Veronika Peralta
email: veronika.peralta@univ-tours.fr

Patrick Marcel
email: patrick.marcel@univ-tours.fr

Willeme Verdeaux
email: willeme.verdeaux@etu.univ-tours.fr

Sidikhy Aboubakar
email: aboubakar-sidikhy.diakhaby@etu.univ-tours.fr

Diakhaby

Verónika Peralta

Sidikhy Diakhaby

Detecting coherent explorations in SQL workloads

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Analyzing a database workload offers many practical interests, from the monitoring of database physical access structures [START_REF] Chaudhuri | Self-tuning database systems: A decade of progress[END_REF] to the generation of usertailored collaborative query recommendations for interactive exploration [START_REF] Eirinaki | Querie: Collaborative database exploration[END_REF]. There has been much attention lately devoted to the analysis of user past activities to support Interactive Database Exploration (IDE) [START_REF] Idreos | Overview of data exploration techniques[END_REF]. OLAP analysis of data cubes is a particular case of IDE, that takes advantage of simple primitives like drill-down or slice-and-dice for the navigation of multidimensional data. These particularities enable the design of approaches for characterizing user explorations in how focused they are [START_REF] Djedaini | Detecting user focus in OLAP analyses[END_REF], in how contributive a query is to the exploration [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF], or even in how to ensure that a sequence of analytical queries forms a coherent exploration [START_REF] Romero | Describing analytical sessions using a multidimensional algebra[END_REF].

Transposing these works to regular, non multidimensional SQL workloads raises many challenges. Even if a sequence of SQL queries is issued to explore the database instance, non multidimensional relational schemas do not have regularities one expects from the multidimensional model, explorations may not be expressed through roll-up or drill-down operations, SQL queries may deviate from the traditional star-join pattern commonly used for analytical purpose, etc.

In this paper, we present an approach for analyzing SQL workloads, concentrating on the SQLShare workload of hand-written1 queries over user-uploaded datasets. This workload includes raw sequences of queries made by some users, without further information on their intention. One of our objectives is to investigate whether this workload contains actual exploration activities, and more particularly how to extract such explorations. In what follows, we consider that an exploration is a coherent sequence of hand-written queries, that all share the same goal of fulfilling a user's information need that may not be well defined initially, while a session is just a raw sequence of queries, possibly containing several explorations. Identifying such exploration activities has several applications. The more natural one is a better support of IDE, for instance to understand users' information needs, to identify "struggling" during the exploration, or to provide better query recommendations. Notably, IDE systems usually do not offer such facilities. Another benefit is the design of more realistic workloads for database benchmarking. Classical benchmarks like TPC-H or TPC-DS poorly include interactive exploration activities in their synthetic workloads, and are not appropriate to evaluate modern IDE systems [START_REF] Eichmann | Towards a benchmark for interactive data exploration[END_REF]. Segmenting and analysing handwritten SQL sessions would allow to better model user's explorations and mimic such activities in benchmark workloads. Finally, we mention the detection of clandestine intentions as another potential benefit. Indeed, as reported by [START_REF] Acar | Why is this user asking so many questions? explaining sequences of queries[END_REF], query sequences may reflect such intentions, where users prefer to obtain information by means of sequences of smaller, less conspicuous, queries to avoid direct queries which may disclose their true interests. Detecting coherent explorations hidden in a log may help detecting such intentions.

To identify explorations from a SQL workload, we use a technique first proposed in [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF] to score the quality of OLAP explorations. This technique consists of characterizing a query by a set of simple features that are intrinsic to a query or that relate the query to its neighbor in the sequence. While in [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF] this technique of feature extraction was used with supervised machine learning to score the quality of OLAP explorations, in the present work we use these features to partition an SQL workload into coherent explorations, investigating three different alternatives for session segmentation:

• unsupervised learning: our first method is based only on similarity between contiguous queries,

• supervised learning: our second method uses transfer learning to reuse a model trained over a dataset where ground truth is available,

• weak supervision: our third method uses weak labelling to predict the most probable segmentation from heuristics meant to label a training set.

The work we present here is a follow-up to [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF], where the first method was originally motivated and introduced. Here we have improved our previous work under several substantial aspects: (i) the adding of new query features and the study of feature correlations; (ii) the proposal of two additional methods for session segmentation (in [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF] only similarity-based segmentation was considered), and (iii) the experimental evaluation of the proposed methods, including a comparative analysis.

The paper is organized as follows. The next section discusses related work. Section 3 presents our model of queries, tailored for SQL queries. Section 4 details the features considered and how they are extracted. Section 5 introduces our segmentation strategies and Section 6 reports the results of the tests we conducted. Section 7 concludes and draws perspectives.

Related Work

In this section we present related work concerning real SQL workloads and workload analysis.

Real SQL workloads

SQLShare. The SQLShare workload is the result of a multi-year SQL-as-a-Service experiment [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], allowing any user with minimal database experience to upload their datasets on-line and manipulate them via SQL queries. What the authors wanted to prove with this experiment is that SQL is beneficial for data scientists. They observed that most of the time people use scripts to modify or visualize their datasets instead of using SQL. Indeed, most user needs may be satisfied by first-order queries, that are generally much simpler than a script, but have the initial cost of creating a schema, importing the data and so on. SQL-as-a-Service frees the user of all this prior work with a relaxed SQL version.

The SQLShare workload is composed of 11,137 SQL statements, 57 users and 3,336 user's datasets. To the best of our knowledge, as reported by the authors of [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], this workload is the only one containing primarily ad-hoc hand-written queries over user-uploaded datasets. As indicated in the introduction, handwritten means that the query is introduced manually by a human user, which reflects genuine interactive human activity over a dataset, with consideration between two consecutive queries.

The SQLShare workload is analyzed in [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], particularly to verify the following assumption: "We hypothesized that SQLShare users would write queries that are more complex individually and more diverse as a set, making the corpus more useful for designing new systems."

The authors indeed showed empirically that the queries in the SQLShare workload are complex and diverse. They also analyzed the churn rate of SQL-Share users and conclude that most users exhibit a behavior that suggest an exploratory workload. However, there is not ground truth, nor preliminary guidelines, about how to detect coherent explorations within the workload. Timestamps are neither included. To our knowledge, and again as reported by the authors of [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], this workload is one of the two workloads publicly available to the research community, the other being the SDSS workload.

SDSS workload.

SkyServer is an Internet portal to the Sloan Digital Sky Survey Catalog Archive Server; its Web and SQL logs are public [START_REF] Singh | Skyserver traffic report -the first five years[END_REF]. The SQL log was produced by a live SQL database supporting both ad hoc hand-authored queries as well as queries generated from a point-and-click GUI. Many queries in the SDSS are actually not hand-written; they were generated by applications such as the Google Earth plugin or the query composer from the SkyServer website. Their cleaning and normalization took several months effort.

Sessions in this log were detected using heuristics:

"We arbitrarily start a new session when the previous page view from that IP address is more than 30 minutes old, i.e., a think-time larger than 30 minutes starts a new session. [...] Wong and Singh [START_REF] Bhattarai | Discovering user information goals with semantic website media modeling[END_REF] chose the same 30 minute cutoff and we are told that MSN and Google use a similar heuristic."

The authors of [START_REF] Singh | Skyserver traffic report -the first five years[END_REF] also acknowledge the difficulty of extracting human sessions from all those collected: "We failed to find clear ways to segment user populations. We were able to ignore the traffic that was administrative or was eye-candy, leaving us with a set of 65M page views and 16M SQL queries. We organized these requests into about 3M sessions, about half of which were from spiders. The residue of 1.5M sessions had 51M page views and 16M SQL queries -still a very substantial corpus. [...] Interactive human users were 51% of the sessions, 41% of the Web traffic and 10% of the SQL traffic. We cannot be sure of those numbers because we did not find a very reliable way of classifying bots vs mortals." Bots are programs that automatically crawled the SDSS and launch SQL queries. Such traffic cannot be classified as proper interactive data exploration with human consideration.

In [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], the authors compared the SQLShare workload and that of the SDSS, and conclude: "SQLShare queries on average tend to be more complex and more diverse than those of a conventional database workload generated from a comparable science domain: the Sloan Digital Sky Survey (SDSS)." Smaller SQL datasets. We are aware of other available SQL workloads. For instance, Kul et al. [START_REF] Kul | Similarity metrics for SQL query clustering[END_REF] analyze three specific query sets. The first one, Student assignments gathered by IIT Bombay, is made of a few hundreds queries answering homework assignments. The second dataset, publicly available, consists of around 200 queries gathered over 2 years from student exams at University of Buffalo. Actually, it does not contain real explorations but sets of queries supposed to be similar, and experiments in a preliminary study [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF] show that it is not appropriate for testing session segmentation. The third dataset consists of SQL logs that capture all database activities of 11 Android phones for a period of one month. The log consists of 1,352,202 SELECT statements that, being generated by an application, correspond to only 135 distinct query strings.

Other database workloads with ground truth

In addition to SQL workloads, we present two additional workloads consisting of logs of multidimensional queries, devised by real users, that we have used in our previous works [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF]. These workloads, while containing a particular case of queries (star-join queries), are interesting because a ground truth (the set of queries corresponding to each user exploration) is available, allowing the evaluation of our approach.

Open dataset. The first dataset, named Open in what follows, consists of navigation traces collected in the context of a French project on energy vulnerability. These traces were produced by 8 volunteer students of a Master's degree in Business Intelligence, answering fuzzy information needs defined by their lecturer, to develop explorative OLAP navigations using Saiku2 over three cubes instances. The main cube is organized as a star schema with 19 dimensions, 68 (non-top) levels, 24 measures, and contains 37,149 facts recorded in the fact table. The other cubes are organized in a similar way. From this experiment, we reuse 16 sessions, representing 28 explorations and 941 queries. The ground truth is a manual segmentation made by the lecturer based on some guessed notion of user goal and supported by timestamps. Notably, automatic segmentation was not the purpose of the work at the time manual segmentation was done.

Enterprise dataset. The second dataset, named Enterprise, consists of navigation traces of 14 volunteers among SAP employees, in the context of a previous study on discovering user intents [START_REF] Drushku | Interest-based recommendations for business intelligence users[END_REF]. We set 10 business needs, and volunteers were asked to analyze some of the 7 available data sources to answer each of the 10 business needs, using a SAP prototype that supports keyword-based BI queries 3 . In total, this dataset contains 24 sessions, corresponding to 104 user explorations and accounting for 525 queries. Volunteers were explicitly requested to express to what information needs they were answering, which constitutes our ground truth for this dataset.

Notably, in Open and Enterprise datasets, users did not have to write any SQL code, contrarily to SQLShare. Indeed, Saiku and the SAP prototype generated queries from users high-level operations. However, in both cases, users devised real explorations, taking the time to analyse results before devising new querys. Users of the Open dataset were Master students learning data analysis skills, users of the Enterprise dataset were developers with varied analysis skills, while SQLShare users are anonymous end-users and there is no knowledge about their analysis skills.

Workload analysis

Other scientific domains close to Database, like Information Retrieval or Web Search, have a long tradition of log analysis aiming at facilitating the searcher's task [START_REF] White | Interactions with Search Systems[END_REF]. Many works extract features from queries or search sessions and use them to disambiguate the session's goal, to generate recommendations, to detect struggling in sessions, etc. Since databases tend to be more used in an exploratory or analysis fashion, as evidenced by the SQLShare workload, it is not a surprise that many recent works pay attention to the analysis of database workloads, in addition to those works analyzing workload for optimization or self-tuning purposes. We present some recent advances in this area, differentiating by the type of logs (OLAP logs and SQL logs).

Analyzing and detecting OLAP explorations. Logs of OLAP analyses are simpler than SQL ones in the sense that they feature multidimensional queries that can easily be interpreted in terms of OLAP primitives (roll-up, drill-down, slice-and-dice, etc.). In one of our previous works [START_REF] Romero | Describing analytical sessions using a multidimensional algebra[END_REF], we proposed an approach for detecting OLAP analyses phrased in SQL, by converting SQL queries into OLAP queries and then checking if two consecutive queries are sufficiently close in terms of OLAP operations. In our more recent work, we used supervised learning to identify a set of query features allowing to characterize focus zones in OLAP explorations [START_REF] Djedaini | Detecting user focus in OLAP analyses[END_REF], or to identify queries that better contribute to an exploration [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF]. The present work can be seen as a continuation of those previous works, since we have the same objective as [START_REF] Romero | Describing analytical sessions using a multidimensional algebra[END_REF] and use the same technique as [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF]. The main differences with these previous works is that we make no assumption about the type of queries in the workload (particularly, they may not be multidimensional queries), and we have no ground truth (i.e., no human manual inspection of each query) on the workload.

Analyzing SQL logs. SQL workload analysis has recently attracted attention beyond query optimization, for instance for query recommendation [START_REF] Eirinaki | Querie: Collaborative database exploration[END_REF], query autocompletion [START_REF] Khoussainova | Snipsuggest: Context-aware autocompletion for SQL[END_REF], or user interest discovery [START_REF] Nguyen | Identifying user interests within the data space -a case study with skyserver[END_REF]. All these works use the SDSS workload for their tests. Embedded SQL code is analyzed in [START_REF] Van Den | Quality assessment for embedded SQL[END_REF] to measure its quality, mainly for maintainability purpose. The authors quantify quality based on the number of operators (joins, unions), operands (tables, subqueries) and variables in the SQL code, experimenting with SQL codes embedded in PL/SQL, COBOL and Visual Basic. Jain et al. ran a number of tests on the SQLShare workload [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], some of them being reported above, showing the diversity and complexity of the workload. In [START_REF] Vashistha | Measuring query complexity in sqlshare workload[END_REF], Vashistha and Jain analyze the complexity of queries in the SQLShare workload, in terms of the following query features: number of tables, number of columns, query length in characters, numbers of operators (Scan, Join, Filter), number of comparison operators (LE, LIKE, GT, OR, AND, Count), and the query run-time. They define two complexity metrics from these features: the Halstead measure (traditionally used to measure programs complexity) and a linear combination whose weights are learned using regression. Finally, a recent work investigated various similarity metrics over SQL queries, aiming at clustering queries [START_REF] Kul | Similarity metrics for SQL query clustering[END_REF] for better workload understanding. The authors run their tests on smaller SQL sets, as indicated above.

There are very few works about segmentation of SQL queries. Several works (e.g. [START_REF] Singh | Skyserver traffic report -the first five years[END_REF]), needing to detect sessions as part of their preprocessing tasks, implemented simple heuristics, inspired from detection of sessions in Web logs (e.g. [START_REF] Wong | Characterization and analysis of usage patterns in large multimedia websites[END_REF]). Basically, a new session starts after 30 minutes of user inactivity. A different approach consists of using supervised learning. Khoussainova et al. [START_REF] Khoussainova | Snipsuggest: Context-aware autocompletion for SQL[END_REF] aim at reducing the size of the query log for improving query autocompletion. Authors claim that users do many tries until obtaining the "good" query and higher quality queries appear at the end of a segment of similar queries. They propose a Query Eliminator module that segment the query log, stitch similar segments and drop many queries. They use a perceptron-based classifier to decide whether two consecutive queries belong to the same segment. Features used for segmentation include time interval between queries, cosine similarity between query clauses and relationship among abstract syntax trees of the queries. Their approach is tested on manually annotated logs and compared to the timestampbased heuristic used for Web logs. Nevertheless, the perceptron is not trained to detect explorations, but segments of similar queries, in order to reduce the log size. Another supervised learning approach is used in [START_REF] Acar | Segmenting and labeling query sequences in a multidatabase environment[END_REF]. In that work, Acra and Motro propose to segment SQL workloads in a multi-database context, using Conditional Random Fields (CRF). They use the following features to characterize a query: the set of fields projected by the query, the functional dependency closure of fields in the query, the set of constraints associated with the query, the source database, the answer retrieved by the query, the timestamp of the query. They tested their methods on two artificial datasets.

To our knowledge, our work is the first devoted to segment hand-written SQL queries into meaningful explorations, without ground truth or timestamps, and without making assumptions about the position of quality queries in a session.

Preliminaries

This section introduces the SQLShare workload and describes our hypothesis and preprocessing.

SQLShare workload preprocessing

From the 11,137 SQL statements we kept 10,668 corresponding to SELECT statements. The remaining statements (mainly updates, inserts and deletes) were filtered out.

We implemented a preliminary segmentation following a simple heuristic: keeping together the sequences of consecutive queries of a given user. As a result of the initial segmentation we obtained 451 sessions, counting between 1 and 937 queries (average of 23.65 queries per session, standard deviation of 75.05 queries). Furthermore, we made the initial hypothesis that queries appear in chronological order in the SQLShare workload. We noted that the queries of the workload do not come with timestamps, and we contacted the authors of the original SQLShare paper [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF] who confirmed that the query order in the workload may not reflect the order in which queries were launched. Therefore, the disparate distribution of queries along sessions, in addition to some extremely long sessions, possibly disordered, calls for a smarter way of segmenting sessions. Furthermore, segmentation strategy should be based only on query text, as for privacy issues, only a portion of instances is available.

Query and session abstractions

In what follows, we use the term query to denote the text of an SQL SE-LECT statement. We represent a query as a collection of fragments extracted from the query text, namely, projections, selections, aggregations, tables and attributes. The first four fragments abstract the most descriptive parts of a SQL query, and are the most used in the literature (see e.g., [START_REF] Khoussainova | Snipsuggest: Context-aware autocompletion for SQL[END_REF][START_REF] Eirinaki | Querie: Collaborative database exploration[END_REF]). The set of attributes (i.e., all attributes appearing somewhere in the query text) is included as it was used in preliminary studies of SQLShare complexity [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF][START_REF] Vashistha | Measuring query complexity in sqlshare workload[END_REF] and intuitively, it may complement the other query fragments, specially for those attributes appearing in complex SQL clauses. Note that we do not restrict to SPJ (selection-projection-join) queries. Indeed, we consider all queries in the SQLShare workload, some of them containing arbitrarily complex chains of sub-queries.

Definition 1 (Query). A query over database schema DB is a quintuple of query fragments q = P, S, A, T, At where:

1. P is a set of expressions (attributes or calculated expressions) appearing in the main SELECT clause (i.e. the outermost projection). We deal with * wild card by replacing it by the list of attributes it references. 2. S is a set of atomic Boolean predicates, whose combination (conjunction, disjunction, etc.) defines the WHERE and HAVING clauses appearing in the query. We considered indistinctly all predicates appearing in the outermost statements as well as in inner sub-queries.

3.

A is a set of aggregation expressions appearing in the query text. We considered indistinctly all expressions appearing in the outermost statements as well as in inner sub-queries, disregarding the SQL clause where they appear.

4.

T is a set of tables appearing in FROM clauses (outermost statement and inner sub-queries). Views, sub-queries and other expressions appearing in FROM clauses are parsed in order to obtain the referenced tables. 5. At is a set of attributes appearing explicitly in the query (outermost statement and inner sub-queries). Expressions, views, sub-queries and other clauses are parsed in order to obtain the referenced attributes. This allows to consider all attributes, even those that are part of atypical or less-frequently-used clauses. The * wild card is replaced with the list of referenced attributes, as for projections.

Note that although we consider tables, selections, aggregations and attributes occurring in inner sub-queries, we limit to the outermost queries for projections, as they correspond to attributes actually visualized by the user. We intentionally remain independent of presentation and optimization aspects, specially the order in which attributes are projected (and visualized by the user), the order in which tables are joined, etc.

The timestamp would be a relevant feature to describe the queries, which was done by previous attempts of the state-of-the-art (see Section 2). Such a feature would undoubtedly increase the accuracy of segmenting approaches when it is available. Unfortunately, the SQLShare dataset does not provide timestamps, and therefore a challenge for our approach is to achieve a high accuracy without such a feature.

Finally, a session is a sequence of queries of a user over a given database.

Definition 2 (Session).

Let DB be a database schema. A session s = q 1 , . . . , q p over DB is a sequence of queries over DB. We note q ∈ s if a query q appears in the session s, and session(q) to refer to the session where q appears.

Feature extraction

In this section, we define a set of features to quantitatively describe different aspects of a SQL query and its context. We then describe the extraction procedure and the obtained scores.

Feature description

For each query, we extract a set of simple features computed from the query text and its relationship with other queries in a session. The set of features is inspired from our previous work [START_REF] Djedaini | Detecting user focus in OLAP analyses[END_REF][START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF], which models OLAP queries as a set of features capturing typical OLAP navigation.

We intend to cover various aspects of a query in order to support different types of analysis and modeling based on query features. In particular, 8 features form the core of our proposal; they count the number of projections, selections, aggregations and tables and the number of common projections, selections, aggregations and tables. Other features combine them, providing useful computations (edit distance and Jaccard index) and other ones (e.g. number of attributes and number of characters) are informative and allow the comparison with preliminary works on SQLShare complexity [START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF][START_REF] Vashistha | Measuring query complexity in sqlshare workload[END_REF].

From now on, to remove any ambiguity, we use the term metric to denote the functions that score query properties. The term feature is reserved to denote the score output by the function.

For the sake of presentation, we categorize metrics as follows: i) intrinsic metrics, i.e., only related to the query itself, and ii) relative metrics, i.e., also related to the query's predecessor in the session. Table 1 For all definitions given in this section, let q k = P k , S k , A k , T k , At k be the query occurring at position k in the session s over the instance I of schema DB. All the queries we considered are supposed to be well formed, and so we do not deal with query errors.

For the moment, we only considered metrics based on query text. Further metrics may be defined if the database instance is taken into account (for example, number of tuples in query result, precision and recall of query result w.r.t. previous query, execution time, etc.). But the computation of such metrics implies the execution of every query in the SQLShare dataset, which is not always available for confidentiality reasons (i.e. users did not agree to share their data), and thus considerably reduces the set of queries. We left such studies to future work.

Intrinsic metrics

Intrinsic metrics are those that can be computed only considering the query q k , independently of the session s and other queries in s. In other words, these metrics will give the same score to q k , independently of s.

Number of Projections. N oP (q k) represents the number of projections (attributes and expressions) that are projected by the user. Expressions projected in inner sub-queries, but not projected by the outer query, are not considered as they do not appear in the query result.

N oP (q k) = card(P k) (1)
Number of Selections. N oS(q k) represents the number of selections (elementary Boolean predicates) that appear in the query text, both in outer and inner subqueries.

N oS(q k) = card(S k) (2)
Number of Aggregations. N oP (q k) represents the number of aggregations that appear in the query text, both in outer and inner sub-queries.

N oA(q k) = card(A k) (3)
Number of Tables. N oP (q k) represents the number of tables appearing in query text, both considering outer and inner sub-queries.

N oT (q k) = card(T k) (4)
Number of Attributes. N oP (q k) represents the number of attributes appearing in query text, both considering outer and inner sub-queries.

N oAt(q k) = card(At k) (5)
Number of Characters. N oP (q k) represents the number of characters of the query text, both considering outer and inner sub-queries.

N oCh(q k) = length(q k) (6)

Relative metrics

Relative metrics are those that are computed comparing the query q k to the previous query in the session s, q k-1

= P k-1 , S k-1 , A k-1 , T k-1 , At k-1 .
For the first query of s, i.e. q 1 , we consider as predecessor the "empty" query q 0 = ∅, ∅, ∅, ∅, ∅ . All the following metrics are defined for k ≥ 1.

Number of Common Projections. N CP (q k , q k-1) counts the number of common projections of q k relatively to q k-1 .

N CP (q k , q k-1) = card(P k ∩ P k-1) (7)
Number of Common Selections. N CS(q k , q k-1) counts the number of common selections of q k relatively to q k-1 .

N CS(q k , q k-1) = card(S k ∩ S k-1) (8)
Number of Common Aggregations. N CA(q k , q k-1) counts the number of common aggregations of q k relatively to q k-1 .

N CA(q k , q k-1) = card(A k ∩ A k-1) (9)
Number of Common Tables. N CT (q k , q k-1) counts the number of common tables of q k relatively to q k-1 .

N CT (q k , q k-1) = card(T k ∩ T k-1) (10)
Relative Edit Distance. RED(q k , q k-1) represents the edition effort, for a user, to express the current query starting from the previous one. It is strongly related to query fragments, and computed as the minimum number of atomic operations between queries, by considering the operations of adding/removing a projection, selection, aggregation or table. The considered cost for each observed difference (adding/removing) is the same.

RED(q k , q k-1) = card(P k -P k-1) + card(P k-1 -P k) +card(S k -S k-1) + card(S k-1 -S k) +card(A k -A k-1) + card(A k-1 -A k) +card(T k -T k-1) + card(T k-1 -T k) (11)
Jaccard Index. JI(q k , q k-1) represents the ratio between the common query fragments (projections, selections, aggregations and tables) and the union of query fragments.

JI(q k , q k-1) = card(F ragments(q k) ∩ F ragments(q k-1) card(F ragments(q k) ∪ F ragments(q k-1) (12)
where Fragments(

q k) = P k ∪ S k ∪ A k ∪ T k .

Extraction protocol

This section describes the procedure for extracting query features. We proceed in 3 steps:

1. Filter the SQL workload in order to keep only SELECT statements, i.e. discard updates, inserts, etc. 2. Extract query fragments (sets of projections, selections, aggregations, tables and attributes) and compute length, for each query.

Compute query features from query fragments.

For the first and second step we developed a C# script using the MSDN TSQL Parser. Removing all the non SELECT statements was straightforward. However, extracting query fragments required to deal with several particular cases. The major challenge was extracting projections; the procedure is detailed in subsection 4.2.1. The aggregations were obtained with a Parser's function that detects all the function calls within a query. The selections are all the atomic Boolean expressions contained in the queries and their subqueries. The extraction of tables and attributes is straightforward using specific Parser's functions and regular expressions. At this stage of our work we do not deal with predicate containment.

The third step computes query features as described in Equations 1 to 12. Computation is straightforward except for the * wild cards that could not be resolved during second step. Their estimation is described in Subsection 4.2.2.

Extraction of projections

For the extraction of projections we proceed as follows: first, for getting the projections visualized by the user, we need to detect the outermost SELECT clause of a query and then extract the SELECT elements. When there is a * wild card in the query (e.g. as in "SELECT * FROM T"), our script reaches the outermost FROM clause (looking for T). When T is a table, the script accesses schema metadata and obtains all the table attributes. If there is one or more sub-queries in the FROM clause, it repeats the previously described pattern until it finds either a table or a set of SELECT elements. Views and WITH clauses were treated in a similar way. For now, we do not take into account the queries having more than one '*' in their SELECT elements. (i.e : "SELECT t1.*,t2.*,a,b FROM t1,t2").

Note that this procedure for resolving * wild cards relies in the existence of schema metadata, i.e., having access to the corresponding datasets in order to obtain the list of attributes. However, some datasets are referenced in queries but are not present in the SQLShare released data because the user decided not to share them. For such queries (nearly 18% of the query workload), we could not resolve the list of projections and we needed to estimate the number of projections. Next subsection details their estimation.

Estimation of unresolved * wild cards

For the unresolved * wild cards, we estimated the number of projections, the number of common projections and the number of attributes. We considered several methods for the estimation.

Our first intuition was to estimate the number of attributes of each table (i.e., guessing the schema), by listing the attributes of those tables appearing in other queries. For example, from the query "SELECT a, b FROM t WHERE c=2" we can learn that table t contains attributes a, b and c. Using other queries, we can enrich such a list, for example concluding that table t contains attributes {a,b,c,d,e,f } (but perhaps others) and estimate that query "SELECT * FROM t" projects on 6 attributes. Note that some queries (as "SELECT a, b FROM t,s") cannot be exploited, as it is ambiguous whether a and b are attributes of t or s.

To this end, we pre-processed all queries in the workload listing for each table, all its attributes unambiguously appearing in query texts. A first remark is that 34% of the tables appear in only one query (and consequently estimation using other queries is impossible), 56% of the tables appear in 2 queries or less and 71% of the tables appear in 4 queries or less (compromising the accuracy of the estimation). Furthermore, comparing the number of attributes estimated with this method and the actual number of attributes in table schemas (for the 86% tables where the schema is known) we observed an important discrepancy. Indeed, while the average number of attributes in table schema is 13.31, the average number of attributes appearing in query texts is only 3.52, with standard deviation of 29.06 and 8.24 respectively. For these reasons, we discarded this estimation method.

Alternatively, we used linear regression to estimate the remaining cases, with the AUTO-SKLEARN Python module [START_REF] Feurer | Efficient and robust automated machine learning[END_REF], which is a module aiming at automatically choosing and parametrizing a machine learning algorithm for a given dataset, at a given cost (i.e., the time it takes to test different algorithms).

The methodology for estimating NoP consists of the following steps:

1. We build a dataset with all queries having * wild cards. Each query is represented by 23 features :

• NoS, NoA, NoT, NCS, NCA, NCT, (neither NoP nor NCP since they are the target of the regression)

• the min, max, average and standard deviation of the NoP, NoS, NoA, and NoT, grouped by the session the query belongs to,

• the number of queries in the session.

The class to be predicted is NoP. 2. We divide the dataset in two parts: a production dataset containing the queries with unknown NoP (the ones where NoP and NCP have to be estimated), and a learning dataset containing the queries with known NoP and NCP. 3. The learning dataset is then split in 80/20 for 5-fold cross-validation, and the AUTO-SKLEARN regression mode is used to fit the best regression.

The maximum time to find a model is set to 180 seconds. Accuracy is measured with the R 2 score (coefficient of determination). RMSE (rootmean-square error) and MAE (mean absolute error) scores are also reported. 4. The regression is used to predict NoP for the queries in the production dataset (those removed at step 2). 5. Finally, NCP is calculated from estimated NoP and the NoP of previous query.

The obtained accuracy scores are: 0.69 for R 2 , 12.00 for RMSE et 5.39 for MAE.

We used the estimation of NoP to estimate NCP and NoAt. However, as NCP also depends on the NoP of the previous query, the intersection is harder to estimate in the presence of multiple * wild cards concerning several tables. R 2 score was lower than 0.5. In order to improve the accuracy of the estimation of NCP, we implemented a second, independent regression, following the same methodology as for estimating NoP. Degenerated cases (e.g., a predicted number of common projections that is greater than the predicted number of projections) are fixed by computing the minimum among the predicted value for NCP, the predicted value for NoP and the NoP of the previous query. This estimation behaves much better, obtaining the following accuracy scores: 0.85 for R 2 , 7.49 for RMSE and 2.48 for MAE.

Analysis of query features for the SQLShare dataset

Table 2 summarizes the results of feature extraction. Value distributions of the main features are shown in Figure 1. These results are slightly different from the ones presented in our preliminary study [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF] because we used strict sets instead of multisets for representing some query fragments (e.g. we count only 1 table in the following query: "SELECT t1.a, t2.a FROM T t1, T t2"). A first remark is that many queries have a high number of projections. Indeed, 38 queries (out of 10,668) project more than 100 expressions, while more than 21% project more than 10 expressions. Many outliers are due to * wild card applied to large tables. The number of common projections, and the number of attributes (influenced by the number of projections) are also high. Furthermore, the number of attributes is close to the number of projections, which illustrates that predominant operations are projections. The number of the other query fragments is less impressive. Less than 1% of queries exceed 10 selections, 10 aggregations or 10 tables. Average and standard deviation confirm this disproportion, while median values show that most queries have few projections, selections, aggregations, tables and attributes.

The number of characters provides a preliminary idea of query complexity, which ranges from few characters (as in query "SELECT 1") to tens of thousands characters for a small number of huge queries. Median value is 153 characters. Focusing on longer queries (with more query fragments), at 90-percentile, queries have 18 projections, 3 selections, 1 aggregation, 2 tables and 20 attributes, while at 75-percentile those values are 9, 1, 0, 1 and 10 respectively. Indeed, as expected, there is a large number of short queries (having less fragments): 82% of queries have no aggregations and 44% have no selections, while 20% have a unique projection and 78% have a unique table. Interestingly, 6% of queries have no table in the FROM clause. An example of such queries is "SELECT 1+2".

Concerning common fragments between contiguous queries, almost half of the queries have 1 common projection, and 1 common table but no common selections nor aggregations, while there is more sharing at 75-percentile. The remaining two features, Relative Edit Distance and Jaccard Index, inform about the combination of such common fragments. Specifically, half of the queries differ in 4 or less fragments (RED=4) and have at least 44% of its fragments in common (JI=0.44), w.r.t. previous query. Furthermore, only 26% of queries have nothing in common with the previous query in their sessions (JI=0).

Comparison with the Open and Enterprise datasets

For these two datasets, the feature extraction was made as in [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF], enriched with estimation of the features pertaining to tables (NoT and NCT) and attributes (NoAt). In addition, we included join conditions (in NoS and NCS), not considered in [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF] nor in our previous study [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF]. Table 3 compares both datasets in terms of number of sessions, number of explorations (the ground truth), number of queries and summarizes features extraction. The last column allows the direct comparison SQLShare values; of course without lines concerning a ground truth.

Open

A first remark concerns the length of sessions. The Open dataset contains long sessions concerning few explorations while the Enterprise dataset contains shorter sessions concerning more explorations. Sessions length is actually dependent on the GUI used ; while third party OLAP tools, like Saiku, log a new query for each user action (including intermediate drag-and-drops), the SAP prototype only logs final queries. Regarding features, queries in both datasets concern a quite small number of projections, selections, aggregations, tables and attributes.

In addition, note that in terms of queries per session, the SQLShare dataset is similar to the Enterprise one, while in terms of features, it has bigger gaps with the other datasets. Specifically, SQLShare queries, in average, are richer in terms of projections and attributes (with high variations among queries), but contains less aggregations, selections and tables. Regarding relative features, except for the number of common projections, most features show that queries are less similar than in the other datasets. Relative edit distance (RED) and Jaccard index (JI) illustrate that queries are more similar in the Enterprise dataset.

In order to complete the analysis of query features in the three datasets, we study their pairwise correlation. We exclude RED and JI features (which are aggregated from the other query parts) and NoCh (which is merely informative).

Correlation results are shown in Figure 2. First of all, note that correlations are stronger in the Open and Enterprise datasets than in the SQLShare dataset. This is partially explained by the type of queries (OLAP-like) and the underlying star-like database schemes. Indeed, more projected attributes imply joining more dimension tables and using more join conditions (selections) and aggregations. In the SQLShare dataset, where both database schemes and queries are free-style, the correlation is less stronger.

The stronger correlation, in all datasets, is the one between NoP and NoAt. This correlation motivates the decision of not including NoAt as a core feature, as will be explained in Section 5. In addition, in the Open and Enterprise dataset, NoT is also highly correlated with them (as more dimensions tables are used when projecting more attributes). Conversely, in the SQLShare dataset, most queries concerns a unique table and many projections, resulting in less correlation.

Another interesting correlation concerns NoS and NoT, being strong in all datasets, but particularly in the SQLShare dataset. Indeed, the most tables are used, the more selections are necessary for joining them. As expected, there are other correlations among intrinsic and relative features, for example, between NoP and NCP. They happen in all datasets.

The last dataset in Figure 2, called Concatenate, is the union of Open and Enterprise datasets, which is used as training set in one of the proposed methods for segmentation (see Section 5). The correlation among its attributes is very close to the one among attributes in the Open dataset.

Next section discusses how to take into account these features for segmenting sessions.

Session segmentation

Subsection 4.3 presented various statistics about queries in the SQLShare workload. A preliminary session segmentation (contiguous queries of a given user) resulted in some extremely long sessions (maximum of 937 queries) with 26% of queries having nothing in common with their immediate predecessor. In this section, we explore how to segment sessions in a smarter way.

Session segmentation has been previously studied for the SDSS workload [START_REF] Singh | Skyserver traffic report -the first five years[END_REF]. In their study, the authors consider that a new session starts after 30 minutes of think-time (time spent between two queries). A similar problem was largely studied for the segmentation of web traces (see for example [START_REF] Wong | Characterization and analysis of usage patterns in large multimedia websites[END_REF]) proposing the same 30-minutes cutoff. Search engine providers, like MSN and Google, use similar heuristics. Contrarily to those works, the published SQLShare workload does not include query timestamps. We need to explore other heuristics for session segmentation.

In this section we explore three alternative methods for session segmentation, based respectively in the similarity between contiguous queries (Subsection 5.1), in model reuse and transfer learning (Subsection 5.2) and weak supervision (Subsection 5.3).

Similarity-based session segmentation

Intuitively, our idea is to compare contiguous queries in a session and segment when queries are dissimilar enough. Based on query features described in the previous section, we investigate 5 similarity indexes:

Edit Index. It is based on the Relative Edit Distance (RED) query feature. For normalizing, RED is translated to the [0,1] interval, considering similarity is 0 after a given number of operations (arbitrarily set to 10).

EditIndex(q k) = max{0, 1 - RED(q k , q k-1) 10 } (13
)
Jaccard Index. It is the Jaccard Index defined in Equation 12, which is normalized by definition.

Cosine Index. It is calculated as the Cosine of vectors consisting in 8 query features, namely, NoP, NoS, NoA, NoT, NCP, NCS, NCA, and NCT. Let x = x 1 , . . . , x 8 and y = y 1 , . . . , y 8 be the vectors for queries q k and q k-1 respectively.

CosIndex(q k , q k-1) = x i .y i x 2 i . y 2 i (14
)
Common Fragments Index. It is calculated as the number of common fragments normalized to the [0,1] interval and considering similarity is 1 when there are more than 10 common fragments (arbitrarily set).

CF Index(q k , q k-1) = min{1, N CF 10 }

where N CF = N CP (q k , q k-1) + N CS(q k , q k-1) + N CA(q k , q k-1) + N CT (q k , q k-1).

Common Tables Index. It is calculated as the number of common tables. We wanted this index to be relative to the user session ; this is why normalization here is specifically achieved in relative terms, by dividing by the highest number of tables in the session.

CT Index(q k , q k-1) = N CT (q k , q k-1) max{N oT (q)|q ∈ session(q k)} [START_REF] Khoussainova | Snipsuggest: Context-aware autocompletion for SQL[END_REF] Note that these indexes calculate complementary aspects of query similarity and are normalized in different ways. Our intention is to capture different points of view and therefore to deal with different situations. Edit Index and Common Fragment Index count differences (resp., common fragments) as absolute values (normalized with a given threshold). Jaccard Index is a compromise of the previous ones, computing the ratio of common fragments. Cosine Index is computed using features (the value of the metrics) instead of comparing sets of fragments; it captures the variability in query complexity. And finally, Common Table Index responds to the intuition that common tables have more impact than the other common fragments, and it is normalized with respect to the number of tables used in the user session.

As an example, Figure 3 depicts the similarity indexes for 3 sessions of different sizes. Looking at Session 28, the shorter one, it seems quite clear that the session may be split in two parts, by cutting between queries 4 and 5. All similarity indexes agreed. Things are less evident for Session 0. One split seems evident (at query 31), but some others may be discussed (e.g. at queries 29 and 12). Decision to split the session will depend on what similarity thresholds to use for the indexes. Finally, Session 18 presents a first part, with a focused analysis, via similar queries, and a second part, more exploratory, with varied queries. Even if indexes do not always agree, their majority seems to indicate a tendency.

In order to tune the similarity thresholds, we observed the distribution of values for each similarity index (see Table 4). Many zeros indicated that a lot of queries have nothing in common with previous ones. Based on this, our intuition is to set thresholds at values around 30-percentile for each index. In Section 6, we experimentally tune thresholds, based both on this observation and on experiments on datasets where there is a ground truth.

In practice, our approach can be summarized as follows: For each pair of consecutive queries: (i) compute query similarity according to the proposed similarity indexes, (ii) compare the obtained similarity values with their respective thresholds, obtaining a set of votes for "CONTINUE" (do not segment) or "SEGMENT" (segment and start a new exploration). The decision (to keep consecutive queries together, or to segment) is taken by majority.

Finally, note that we propose a preliminary set of query features and similarity indexes, but the approach can easily be extended with other features and other similarity indexes.

Transfer learning based session segmentation

Our second method for segmenting the SQLShare workload is based on transfer learning, that consists of using supervised learning to tune a model over a labelled dataset and use this model over a dataset for which no ground truth is available. We first introduce the basics of transfer learning, and then describe our approach in details.

Transfer learning

Classical supervised machine learning supposes large collections of previously collected labeled training data, to build effective predictive models. When labeled data is scarce, semi-supervised approaches may be used to build classifiers over large amount of unlabeled data and a small amount of labeled data. Still, such approaches assume that the distributions of the labeled and unlabeled data

Edit

Jaccard Cosine Common frag-Common index index index ments index tables index Min 0,00 0,00 0,00 0,00 0,00 10pc 0,00 0,00 0,60 0,00 0,00 20pc 0,00 0,00 0,71 0,00 0,00 30pc 0,00 0,07 0,78 0,10 0,00 40pc 0,40 0,22 0,87 0,20 0,01 50pc 0,60 0,44 0,94 0,30 0,14 60pc 0,80 0,63 0,98 0,40 0,50 70pc 0,80 0,78 1,00 0,60 0,50 80pc 0,90 0,89 1,00 0,90 1,00 90pc 1,00 1,00 1,00 1,00 1,00 Max 1,00 1,00 1,00 1,00 1,00 are the same. Transfer learning, however, aims to extract the knowledge from one or more source tasks and applies the knowledge to a target task, while allowing the domains, tasks, and distributions used in training and testing to be different. Transfer learning situations differ in what, how and when to transfer [START_REF] Pan | A survey on transfer learning[END_REF].

In our context, having no ground truth for the SQLShare dataset, but having ground truth for other datasets, and considering the difference in feature correlation between SQLShare and the other datasets (see Figure 2), allows to model session segmentation as a classification task, and use transfer learning. Precisely, we will consider learning a classifier over ground truth datasets as a source task, and learning a classifier over SQLShare as the target task. According to the typology introduced in [START_REF] Pan | A survey on transfer learning[END_REF], this is a case of transductive transfer learning setting, where the source and target tasks are the same, while the source and target domains are different, but the feature spaces between domains are the same. In that case, learning a model that can generalize to the target dataset demands to remove the sample selection bias due to the fact that source data and target data are drawn from different distributions. This can be achieved by reweighting the source data after having estimated the probability of appearance of each sample of the source dataset in both the source and the target dataset, which can be done for instance with density ratio estimation [START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF][START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF].

Binary classification with linear SVM

We formalize the problem of workload segmentation as a supervised classification task, in the spirit of what we did in one of our earlier work [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF] and using datasets with ground truth that we used in this previous work. We use a description of each query by a set of features, using the features that are the most correlated to the ground truth. Our objective is to learn a linear combination of the features that separates queries starting an exploration from queries continuing an exploration. To this end, each vectorized query of the ground truth dataset is associated with a binary label representing the ground truth of this dataset: label SEGMENT is associated with queries starting an exploration (i.e. a segmentation to be found), while label CONTINUE is associated with queries continuing an exploration.

To learn our model, we trained a binary classifier over the dataset, removing sample selection bias by reweighting samples using kernel-mean matching (KMM) [START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF]. We chose a linear SVM classifier since this proved effective in [START_REF] Djedaini | Automatic assessment of interactive OLAP explorations[END_REF]. The model is learned using 10-fold cross validation to choose its best hyperparameter via randomized search.

Since we believe that the dataset is likely to be heavily unbalanced towards the CONTINUE label, we tested various balancing strategies while training the model, aiming at improving classification accuracy. We compared several methods on the basis of their respective accuracy and F1-measure, over a 10-fold cross-validation: either random undersampling of majority class, or oversampling of minority class. In the last case, several heuristics have been tested: random oversampling, 3 variants of SMOTE (with different approaches to sample borderline points between classes) or ADASYN [START_REF] Batista | A study of the behavior of several methods for balancing machine learning training data[END_REF].

Once the best hyperparameter is obtained, the model is eventually trained over the full reweighted Concatenate dataset, to be applied over the target SQLShare dataset.

Weak labelling and generative model

Instead of directly learning a transferable model from a labelled dataset, our third approach uses a generative model to predict the labels of the unlabelled dataset. To this end, we resort to weak supervision, a labeling technique consisting of using noisier or heuristic sources of labels to avoid hand-labeling data. In our case, we wrote a set of (potentially contradictory) labeling functions, apply them to our labeled sources, using a generative model to assign the most probable label to each data, and choose the subset of functions that maximizes accuracy and F1-measure w.r.t. the ground truth.

We use Snorkel [START_REF] Ratner | Snorkel: Rapid training data creation with weak supervision[END_REF], a weak supervision system that (1) lets users write labeling functions (LFs), (2) applies the LFs over unlabeled data and learns a generative model to combine the LFs' outputs into probabilistic labels, and eventually (3) allows to use these labels to train a discriminative classification model.

Snorkel is intended to work over unstructured data. Labeling functions take as input a Candidate object, representing a data point to be classified. Each Candidate is a tuple of Context objects, which are part of a hierarchy representing the local context of the Candidate [START_REF] Ratner | Snorkel: Rapid training data creation with weak supervision[END_REF]. Typically, a candidate is a pair of named entities and the context is a sentence in which they both appear, this sentence itself being part of a document, the set of documents being the dataset to be labelled. We adapted to Snorkel's data model by considering each session of the labelled dataset as a context, and each pair of consecutive queries in a session as a candidate. We wrote simple labelling functions using the metrics and indexes extracted from the datasets. To maximize agreement between labelling functions, we grouped them and select the best subset of each group in terms of F-measure, when trained over the labelled dataset. We then merge the best subgroups and repeat this process until the score no longer improves.

We give below a brief description of our labelling functions.

Labeling functions

We implemented 21 labelling functions, each one using one of the relative metrics or indexes extracted from the dataset. Considering that SQL workloads can be very different, our objective was to define functions that capture, through simple heuristics, intuitive properties of pairs of SQL queries, and to remain independent from the dataset. As with the previous approach, we use a binary labelling scheme: label CONTINUE indicates that both queries of the pair should remain in the same exploration, label SEGMENT indicates that the pair should be split, i.e., the second query starts a new exploration.

Our first group of functions consists of one function per index (edit index, etc.), all being based on the same algorithm: if the index is greater than 0 then the pair is assigned label CONTINUE, otherwise label SEGMENT is assigned.

Our second group of functions implements a precision and a recall indicator for each of the 4 relative metrics (NCP, NCS, NCA, NCT), resulting in 8 functions. For such a relative metric, say NCP, recall (resp. precision) is computed as N CP N P f (resp. N CP N Ps) where N P f (resp. N P s) is that of the first (resp. second) query of the pair. All labelling functions are then based on the same algorithm: if recall (resp. precision) equals 1 then the pair is assigned label CONTINUE, else if it equals 0, then label is SEGMENT. Otherwise the function does not assign any label.

Our third and last group is a second implementation of precision and recall for all 4 relative metrics (another 8 functions), favoring the attribution of the CONTINUE label, as follows: if recall (resp. precision) is not 0 then label is CONTINUE, otherwise it is SEGMENT.

Experiments

In this section we report the results of the experiments conducted to validate our proposal for session segmentation. Experiments with the three methods are reported, namely, similarity-based (Subsection 6.2), transfer learning-based (Subsection 6.3) and weak labelling-based (Subsection 6.4). We start by presenting our protocol and our baseline.

Protocol and baseline

Our work aims at finding the best way of segmenting a SQL workload, upon which little is known (no timestamps, no ground truth, no database instance), into meaningful, coherent explorations. As explained in the previous section, we will test three different segmentation methods and use datasets with ground truth to compare them. In what follows, we consider three datasets with ground truth: Open, Enterprise, and the concatenation of the Open and Enterprise datasets, resulting in 40 sessions and 1466 queries, and dubbed the Concatenate dataset. We will apply all methods on these three datasets and on the SQLShare workload, and eventually we will compute the agreement between them.

The input of our methods is a CSV file per workload (SQLShare, Open, Enterprise and Concatenate), each line describing a query by means of: query id, session id, features (extracted as explained in Section 4), indexes (calculated as explained in Subsection 5.1) and ground truth when available (labels SEG-MENT and CONTINUE). The output of each method is an additional column in each file, indicating the segmentation (labels SEGMENT and CONTINUE). In experiments with ground truth, both columns (ground truth and segmentation) are compared in order to evaluate the effectiveness of each method. We compute four classical quality metrics, defined as follows:

• Accuracy measures the ratio of queries having the same label.

• Precision measures the ratio of queries coinciding in SEGMENT label among the queries labeled SEGMENT in the obtained segmentation.

P recision = nb(S, S) nb(S, S) + nb(C, S) (18)
• Recall measures the ratio of queries coinciding in SEGMENT label among the ones having SEGMENT label in the ground truth.

Recall = nb(S, S) nb(S, S) + nb(S, C)

• F-measure computes the harmonic average of precision and recall.

F measure = 2 * P recision * Recall P recision + Recall [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF] where nb(i, j) indicates the number of queries having label i in the ground truth and label j in the obtained segmentation, i and j being either S (for SEGMENT) or C (for CONTINUE).

Noticeably, we changed the evaluation protocol compared to our previous study [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF]. In [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF], each session was segmented independently, while our current methods process all sessions together (a whole workload). This means that our methods must also find the starts of sessions, not only the cuts inside sessions. Reasons are twofold: First, we can train supervised and weakly-supervised methods with bigger inputs. Second, we increased the number of SEGMENT labels to find (which makes a real difference for the Open dataset, where we pass from 12 to 28 cuts to find). We expect this change in the protocol to improve results, specially in terms of recall.

Our baseline is a naive method always predicting the majority class (i.e., always predicting CONTINUE and never predicting SEGMENT). It obtains good values for accuracy (97% for Open, 82% for Enterprise and 91% for Concatenate). However, such baseline obtains 0 as score for F-measure, since precision and recall are 0 (there is no SEGMENT prediction). We will then simply use prediction of the majority class as a baseline for accuracy.

Our methods are implemented in Python, and code and data are available from Github4 .

Results on similarity-based session segmentation

We implemented our first method for session segmentation based on the 5 similarity indexes with voting strategy. In practice, similarity values are compared to similarity thresholds, obtaining a set of votes for "CONTINUE" or "SEGMENT"; the decision is taken by majority. Note that in this method there is no learned model, only similarity thresholds that are tuned for each data set.

We first experiment with the Open and Enterprise dataset, measuring the effectiveness of our approach by comparing to the ground truth. As the Open dataset also contains timestamps, we compare to the 30-minutes cutoff heuristic used in the literature.

Experiments with ground truth

Threshold setting. We tested different thresholds for voting; they were tuned following four strategies.

In the first one, we calculated the distribution of values for each similarity index and we used as threshold the value at k-percentile, with k varying between 0 and 30. The thresholds that provided better results were those at 0-and 14percentile for the Open and Enterprise datasets respectively. They are reported in Table 5 (column S1). These thresholds reflect the relationship between the number of explorations to find and the number of queries, as well as the similarity among consecutive queries. Indeed, the Open dataset contains many queries and few explorations (i.e., a few segments to find); small thresholds are best adapted. Conversely, the Enterprise dataset needs to be more segmented as the average number of queries per exploration is low; higher thresholds do better.

While the first strategy chooses values at the same percentile for all indexes, the second strategy tunes each index independently. To this end, for each index, we take the value at k-percentile, with k varying between 0 and 30, and we correlated the obtained "CONTINUE/SEGMENT" vector with the ground truth, keeping the value of k being the most correlated. Results are reported in Table 5 (column S2). For the Open dataset, only Edit threshold changed; the value at 5-percentile is the most correlated, but finally obtained the same quality values. For the Enterprise dataset, the Cosine and Common Tables thresholds changed; the most correlated values obtained at 9-and 0-percentile respectively. Interestingly, quality values slightly decreased. This shows that individual correlations are not enough, the combination of them do better. thresholds for the Open and Enterprise datasets, the ones found by the simple knee heuristic (S3) and shown at Table 5.

We remark that more precise thresholds could be learned with supervised machine learning techniques (e.g., classification). We intentionally avoid this computation in this first method, purely unsupervised, because in real applications (like with SQLShare) we do not have any ground truth for learning. An expert providing the ratio of queries per exploration (either intuitively or via preliminary tests) is more realistic. Besides, the use of supervised learning is analysed in the next subsections.

Segmentation quality. For each dataset, we compared the obtained segmentation to the ground truth, measuring segmentation quality in terms of accuracy, precision, recall and F-measure. We report the results in Table 6.

As expected, results are very good in terms of accuracy, mainly explained because classes are unbalanced (the number of CONTINUE labels is higher than the number of SEGMENT ones) and quite good in terms of f-measure; better for the Open dataset than for the Enterprise one. Note that results are different from those reported in [START_REF] Peralta | Qualitative analysis of the sqlshareworkload for session segmentation[END_REF] because the evaluation protocol changed, as previously explained.

Comparison to timestamp-based approach. In order to compare our approach to the one used in the literature, we implemented a second heuristic that segments users sessions when there is a 30-minutes delay between queries. The Open dataset, the only one containing timestamps, was used for this test. Results are reported in Table 6, the right-most column corresponding to the timestampbased approach. They are comparable in terms of accuracy and lower in terms of f-measure. Note that 1 for precision means that all cuts found are also breaks in the ground truth. In other words, there are no big delays inside explorations, which makes sense. However, the timestamp-based approach fails to detect 36% of the breaks (when the user changes its topic of study in a briefer delay).

Analysis of similarity indexes. Finally, we investigated the behavior of the 5 proposed similarity indexes, by studying the correlation of their votes (when index value is lower or equal to the corresponding threshold) with respect to the breaks in the ground truth. Results are presented in thresholds with strategies S1 or S2 (values not reported). Indeed, with the chosen thresholds, the similarity indexes behave well together despite they are not individually correlated with the ground truth. Jaccard index is highly correlated in both datasets. In addition Edit index behaves well for the Enterprise dataset, while Common Fragments and Cosinus do well for the Open dataset. Interestingly, the most correlated indexes are also the ones that are more influencing the final vote (as shown in Table 7 (right)).

Experiments with SQLShare

As in experiments with ground truth, we use our heuristic based in the 5 similarity indexes, tuned with simple thresholds, taking the decision of segmenting or not using majority vote.

According to the findings on Open and Enterprise dataset, we set thresholds by calculating knees in curves plotting ordered similarity values. The obtained thresholds are shown in Table 8. They are coherent with the preliminary analysis shown in Table 4.

This simple heuristic allowed to split the initial 451 sessions in 3,075 explorations. In the absence of ground-truth, we present in Table 9 a comparison of average features before and after session segmentation. A first remark concerns session length: extremely large sessions (maximum of 937) were split (new maximum is 98 queries). Indeed, more than half of the sessions were not fragmented and at 3rd quartile 1 session was split in 3 explorations. Some long and anarchic sessions (such as the one counting 937 queries) were split in a multitude of explorations. We can also highlight an increasing in the average number of common query fragments (NCP, NCS, NCA, NCT) per session. This increasing is quite regular and visible for all quartiles. Relative edit distance (RED) and Jaccard Index (JI) also improved, as expected.

Results on transfer learning-based session segmentation

In this second approach, we learn a model over our labelled dataset (source task) and transfer the model over SQLShare (target task). Our source task consists of building a SVM classifier for the Concatenate dataset.

We applied our approach as described in Section 5.2.1. We first selected, from the set of all metrics and indexes extracted from the Concatenate dataset (see Section 4 and 5.1), the ones most correlated with the ground truth, using Pearson's correlation coefficient. To select the most correlated features, we ordered the features by the absolute value of the correlation coefficient, we train the classifier iteratively adding the features while F-measure and accuracy scores increase, and stop when the scores no more improve. This resulted in keeping features Edit index, Cosine index, Common fragments index and Jaccard index, whose absolute values of correlation coefficient range from 0.52 to 0.59.

As reported in Subsection 4.4, the Concatenate dataset is highly unbalanced. Label SEGMENT appears only 124 times while label CONTINUE appears 1342 times. We tested different balancing strategies and different splitting in training and test set (from 50 to 95 percent for the training set). Our best classifier's scores and weights are given in Table 10. It is obtained using vanilla SMOTE for oversampling and a training set of 95%. We remark that the classifier achieves good scores on the training sets (for hyper-parameter learning), the test set and on the complete dataset. Unsurprisingly, the classifier weights follow the correlation of the features to the ground truth (from Jaccard the most correlated to Edit Index the less correlated).

Trained over the complete Concatenate dataset, using KMM re-weighting, and applied over the SQLShare dataset, the classifier detected 3,420 explorations.

Results on weak labelling-based session segmentation

For this last method, the first task consists in the selection of the most appropriate subset of labelling functions. Our goal is to select the best subset, in the sense of F-measure, over the Concatenate dataset. Over the 2 21 -1 possible subsets, we tested 564 combinations of labelling functions, using the protocol explained in Section 5.3. The best subset was formed of three functions: two functions taken in the first group (Edit index and Jaccard index) and one function taken in the third group (the recall of projections, second version). This subset achieves the scores displayed in Table 11,which

Findings and discussion

Table 16 recalls the quality metrics obtained by the three proposed methods, as well as the baseline, for the ground truth dataset. We note that of all three methods, Voting, with its simple underlying idea based on similarity indexes and thresholds, outperforms the other ones, while being unsupervised. And this for all quality indexes. In addition, all methods obtain much better accuracy than the simple baseline predicting the majority class (CONTINUE).

As a final remark, we observe that all three methods have good agreements over the SQLShare dataset. This is quite expected for Voting and Transfer since they share most features (4 of the indexes), but a bit more surprising for Weaklabelling since it uses Edit index (the weakest weighted in Transfer's classifier) and uses two non index-features (namely NoP and NCP for computing the recall of projections).

Importantly, all methods agree on finding more than 26% of segmenting, consistently with our analysis of the SQLShare workload reported in Section 4.3, as there was 26% of queries having nothing in common with their immediate predecessor. In addition, in 93% of the cases they have full agreement and in 98% of cases the Voting method agree with at least one of the other methods. In the remaining 2% of cases, Voting keeps queries together while the other methods propose to segment. Indeed, Voting detects the less explorations, 3,075 against 3,174 and 3,420 for the other two methods.

From a practical point of view, the Voting method is also easier to implement as it does not requires any training with labeled datasets nor labelling functions. For our future work, our choice is to use the explorations found by the Voting method, as it is the simplest one, does not need any labelling and achieves good results. The high agreement with the other methods reinforce our decision.

Conclusion

This paper discussed the problem of segmenting sequences of SQL queries into meaningful explorations when only the query text is available, and it is not possible to rely on query timestamps.

We characterized queries as a set of simple features and defined five similarity indexes with respect to previous queries in the session. A simple unsupervised method, based on the similarity indexes with voting strategy, allowed to split long and heterogeneous sessions into smaller explorations where queries have more connections. This method tunes similarity thresholds based on knee detection and uses no labels nor expert knowledge. We investigated two additional methods, exploiting supervised and weak-supervised learning techniques. Experiments showed a strong agreement among the 3 methods ; the best results, in terms of accuracy and F-measure over datasets with ground truth, being achieved by the simple unsupervised method.

Our approach can be easily extended with other query features and other similarity indexes. In the near future, we would like to test more features, in particular for considering each query in the context of its session (not only comparing it to its immediate predecessor) and exploiting query results. Further similarity indexes may be deduced from such features. We also should discard preliminary hypothesis about chronological ordering of queries and deal with query similarity beyond it.

In this work, we have only considered SELECT statements from the SQL-Share workload. However, there are 469 remaining statements that represent updates and inserts. They are interesting as they may represent intermediate or partial results. In addition, we notice that some statements are attempts to deal with formatting problems and data quality issues. Their parsing and inclusion may be an interesting extension of this work.

Our long term goal is to show how our segmentation approaches help improving a variety of novel log-based applications, from the measurement of the quality of SQL explorations, the detection of specific exploratory activities, the learning of user analysis behavior, the discovery of latent user intents, or the recommendation of forthcoming exploration queries.

Figure 1 :

 1 Figure 1: Value distribution of main query features in the SQLShare dataset.

Figure 2 :

 2 Figure 2: Feature correlation in datasets Open (up left), Enterprise (up right), SQLShare (bottom left) and Concatenate (bottom right).

Figure 3 :

 3 Figure 3: Comparison of similarity indexes for 3 sessions.

 Accuracy = nb(S, S) + nb(C, C) nb(S, S) + nb(S, C) + nb(C, S) + nb(C, C)

 presents an overview of the metrics.

		Intrinsic metrics
	NoP	Number of projections (attributes and expressions)
	NoS	Number of selections (filtering predicates)
	NoA	Number of aggregations
	NoT	Number of tables
	NoAt Number of attributes
	NoCh Number of characters
		Relative metrics

NCP Number of common projections, with previous query NCS Number of common selections, with previous query NCA Number of common aggregations, with previous query NCT Number of common tables, with previous query RED Relative edit distance (effort to express a query starting from the previous one) JI Jaccard index of common query fragments, with previous query Table 1: metrics for SQL queries

Table 2 :

 2 Average, standard deviation, range and some percentiles for query features on the SQLShare dataset

	Metric	Avg Stdev Min 10pc 25pc 50pc 75pc 90pc	Max
				Intrinsic metrics			
	NoP	9.14	22.25	1	1	2	4	9	18
	NoS	1.19	3.09	0	0	0	1	1	3
	NoA	0.39	1.98	0	0	0	0	0	1
	NoT	1.50	3.29	0	1	1	1	1	2
	NoAt	9.79	22.68	0	1	2	5	10	20
	NoCh	267.50 600.44	8	57	84	153	267	489
				Relative metrics			
	NCP	4.92	17.54	0	0	0	1	5	12
	NCS	0.59	1.96	0	0	0	0	1	2
	NCA	0.20	1.08	0	0	0	0	0	1
	NCT	0.85	2.05	0	0	0	1	1	2
	RED	10.82	26.16	0	0	2	4	12	24
	JI	0.45	0.39	0	0	0	0.44	0.83	1

Table 3 :

 3 Characteristics of Open, Enterprise and SQLShare datasets

Table 4 :

 4 Percentiles in distribution of indexes values.

Table 6 :

 6 Segmentation results for our approach on the 3 datasets and the timestamp-based approach (rightmost column)

		Open Enterprise Concatenate Open (timestamp)
	Accuracy	0.99	0.92	0.97	0.99
	Precision	1	0.75	0.79	1
	Recall	0.75	0.81	0.80	0.64
	F-measure	0.86	0.78	0.80	0.78

Table 7 (

 7 left). Noticeably, these values are considerably lower than those obtained if tuning similarity

		Ground truth	Final vote
		Open Enterprise Open Enterprise
	Edit index	0.30	0.63	0.20	0.88
	Jaccard index	0.86	0.63	1.00	0.72
	Cos index	0.75	0.27	0.87	0.44
	CF index	0.86	0.20	1.00	0.21
	CT index	0.07	0.17	0.06	0.18

Table 7 :

 7 Correlation between votes of similarity indexes and ground truth (left) / final vote (right) for both datasets.

		SQLShare
	Edit index	0
	Jaccard index	0
	Cos index	0
	CF index	0.10
	CT index	0.045

Table 8 :

 8 Similarity thresholds for the SQLShare dataset

Table 9 :

 9 Comparison of average features per session before and after segmentation

		Avg Stddev Min 25pc 50pc 75pc Max
			Before segmentation			
	Nb queries 23.65	75.05	1	2	4 13.50	937
	Avg NCP	6.14	19.54	0	1	2.37	5.21	306
	Avg NCS	0.44	0.74	0	0	0.17	0.71	7
	Avg NCA	0.19	0.45	0	0	0	0.17	4
	Avg NCT	0.93	0.6	0	0.67	0.97	1	4
	Avg RED	8.49	17.33	0	2.71	5.35	8.55	205
	Avg JI	0.52	0.27	0	0.33	0.53	0.69	1
			After segmentation			
	Nb queries	3.47	5.73	1	1	1	3	98
	Avg NCP	6.98	17.21	0	1.33	3	7.50	509
	Avg NCS	0.64	1.96	0	0	0	1	55
	Avg NCA	0.29	1.72	0	0	0	0	48
	Avg NCT	1.18	3.08	0	0.8	1	1	82
	Avg RED	8.02	20.7	0	1.67	3.48	7	508
	Avg JI	0.61	0.27	0	0.41	0.64	0.84	1

Table 10 :

 10 Results of the best linear SVM classifier over Concatenate, using oversampling and transfer learning (left), classifier weights when trained over the Concatenate dataset (up right) and overall scores on the Concatenate dataset (bottom right)

	Training set size before sampling 1392 size after sampling 2548 Average accuracy 0.93 +/-0.02 Average precision 0.91 +/-0.01 Average recall 0.95 +/-0.03	Classifier weights Jaccard index Cosine index CFI Edit index	-1.38 -0.52 -1.0 -0.50
	Average F-measure	0.93 +/-0.02		
	Test set Size Accuracy Precision Recall F-measure	74 0.94 0.6 1 0.75	Overall scores Accuracy Precision Recall F-measure	0.959 0.764 0.758 0.761

Table 11 :

 11 are slightly better than the one achieved with the classifier of the second method. Scores of the best set of labelling functions Applied over the SQLShare dataset, this method detected 3,175 explorations.

	Accuracy	0.959
	Precision	0.76
	Recall	0.766
	F-measure 0.763

Table 13 :

 13 Confusion matrix of the three different methods on the Concatenate dataset (0=CONTINUE, 1=SEGMENT)

		Voting Transfer Weak-labelling
	Voting	1	0.90	0.87
	Transfer	0.90	1	0.89
	Weak-labelling	0.87	0.89	1

Table 14 :

 14 Agreement between the three different methods on the SQLShare workload, measured with Cohen's kappa

Table 15 :

 15 Confusion matrix of the three different methods on the SQLShare workload (0=CONTINUE, 1=SEGMENT)

		Voting Transfert Weak-labelling Baseline
	Accuracy	0.97	0.959	0.959	0.91
	Precision	0.79	0.764	0.76	
	Recall	0.80	0.758	0.766	
	F-measure	0.80	0.761	0.763	

Table 16 :

 16 Segmentation results for the 3 proposed methods and the baseline

Consistently with the authors of[START_REF] Jain | Sqlshare: Results from a multi-year sql-as-a-service experiment[END_REF], we use the term hand-written to mean, in this context, that the query is introduced manually by a human user, which reflects genuine interactive human activity over a dataset, with consideration between two consecutive queries.

http://meteorite.bi/products/saiku

Patent Reference: 14/856,984 : BI Query and Answering using full text search and keyword semantics

https://github.com/patrickmarcel/SQLWL-segmentation

Both previous strategies take advantage of ground truth for tuning thresholds. In the third strategy, we investigated unsupervised tuning. To this end, we ordered and plot the values of each similarity index and we observed the curves looking for knees, i.e., the point of maximum curvature. Knee detection is used for setting thresholds in several application domains, as ranking and clustering. We used Kneedle algorithm [START_REF] Satopaa | Finding a "kneedle" in a haystack: Detecting knee points in system behavior[END_REF], a global and discrete approach to knee detection. It is based on the notion that the point of maximum curvature in a curve is the point that is the farthest of the diagonal line formed by the points (x 0 , y 0) and (x n , y n) with n the number of points in the dataset. Using this diagonal line is very interesting because it allows to keep the global behavior of the curve during the analysis [START_REF] Chedin | Descriptive clustering and highlighting cells in olap query[END_REF]. Results are reported in Table 5 (column S3). For the Open dataset, only Common Tables threshold changed, and once again, we obtained the same quality values. For the Enterprise dataset, changes are more important and concern almost all the indexes. Quality values also changed: while accuracy and F-Measure remain comparable, the new thresholds increase recall and decrease precision.

In order to better understand each curve, we tested some variants of the knee-detection algorithm, looking for inverted knees (i.e., up the diagonal) or restricting the search to the first half of the dataset. Inverted knees works well for Cosine curve, while the restricted knees do better for Common Fragments and Common Tables. Results are reported in Table 5 (column S4). The Cosine threshold changed for the Open Dataset and several indexes changed for the Enterprise dataset. Interestingly, results for the Open dataset are improved, while those for the Enterprise dataset are degraded.

Other attempts to further tuning the thresholds resulted in slightly improving results for one dataset while decreasing results for the other. We concluded that the simple knee strategy (S3) achieves a good compromise, being close to the best solution in terms of accuracy and F-measure, and having the advantage of not needing any preliminary knowledge nor label, which is more appropriate for the SQLShare dataset. Consequently, in the remaining tests, we use as

Agreements

We now report the agreement of the three different methods applied on the Concatenate dataset and on the SQLShare workload. The agreement is computed using the following indicators:

• Pairwise Cohen's kappa, which is a statistic measure of agreement, classically used to evaluate the degree of agreement of two raters, ranging from negative values (worse agreement than random) to 1 (perfect agreement), with 0 indicating no agreement among the raters other than what would be expected by chance,

• Fleiss' kappa, that generalizes the Cohen's Kappa to more than two raters,

• Full agreement ratio, i.e., the percentage of times all methods perfectly agree,

• Confusion matrix: the number of each combination of predictions for the three methods.

For the Concatenate dataset, the overall Fleiss' kappa for the three methods is 0.90 and the full agreement ratio is 0.97. Table 12 shows for each method its Cohen's Kappa when compared to another method, highlighting that the best agreement occurs between transfer-and weak-labelling-based methods, being two methods learning over Concatenate as ground truth. The agreement of the three methods with the ground truth is comparable and remains good. These values are frequently qualified as a strong agreement. Table 13 shows the confusion matrix. As expected, the agreement on CONTINUE label is the highest. Noticeably, the agreement on SEGMENT label is also very high, compared to non-agreement combinations. For the SQLShare workload, the overall Fleiss' kappa for the three methods is 0.89 and the full agreement ratio is 0.93. Table 14 shows for each methods its Cohen's Kappa when compared to another method, and Table 15 shows the confusion matrix. Results are comparable to those for the Concatenate dataset in terms of agreement. Nevertheless, the three methods agree to segment more frequently than on the Concatenate dataset.