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A REGULARITY STRUCTURE FOR ROUGH VOLATILITY

C. BAYER, P. K. FRIZ, P. GASSIAT, J. MARTIN, B. STEMPER

ABSTRACT. A new paradigm recently emerged in financial modelling: rough (stochastic) volatility,
first observed by Gatheral et al. in high-frequency data, subsequently derived within market
microstructure models, also turned out to capture parsimoniously key stylized facts of the entire
implied volatility surface, including extreme skews that were thought to be outside the scope of
stochastic volatility. On the mathematical side, Markovianity and, partially, semi-martingality
are lost. In this paper we show that Hairer’s regularity structures, a major extension of rough
path theory, which caused a revolution in the field of stochastic partial differential equations, also
provides a new and powerful tool to analyze rough volatility models.

Dedicated to Professor Jim Gatheral on the occasion of his 60th birthday.
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1. INTRODUCTION

We are interested in stochastic volatility (SV) models given in It6 differential form

(11) dSt/St = O'tdBt = \/Ut(LU)dBt .

Here, B is a standard Brownian motion and o (resp. v;) are known as stochastic volatility (resp.
variance) process. Many classical Markovian asset price models fall in this framework, including
Dupire’s local volatility model, the SABR -, Stein-Stein - and Heston model. In all named SV model,
one has Markovian dynamics for the variance process, of the form

(12) d’l}t = g(’Ut)th + h(Ut)dt,

constant correlation p := d(B, W), /dt is incorporated by working with a 2D standard Brownian
motion (VV, W),
B = pW +pW = pW + /1 — p2W.

This paper is concerned with an important class of non-Markovian (fractional) SV models, dubbed
rough volatility (RV) models, in which case o; (equivalently: v; = 0?) is modelled via a
fractional Brownian motion (fBM) in the regime H € (0,1/2).} The terminology ”rough” stems
from the fact that in such models stochastic volatility (variance) sample paths are H~-Holder, hence
“rougher” than Brownian paths. Note the stark contrast to the idea of "trending” fractional volatility,
which amounts to take H > 1/2. The evidence for the rough regime (recent calibration suggest H
as low as 0.05) is now overwhelming - both under the physical and the pricing measure, see e.g.
[1, 24, 25, 27, 4, 19, 42]. Much attention in theses reference has in fact been given to ”simple” rough
volatility models, by which we mean models of the form

(1.3) o = (W) “simple rough volatility (RV)”
t
(1.4) Wy = / K(s,t)dWs ;
0
(1.5) with  K(s,t) = V2H|t — s|""?1,0, , H € (0,1/2).

In other words, volatility is a function of a fractional Brownian motion, with (fixed) Hurst parameter.?
Note that, in contrast even to classical SV models, the stochastic volatility is explicitly given, and
no rough / stochastic differential equation needs to be solved (hence ”"simple”). Rough volatility not
only provides remarkable fits to both time series and option pricing problems, it also has a market
microstructure justification: starting with a Hawkes process model, Rosenbaum and coworkers
[16, 17, 18] find in the scaling limit f, g, h such that

(1.6) or = f(Zy) “non-simple rough volatility (RV)”
¢ ¢
(1.7) Zy = z+/ K(s,t)g(Zs)ds+/ K(s,t)h(Zs)dWs ,
0 0

with stochastic Volterra dynamics that provide a natural generalization of simple rough volatility.

Wolatility is not a traded asset, hence its non-semimartingality (when H # 1/2) does not imply arbitrage.
2Following [4] we work with the Volterra- or Riemann-Liouville fBM, but other choices such as the Mandelbrot
van Ness fBM, with suitably modified kernel K, are possible.
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1.1. Markovian stochastic volatility models. For comparison with rough volatility, Section 1.2
below, we first mention a selection of tools and methods well-known for Markovian SV models.

e PDE methods are ubiquitous in (low-dimensional) pricing problems, as are

e Monte Carlo methods, noting that knowledge of strong (resp. weak) rate 1/2 (resp. 1) is
the grist in the mills of modern multilevel methods (MLMC);

e Quasi Monte Carlo (QMC) methods are widely used; related in spirit we have the Kusuoka—
Lyons—Victoir cubature approach, popularized in the form of Ninomiya—Victoir (NV) splitting
scheme, nowadays available in standard software packages;

e Freidlin—Wentzell theory of small noise large deviations is essentially immediately applicable,
as are various “strong‘ large deviations (a.k.a. exact asymptotics) results, used e.g. the
derive the famous SABR formula.

For several reasons it can be useful to write model dynamics in Stratonovich form: From a
PDE perspective, the operators then take sum-square form which can be exploited in many ways
(Hormander theory, naturally linked to Malliavin calculus ...). From a numerical perspective, we note
that the cubature / NV scheme [43] also requires the full dynamics to be rewritten in Stratonovich
form. In fact, viewing NV as level-5 cubature, in sense of [40], its level-3 simplification is nothing
but the familiar Wong-Zakai approximation result for difffusions. Another financial example that
requires a Stratonovich formulation comes from interest rate model validation [13], based on the
Stroock—Varadhan support theorem. We further note, that QMC (e.g. Sobol’) works particularly
well if the noise has a multiscale decomposition, as obtained by interpreting a (piece-wise) linear
Wong-Zakai approximation, as Haar wavelet expansion of the driving white noise.

1.2. Complications with rough volatility. Due to loss of Markovianity, PDE methods are not
applicable, and neither are (off-the-shelf) Freidlin-Wentzell large deviation estimates (but see [19]).
Moreover, rough volatility is not a semi-martingale, which complicates, to say the least, the use of
several established stochastic analysis tools. In particular, rough volatility admits no Stratonovich
form. Closely related, one lacks a (Wong-Zakai type) approximation theory for rough volatility. To
see this, focus on the “simple” situation, that is (1.1), (1.3) so that

(1.8) S,/So =€ (/O f(Ws)st> (t) .

Inside the (classical) stochastic exponential £(M)(t) = exp(M; — 5[M];) we have the martingale
term

(1.9) | s =p [ f@)awisp [T,
0 0 0

and, in essence, the trouble is due to underbraced, innocent looking It6-integral. Indeed, any naive
attempt to put it in Stratonovich form,

t t
(1.10) “/ fW)odW := / F(W)dW + (Ité-Stratonovich correction) ”
0 0

or, in the spirit of Wong-Zakai approximations,

e—0

t t
(1.11) /0 FW) oW = lim/o FOVE)dWe
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must fail whenever H < 1/2. The It6-Stratonovich correction is given by the quadratic covariation,
defined (whenever possible) as the limit, in probability, of

(1.12) ST (W) = F(WD)) (W, — W),

[uv]er

along any sequence (7™) of partitions with mesh-size tending to zero. But, disregarding trivial
situations, this limit does not exist. For instance, when f(x) = x fractional scaling immediately
gives divergence (at rate H — 1/2) of the above bracket approximation. This issues also arises in
the context of option pricing which in fact is readily reduced (Theorem 1.3 and Section 6) to the
sampling of stochastic integrals of the afore-mentioned type, i.e. with integrands on a fractional scale.
All theses problems remain present, of course, for the more complicated situation of “non-simple”
rough volatility (Section 5) .

1.3. Description of main results. With motivation from singular SPDE theory, such as Hairer’s
work on KPZ [32] and the Hairer-Pardoux “renormalized” Wong-Zakai theorem [35], we provide
the closest there is to a satisfactory approximation theory for rough volatility. This starts with the
remark that rough path theory, despite its very purpose to deal with low regularity paths, is not
applicable

To state our basic approximation results, write W¢ = 8,W¢ for a suitable (details below)

approximation at scale £ to white noise, with induced approximation to fBM, denoted by we.
Throughout, the Hurst parameter H € (0,1/2] is fixed and f is a smooth function, such that (1.8)
is a (local) martingale, as required by modern financial theory.

Theorem 1.1. Consider simple rough volatility with dynamics dS;/S; = f(Wt)dBt, i.e. driven by
Brownians B and W with constant correlation p. There exist e-peridioc functions €€ = €*(t), with
diverging averages C, , such that a Wong-Zakai result holds of the form S¢S in probability and
uniformly on compacts, where

0,55 /S5 = F(We)B* — p&=(t) f'(We) — Lf2(W#) , S5 =So.
Similar results hold for more general (“non-simple”) RV models.

Remark 1.2. When H = 1/2, this result is an easy consequence of Itd-Stratonovich conversion
formulae. In the case H < 1/2 of interest, Theorem 1.1 provides the interesting insight that genuine
renormalization, in the sense of subtracting diverging quantities is required if and only if correlation
p is non-zero. This is the case in equity (and many other) markets [4]. Also note that naive
approximations S, without subtracting the €*-term, will in general diverge.

In order to formulate implications for option pricing, define the Black-Scholes pricing function
2 +
(1.13) Cps(So, K;0°T) = IE(SO exp (oﬁz — U2T> — K) ,

where Z denotes a standard normal random variable. We then have

Theorem 1.3. With €° = €°(t) as in Theorem 1.1, define the renormalized integral approximation,

(1.14) IE = TH(T) ;:/0 f(WE)dWE—/O CE () f/(We)dt
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and also approrimate total variance,
T
Ve = VHT) = / F2WEdt
0

Then the price of a FEuropean call option, under the pricing model (1.1), (1.8), struck at K with
time T to maturity, is given as

lim E [\I/(JE, 7/5)}

e—0
where

2
(1.15) U(S,Y):=Cgs (S’O exp (pf — /)2”//>7K,p27/) .
Similar results hold for more general (“non-simple”) RV models.

From a mathematical perspective, the key issue in proving the above theorems is to establish
convergence of the renormalized approximate integrals

(1.16) I = /O FOVE)awe — /0 @ () f (WE)dt — (Tto-integral).

It is here that we find much inspiration from singular SPDE theory, which also requires renormalized
approximations for convergence to the correct Ito-object. Specifically, we see that the theory of
regularity structures [31], which essentially emerged from rough paths and Hairer’s KPZ analysis
(see [23] for a discussion and references), is a very appropriate tool for us. This adds to the
existing instances of regularity structures (polynomials, rough paths, many singular SPDEs ...) an
interesting new class of examples which on the one hand avoids all considerations related to spatial
structure (notably multi-level Schauder estimates; cf. [31, Ch.5]), yet comes with the genuine need
for renormalization. In fact, since we do not restrict to mollifier approximations (this would rule out
wavelet approximation of white noise!) our analysis naturally leads us to renormalization functions.
In case of mollifier approximations, i.e. W¢ is the e-mollifciation obtained by convolution of W with
a rescaled mollifier function, say 0°(z,y) = e !p(e 1 (y — x))), which is the usual choice of Hairer
and coworkers [32, 31, 11], the renormalization function turns out to constant (since W€ is still
stationary); in this case
CE(t) = C. = cet~1/2
with ¢ = ¢(p) explicitly given as integral, cf. (3.13). If, on the other hand, we consider a Haar
wavelet approximation of white noise, very natural from a numerical point of view,
H+1/2
(1.17) € (t) = V2H |t [t/e)el " with mean C, = V2H gH-1/2,
H+1/2 € (H+1/2)(H+3/2)
It is natural to ask if €¢(t) can be replaced, after all, by its (since H < 1/2: diverging) mean C..
For H > 1/4 the answer yes, with an interesting phase transition when H = 1/4, cf. Section 3.2.

From a numerical simulation perspective, Therecom 1.3 is a step forward as it avoids any
sampling related to the other factor W. A brute-force approach then consists in simulating a scalar
Brownian motion W, followed by computing W= [ KdW by Itd/Riemann Stieltjes approximations
of (Z,7). However, given the singularity of Volterra-kernel K, this is not advisable and it is

30ther wavelet choices are possible. In particular, in case of fractional noise, Alpert-Rokhlin (AR) wavelets have
been suggested for improved numerical behaviour; cf. [28] where this is attributed to a series of works of A. Majda
and coworkers. A theoretical and numerical study of AR wavelets in the rough vol context is left to future work.
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preferable to simulate the two-dimensional Gaussian process (W, Wt :0 <t <T) with covariance
readily available. A remaining problem is that the rate of convergence

Z f(Ws)Ws ¢ — (Ito-integral) ,

with [s, t] taken in a partition of mesh-size ~ 1/n, is very slow since W has little regularity when
H is small. (Gatheral and co-authors [27, 4] report H =~ 0.05) . It is here that higher-order
approximations come to help and we have included quantitative estimates, more precisely: strong
rates, throughout. An analysis of weak rates will be conducted elsewhere, as is the investigation of
multi-level algorithms (cf. [6] for MLMC for general Gaussian rough differential equations). Recall
that the design of MLMC algorithms requires knowledge of strong rates. Numerical aspects are
further explored in Section 6.

The second set of results concerns large deviations for rough volatility. Thanks to the contraction
principle and fundamental continuity properties of Hairer’s reconstruction map, the problem is
reduced to understanding a LDP for a suitable enhancement of the noise. This approach requires
(sufficiently) smooth coefficients, but comes with no growth restrictions which is indeed quite suitable
for financial modelling: we improve the Forde-Zhang (simple rough vol) short-time large deviations
[19] such as to include f of exponential type, a defining feature in the works of Gatheral and
coauthors [27, 4]. (Such an extension is also subject of a recent preprint [38] and forthcoming work
30].)

Theorem 1.4. Let X; = log(S:/So) be the log-price under simple rough SV, i.e. (1.1), (1.3). Then
(tH_%Xt .t > 0) satisfies a short time large deviation principle with speed t*H and rate function
given by

; 1 (y—pf1(h))2
1.1 I = nf g +
(L1 W=, n 1]){ Il + L2
with I (h fo t)dt, 15 (h fo ))2dt where h fo s)ds.

Remark 1.5. A potential short-coming is the non-explicit form of the rate function, in the sense
that even geometric or Hamiltonian descriptions of the rate function (classical in Markovian setting,
see e.g [3, 8, 14, 15, 7]), which led to the famous SABR volatility smile formula, is lost. A partial
remedy here is to move from large deviations to (higher order) moderate deviations, which restores
analytic tractability and still captures the main feature of the volatiliy smile close to the money.
This method was introduced in a Markovain setting in [20], the extension to simple rough volatility
was given in [5], relying either on [19] or the above Theorem 1.4.

We next turn to non-simple rough volatility, motivated by Rosenbaum and coworkers [16, 17, 18],
and consider the stochastic Ito—Volterra equation

Zy=z+ /t K(s,t)(u(Zs)dWs + v(Zs)ds)
0

with corresponding rough SV log-price process given by

X, = /f Y(pdW, + pdW ) 77/f2
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(For simplicity, we here consider f,u,v to be bounded, with bounded derivatives of all orders.) For
h € L*([0,T)), let 2" be the unique solution to the integral equation

ht) =2 —|—/ K(s,t)u(z"(s))h(s)ds,

and define I ( fo h(s)ds and I (h) fo ))2ds. Then we have the following
extension of Theorem 14 (and also [19, 38, ]) 0 non- sunple rough volatility:

Theorem 1.6. Let X; = log(S;/So) be the log-price under non-simple rough SV. Then tH-2 X,
satisfies a LDP with speed t*7 and rate function given by

. (z = pI§(h))’
1.19 I(x) = - —}.
(1.19) (@) =, it (i + iy
Remark 1.7. We showed in [5, Cor.11] (but see related results by Alos et al. [2] and Fukasawa [24, 25])
that in the previously considered simple rough volatility models, now writing o(.) instead of f(.),
the implied volatility skew behaves, in the short time limit, as ~ pZ 2(0) (K1,1)t"=1/2  where (K1,1)

o(0)
/
in our setting computes to cy := % (The blowup =12 as t — 0 is a desired feature,

in agreement with steep skews seen in the market.) To first order Z; ~ 2z + u( fo (s,t)dWs =

z+ u(z)w =: J(W), from which one obtains a skew-formula in the non-simple rough volatility case
of the form,

f'(2) ct?=1/2

Following the approach of [5], Theorem 1.6 not only allows for rigorous justification but also for
the computation of higher order smile features, though this is not pursued in this article. In the
case of classical (Markovian) stochastic volaility, H = 1/2, and specializing further to f(x) = z, so
that Z (resp. z) models stochastic (resp. spot) volatility, this reduces precisely to the popular skew
formula Gatheral’s book [26, (7.6)], attributed therein to Medvedev—Scaillet. In the case of rough
Heston, where Z models stochastic variance, cf. (5.1), we have f = /- u=n,/- and this leads to
the following (rough Heston, implied volatility) short-dated skew formula

on H-1/2
——cpt
2\/1}—06H )
(multiply with 2,/vy to get the implied variance skew, again in agreement with Gatheral [26, p.35]);
this may be independently verified via the characteristic function obtained in [17].

Structure of the article. In Section 2 we reduce the proofs of Theorems 1.1 and 1.3 to the key
convergence issue, subject of Section 3. In Section 4 we consider the structure for two-dimensional
noise, necessary to study the asset price process. Section 5 then discusses the case of non-trivial
dynamics for rough volatility. Some numerical results are presented in [|, followed by several
appendices with technical details. From Section 3 all our work relies on the framework of Hairer’s
regularity structures. There seems to be no point in repeating all the necessary definitions and
terminology, which the reader can find in [32, 31, 33, 23] and a variety of survey papers on the
subject. Instead, we find it more instructive to substantiate our KPZ inspiration and in the next
section introduce, informally, all relevant objects from regularity structures in this context.



8 C. BAYER, P. K. FRIZ, P. GASSIAT, J. MARTIN, B. STEMPER

1.4. Lessons from KPZ and singular SPDE theory. The absence of a good approximation
theory is a defining feature of all singular SPDE recently considered by Hairer, Gubinelli et al. (and
now many others). In particular, approximation of the noise (say, e-mollification for the sake of
argument) typically does not give rise to convergent approximations. To be specific, it is instructive
to recall the universal model for fluctuations of interface growth given by the Kardar—Parisi-Zhang
(KPZ) equation

Oru = O%u + |0,ul® + ¢
with space-time white noise £ = £(z,t;w). As a matter of fact, and without going in further detail,
there is a well-defined (“Cole-Hopf”) It6-solution u = u(t,z;w), but if one considers the equation
with e-mollified noise, then u = u® diverges with ¢ — 0. In this sense, there is a fundamental lack of
approzimation theory and no Stratonovich solution to KPZ exists. To see the problem, take ug =0
for simplicity and write

u=H x (|0,ul]”> + &)

with space-time convolution x and heat-kernel

1 z?
H(t,x) = exp|l—— 11
( ) \/ZE p < 4t) {t>0}
One can proceed with Picard iteration
u=Hx¢t+Hx((H %6)?) + ...

but there is an immediate problem with (H' x £)?, (naively) defined e-to-zero limit of (H' x £°)2,
which does not exist. However, there exists a diverging sequence (C;) such that, in probability,

3 lin%(H’ *£%)2—C. — (new object) =: (H' % £)°2.
e—

The idea of Hairer, following the philosophy of rough paths, was then to accept
Hx & (H % €)% (and a few more)

as enhancement of the noise ("model”) upon which solution depends in pathwise robust fashion.
This unlocks the seemingly fixed (and here even non-sensical) relation

Hx&—€&— (H x €)%
Loosely speaking, one has

Theorem 1.8 (Hairer). There exist diverging constants C. such that a Wong-Zakai* result holds of
the form u® — w, in probability and uniformly on compacts, where

O4uf = 02U + |0,u|* — C. + €°.
Similar results hold for a number of other singular semilinear SPDFEs.

In a sense, this can be traced back to the Milstein-scheme for SDEs and then rough paths: Consider
dY = f(Y)dW, with Yy = 0 for simplicity, and consider the 2nd order (Milstein) approximation

tit1 X
S/ti+1 ~ Yti + f(}/ti)Wthti{»l + ff/(Ytz) Wti,SWSdS

ti
One has to unlock the seemingly fixed relation

W—>W—>/Wst::W,

4Hairer—Pardoux [35] derive the KPZ result as special case of a Wong-Zakai result for It6-SPDEs.
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for there is a choice to be made. For instance, the last term can be understood as Ito-integral
[ WdW or as Stratonovich integral [W o dW (and in fact, there are many other choices, see e.g.
the discussion in [23].) It suffices to take this thought one step further to arrive at rough path theory:
accept W as new (analytic) object, which leads to the main (rough path) insight

SDE theory = analysis based on (W, W).
In comparison,

SPDE theory a la Hairer

= analysis based on (renormalized) enhanced noise (¢, ....).

Inside Hairer’s theory: ° As motivation, consider the Taylor-expansion (at ) of a real-valued
smooth function,

Fl) = £(@) + £/ @)y — ) + 3 @)y~ 2+
can be written as abstract polynomial (“jet”) at x,
F(z) = £(5) 1+ (&)X + h(@) X + .,

with, necessarily, g = f/, h = f”/2,.... If we “realize” these abstract symbols again as honest
monomials, i.e. IT, : X* = (. —x)* and extend II, linearly, then we recover the full Taylor expansion:

: 1
L[F(@)]() = f(z) + 9(2)(. = 2) + h(z)(. )%+ ..
Hairer looks for solution of this form: at every space-time point a jet is attached, which in case of
KPZ turns out - after solving an abstract fixed point problem - to be of the form
Ulz,s) =u(z,s) 1+ 14+ Y +v(z,s) X +2'¢+v(z,5)< .

As before, every symbol is given concrete meaning by “realizing” it as honest function (or Schwartz
distribution). In particular,

(1.20) RN {H*fe, mollified noise; or

Hx¢  noise

and then, more interestingly,

Hx (H'*£92, canonically enhanced mollified noise; or
(1.21) Y S Hx[(H %£9% —-C.], renormalized ~ or
H* (H' % £)°2, renormalized enhanced noise

This realization map is called “model” and captures exactly a typical, but otherwise fixed, realization
of the noise (mollified or not) together with some enhancement thereof, renormalized or not. For
instance, writing 11, , for the realization map for renormalized enhanced noise, one has

I o[U @y $))() = u(w, s) + H %€l o) + Hx (H' %)) + .

where (%) indicates suitable centering at (z,s). Mind that U takes values in a (finite) linear space
spanned by (sufficiently many) symbols,

U@,s) € (o L, LY, X, G0 =T

5In the section only, following [23], symbols will be coloured.
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The map (z,s) — U(x,s) is an example of a modelled distribution, the precise definition is a
mix of suitable analytic and algebraic conditions (similar to the notation of a controlled rough path).

The analysis requires keeping track of the degree (a.k.a. homogeneity) of each symbol. For
instance, || = 1/2 — k (related to the Holder regularity of the realized object one has in mind),
| X?| = 2 etc. All these degrees are collected in an index set. Last not least, in order to compare
jets at different points (think (X — §1)? = ...), use a group of linear maps on 7T, called structure
group. Last not least, the reconstruction map uniquely maps modelled distributions to function
/ Schwartz distributions. (This can be seen as generalization of the sewing lemma, the essence of
rough integration, see e.g. [23], which turns a collection of sufficiently compatible local expansions
into one function / Schwartz distribution.) In the KPZ context, the (Cole-Hopf It6) solution is then
indeed obtained as reconstruction of the abstract (modelled distribution) solution U.

Acknowledgment: The authors acknowledge financial support from DFGs research grants BA5484/1
(CB, BS) and FR2943/2 (PKF, BS), the ERC via Grant CoG-683166 (PKF), the ANR via Grant
ANR-16-CE40-0020-01 (PG) and DFG Research Training Group RTG 1845 (JM).

Participants of Global Derivatives 2017 (Barcelona) and Gatheral 60th Birthday conference (CIMS,
NYU) are thanked for the feedback.

2. REDUCTION OF THEOREMS 1.1 AND 1.3

In the context of these theorems, we have

(2.1) S, = Sp exp Uot f(iv\s)st - ;/Ot 2 (W\s)ds}

where we recall that
t t t
/ f(W)dB = ,0/ f(W)dW—&-ﬁ/ FW)Haw'.
0 0 0

All approximations, W¢, W° and B = pWe + ﬁWE converge uniformly to the obvious limits, so
that it suffices to understand the convergence of the stochastic integral. Note that W is heavily
correlated with W but independent of W. The difficult interesting part is then indeed (1.16), i.e.

(2.2) /0 FOTE)aWe — /O & (s)f (We)ds — /0 FOV)aW

which is the purpose of Theorem 3.24. For the other part, due to independence no correction terms
arise and we have (with details left to the reader) fot F(WEYdW™ — fot f(W)dW | with convergence
in probability and uniformly on compacts in ¢. The convergence result of Theorems 1.1 then follows
readily.

+
As for pricing, Theorem 1.3, consider the call payoff (So exp [fOT o(t,w)dB; — % OT o(t, w)dt} — K)

An elementary conditioning argument (first used by Romano-Touzi in the context of Markovian SV
models) w.r.t. W, then shows that the call price is given as expection of

T 2 [T 2 [T
Cgs (Sg exp (p/ o(t,w)dW — 5 / o2(t, w)dt) K, 3/ 02(t,w)dt>.
0 0 0
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Specializing to the case o = f(W), in combination with Theorem 3.24, then yields Theorem 1.3 .
Remark that extensions to non-simple RV are immediate from suitable extensions of Theorem 3.24,
as discussed in 5.2.

3. THE ROUGH PRICING REGULARITY STRUCTURE

In this section we develop the approximation theory for integrals of the type [ f (W)dW In the
first part we present the regularity structure and the associated models we will use. In the second
part we apply the reconstruction theorem from regularity structures to conclude our main result,
Theorem 3.24.

3.1. Basic pricing setup. We are given a Hurst Bgrameter H € (0,1/2], associated to a fractional
Brownian motion (in the Riemann-Liouville sense) W, and fix an arbitrary x € (0, H) and an integer
M >max{meN|m-(H —k)—1/2 -k <0}

so that
(3.1) (M+1)(H-k)—1/2—£k>0.
At this stage, we can introduce the “level-(M + 1)” model space
(3.2) T ={EE21(3),....Z2E)M,1,7(2),..., 2(E)M}),

where (...) denotes the vector space generated by the (purely abstract) symbols in {...}. We will
sometimes write

S =8M .— (= 27(2),...,22(2)M,1,Z(2),..., Z2(E)M}
so that 7 = 7TM) = D, cgRT.

Remark 3.1. It is useful here and in the sequel to consider as sanity check the special case H = 1/2
in which case we recover the “level-2” rough path structure as introduced in [23, Ch.13]. More
specifically, if take Holder exponent o :=1/2 — k < 1/2 and (and then M = 1) condition (3.1) is
precisely the familiar condition « > 1/3.

The interpretation for the symbols in S is as follows: = should be understood as an abstract
representation of the white noise ¢ belonging to the Brownian motion W, i.e. £ = W where the
derivative is taken in the distributional sense. Note that since we set W (z) = 0 for x < 0 we have
W(p) =0 for ¢ € C°((—00,0)). The symbol Z(...) has the intuitive meaning “integration against
the Volterra kernel”, so that Z(Z) represents the integration of white noise against the Volterra

kernel
t
\/2H/ it — r[2-12q1 (),
0

which is nothing but the fractional Brownian motion /W(t) Symbols like EZ(E)™ = E-Z(2)-...- Z(T)
or Z(E)™ = Z(E) - ... - Z(Z) should be read as products between the objects above. These
interpretations of the symbols generating 7 will be made rigorous by the model (I, I") in the next
subsection. Every symbol in S is assigned a homogeneity, which we define by

EZ(E)™ =-1/2—k+m(H — k), m >0
IZ(E)™| =m(H — k), m >0
[ =0,
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We collect the homogeneities of elements of S in a set A := {|7]||7 € S}, whose minimum is
|Z] = —1/2 — k. Note that the homogeneities are multiplicative in the sense that, |7 - 7'| = |7| + ||
for 7,7 € S.

At last, our regularity comes with a structure group G, an (abstract) group of linear operators
on the model space T which should satisfy I'r — 7 = € | R and 'l =1 for 7 € S and

' e G. We will choose G = {T'y, | h € (R, +)} given by
Thl =1, ThE = =, [WI(E) = Z(S) + hl.

T'eS: | |<|T

and Tp (7" - 7) =Ty’ - Tp7 for 7/, 7 € S for which 7- 7/ € S is defined.

The limiting model (II,T'). Let W be a Brownian motion on R and extend it to all of R by requiring
W(x) =0 for x < 0. We will frequently use the notations

(3.3) / AW (1), / £(t) o dW (1)

which denote the It6 integral and the Skohorod integral (which boils down to an It6 integral whenever
the integrand is adapted). From W we construct now the fractional Riemann-Liouville Brownian

motion W with Hurst index H € (0,1/2] as
t
W(t) = W K(t) = \/QH/ b= |2 W ().
0

where K (t) = vV2H1;~ - t=1/2 denotes the Volterra kernel. We also write K (s,t) := K(t — s).
To give a meaning to the product terms ZZ(=Z)* we follow the ideas from rough paths and define
an “iterated integral” for s,t € R,s <t as

o~

(3.4) Wm(&t):/ (W (r) — W(s))™ dW (r)

W™ (s,t) satisfies a modification of Chen’s relation

Lemma 3.2. W™ as defined in (3.4) satisfies
(35) W (snt) = W)+ Y (1) () = W)Wt
=0

for s,u,t e R, s <u<t.
Proof. Direct consequence of the binomial theorem. |

We extend the domain of W™ to all of R? by imposing Chen’s relation for all s,u,t € R, i.e. we
set fort,s e R, t <s

(3.5 e == Y- (1) ) - W)

=0

We are now in the position to define a model (II,T") that gives a rigorous meaning to the
interpretation we gave above for 2, Z(Z),ZZ(Z), . ... Recall that in the theory of regularity structures
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a model is a collection of linear maps Il : 7 — C(R)’, 'y, € G for indices s,t € R that satisfiy

(3.7) I, = Iy,

(3.8) M) S AT,

(3.9) Payr=1+ Z e (8,0)7 |er (s, )] S |s — t||T\*\T'|
T'ES:|T!|<T

where the bounds hold uniformly for 7 € S, any s, in a compact set and for ¢ := A" (A7 (- — 5))
with A € (0,1] and ¢ € C* with compact support in the ball B(0,1).

We will work with the following “It6” model (II,T), and (occasionally) write (IT'*® T'*0) to
avoid confusion with a generic model, also denoted by (II,T), which renders more precisely our
interpretations of the elements of S.

m,1=1 I1=1

IE2=W I,=2=E

MIE)" = (W) - W(s)  TWI(E) =IE) + (W(t) - W(s)1

IMEZ(E)™ = {t — %Wm(s, )} Tyrrm’ =T4s7 - Ty’ for 7,7/ € S with 77/ € S
We extend both maps from S to 7 by imposing linearity.
Lemma 3.3. The pair (IL,T") as defined above defines (a.s.) a model on (T, A).

Proof. The only symbol in S on which (3.7) is not straightforward is ZZ(Z)™, where the statement
follows by Chen’s relation. The bounds (3.8) and (3.9) follow for 1 trivially and for Z(Z)™ by the
H — &/, ¥’ € (0, H) Holder regularity of W. It is further straightforward to check the condition (3.9)
by using the rule T'ys77" = T'y47-T'1s7" so that we are only left with the task to bound II,ZZ(Z)™(¢?).
Following along the lines of proof [23, Theorem 3.1] it follows