ(Πδ, vδ)

where Ψ is locally Lipschitz by Theorem 5.3. We can then directly use the fact that Πδ satisfy
a LDP (Theorem 4.2) with a contraction principle such as Lemma 3.3 in [37] to obtain that Xδ

1

satisfies a LDP with rate function

I(x) = inf

{
1

2
(‖h‖2L2 + ‖h‖2L2 , x = Ψ(Π(h,h), 0)

}
.
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It then suffices to note that zh is exactly RZ for Z the solution to (5.6) corresponding to a model

Π(h,h) and with h ≡ 0, and to optimize separately over h as in the proof of Corollary 4.3. �

We also have an approximation result :

Corollary 5.7. Let H > 1/4 (for simplicity, but see remark below). Then Z = limZε, uniformly
on compacts and in probability, where

(5.9) Zεt = z +

ˆ t

0

K(s, t)(u(Zεs )dW ε
s + (v(Zεs )− C ε(s)uu′(Zεs )ds) .

Remark 5.8. Replacing the renormalization function C εby its mean is possible, provided H > 1/4.
However, unlike the discussion at the end of Section 3.2, this is no more a consequence of quantifying
the distributional convergence. In the present context, this is achieved by checking directly model-
convergence, which, fortunately, is not much harder. We leave details to the interested reader.

Remark 5.9. In contrast to the previous statement, the above result is more involved for H ∈ (0, 1/4]
and additional terms renormalization terms appear, the general description of which would benefit
from pre-Lie products, as recently introduced [9].

Proof. Thanks to Theorem 3.13 and Theorem 5.3 it follows from continuity of reconstruction that

Z = RZ = lim
ε→0
RεZε,

so that the only thing to do is check that Zε solves (5.9). Note that (5.6) implies that one has
(omitting upper ε’s at all normal and caligraphic Z ...)

Z(t) = Zt1 + u(Zt)I(Ξ),

and, with (5.7),

U(Z(t))Ξ = u(Zt)Ξ + u′u(Zt)I(Ξ)Ξ.

But then since Π̂ε is a “smooth” model, in the sense of Remark 3.15. in [31], one has

Rε(U(Zε)Ξ)(t) = Π̂ε
t (U(Zε(t))Ξ)(t)

= u(Zεt )(Π̂ε
tΞ)(t) + u′u(Zεt )(Π̂ε

tΞI(Ξ))(t)

= u(Zεt )Ẇ ε(t)− u′u(Zεt )K ε(t, t) .

Since convolution commutes with reconstruction, cf. Lemma 5.1, it follows that Zε is indeed a
solution to (5.9). �

6. Numerical results

We will now resume where we left off in Section 3.3 and revisit the case of European option
pricing under rough volatility. Building on the theoretical underpinnings of Section 3, we present
a concise description of the central algorithm of this paper - for simplicity restricted to the unit
time interval - and complement the theoretical convergence rates obtained in previous chapters
with numerical counterparts. The code used to run the simulations has been made available on
https://www.github.com/RoughStochVol.

Concise description. Without loss of generality, set time to maturity T = 1. We are interested
in pricing a European call option with spot S0 and strike K under rough volatility. From Theorem

https://www.github.com/RoughStochVol
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1.3, we have

(6.1) C(S0,K, 1) = E
[
CBS

(
S0 exp

(
ρI − ρ2

2
V

)
,K,

ρ2

2
V

)]
where the computational challenge obviously lies in the efficient simulation of

(I ,V ) =

(ˆ 1

0

f(Ŵt, t)dWt,

ˆ 1

0

f2(Ŵt, t)dt

)
.

As explored in Subsection 3.3, we take a Wong-Zakai-style approach to simulating I , that is, we
approximate the White noise process Ẇ on the Haar grid as follows:
Let {Zi}i=1,...2N−1 ∼ iid N (0, 1) and choose a Haar grid level N ∈ N such that the stepsize of the

Haargrid ε = 2−N . Then, for all t ∈ [0, 1] and i = 0, . . . , 2N − 1, we set

Ẇ ε(t) =

2N−1∑
i=0

Zie
ε
i (t) where eεi (t) = 2N/21[i2−N ,(i+1)2−N )(t)(6.2)

which induces an approximation of the fBm

Ŵ ε(t) =

2N−1∑
i=0

Ziê
ε
i (t) where(6.3)

êεi (t) = 1t>i2−N

√
2H2N/2

H + 1/2

(
|t− i2−N |H+1/2 − |t−min((i+ 1)2−N , t)|H+1/2

)
.(6.4)

As outlined before, the central issue is that the object
´ 1

0
f(Ŵ ε(t), t)Ẇ ε(t)dt does not converge in

an appropriate sense to the object of interest I as ε→ 0. This is overcome by renormalizing the
object, two possible approaches of which are explored in Subsection 3.3. For the remainder, we will
consider the ’simpler’ renormalized object given by

Ĩ ε =

ˆ 1

0

f(Ŵ ε(t), t)Ẇ ε(t)dt−
ˆ 1

0

C ε(t)∂1f(Ŵ ε(t), t)dt(6.5)

where the renormalization object C ε(t) can be one of

C ε(t) =

{
2N
√

2H
H+1/2 |t−

⌊
t2N

⌋
2−N |H+1/2

√
2H

(H+1/2)(H+3/2)2N(1/2−H).
(6.6)

Coming back to the original question of simulating (I ,V ), we just argued that what we really need

to simulate to achieve convergence in a suitable sense is the object
(
Ĩ ε,V ε

)
, the expressions of

which are collected below (note that under an assumed non-constant renormalization the expression

(6.5) for Ĩ ε has been rewritten to a form more suitable for efficient simulation):

Ĩ ε =

2N−1∑
i=0

ˆ (i+1)2−N

i2−N

[
Zi2

N/2f(Ŵ ε(t), t)−
√

2H2N

H + 1/2
|t− i2−N |H+1/2∂1f(Ŵ ε(t), t)

]
dt(6.7)

V ε =

2N−1∑
i=0

ˆ (i+1)2−N

i2−N
f2(Ŵ ε(t), t)dt.(6.8)

Numerical convergence rates.
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Algorithm 1: Simulation of M samples of (Ĩ ε,V ε)

Parameters :M ∈ N: # Monte Carlo simulations
N ∈ N: Haar grid ’level’ such that ε = 2−N

d ∈ N: # discretisation points of trapezoidal rule in each Haar subinterval

Output: M samples of bivariate object (Ĩ ε,V ε)

1 initialize Ĩ ε = V ε = 0 ∈ RM ;

2 simulate array Z ∈ RM×2N of iid standard normals;

3 for each Haar subinterval [i2−N , (i+ 1)2−N ) where i ∈ {0, . . . , 2N − 1} do
4 choose discretization grid Di with d points on the Haar subinterval;

5 evaluate functions êεk, k = 0, . . . , i, from (6.4) on Di to obtain êε ∈ R(i+1)×d;

6 compute Ŵε = Z∗ × êε ∈ RM×d where Z∗ ∈ RM×(i+1) is the truncation of Z to its first

i+ 1 columns such that Ŵε is an approximation of the fBM on Di;
7 evaluate integrands from equations (6.7, 6.8) on Di using Ŵε and the last column of Z∗;

8 approximate respective integrals on subinterval by trapezoidal rule ;

9 add obtained estimates to running sums Ĩ ε and V ε;

10 end

11 return Ĩ ε,V ε

In this subsection, we will discuss strong convergence of the approximative object Ĩ ε to the
actual object of interest I as well as weak convergence of the option price itself as the Haar grid
interval size ε→ 0. Specifically, we will be looking at Monte Carlo estimates of our errors, that is,
in order to approximate some quantity E[X] for some random variable X, we will instead be looking

at 1
M

∑M
i=1Xi where the Xi are M iid samples drawn from the same distribution as X. In other

words, we need to generate M realisations of the bivariate stochastic object
(
Ĩ ε,V ε

)
, a task that

can be vectorized as described below, thus avoiding expensive looping through realisations.
Strong convergence. We verify Theorem 3.24 (i) numerically , albeit in the L2(Ω)-sense and - for

simplicity - with f(x, t) = exp(x), i.e. with no explicit time dependence. That is, we are concerned
with Monte Carlo approximations of∥∥∥∥Ĩ ε −

ˆ 1

0

exp(Ŵt)dWt

∥∥∥∥
L2(Ω)

and we expect an error almost of order εH .

Remark 6.1. We choose f(x, t) = exp(x) because this closely resembles the rough Bergomi model
(see [4] and below). Also, for the simplest non-trivial choice, f(x, t) = x, the discretization error is
overshadowed by the Monte Carlo error, even for very coarse grids.

Since
(
W, Ŵ

)
is a two-dimensional Gaussian process with known covariance structure, it is

possible to use the Cholesky algorithm (cf. [4, 5]) to simulate the joint paths on some grid and then
use standard Riemann sums to approximate the integral. The value obtained in this way could serve
as a reference value for our scheme. However - for strong convergence - we need both objects to be
based on the same stochastic sample. For this reason, we find it easier to construct a reference value
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Strong error: non-constant renormalization

H = 0.3: strong rate  0.35
Reference rate 0.3
H = 0.2: strong rate  0.25
Reference rate 0.2

Figure 1. Empirical strong (6.9) errors on a log-log-scale under a non-constant renormalization,
obtained through M = 105 Monte Carlo samples with a trapezoidal rule delta of ∆ = 2−17 and
fineness of the reference Haar grid ε′ = 2−8. Solid lines visualize the empirical rates of convergence
obtained by least squares regression, dashed lines provide visual reference rates. Shaded colour
bands show interpolated 95% confidence levels based on normality of Monte Carlo estimator.

by the wavelet-based scheme itself, i.e. we simply pick some ε′ � ε and consider

(6.9)
∥∥∥Ĩ ε − Ĩ ε′

∥∥∥
L2(Ω)

as ε → ε′. As can be seen in Figures 1 and 2, both renormalization approaches stated in (6.6)
are consistent with a theoretical strong rate of almost H across the full range of 0 < H < 0.5 (cf.
discussion at the end of Section 3.2).

Remark 6.2 (Weak convergence). In absence of a Markovian structure, a proper weak convergence
analysis proves to be subtle, that is, an analysis that - for suitable test functions ϕ - yields a rate of



REGULARITY STRUCTURES & ROUGH VOL 35

10
2

10
1

10
0

= 2 N

10
1

10
0

2 × 10
1

3 × 10
1

4 × 10
1

6 × 10
1

E
rr

or

Strong error: constant renormalization

H = 0.3: strong rate  0.33
Reference rate 0.3
H = 0.2: strong rate  0.24
Reference rate 0.2

Figure 2. Empirical strong (6.9) errors on a log-log-scale under a constant renormalization, obtained
through M = 105 Monte Carlo samples with a trapezoidal rule delta of ∆ = 2−17 and fineness of
the reference Haar grid ε′ = 2−8. Solid lines visualize the empirical rates of convergence obtained
by least squares regression, dashed lines provide visual reference rates. Shaded colour bands show
interpolated 95% confidence levels based on normality of Monte Carlo estimator.

convergence for ∣∣∣∣E[ϕ(Ĩ ε
)]
− E

[
ϕ

(ˆ 1

0

exp(Ŵt)dWt

)]∣∣∣∣
as ε→ 0, remains an open problem. However, picking ϕ(x) = x2, Ito’s isometry yields

(6.10) E

[(ˆ 1

0

exp(Ŵt)dWt

)2
]

=

ˆ 1

0

E
[
exp

(
2Ŵt

)]
dt =

ˆ 1

0

exp
(
2t2H

)
dt

which we can be approximated numerically. So we can consider

(6.11)

∣∣∣∣E[(Ĩ ε
)2
]
−
ˆ 1

0

exp
(
2t2H

)
dt

∣∣∣∣
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H = 0.3, rate  0.62 
H = 0.2, rate  0.44 
H = 0.1, rate  0.30 

Figure 3. Empirical weak (6.12) errors on a log-log-scale as ε → ε′ = 2−8, obtained through
M = 105 MC samples with spot S0 = 1, strike K = 1, correlation ρ = −0.8, spot vol σ0 = 0.2, vvol
η = 2 and trapezoidal rule delta ∆ = 2−17. Dashed lines represent LS estimates for rate estimation,
shaded colour bands show confidence levels based on normality of Monte Carlo estimator.

as ε→ 0. Our preliminary results indicate that for both renormalization approaches the weak rate
seems to be around the strong rate H.

Option pricing. We pick a simplified version of the rough Bergomi model [4] where the instanta-
neous variance is given by

f2(x) = σ2
0 exp (ηx)

with σ0 and η denoting spot volatility and volatility of volatility respectively. Let Cε denote the

approximation of the call price (6.1) based on
(
Ĩ ε,V ε

)
, fix some ε′ � ε and consider

(6.12)
∣∣∣Cε(S0,K, T = 1)− Cε

′
(S0,K, T = 1)

∣∣∣
as ε→ ε′. Empirical results displayed in Figure 3 indicate a weak rate of 2H across the full range of
0 < H < 1

2 .
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Appendix A. Approximation and renormalization (Proofs)

Lemma A.1. For a, b > 0 and δ ∈ [0, 1] we have for x /∈ [0, 1)

|ax − bx| ≤ 21−δ|x|δ(ax−δ ∨ bx−δ) · |a− b|δ

and for x ∈ (0, 1)

|ax − bx| ≤ 21−δ|x|δ(a(x−1)δbx(1−δ) ∨ b(x−1)δax(1−δ)) · |a− b|δ .

Proof. This follows from interpolation between |ax − bx| ≤ |x| supz∈[a,b] z
x−1|a − b| ≤ |x|ax−1 ∨

bx−1|a− b| and |ax − bx| ≤ ax + bx ≤ 2ax ∨ bx. �

Proof of Lemma 3.7 . Rewriting Ŵ ε(t) =
√

2H
´∞

0
dW (u)

´∞
0

dr δε(r, u) |t− r|H−1/21r<t we have

E
∣∣∣Ŵ ε(t)− Ŵ ε(s)

∣∣∣2 = 2H

ˆ ∞
0

du

(ˆ ∞
0

drδε(r, u)(1r<t|t− r|H−1/2 − 1r<s|s− r|H−1/2)

)2

.
ˆ ∞

0

du

ˆ ∞
0

dr|δε(r, u)|
(
1r<t|t− r|H−1/2 − 1r<s|s− r|H−1/2

)2

.
ˆ s∨t

0

dr
(
1r<t|t− r|H−1/2 − 1r<s|s− r|H−1/2

)2

,

where we used the Itô isometry in the first and Jensen’s inequality in the second step. Assuming
s < t we can split the integral in domains [0, s] and [s, t] which yields the bound |t− s|2H

´ s
0
|s−

r|4H−1 + |t− s|2H . |t− s|2H . Application of equivalence of moments for Gaussian random variables
and Kolmogorov’s criterion then shows the first inequality.

The second one follows by interpolation (and once more Kolmogorov) if we can prove that

E|Ŵ ε(t)− Ŵ (t)|2 . ε2H−κ′ .(A.1)

We have, by Itô’s isometry,

E[
∣∣∣Ŵ ε(t)− Ŵ (t)

∣∣∣2] = 2H

ˆ ∞
0

du

(ˆ ∞
0

dr δε(r, u) |t− r|H−1/21r<t − |t− u|H−1/21u<t

)2

.

We can enlarge the inner integral such that
´
δε(r, u) = 1 by negleting an error term which can be

estimated by
´
B(0,cε)

du(
´
B(0,cε)

dr ε−1|t− r|H−1/2)2 . ε2H . Application of Jensen’s inequality then

yields ˆ ∞
0

du

ˆ ∞
−∞

dr |δε(r, u)|
(
|t− r|H−1/21r<t − |t− u|H−1/21u<t

)2

.

The cases where either r > u or u > t yield an ε2H error term as above so that bounding with
Lemma A.1 ∣∣∣|t− r|H−1/2 − |t− u|H−1/2

∣∣∣ . (|t− r|−1/2+κ + |t− u|−1/2+κ) · |u− r|H−κ

proves (A.1). �

Proof of (3.15). We only consider the symbols ΞIm(Ξ), the symbols I(Ξ)m can be handled with
Lemma 3.7. In view of Lemma 3.9 and 3.11 we have to controll (for m ≥ 0 in the first equation and
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m > 0 in the second equation)

E
∣∣∣∣ˆ ∞

0

dW ε(t) � ϕλs (t)(Ŵ ε
st)

m −
ˆ ∞

0

dW (t) � ϕλs (t)(Ŵst)
m

∣∣∣∣2 . ε2δκ′λ2mH−1−2κ′ ,(A.2)

E
∣∣∣∣ˆ ∞

0

dt ϕλs (t)
(
K ε(s, t)(Ŵ ε

st)
m−1 −K(s− t)(Ŵst)

m−1
)∣∣∣∣2 . ε2δκ′λ2mH−1−2κ′ ,(A.3)

where Ŵ
(ε)
st = Ŵ (ε)(t)− Ŵ (ε)(s) and where δ ∈ (0, 1), κ′ ∈ (0, H) is arbitrary. Equivalence of norms

in the Wiener chaos and a version of Kolmogorov’s criterion for models ([31, Proposition 3.32])
then gives (3.15) (note that this gives for a better homogeneity then we actually need since we only
subtract 2κ′ and not 2mκ′ in the exponent of λ ∈ (0, 1]). We can rewrite the random variable of
(A.2) as

ˆ T+1

0

dW (t) �
ˆ

du δε(t, u)
(
1u≥0ϕ

λ
s (u)(Ŵ ε

su)m − ϕλs (t)(Ŵst)
m
)

Using [39, Theorem 7.39] and Jensen’s inequality we can estimate the second moment of this
Skorohod integral by

E|(A.2)|2 .
ˆ T+1

0

dt

ˆ
du |δε(t, u)|E

(
1u≥0ϕ

λ
s (u)(Ŵ ε

su)m − ϕλs (t)(Ŵst)
m
)2

.

In the regime λ ≤ ε every term in the squared parentheses can simply be bounded (using Lemma

3.7) by λ2H−1 . λ2H−1−2κ′εκ
′
. If on the other hand ε < λ we can split off a term of order´

B(0,cε)
dt
´
B(0,cε)

du
ε . λ

2mH−1−2κ′ε2κ′ to drop the indicator 1u≥0 and can bound on the support

of δε(t, u)

|ϕλs (u)(Ŵ ε
su)m − ϕλs (t)(Ŵts)

m| ≤ |(ϕλs (u)− ϕλs (t)) · |Ŵ ε
su|m + |ϕλs (t)| ·

∣∣∣(Ŵ ε
su)m − (Ŵst)

m
∣∣∣

. Cε1B(s,(1+2c)λ)(t)λ
−1−κ′εκ

′
λmH + Cε1B(s,λ)(t)λ

−1λmH−κ
′
εκ
′
,

where Cε > 0 denote random constants that are uniformly bounded in Lp for p ∈ [1,∞). This shows

(A.2). To estimate (A.3) we first note that due to E|(Ŵ )m−1
st − (Ŵ ε

st)
m−1|2 . |t−s|2(m−1)H−2κ′εδ2κ

′

we are only left with

E
∣∣∣∣ˆ ∞

0

dt ϕλs (t)(K ε(s, t)−K(s− t))(Ŵ ε
st)

m−1

∣∣∣∣2 . ˆ ∞
0

dt ϕλs (t)|K ε(s, t)−K(s− t)|2 |s− t|2(m−1)H ,

which is straightforward to bound with Lemma 3.12 if λ ≤ ε. For λ < ε and t > 2cε with c > 0 as in
Definition 3.5 the desired bound follows from Lemma A.2. The remaining case however contributes
with ˆ

B(0,2cε)

dt ϕλs (t)|t− s|2(m−1)H(ε2H−1 + |t− s|2H−1)

.
ˆ
B(s,λ−12cε)

dt (λ2(m−1)Hε2H−1 + λ2mH−1|t|2mH−1)

. λ2(m−1)H−1ε2H + λ2mH−1(λ−1ε)2mH ≤ λ2kH−κ′εκ
′
,

which completes the proof. �
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Lemma A.2. For c as in Definition 3.5 and t > 2cε and s ∈ R we have for κ′ ∈ (0, H)

|K(s− t)−K ε(s, t)| . |s− t|H−1/2−κ′εκ
′
.

Proof. If 2cε ≥ |s− t|/2 the bound easily follows from Lemma 3.12. If 2cε ≥ |s− t|/2 we can reshape

|K(s− t)−K ε(s, t)| =
∣∣∣∣ˆ ∞
−∞

du δ2,ε(t, u)(1t<s|s− t|H−1/2 − 1s<u|s− u|H−1/2)

∣∣∣∣ ,
where δ2,ε(t, ·) :=

´∞
−∞ dx1

´∞
−∞ dx2δ

ε(t, x1)δε(x1, ·) satisfies the properties in Definition 3.5 with

support in B(t, 2cε). Note that for 2cε ≥ |s − t|/2 either both indicator functions vanish or
none so that we only have to consider t < s where we obtain with Lemma A.1 up to a constant´∞
−∞ |δ

2,ε(t, u)||t− s|H−1/2−κ′εκ
′
. |t− s|H−1/2−κ′εκ

′
. �

Proof of Lemma 3.16. We restrict ourselves to proof (3.17), the other three inequalities follow by

basically the same arguments. We fix a wavelet basis φy = φ(·−y), y ∈ Z, ψjy = 2j/2 ψ(2j(·−y)), j ≥
0, y ∈ 2−jZ and use in the following the notation φy = 2j/2φ(2j(· − y)), j ≥ 0, y ∈ 2−jZ. Within

this basis we can express the Bβ1,∞ regularity of ϕ by∑
y∈Z
|(ϕ, φy)L2 |+ sup

j≥0
2jβ

∑
y∈2−jZ

2−dj/2|(ϕ,ψjy)L2 | . ‖ϕ‖Bβ1,∞

Without loss of generality we can assume that λ = 2−j0 is dyadic, so that by scaling∑
y∈2−j0Z

|(ϕλs , φ
j0
y )L2 |+ sup

j≥j0
2(j−j0)β

∑
y∈2−jZ

2−(j−j0)d/2|(ϕλs , ψ
j
y)L2 | . 2j0d/2‖ϕ‖Bβ1,∞ .(A.4)

We can now rewrite

(RF −ΠsFs)(ϕ
λ
s ) =∑

y∈2−j0Z

(RF −ΠsFs)(φ
j0
y ) · (φj0y , ϕλs )L2 +

∑
j≥j0

∑
y∈2−jZ

(RF −ΠsFs)(ψ
j
y) · (ψjy, ϕλs )L2

=
∑

y∈2−j0Z

(RF −ΠyFy)(φj0y ) (φj0y , ϕ
λ
s )L2 +

∑
y∈2−j0Z

Πy(Fy − ΓysFs)(φ
j0
y ) (φj0y , ϕ

λ
s )(A.5)

+
∑
j ≥ j0,
y ∈ 2−jZ

(RF −ΠyFy)(ψjy) (ψjy, ϕ
λ
s )L2 +

∑
j ≥ j0,
y ∈ 2−jZ

Πy(Fy − ΓysFs)(ψ
j
y) (ψjy, ϕ

λ
s )L2(A.6)

Only finite terms in (A.5) contribute which all can be bounded (up to a constant) by 2−j0γ = λγ .
Moreover

(A.6) .
∑
j≥j0

2−jγ +
∑
j≥j0

∑
A3α<γ

2−jα2−(γ−α)j0
∑

y∈2−jZ

2jd/2|(ϕλs , ψ
j
y)L2 |

.
∑
j≥j0

2−jγ + 2−γj0
∑

A3α<γ

∑
j≥j0

2−(j−j0)α2−(j−j0)β . 2−j0γ = λγ

where we used β + α > 0, α ∈ A in the last line. �



40 C. BAYER, P. K. FRIZ, P. GASSIAT, J. MARTIN, B. STEMPER

Proof of Lemma 3.22. Note first that via Taylor’s formula it easy to check that for scaled Haar
wavelets ϕλs and γ ∈ (0, (M + 1)H)

E

[∣∣∣∣ˆ ϕλs (t) f(Ŵ (t), t)dW (t)−ΠsFΞ(s)(ϕλs )

∣∣∣∣2
]1/2

. λ(γ−1/2−κ)(A.7)

uniformly for s in compact sets. The same argument as in the proof of Lemma 3.16 then implies
that (A.7) actually holds for compactly supported smooth function ϕ (or even compactly supported

functions in Bβ1,∞(Rd)). Proceeding now as in [31] we choose test functions η, ψ ∈ C∞c with η even

and supp η ⊆ B(0, 1),
´
η(t) dt = 1. We then obtain for ψδ(s) = 〈ψ, ηδs〉

E
[
|RFΞ(ψδ)−

ˆ
ψδ(t) f(Ŵ (t), t))dW (t)|2

]1/2

= E

[∣∣∣∣ˆ dxψ(x)

(
RFΞ(ηδx)−

ˆ
ηδx(t) f(Ŵ (t), t))dW (t)

)∣∣∣∣2
]1/2

.
ˆ

dxψ2(x) δγ−1/2−κ δ→0→ 0

where we included a term ΠxΞF (x) in the second step. It remains to note thatˆ
ψδ(t) f(Ŵ (t), t))dW (t)

δ→0→
ˆ
ψ(t) f(Ŵ (t), t)dW (t)

in L2(P) and further RFΞ(ψδ)→ RFΞ(ψ) a.s. and thus in L2(P). Putting everything together
we obtain

E
[
|RFΞ(ψ)−

ˆ
ψ(t) f(Ŵ (t), t)dW (t)|2

]
= 0

which implies the first statement. For the second identity we proceed in the same way but making
use of Lemma A.3. �

Lemma A.3. For F ∈ L2(P× Leb) we have

E

[∣∣∣∣ˆ F (t)dW ε(t)

∣∣∣∣2
]
.
ˆ

E
[
|F (t)|2

]
dt

Proof. As a consequence of Definition 3.5, we have
´
|δε(x, y)dx| is bounded uniformly in ε and y.

We can, therefore, normalize |δε(·, r)| to a probability density and apply Itô’s isometry and Jensen’s
inequality to ˆ

F (t)dW ε(t) =

ˆ ∞
0

ˆ ∞
0

δε(t, r)F (t)dtdW (r).

�

Appendix B. Large deviations proofs

Proof of Lemma 4.1. The fact that Πh satisfies the algebraic constraints is obvious so we focus on
the analytic ones. The Sobolev embedding L2 ⊂ C−1/2 yields that ΠΞ, ΠΞ satisfy the right bounds.
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Noting that (by e.g. [47, section 3.1]) ‖K ∗ h‖CH ≤ C‖h‖C−1/2 gives the bound for ΠI(Ξ)m. Finally,
we note that using Cauchy-Schwarz’s inequality∣∣∣〈ΠtΞI(Ξ)m, φλx

〉∣∣∣ =

∣∣∣∣ˆ h1(s)(K ∗ h1(s)−K ∗ h1(t))
m
φλx(s)ds

∣∣∣∣
≤

(
sup
|s−t|≤λ

|K ∗ h1(s)−K ∗ h1(t)|

)m
‖h1‖L2‖ ‖φλx‖L2

. λmH−1/2.

The inequality for ΠΞI(Ξ)m follows in the same way, and the bounds for Γ also follow.
Continuity is h is proved by similar arguments which we leave to the reader. �

Proof of Theorem 4.2. The theorem is a special case of results in Hairer-Weber [37] for large
deviations of Banach-valued Gaussian polynomials. Let us recall the setting.

Let (B,H, µ) be an abstract Wiener space and let us call ξ the associated B-valued Gaussian
random variable, and (ei) an orthonormal basis of H with ei ∈ B∗. For a multi-index α ∈ NN with
only finitely many nonzero entries, define Hα(ξ) = Πi≥0Hαi(〈ξ, ei〉), where the Hn, n ≥ 0 are the

usual Hermite polynomials. For a given Banach space E, the homogeneous Wiener chaos H(k)(E) is
defined as the closure in L2(E,µ) of the linear space generated by elements of the form

Hα(ξ)y, |α| = k, y ∈ E.

Also define the inhomogeneous Wiener chaos Hk(E) = ⊕ki=0H(i)(E). Finally for Ψ ∈ H(k)(E) and
h ∈ H we define Ψhom(h) =

´
Ψ(ξ+h)µ(dξ), and for Ψ =

∑
i≤k Ψi ∈ Hk(E), we let Ψhom = (Ψk)hom.

Now let E = ⊕τ∈WEτ where W is a finite set and each Eτ is a separable Banach space. Let
Ψ = ⊕τ∈WΨτ be a random variable such that each Ψτ is in HKτ (Eτ ). Letting Ψδ = ⊕τδKτΨτ ,
Theorem 3.5 in [37] states that Ψδ satisfies a LDP with rate function given by

I(Ψ) = inf
{

1/2‖h‖2H, Ψ = ⊕τ∈WΨhom
τ (h)

}
.

In our case, we apply this result with W =
{

ΞI(Ξ)m,ΞI(Ξ)m, 0 ≤ m ≤M
}

and each Eτ is the
closure of smooth functions (t, s) 7→ Πtτ(s) under the norms

‖Πτ‖ = sup
λ,t,φ

λ−|τ |
∣∣∣〈Πtτ , φ

λ
t

〉∣∣∣.
In order to obtain Theorem 4.2, it suffices then to identify (Πτ)hom(h) which is done in the

following lemma. �

Lemma B.1. For each τ ∈ W and h ∈ H, (Πτ)hom(h) = Πhτ .

Proof. We prove it for τ = ΞI(Ξ)m, the other cases are similar. Note that Ψ 7→ Ψhom(h) is
continuous from Hk to R for fixed h (by an application of the Cameron-Martin formula), and so it
is enough to prove that

(B.1) lim
ε→0

(
Π̂ετ

)hom
(h) = Πhτ ,

where Π̂ε corresponds to the (renormalized model) with piecewise linear approximation of ξ. For
any test function ϕ, by definition one has

〈Πε
tτ , ϕ〉 = −〈Iε, ϕ′〉,
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where

Iε(s) =

ˆ s

t

((K ∗ ξε)(u)− (K ∗ ξε)(t))mξε(u)du− CεRεm,

where Rεm is a renormalization term which is valued in the lower-order chaos Hm, so that by
definition it does not play a role in the value of (Πτ)hom. Now note that if Φ is a Wiener polynomial
whose leading order term is given by Πk

i=1〈ξ, gi〉 (where the gi are in H) then Φhom(h) = Πk
i=1〈h, gi〉.

In our case this means that

(Iε)hom(s) =

ˆ s

t

((K ∗ hε1)(u)− (K ∗ hε1)(t))
m
hε1(u)du

where hε1 = ρε ∗ h1. In other words we have (Π̂ετ)hom = Πhε

τ , and by continuity of h 7→ Πh we
obtain (B.1). �

Appendix C. Proofs of Section 5

The proof of Theorem 5.3 follows from the estimates in the lemmas below, using the standard
procedure of taking a time horizon T small enough to obtain a contraction and then iterating. Note
that due to global boundedness of u, v the estimates are uniform in the starting point z, so that one
obtains global existence (unlike the typical situation in SPDE where the theory only gives local in
time existence).

By translating u and v we can assume w.l.o.g. that the initial condition is z = 0. Then the
solution will take value in Dγ0,T (Γ) := { F ∈ DγT (Γ), F (0) = 0.}.

Lemma C.1. For each F and F̃ in Dγ0,T (T ) for the respective models (Π,Γ) and (Π̃, Γ̃), and for

each γ < 1 and T ∈ (0, 1], one has

|||KF ;KF̃ |||DγT (Γ),DγT (Γ̃) . T
η|||F ; F̃ |||Dγ+|Ξ|

T (Γ),Dγ+|Ξ|
T (Γ̃)

for some η > 0, the proportionality constants depending only on γ and the norms of (Π,Γ) and

(Π̃, Γ̃).

Proof. (γ < 1 avoids the appearance of any polynomial terms, present in [31, Sec. 5] but not in
our case.) Note that if F belongs to Dγ0,T so does KF . Since K is a regularizing kernel of order

β := 1
2 +H in the sense of [31], it follows along the lines of [31, Sec. 5] that

|||KF ;KF̃ |||DγT (Γ),DγT (Γ̃) . |||F ; F̃ |||Dγ+|Ξ|
T (Γ),Dγ+|Ξ|

T (Γ̃)

where we pick γ ∈ (γ, 1) such that γ ≤ γ + |Ξ|+ β = γ +H − κ. On the other hand, it is clear from

the definition of |||·; ·||| that since KF and KF̃ vanish at t = 0 it holds that

|||KF ;KF̃ |||DγT (Γ),DγT (Γ̃) . T
η|||KF ;KF̃ |||DγT (Γ),DγT (Γ̃)

for η = γ − γ. �

Lemma C.2. Let G (resp. G̃) be the composition operator corresponding to g (resp. g̃) ∈ CM+2
b .

Then one has

|||G(F ); G̃(F̃ )|||DγT (Γ),DγT (Γ̃) . ‖G− G̃‖CM+2 + |||F ; F̃ |||DγT (Γ),DγT (Γ̃)

the proportionality constants depending only on γ and the norms of (Π,Γ), (Π̃, Γ̃), F , F̃ , g, g̃.

Proof. This follows from the estimate in [31, Theorem 4.16]. The joint continuity is not stated there
but is clear from the triangle inequality. �
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