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Abstract 
 

Soft particle glasses are amorphous materials made of soft and deformable particles that 
are jammed above close-packing.  They behave like weak solids at rest but they yield and flow 
under external mechanical constraints.  Although soft particle glasses are widely used in 
applications, little is known about how the particle softness and microscopic dynamics determine 
the macroscopic rheology. Here we use three-dimensional particle dynamic simulations to 
analyze the dynamical properties of soft particle glasses at different scales.  We demonstrate how 
the dynamics is determined by the persistence time and the magnitude of the fluctuating elastic 
forces that develop at contact in the flow.  The shear-induced diffusion coefficient, the local 
structural relaxation times, the shear stress, and the normal stress differences are interconnected 
through simple relationships that allow the prediction of the macroscopic rheology from the 
microscopic dynamics.   
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I. INTRODUCTION 

Soft particle glasses (SPGs) are amorphous materials composed of deformable particles 

jammed at volume fractions beyond close-packing where they are in contact and interact through 

elastic forces [1, 2].  They include many systems of practical interest such as concentrated 

emulsions, microgel pastes, micelles, or star polymer solutions.  In SPGs each particle is 

constrained in a cage by elastic forces and cannot move over long distances unless an external 

stress larger than the yield stress yσ  is applied.  The flow curve that relates the shear stress σ  to 

the shear rate γ  is well described by the generic Herschel-Bulkley equation n
y kσ σ γ= +   [3, 4]; 

the first and second normal stress differences follow similar relations [4].  An open and 

important question concerns the physical origin of these empirical equations and their connection 

with the particle scale dynamics of SPGs. 

Recent experiments have established that the microscopic dynamics of glasses and 

jammed materials is characterized by shear-induced structural rearrangements that generate 

stress and strain fluctuations propagating via elastic interactions [5-12].  Theoretical 

investigations, which are mainly based on 2D simulations and numerical models, have shown 

that long-range plastic relaxation modes are associated with dynamical heterogeneities consisting 

of spatiotemporal patterns where particle displacements are correlated [13-20].  The geometry of 

the heterogeneities depend on the flow rate [12] and their size diverges at low shear rates making 

low-shear properties system-size dependent. Shear induced rearrangements are responsible for 

self-diffusion whose properties has been connected to the characteristic of cooperative regions at 

low strain rates [6, 7, 14, 17, 18, 20].  An important consequence of the existence of 

spatiotemporal heterogeneities is that mean-field approximations do not accurately connect 

microscopic processes to rheology [21, 22]. 
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Although this framework captures important features of the microscopic dynamics of 

glassy materials, it poses several important questions.  First, most existing results are strictly 

valid for 2D systems and 3D investigations are clearly needed.  Secondly, little attention has 

been paid to the very nature of the interaction potential.  SPGs are singular in this context since 

particles interact through elastic potential that are much softer than hard sphere or Lennard Jones 

potentials often used in previous investigations.  Elastic deformations caused by soft potentials 

have been shown to play an important role in the dynamics of soft colloids [4, 23, 24].  In brief 

the connection between non affine particle trajectories, mesoscopic properties and macroscopic 

rheology in real 3D SPGs remains an outstanding challenge. 

Here we address this question using three-dimensional particle simulations of non-

Brownian deformable particles in the jamming regime where elastic contact forces are dominant 

[4]. We show that at short time, the sustained elastic forces exerted by the particles at contact are 

responsible for ballistic motion whereas at long time the non-affine dynamics are diffusive with a 

shear-dependent diffusion coefficient.  We characterize the single particle dynamics using the 

elastic force autocorrelation function and the intermediate scattering function that provides 

microscopic relaxation rates.  The shear-induced diffusion coefficient, the microstructural 

relaxation time, shear stress, and normal stress differences are controlled by the persistence time 

of the local elastic forces which also sets the duration of the short time ballistic motion.  They are 

found to be universal functions of a  non-dimensional shear rate 0
ˆ

s Gγ γη=   that characterizes 

the competition between the advection time 1γ −  and the cage relaxation time 0s Gη  ( sη  is the 

solvent viscosity and 0G  is the cage elasticity [25]).  The macroscopic rheology and the local 

relaxation rate can be deduced one from the other, suggesting a method to extract the global 

rheology of SPGs from microrheological data. 
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II.  Model and Simulations 

The details of the model and the simulation method have been presented in previous 

studies [4, 26-29].  Below we briefly summarize the important features.  Soft particle glasses are 

modeled as suspensions of N non-Brownian elastic particles in a solvent with a viscosity sη , 

which are jammed in a cubic simulation box at volume fractions larger than the random close-

packing of hard spheres (Fig. 1). N = 1000 in most of the simulations reported in this work and 

we checked that the results are not affected by finite size effects.  Suspensions with an average 

radius of unity, polydispersity index of 0.2δ = , and volume fractions of 0.7, 0.75, 0.8, 0.85φ =

, and 0.9 are studied.  The value of the polydispersity agrees with that currently found in 

experiments [4, 29], and it prevents crystallization at high shear rates [27, 28].  Because the 

particles are compressed, they have a polyhedral shape with flat facets at contact instead of their 

initial spherical shape.  We have shown that these elastic contacts are central to the rheological 

properties of SPGs [4, 25].   

The initial preparation of the suspensions proceeds as follows.  A glass-like structure is 

first created using the Lubachevsky and Stillinger algorithm [30, 31].  The close-packed 

configurations are compressed by reducing the box size in small steps until the desired volume 

fraction is achieved.  The volume fraction of the suspension is computed as the ratio between the 

total volume of the particles and the volume of the box.  After each compressive step, the system 

is allowed to relax using the conjugate gradient algorithm so that there is no net force on any of 

the particles.  At contact, particles α and β create a flat facet resulting in a deformation of 

( ), 0.5 cR R r Rα β α β αβε = + − , where Rα and Rβ are the radii of particle α and β, rαβ  is the center-

to-center distance, and Rc is the contact radius, which is given as ( )cR R R R Rα β α β= + . ⊥n  and 
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||n  are unit vectors along the perpendicular and parallel directions to the facet, respectively (Fig. 

1). 

The elastic repulsion force between particles α and β acts perpendicularly to the 

contacting facet.  It is given by the generalized Hertz law [4]: 

 
* 24

3
e n

cCE Rαβ αβε ⊥=f n , (1) 

where E* is the particle contact modulus: ( )* 22 1E E= −ν , with E being the Young modulus 

and ν  is the Poisson ratio. The Poisson ratio is taken equal to 0.5 in these simulations so that the 

volume of the particle upon deformation remains constant. Moreover the particles are not 

allowed to deswell by osmotic effect when the volume fraction increases contrary to what has 

been reported in microgels [32, 33].  C and n are parameters, which depend on the degree of 

compression.  For 0.1ε <  1.5n =  and 1C = , for 0.1 0.2ε≤ <  3n =  and 32C = , and if 

0.2 0.6ε≤ <  5n =  and 790C =  [4, 34].  The elastohydrodynamic (EHD) drag force, which is 

due to the existence of thin films of solvent between the flat facets of two particles in contact 

during the shear deformation [4], is parallel to the contacting facets and is given by:  

 ( ) ( )1 2 2 1 4EHD * 3
,|| ||

n
s cCu E Rαβ αβ αβη ε += −f n , (2) 

where uαβ,|| is the relative velocity component in the direction of ||n .  The fluid inertia is 

neglected and the forces are assumed to be pair-wise additive.  The velocity field due to the 

motion of the solvent is given as 
*
s

xy
Eα
γη∞ =u e


, where ex is the basis vector in the x-direction. 

The resulting equation of motion is made dimensionless by scaling lengths, time and velocity by 

R, 1γ −&  and Rγ&  respectively, leading to [4, 26, 29]: 
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 ( ) ( )1 2 2 1 41 2 1/2 3
,|| ||

4

3
nn

c c

d M
C R Cu R

dt R αβ αβ

α
α αβ

β βα

γ ε γ ε +∞ − −
⊥

 
= + − 

 
 x

u n n
      , (3) 

where the tilde quantities are dimensionless variables.  M is the mobility function which is that of 

a particle corrected by a factor ( )f φ  that accounts for its reduction at high volume fraction 

( ( ) / 6 )M f φ π= ; ( )f φ is set to 0.01 in the simulations [35].  αx  is the position of particle α.  

The form of this equation shows that the dynamics is characterized solely by the dimensionless 

shear rate *γ γη= s E  , which represents the ratio of viscous to elastic forces, and the overlap 

deformation that depends on the volume fraction. 

The Lees-Edwards [36] boundary conditions are then used in the LAMMPS package [37] 

in order to impart the desired shear rate to the simulation box.  The stress tensor of the 

suspensions is determined using the Kirkwood formula [38]: 

 ( )1 N N

V αβ α β
β α β>

= −σ f x x , (4) 

where V is the volume of the system and αβf  is the total force acting on particle α from particle 

β.  The shear stress xyσ , the first and second normal stress differences, 1 xx yyN σ σ= − and 

2 σ σ= −yy zzN , are computed from the appropriate components of the stress tensor.  The flow 

properties of the suspensions are investigated over a broad range of shear rate ranging from 

910γ −=  to 410γ −= .  The simulations are performed for 100 strain units and the stress tensor is 

calculated at regular strain intervals.  The value of the time step is chosen such that it produced 

107 steps per strain at each shear rate.   
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FIG. 1.  (A) Schematic showing pair-wise interaction between particles α and β.  (B) Configuration of a 
suspension with a volume fraction of 0.9 and polydispersity index of δ = 0.1 that is in shear flow.  The 
flow (u), gradient (∇), and vorticity (w) directions are labeled on the axes. 
 

III. Results 

A.  Macroscopic rheology 

We have computed the linear and nonlinear dynamical properties of SPG for volume fractions of 

0.70, 0.75, 0.80, 0.85φ = , and 0.9. The low frequency shear modulus computed from the elastic 

forces that the particles exert on each other is shown in Table 1 [25].  At the particle scale level, 

0G  also represents the so-called cage elasticity to which each particle is subjected as it is trapped 

by many neighbors [39].  
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TABLE I.  Summary of rheological properties of SPGs used in this study 

Volume fraction  

(φ ) 

Low frequency 

modulus ( *
0G E ) 

Yield stress 

( *
y Eσ ) 

Yield strain 

( yγ ) 

HB exponent 
( n ) 

0.70 3.16×10-3 8.4×10-5 2.6×10-2 0.49 

0.75 7.02×10-3 2.29×10-4 3.2×10-2 0.49 

0.80 1.760×10-2 5.49×10-4 3.1×10-2 0.46 

0.85 3.638×10-2 1.21×10-3 3.3×10-2 0.47 

0.90 6.477×10-2 2.38×10-3 3.7×10-2 0.47 

 

We have also computed the shear stress (σ ), first and second normal stress differences 

1( N and 2N ) as a function of the dimensionless shear rate */s Eγ γη=  . The flow curves ( )%&σ γ  

and the normal stress differences 1( )N %&γ  and 2 ( )N %&γ  are shown in Fig. S1 with the raw data being 

reported in Table S1 in the Supplementary Materials.  The first and second normal stress 

differences are of opposite signs and differ by only a factor 2 ( 1( ) 0N >γ%& , 2( ) 0N <γ%&  ). It has 

been predicted that negative second normal stress difference of comparable magnitude to the first 

normal stress difference is a property of fluids which internal deformable interfaces such as 

emulsions, foams, and polymer blends which are called film fluids, [40].  They are well 

described by Herschel-Bulkley equations, whose parameters depend on the volume fraction as 

shown in Table 1.  We have checked that the data are independent of the system size; simulations 

with 103, 104, and 1.25 × 105 particles lead to the same results (see Fig. S2).  In particular the 

value and the extent of the low-shear stress plateau is not affected by finite size effects contrary 

to what has been reported in 2D simulations [15, 17, 20].  Following [1, 26, 41], in Fig. 2A the 
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shear stresses obtained for different volume fractions collapse onto a single Herschel-Bulkley 

master curve when they are scaled by the yield stress 
yσ and plotted as a function of the 

dimensionless shear rate 0
ˆ

s Gγ γη=  . sη is the solvent viscosity and 0G  is the static elastic 

modulus of the suspensions or the cage elasticity, which ultimately depends on the particle 

elasticity and volume fraction. When particles interact through the Hertz potential [1], the 

dimensionless variable γ̂ is equivalent to the form 2 *
s yη γ/γ E ( yγ  is the yield strain) that was 

introduced in previous publications [4, 33].   The value of the Herschel-Bulkley exponent is 

n ≅ 0.48. We emphasize that this scaling is valid only in the jammed glass regime where elastic 

contact forces are dominant; thermal glasses controlled by Brownian forces have a different 

behavior [33, 42].  In Fig. 2B, the first and second normal stress differences also collapse onto 

generic master curves against 0
ˆ

s Gγ γη=   once they are normalized by the yield stress values 

yσ . The non-dimensional shear rate γ̂  expresses the competition between the viscous forces 

and the elastic forces experienced by the jammed particles when they yield [41].  From the 

results shown in Fig. 2A-B, we anticipate the existence of two asymptotic regimes separated by a 

broad crossover around -6
0

ˆ 5×10≅γ : a constant stress plateau at low shear rates 0)ˆ ˆ(γ γ<   and a 

power-law regime at high shear rates 0)ˆ ˆ( >γ γ  .  In the following we connect these macroscopic 

rheological properties to the local dynamics of SPGs. 
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FIG. 2.  Macroscopic flow properties of SPGs. (A) Shear stress σ and (B) first (closed symbols) and 
second (open symbols) normal stress differences, N1 and N2, as a function of the non-dimensional shear 

rate 0
ˆ = s Gγ γη   at different volume fractions. The lines are the best fits of the data to the Herschel-

Bulkley equation: 0.48 0.02ˆ1 404yσ σ γ ±= +  , 0.65 0.02
1

ˆ0.1 195σ γ ±= +yN & , 0.63 0.02
2

ˆ0.14 359σ γ ±− = +yN &

The dashed lines represent the low and high shear rates asymptotic behaviors of σ, N1, and N2; note the 

transition at 5
0

ˆ 5 10γ −= ×& . 

 

B.  Ballistic and diffusive particle motion in SPGs 

To analyze the microscopic dynamics of our SPG, we track the position of each particle 

as a function of time and compute the non-affine displacements by subtracting the contribution 
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coming from the uniform shear flow.  In the following, the results are presented as a function of 

the time normalized by the hydrodynamic time 1γ −& : 1tτ γ −= & . Note that τ  also represents the 

total macroscopic strain experienced by the SPGs.  The way that particles yield depends on the 

shear rate: at low shear rates, particles show localized yielding, while at high shear rates the 

motion of the particles is uniform (see videos in Supplementary Materials).  Fig. 3A shows the 

non-affine trajectories of the center of mass of the particles in the simulation box.  The 

trajectories are randomly oriented with respect to the flow direction, indicating that the 

displacements of the particles are isotropic.  Fig. 3B depicts a particular trajectory constructed by 

following the displacement of a tagged particle for a long time.  The spheres represent the 

successive positions of the tagged particle at times τ .  The trajectory consists of blob-like 

domains corresponding to the temporary residence of the particle locally moving around some 

particular location, which are separated by necklace strands associated with particle hops. This 

shows that particles reside most of their time in cages formed by their neighbors and quickly 

move over significant distances when cages open and rearrange. To quantify these observations, 

we compute the non-affine mean-squared displacements along the three directions ( 2( )ir tΔ , i = 

x,y,z that are scaled with the average particle radius) and the average mean-squared displacement 

2( )r tΔ  at different shear rates as a function of time (Fig. S3).  The mean-squared 

displacements 2( )ir tΔ  are all equal, showing that the non-affine particle displacements are 

isotropic.  In Fig. 3C the average mean-squared displacements for φ = 0.8 are plotted as functions 

of the non-dimensional time τ .  Similar results are obtained at all volume fractions. Fig. 3C 

shows that particle motion is ballistic at short times, i.e. 2 2( )r τ τΔ : , and diffusive at long times, 

i.e. 2( )r τ τΔ : , for all applied shear rates.  The crossover mτ  between the two regimes can be 
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determined in log-log coordinates from the intersection between the short and long-time 

variations.  The values of mτ  depends on both the applied shear rate and volume fraction (Table 

S2).   

 

 
FIG. 3.  Non-affine displacements in SPGs. (A) Nonaffine trajectories of all particles in shear flow at a 

shear rate of * 41 0s Eγ γ η −= =   for a duration of 10τ = .  (B) Non-affine trajectory of a tagged 

particle. Other particles are not shown; the color of the particle is darker at longest time.  (C) Mean-square 
displacements versus dimensionless time at different shear rates for 0.8φ = . (D) Master curve of the 

diffusion coefficient 
2

0
ˆ

sD D R Gη=  as a function of γ̂  obtained for SPGs with different volume 

fraction.  Note the transition at 
5

0̂ 5 10γ −≅ × . 
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 Note that we have tested a possible dependence of the results on the system size by 

computing the mean-square displacements when the particle number is varied to a large extent.  

As shown in Fig. S5, the mean square displacements as a function of time for 125, 1000 and 

10,000 particles at 80% volume fraction are essentially the same.  The diffusivities at the lowest 

shear rate of for 125 (L = 8.7), 1000, (L = 17.4), and 10,000 particles (L = 37.4), are, /D γ =%% &

0.38, 0.49, 0.50, respectively, about a two percent difference between 1000 and 10,000 particles 

indicating numerical convergence.  The short and long time regimes as well as the position of the 

crossover mτ  are not affected by finite size effects contrary to what has been reported for 2D 

systems [15, 17, 20]. 

 The long-time diffusion coefficients at different volume fractions can be made non-

dimensional as 2
0

ˆ /sD D G R= η  using the scaling factor 2
0 / sG R η . The values computed for 

different shear rates are listed in Table S3.  In Fig. 3D, D̂  is plotted versus the non-dimensional 

shear rate 0
ˆ = s Gγ γη  used in the previous section to represent the stress and normal stress 

differences.  The data for the different volume fractions collapse onto a master curve that 

exhibits two distinct power-law variations at small and large shear rates.  At low shear rates, the 

diffusion coefficient is proportional to the shear rate and varies like ˆˆ 0.6D γ&; . At high shear 

rates, the diffusion coefficient still increases but with a weaker dependence on the shear rate: 

0.67ˆˆ ~D γ .  The crossover between the low and high shear regimes is determined from the 

intersection between the power-law behaviors at low and high shear rates: 6
0

ˆ 5 10γ −≅ × . It is 

important to note that this value is the same as the one that marks the crossover between the low 

shear plateau and the power law regime for the stress and normal stress differences in Fig. 2 A-

B. 
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C.  The fluctuating elastic forces 

To elucidate the microscopic origin of ballistic motion in SPGs, we consider the normalized 

autocorrelation function of the elastic force experienced by the particles at contact as a function 

of time and at different shear rates: 

 ( ) ( )
( )
0 0

2
0

( )

| |
C

τ τ τ
τ

τ
+ ⋅

=
F F

F
, (5) 

where ( )τF  is the elastic force on a particle at time τ  and 0( )τF  the magnitude of the force 

fluctuations. We have computed the correlation functions ( )C τ  for different shear rates and 

different volume fractions.  The behavior of the force autocorrelation functions for suspensions 

with a volume fraction of φ = 0.8 are plotted against the dimensional time τ in Fig. 4A.  Similar 

results are obtained for the other volume fractions.  The autocorrelation functions ( )C τ  decrease 

with the non-dimensional time τ , the decay being slower at high shear rates.  For each force 

autocorrelation function we define a characteristic decay time ( ),dτ γ φ%&  from ( ) 1 /dC eτ = .  The 

values of dτ  computed at different shear rates for all the volume fractions are listed in Table S2.  

In Fig. 4B we plot the characteristic time dτ  and the characteristic time mτ  that marks the end of 

the ballistic regime in Fig. 3C against 0
ˆ

s Gγ γη=  . Both quantities dτ  and mτ collapse on master 

curves which are parallel yielding a proportional relationship between dτ  and mτ : 1.7m dτ τ= .  

Thus, the duration of the ballistic regime is set by the persistence time of the elastic repulsive 

force generated when the particles come into contact.  This demonstrates that the short time 
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ballistic motion is associated with the elastic recoil of the contact forces experienced by the 

particles when they collide. The microscopic times dτ  and mτ  exhibit the same behaviors at low 

and high shear: for 0
ˆ ˆγ γ<& & , they increase linearly with the shear rate whereas for 0

ˆ ˆγ γ>& &  they 

follow the power law 0.25ˆ~d mτ τ γ≅ & .  

 
FIG. 4. Properties of the elastic force fluctuations in SPGs.  (A) Elastic force autocorrelation function 

versus dimensionless time at different shear rates ( 0.8)φ = ; (B) Characteristic times mτ  (open 

symbols) and dτ  (full symbols) versus 0
ˆ

s Gγ γη=  .  (C) The amplitude of the force fluctuations, 0̂F , as a 

function of γ̂  obtained for SPGs with different volume fractions. Symbol coding in panels B and C is the 

same as in Fig. 2D; note the transition at 
5

0̂ 5 10γ −≅ × .    

 

Let us turn our attention to the magnitude of the force fluctuations. Fig. 4C shows that the 

values of the non-dimensional quantity 2
0 0 0

ˆ ( ) /F G Rτ= F  for different volume fractions 

collapse when they are plotted against the dimensionless shear rate 0
ˆ

s Gγ γη=  already used in 

Fig. 2A-B and Fig. 3D (see also Table S2). This result exemplifies the important role of the bulk 

elasticity and confirms that 0
ˆ

s Gγ γη=  is the parameter that controls the microscopic dynamics 

of SPGs.  0̂F  exhibits two different variations depending again on the value of the shear rate with 

respect with 0γ̂  : at low shear rates we have 0.5
0

ˆF̂ γ&:  whereas 0.71
0

ˆF̂ γ&:  at high shear rates.  
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D.  Microstructural relaxation  

We return to our observation that trajectories of individual particles are spatially heterogeneous 

with particles rattling in localized regions before hopping over large distances (Figs. 2A-B).  To 

quantify this observation, we characterize the timescales that particles spend in their cage using 

the incoherent intermediate scattering function (ISF): 

 ( ) ( )( )
1

1
( , ) exp 0

N

s j j
j

F i
N

τ τ
=

 = ⋅ − k k r r , (6) 

where k  is a spatial wave vector and N is the total number of the particles in the simulation.  We 

compute the ISF at different volume fractions and shear rates at a wave vector 4.0kR = , which 

is close to the position of the first peak of the structure factor and corresponds to the cage size 

(Fig. S5).  The variations of the ISFs at different shear rates versus the non-dimensional time τ  

are shown in Fig. 5A for 0.8φ = .  The ISFs exhibit a plateau at short time due to the caging of the 

particles in their local environment before they start rearranging, which is followed by a decay 

because of the non-affine motion of the particles.  At all volume fractions, the decay of the ISF is 

nearly exponential, and we can determine a microstructure relaxation time cτ  from  

( , ) 1 /s cF k eτ = .  The results are plotted against the non-dimensional shear rate γ̂  in Fig. 5B.  

The characteristic relaxation times form a master curve that has the form of the Herschel-Bulkley 

equation 0
ˆn

c kτ τ γ= +  .  The yield value 0 0 0tτ γ γ= =  can be interpreted as the total strain 

experienced by the particles before they escape their cage.  Its value of 0.13 corresponds to 

deformation above which thermal systems melt, which matches the Lindemann criterion[43, 44] 
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. The crossover between the yield plateau and the power-law variation of τc  also occurs at 

6
0

ˆ 5 10γ −×  ,  which limits the low and high shear rate regimes defined above. Interestingly the 

inset of Fig. 5B shows that the characteristic quantity τc is a unique function of the persistence 

time τd , indicating that cage escape is also controlled by the fluctuating elastic forces. We have 

repeated the same analysis for larger values of kR. The Herschel-Bulkley shape is preserved with 

nearly the same exponent; the yield value increases when kR decreases because the characteristic 

distance over which we follow the motion of the particles increases (see Fig. S6).   
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FIG. 5.  Microstructural relaxation in SPGs. (A) Intermediate scattering function versus dimensionless 

time computed at different shear rates γ  (kR = 4.0, 0.8φ = ).  (B) Master curve of the microstructural 

relaxation time cτ  as a function of 0
ˆ

s Gγ γη=  .  The line is a fit of the data to a Herschel-Bulkley form 

equation ( 0.44 0.02ˆ0.132 15.5cτ γ ±= +  ).  The dashed lines represent the low and high shear rates asymptotic 

behaviors of cτ ; note the transition at 
5

0̂ 5 10γ −≅ × .  Inset: cτ  as a function of dτ . 
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IV.  Discussion 

A. Short time microscopic dynamics of SPGs 

On the basis of our results we can now propose a physical understanding of the three-

dimensional microscopic dynamics of athermal jammed suspensions interacting through a soft 

elastic potential. When particles collide at short times, they adjust their shape and distort the cage 

where they are trapped until an imbalance in the elastic force causes the particles to move in a 

ballistic fashion. Ballistic motion has also been found in simulations of various athermal glassy 

materials [13, 15, 16, 18, 20, 24].  Here we have demonstrated that the duration of the ballistic 

motion ( mτ ) is set by the persistence time of the elastic forces ( dτ ) associated with the shear-

induced cage deformation, which can be quantified by the force autocorrelation function. In this 

description the elastic kicks experienced by the particles create a mechanical noise that is 

responsible for non-affine particle motion. At short time particles rattle around fixed positions 

but when the cumulated strain exceeds a value cτ , particles leave their transient cage and hop to 

another location where they become trapped for another period of time. The characteristic time 

cτ  plays the role of a microstructural relaxation time. Interestingly it is also set by the persistence 

time of the elastic forces dτ . Thus, the persistence time of the fluctuating elastic force, dτ , 

appears to be the elementary clock that governs the microscopic dynamics of SPGs.  

B.  Long time microscopic dynamics of SPGs 

Since particles are continuously interacting with their neighbors in all directions, they experience 

an isotropic series of ballistic events, ultimately leading to particle diffusive motion at long 

times. The shear-induced diffusion coefficient of SPGs is described by two scaling forms. The 

scaling found at low shear rates when 0
6ˆ 5 10s Gγ γη −= < ×   ( ˆˆ 0.6D γ&; ) is the same as the one 
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that governs the shear-induced diffusion of hard particles in unjammed suspensions, although the 

driving mechanisms (long-ranged hydrodynamic interactions versus near-field 

elastohydrodynamics) are different [45, 46].  At high shear rates when 0
6ˆ 5 10s Gγ γη −= > ×  , 

the diffusion coefficient exhibits a sublinear dependence on the shear rate: 0.67ˆˆ ~D γ . Power-law 

variations ˆˆ ~ mD γ of the shear-induced diffusion coefficient with a variety of exponents have 

been reported in experiments [6] for hard-sphere glasses (m = 0.8) and computer simulations [10, 

15-17] of two-dimensional Lennard-Jones (m = 0.5) and foams (m ≅ 2/3 and 0.5).  

In SPGs we can relate the non-trivial dependence of the diffusion coefficient on the shear 

rate to the properties of the fluctuating elastic forces in the framework of equilibrium statistical 

physics. We use the Green-Kubo relationship that relates the diffusion coefficient to the velocity 

fluctuations: 
0

1 (0) ( )3D V V t dt
∞

=  . Since the force and velocity are proportional through the 

mobility coefficient, the velocity must remain correlated during the characteristic time dτ , and 

0̂V  and 0̂F  are proportional through the mobility coefficient, which does not depend on the shear 

rate, i.e. 0 0
ˆ ˆV MF= . We then obtain in non-dimensional units: 

 2 2 1
0

1 ˆˆ ˆ
3 dD M F τ γ −=  . (7) 

This relation shows that the shear-induced diffusion coefficient is related to the short time 

dynamics of the particles through the amplitude and the correlation time of the elastic forces they 

experience at contact.  Replacing 0̂F  and dτ  by their power-law variations at low ( 0
0.5ˆ ˆ~F γ , 

ˆ~dτ γ ) and high ( 0.71
0

ˆˆ ~F γ , 0.25ˆ~dτ γ ,) shear rates, we recover that ˆˆ ~D γ   and 0.67ˆˆ ~D γ , 

respectively, which are the results found in Fig. 2D from the mean-squared displacements data. 
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Thus, shear-induced diffusion in SPGs is connected to the magnitude of the elastic contact forces 

and the elastically-driven, short-time, ballistic motion of the particles. 

An interesting consequence is that the shear induced diffusion coefficient D̂  can also be 

related to the microstructural relaxation time cτ .  In Fig. 6A we plot the diffusion coefficients D̂  

computed for different volume fractions against the microstructural relaxation time τc .  All the 

data collapse on a master curve demonstrating the connection between shear-induced diffusivity 

and local relaxation.  For reference, we have also plotted the prediction obtained from the ISF for 

a Gaussian distribution of displacement (Fickian diffusion): 2ˆˆ ˆ
c k Dτ γ=  , with k̂ kR= .  The 

latter solution is in reasonable agreement with the data computed at all shear rates, suggesting 

that the spatial heterogeneities associated with the short time displacements do not significantly 

affect the long-time behavior in SPGs.   

C.  Connecting microscopic dynamics and macroscopic rheology 

In this section we bridge the gap between the microscopic dynamics and the macroscopic 

rheology and we derive several the relationships that relate σ , 1N and 2N to τc .  Let us first 

focus our attention on the shear stress σ .  In a steady-state sheared system, the energy supplied 

to the system has to be dissipated.  The elastic forces being dominant [4], we express the energy 

dissipation as .nσγ = F V& , where n is the number density of particles 3( 3 / 4n Rφ π= ; :φ  

volume fraction; R: particle radius), F  and V  are the elastic force acting on the particles and the 

velocity, which are proportional.  Since 0 0
ˆ ˆV MF= , we have in dimensionless form: 

 
2

0̂3
ˆ4y y

MFσ φ
σ π γ γ

=


, (8) 
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where 0y yGσ γ=  is the yield stress, yγ being the yield strain. Relation (8) has two important 

consequences.  First, since the ratio / yφ γ is constant (Table 1), it justifies that the shear stresses 

computed for different volume fractions must be described by a generic flow curve when they 

are scaled by the yield stress yσ and plotted as a function of the dimensionless shear rate 

0
ˆ .s Gγ γη=  Second, it establishes a link between the macroscopic stress and the short time 

dynamics of the particles, which is further supported by the similar functional form observed 

between τc and σ  in Fig. 2 and Fig. 5B.  

We now establish the relationships that link together the microstructural relaxation time 

cτ  and the macroscopic stress σ .  In the Herschel-Bulkley equation, the shear stress is the sum 

of the yield stress arising from the cage elasticity G0 ( 0y yGσ γ= , yγ  is the yield strain) and an 

excess elastic term originating from shear-induced rearrangements [4].  Similarly, the non-

dimensional relaxation time cτ  (or equivalently the macroscopic strain) can be decomposed into 

a yield value 0τ  and an excess contribution.  Since the stress is of elastic origin, we assume that 

the excess quantities yσ σ−  and 0cτ τ−  are related through the low-frequency modulus as: 

0 0( )y cGσ σ τ τ− = − .  After rearranging, we obtain:  

 
( )00

0

y c

y y

σ σ τ ττ
σ γ τ
− −

= , (9) 

In Fig. 6B, we plot the normalized excess shear stress ( ) /y yσ σ σ−  against the 

normalized excess relaxation time ( )0 0/cτ τ τ− .  The data computed at different volume 

fractions collapse onto a single curve that is close to the expected linear variation.  The exponent 

is slightly larger than one because of the small difference between the Herschel-Bulkley 



23 
 

exponents for the flow curves and relaxation time.  Figs. 6C and 6D suggest that similar relations 

exist for the first and second normal stress differences. This is somewhat surprising a priori since 

the normal stress differences only involve elasticity whereas the shear stress is associated with 

energy dissipation as expresses by Eqs 8-9. This correspondence may come from the fact that 

normal stress differences originate from the contact forces between the particles and are 

proportional to the shear stress [4]. 

 
FIG. 6. Predicting diffusivity and macroscopic rheology from the structural relaxation time.  (A) Master 
curve of the scaled diffusion coefficient as a function of the structural relaxation time.  The blue line 

represents the Gaussian solution ( )2.272 2 4
0

ˆˆ 1.24 10c c cD R kγ τ τ τ τ−= = × −& .  (B) Master curve of the 

normalized excess shear stress versus the normalized excess structural time.  The dashed line is a power-

law fit to the data: [ ]1.08 0.04

0 0( ) 1.86 ( )y y cσ σ σ τ τ τ ±− = − .  (C) and (D) Master curves of the 

normalized excess normal stress differences.  The dashed lines are a power-law fits to the data: 
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[ ]1.35 0.04

1 1 1 0 0( ) 1.50 ( )y y cN N N τ τ τ ±− = −  and [ ]1.45 0.04

2 2 2 0 0( ) 2.40 ( )y y cN N N τ τ τ ±− = − .

1yN  and 2yN are the yield values of the first and normal stress differences. 

 

V. Concluding remarks and perspectives 

Our simulations provide a physical understanding of the three-dimensional microscopic 

dynamics of athermal jammed suspensions interacting through a soft potential. At short times 

particles experience shear-induced collisions which distort their shape and cause an imbalance in 

the elastic forces, forcing the particles to move in a ballistic fashion. The elastic kicks 

experienced by the particles thus create a mechanical noise that is responsible for the particle 

scale dynamics. At long times particles leave their transient cage and hop to another position 

where they become trapped for another period of time. The dynamical sequence of localized 

cage motion and activated hopping exhibit similarities with the behavior of thermal systems like 

supercooled liquids [47, 48]  and hard sphere glasses [49].  

The connection between the properties of the non-affine particle trajectories, the contact 

force statistics, and the macroscopic rheology of SPGs has been rationalized in terms of a 

hierarchy of characteristic times.  dτ  characterizes the persistence time of the net elastic force 

experienced by the particles during collisions; it plays a key role since its constitute the 

elementary clock that controls the entire sequence of dynamical processes taking place in SPGs.

mτ  marks the crossover between ballistic motion at short times and shear-induced diffusion at 

long times; it has the same order of magnitude as dτ as shown in Fig. 4B.  cτ  is a structural 

relaxation time that represents the residence time of the particles in their local environment 

before they hop on another position. cτ  scales with dτ  as shown in the inset of Fig. 5B but it is 

much larger than dτ showing that the particles bounces several against their neighbors before 
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hopping to another position. cτ  gives access to the long-time diffusion coefficient, the shear 

stress and the first and second normal stress differences through a set of scaling relations 

presented in Fig 6. In the literature a few conflicting results have been reported about the 

connection between the macroscopic rheology and microscopic relaxation processes in hard 

suspensions and two-dimensional foams [6, 7, 10]. Here we demonstrate that the structural 

relaxation time cτ can be utilized as a tool to determine the macroscopic rheology of soft jammed 

colloids. This poses the question of the practical determination of cτ in experiments. cτ is 

accessible through the decay of the ISF function, which in colloidal systems can be measured 

using real space videomicroscopy experiments [6]. Orthogonal superposition rheometry has also 

been used to probe in-cage to out-of-cage motion transition [50, 51].  Optical techniques based 

on microscopy or light scattering offer promising perspectives to probe the local dynamics of 

soft materials like SPGs [51, 52]. 

Bailey et al. show [53] data for avalanches that are system size dependent, but they do not 

report results on diffusivity under shear, thus we cannot make a direct comparison. It is also of 

note that the potential used there is a realistic potential for metallic glasses but is different from 

ours. The problem of dynamical heterogeneities in microgel suspensions which are known to 

interact through Hertzian potentials has been addressed experimentally [54]. The authors report 

that the number of fast particles involved in cooperative regions decreases dramatically away 

from the jamming transition around maximum packing.  Indeed the number of particles involved 

around a volume fraction of 69% is about the same as the average number of contacts between 

particles, indicating that the cooperative region is close to the size of the cage of nearest 

neighbors surrounding a specific particle.  It is beyond the scope of this paper, but certainly 
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future work is warranted to understand the details on why the system presented here does not 

show a size dependence for diffusivity. 

Our results exemplify the importance of the particle softness.  Indeed the magnitude and 

decay time of the fluctuating elastic force are determined by the particle elasticity and the elastic 

deformation experienced by the particles when they are jammed above close-packing. We thus 

believe that our findings apply to a broad class of jammed suspensions made of soft repulsive 

particles such as emulsions, microgels, or vesicles.  The universal scaling shown in Fig. 2 has 

already been reported in concentrated microgel suspensions and emulsions [1, 4, 41]. Of 

particular interest is the value of the Herschel-Bulkley exponent of the shear stress which is close 

to 0.5 in fairly good agreement with experimental data for different materials such as 

concentrated emulsions [1, 4], microgels  [1, 4, 33, 41, 54-56], and vesicles [57].  There are far 

less data available for the normal stress differences. Two sets of data have reported. They both 

report first and second normal stress differences of opposite signs described by Herschel-Bulkley 

equations. However in one set of data normal stress differences and shear stress are proportional 

in agreement with our findings [1, 4] whereas in the other a quadratic dependence is reported 

[58].  However soft interactions in colloids may be more diverse for instance when particles 

interpenetrate or experience osmotic deswelling [2].  In the near future it would be interesting to 

extend the present model to particles with different sources of softness.     

The shear induced diffusion coefficient and the macroscopic shear stress are related to the 

magnitude and decay time of the fluctuating elastic force in the framework of equilibrium 

statistical mechanics.  An important consequence is that these quantities are all universal 

functions of the unique dimensionless variable 0
ˆ

s Gγ γη=  .  The scaling behavior of these 

dynamical properties give evidence for two flow regimes separated by a broad crossover around 
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0γ̂ . The value of the crossover is set by the condition that the characteristic time dτ  or 

equivalently the macroscopic strain is equal to the yield strain yγ  (see Fig. 4C).  Thus, at low 

shear rates, the advection time 1 / γ&is much longer than the structural relaxation time dτ  and the 

force autocorrelation decays before the particles yield macroscopically.  Yielding events are 

expected to be intermittent and particles to have enough time to relax to local equilibrium before 

the flow induces a new rearrangement.  On the opposite, at high shear rates particles yield 

macroscopically before the force autocorrelation has vanished so that they continuously yield 

and never find local equilibrium positions.  These predictions echo to a recent investigation of 

the rate dependence local motion and of spatiotemporal correlations in 3D flows of soft solids 

[12].  Preliminary results which are shown in the Supplementary Materials (see videos) prompt 

for further investigation in the near future. 

Supplementary materials 
 
See supplementary material for supporting information discussed in the main text.  
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Fig. S6:  Structure factor obtained at quiescent condition for suspensions with different 
volume fractions.  

Fig. S7:  Intermediate scattering function as a function of the normalized time */st t E%

obtained at different shear rates for a SPG with a volume fraction of 0.80.  

Fig. S8:  Values of the microscopic relaxation time ( C ) obtained at different kR values for a 

suspension with a volume fraction of 0.80.  

Fig. S9:  Values of the decorrelation exponent   obtained from fitting the elastic force 

autocorrelation to     exp df       as a function of the shear rate for suspension with 

different volume fractions.   
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Table S2.  Values crossover time ( m ) between the ballistic and diffusive regimes, relaxation 
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Supplementary videos 

Movie S1.  Displacement field of suspensions with a volume fraction of 0.8   at a high 

shear rate of 410  .  The interval time of 0.01   is used to track the particles over a 
duration of 10.0   
Movie S2.  Displacement field of suspensions with a volume fraction of 0.8   at a low 

shear rate of 810  .  The interval time of 0.01   is used to track the particles over a 
duration of 10.0   
 
  



 
 

Figure S1 

 
FIG S1: (a) Shear stress, (b) first and (c) second normal stress differences as a function of the 

dimensionless shear rate */s E %& & for SPGs with 0.70,75,0.80,0.85,and 0.90  . The data are 

listed in Table S1 below. The continuous lines show the best fits to the Herschel-Bulkley equation. 
Data for 0.70 and 0.75   at the highest shear rate are not shown because the suspensions 
crystallize. 



 
 

Figure S2 

 
FIG S2: Flow curves computed for a suspension with different particle numbers at volume fraction of 
0.80. 

  



 
 

Figure S3 

 
Fig. S3:  Three component of the mean-square displacements versus dimensionless time at low (filled 
symbols) and high (open symbols) shear rates for SPG with volume fraction of 0.9.  The diffusion 

coefficients ( 2 */SD D R E% ) obtained in x, y, and z directions at low shear rates are 6.3 910 , 5.7
910 , and 5.3 910  and at high shear rates are 8.3 610 , 7.4 610 , and 7.1 610 , respectively. 

 

  



 
 

Figure S4 

 

FIG. S4.  Mean square displacement as function of the normalized time */St t E%  obtained at 

different shear rates for a SPG with a volume fraction of 0.8. mt%  marks the crossover between the 

short time ballistic regime and the long time diffusive regime. 
 

 

 

 

  



 
 

Figure S5 

 
 

FIG S5.  Mean-squared displacement as a function of dimensionless time at (a) high and (b) low shear 
rates for suspensions with different number of particles at volume fraction of 0.8. The long time 

diffusion coefficients ( 2 */SD D R E% ) for N = 125, 1000, 10000 are: a) /D %% &  3.7×10-2,  

3.8×10-2, 4.4×10-2; b) /D %% & 0.38, 0.49, 0.50. 

 

 



 
 

Figure S6 

 

Fig. S6:  Structure factor obtained at quiescent condition for suspensions with different 
volume fractions.  

 

  



 
 

Figure S7 

 
 

FIG S7.  Intermediate scattering function as function of the normalized time */St t E%  obtained at 

different shear rates for a SPG with a volume fraction of 0.8.   
  



 
 

Figure S8 

 

 
FIG S8.  Values of the microscopic relaxation time ( C ) obtained at different kR values for a 

suspension with a volume fraction of 0.8.  
   



 
 

 

FIG S9.  Values of the exponent   obtained from fitting the elastic force autocorrelation to 

    exp df       as a function of the shear rate for suspensions with different volume 

fractions.   

  



 
 

TABLE S1: Variations of the shear stress ( *E ), first ( *
1N E ) and second normal ( *

2N E ) 

stress computed at different shear rates. 
 

 
*

s E&  *E  
*

1N E  *
2N E  

0.70   

10-5 2.57×10-3 3.61×10-4 8.67×10-4 
10-6 8.23×10-4  6.53×10-5 2.17×10-4 
10-7 3.24×10-4  2.09×10-5 6.68×10-5 
10-8 1.65×10-4  1.22×10-5 2.64×10-5 
10-9 1.06×10-4  8.89×10-6 1.51×10-5 

0.75   

10-5 4.14×10-3 4.30×10-4 1.28×10-3 
10-6 1.46×10-3 1.38×10-4 3.45×10-4 
10-7 6.34×10-4 6.27×10-5 1.19×10-4 
10-8 3.65×10-4 3.46×10-5 5.55×10-5 
10-9 2.67×10-4 2.52×10-5 3.50×10-5 

0.80   

10-4 1.77×10-2 4.07×10-3 7.46×10-3 
10-5 6.39×10-3 5.76×10-4 1.89×10-3 
10-6 2.50×10-3 2.42×10-4 5.47×10-4 
10-7 1.26×10-3 1.11×10-4 2.09×10-4 
10-8 7.90×10-4 7.73×10-5 1.00×10-4 
10-9 6.23×10-4 6.17×10-5 8.67×10-5 

0.85   

10-4 2.91×10-2 4.20×10-3 9.92×10-3 
10-5 9.94×10-3 1.08×10-3 2.52×10-3 
10-6 4.11×10-3 4.79×10-4 7.82×10-4 
10-7 2.24×10-3 2.11×10-4 3.26×10-4 
10-8 1.55×10-3 1.51×10-4 1.94×10-4 
10-9 1.31×10-3 1.36×10-4 1.75×10-4 

0.90   

10-4 4.15×10-2 5.43×10-3 1.29×10-2 
10-5 1.53×10-2 1.41×10-3 3.62×10-3 
10-6 6.83×10-3 7.30×10-4 1.21×10-3 
10-7 3.97×10-3 4.00×10-4 5.47×10-4 
10-8 2.86×10-3 2.57×10-4 3.54×10-4 
10-9 2.60×10-3 2.35×10-4 3.38×10-4 

 
  



 
 

TABLE S2: Crossover time ( m ) between the ballistic and diffusive regimes, relaxation time of the 

elastic force ( d ), and non-dimensional amplitude of the force fluctuations, 0̂F , computed at different 

shear rates. 
 

*
s E&  m  d  

0̂F  

0.70   

10-5 0.3549 0.2523 5.3216 
10-6 0.2290 0.1466 0.9877 
10-7 0.0951 0.0575 0.1965 
10-8 0.0251 0.0163 0.0444 
10-9 0.0080 0.0035 0.0111 

0.75   

10-5 0.3332 0.2201 3.0362 
10-6 0.1669 0.1149 0.5706 
10-7 0.0613 0.0388 0.1215 
10-8 0.0169 0.0095 0.0306 
10-9 0.0047 0.0016 0.0069 

0.80   

10-4 0.4704 0.2847 7.7072 
10-5 0.3209 0.1771 1.4805 
10-6 0.1565 0.0841 0.2880 
10-7 0.0677 0.0262 0.0655 
10-8 0.0113 0.0059 0.0177 
10-9 0.0025 0.0009 0.0050 

0.85   

10-4 0.6433 0.2666 4.5723 
10-5 0.3490 0.1466 0.8596 
10-6 0.1545 0.0615 0.1774 
10-7 0.0441 0.0168 0.0445 
10-8 0.0107 0.0039 0.0123 
10-9 0.0018 0.0004 0.0034 

0.90   

10-4 0.2710 0.2250 2.9294 
10-5 0.1790 0.1170 0.5879 
10-6 0.0443 0.0435 0.1285 
10-7 0.0130 0.0115 0.0321 
10-8 0.0030 0.0020 0.0087 
10-9 0.00037 0.0002 0.0032 

 
  



 
 

TABLE S3: Long-time diffusion coefficient ( 2 *
sD R E ) computed at different shear rates. 

 
*

s E&  2 *
sD R E  

0.70   

10-5 6.38×10-7 
10-6 1.26×10-7 
10-7 2.25×10-8 
10-8 3.72×10-9 
10-9 5.21×10-10 

0.75   

10-5 8.08×10-7 
10-6 1.61×10-7 
10-7 2.94×10-8 
10-8 4.42×10-9 
10-9 5.71×10-10 

0.80   

10-4 4.58×10-6 
10-5 9.91×10-7 
10-6 1.99×10-7 
10-7 3.41×10-8 
10-8 5.27×10-9 
10-9 6.09×10-10 

0.85   

10-4 5.62×10-6 
10-5 1.21×10-6 
10-6 2.31×10-7 
10-7 3.96×10-8 
10-8 5.74×10-9 
10-9 6.00×10-10 

0.90   

10-4 7.02×10-6 
10-5 1.44×10-6 
10-6 2.69×10-7 
10-7 4.36×10-8 
10-8 5.73×10-9 
10-9 6.05×10-10 

 
  



 
 

TABLE S4: Microstructural relaxation time ( C ) computed at different shear rates. 

 
*

s E&  C  

0.70   

10-5 1.09209 
10-6 0.55138 
10-7 0.31524 
10-8 0.20551 
10-9 0.15855 

0.75   

10-5 0.84224 
10-6 0.43394 
10-7 0.25666 
10-8 0.17703 
10-9 0.14685 

0.80   

10-4 1.70187 
10-5 0.68995 
10-6 0.3606 
10-7 0.22017 
10-8 0.16076 
10-9 0.13934 

0.85   

10-4 1.32167 
10-5 0.56946 
10-6 0.31083 
10-7 0.19723 
10-8 0.1533 
10-9 0.1402 

0.90   

10-4 0.98994 
10-5 0.47455 
10-6 0.27303 
10-7 0.18481 
10-8 0.15105 
10-9 0.14307 
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Figure S1 

 
FIG S1: (a) Shear stress, (b) first and (c) second normal stress differences as a function of the 

dimensionless shear rate */s E %& & for SPGs with 0.70,75,0.80,0.85,and 0.90  . The data are 

listed in Table S1 below. The continuous lines show the best fits to the Herschel-Bulkley equation. 
Data for 0.70 and 0.75   at the highest shear rate are not shown because the suspensions 
crystallize. 



 
 

Figure S2 

 
FIG S2: Flow curves computed for a suspension with different particle numbers at volume fraction of 
0.80. 

  



 
 

Figure S3 

 
Fig. S3:  Three component of the mean-square displacements versus dimensionless time at low (filled 
symbols) and high (open symbols) shear rates for SPG with volume fraction of 0.9.  The diffusion 

coefficients ( 2 */SD D R E% ) obtained in x, y, and z directions at low shear rates are 6.3 910 , 5.7
910 , and 5.3 910  and at high shear rates are 8.3 610 , 7.4 610 , and 7.1 610 , respectively. 

 

  



 
 

Figure S4 

 

FIG. S4.  Mean square displacement as function of the normalized time */St t E%  obtained at 

different shear rates for a SPG with a volume fraction of 0.8. mt%  marks the crossover between the 

short time ballistic regime and the long time diffusive regime. 
 

 

 

 

  



 
 

Figure S5 

 
 

FIG S5.  Mean-squared displacement as a function of dimensionless time at (a) high and (b) low shear 
rates for suspensions with different number of particles at volume fraction of 0.8. The long time 

diffusion coefficients ( 2 */SD D R E% ) for N = 125, 1000, 10000 are: a) /D %% &  3.7×10-2,  

3.8×10-2, 4.4×10-2; b) /D %% & 0.38, 0.49, 0.50. 

 

 



 
 

Figure S6 

 

Fig. S6:  Structure factor obtained at quiescent condition for suspensions with different 
volume fractions.  

 

  



 
 

Figure S7 

 
 

FIG S7.  Intermediate scattering function as function of the normalized time */St t E%  obtained at 

different shear rates for a SPG with a volume fraction of 0.8.   
  



 
 

Figure S8 

 

 
FIG S8.  Values of the microscopic relaxation time ( C ) obtained at different kR values for a 

suspension with a volume fraction of 0.8.  
   



 
 

 

FIG S9.  Values of the exponent   obtained from fitting the elastic force autocorrelation to 

    exp df       as a function of the shear rate for suspensions with different volume 

fractions.   

  



 
 

TABLE S1: Variations of the shear stress ( *E ), first ( *
1N E ) and second normal ( *

2N E ) 

stress computed at different shear rates. 
 

 
*

s E&  *E  
*

1N E  *
2N E  

0.70   

10-5 2.57×10-3 3.61×10-4 8.67×10-4 
10-6 8.23×10-4  6.53×10-5 2.17×10-4 
10-7 3.24×10-4  2.09×10-5 6.68×10-5 
10-8 1.65×10-4  1.22×10-5 2.64×10-5 
10-9 1.06×10-4  8.89×10-6 1.51×10-5 

0.75   

10-5 4.14×10-3 4.30×10-4 1.28×10-3 
10-6 1.46×10-3 1.38×10-4 3.45×10-4 
10-7 6.34×10-4 6.27×10-5 1.19×10-4 
10-8 3.65×10-4 3.46×10-5 5.55×10-5 
10-9 2.67×10-4 2.52×10-5 3.50×10-5 

0.80   

10-4 1.77×10-2 4.07×10-3 7.46×10-3 
10-5 6.39×10-3 5.76×10-4 1.89×10-3 
10-6 2.50×10-3 2.42×10-4 5.47×10-4 
10-7 1.26×10-3 1.11×10-4 2.09×10-4 
10-8 7.90×10-4 7.73×10-5 1.00×10-4 
10-9 6.23×10-4 6.17×10-5 8.67×10-5 

0.85   

10-4 2.91×10-2 4.20×10-3 9.92×10-3 
10-5 9.94×10-3 1.08×10-3 2.52×10-3 
10-6 4.11×10-3 4.79×10-4 7.82×10-4 
10-7 2.24×10-3 2.11×10-4 3.26×10-4 
10-8 1.55×10-3 1.51×10-4 1.94×10-4 
10-9 1.31×10-3 1.36×10-4 1.75×10-4 

0.90   

10-4 4.15×10-2 5.43×10-3 1.29×10-2 
10-5 1.53×10-2 1.41×10-3 3.62×10-3 
10-6 6.83×10-3 7.30×10-4 1.21×10-3 
10-7 3.97×10-3 4.00×10-4 5.47×10-4 
10-8 2.86×10-3 2.57×10-4 3.54×10-4 
10-9 2.60×10-3 2.35×10-4 3.38×10-4 

 
  



 
 

TABLE S2: Crossover time ( m ) between the ballistic and diffusive regimes, relaxation time of the 

elastic force ( d ), and non-dimensional amplitude of the force fluctuations, 0̂F , computed at different 

shear rates. 
 

*
s E&  m  d  

0̂F  

0.70   

10-5 0.3549 0.2523 5.3216 
10-6 0.2290 0.1466 0.9877 
10-7 0.0951 0.0575 0.1965 
10-8 0.0251 0.0163 0.0444 
10-9 0.0080 0.0035 0.0111 

0.75   

10-5 0.3332 0.2201 3.0362 
10-6 0.1669 0.1149 0.5706 
10-7 0.0613 0.0388 0.1215 
10-8 0.0169 0.0095 0.0306 
10-9 0.0047 0.0016 0.0069 

0.80   

10-4 0.4704 0.2847 7.7072 
10-5 0.3209 0.1771 1.4805 
10-6 0.1565 0.0841 0.2880 
10-7 0.0677 0.0262 0.0655 
10-8 0.0113 0.0059 0.0177 
10-9 0.0025 0.0009 0.0050 

0.85   

10-4 0.6433 0.2666 4.5723 
10-5 0.3490 0.1466 0.8596 
10-6 0.1545 0.0615 0.1774 
10-7 0.0441 0.0168 0.0445 
10-8 0.0107 0.0039 0.0123 
10-9 0.0018 0.0004 0.0034 

0.90   

10-4 0.2710 0.2250 2.9294 
10-5 0.1790 0.1170 0.5879 
10-6 0.0443 0.0435 0.1285 
10-7 0.0130 0.0115 0.0321 
10-8 0.0030 0.0020 0.0087 
10-9 0.00037 0.0002 0.0032 

 
  



 
 

TABLE S3: Long-time diffusion coefficient ( 2 *
sD R E ) computed at different shear rates. 

 
*

s E&  2 *
sD R E  

0.70   

10-5 6.38×10-7 
10-6 1.26×10-7 
10-7 2.25×10-8 
10-8 3.72×10-9 
10-9 5.21×10-10 

0.75   

10-5 8.08×10-7 
10-6 1.61×10-7 
10-7 2.94×10-8 
10-8 4.42×10-9 
10-9 5.71×10-10 

0.80   

10-4 4.58×10-6 
10-5 9.91×10-7 
10-6 1.99×10-7 
10-7 3.41×10-8 
10-8 5.27×10-9 
10-9 6.09×10-10 

0.85   

10-4 5.62×10-6 
10-5 1.21×10-6 
10-6 2.31×10-7 
10-7 3.96×10-8 
10-8 5.74×10-9 
10-9 6.00×10-10 

0.90   

10-4 7.02×10-6 
10-5 1.44×10-6 
10-6 2.69×10-7 
10-7 4.36×10-8 
10-8 5.73×10-9 
10-9 6.05×10-10 

 
  



 
 

TABLE S4: Microstructural relaxation time ( C ) computed at different shear rates. 

 
*

s E&  C  

0.70   

10-5 1.09209 
10-6 0.55138 
10-7 0.31524 
10-8 0.20551 
10-9 0.15855 

0.75   

10-5 0.84224 
10-6 0.43394 
10-7 0.25666 
10-8 0.17703 
10-9 0.14685 

0.80   

10-4 1.70187 
10-5 0.68995 
10-6 0.3606 
10-7 0.22017 
10-8 0.16076 
10-9 0.13934 

0.85   

10-4 1.32167 
10-5 0.56946 
10-6 0.31083 
10-7 0.19723 
10-8 0.1533 
10-9 0.1402 

0.90   

10-4 0.98994 
10-5 0.47455 
10-6 0.27303 
10-7 0.18481 
10-8 0.15105 
10-9 0.14307 

 
 


